EP1857761A2 - Heat exchange device for combustion engines - Google Patents
Heat exchange device for combustion engines Download PDFInfo
- Publication number
- EP1857761A2 EP1857761A2 EP07107408A EP07107408A EP1857761A2 EP 1857761 A2 EP1857761 A2 EP 1857761A2 EP 07107408 A EP07107408 A EP 07107408A EP 07107408 A EP07107408 A EP 07107408A EP 1857761 A2 EP1857761 A2 EP 1857761A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- channel
- fluid
- heat transfer
- transfer unit
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/1684—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M5/00—Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/25—Layout, e.g. schematics with coolers having bypasses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
- F02M26/30—Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
- F02M26/32—Liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/38—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0008—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
- F28D7/0025—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0066—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
- F28D7/0083—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0093—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/02—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0089—Oil coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/06—Derivation channels, e.g. bypass
Definitions
- the invention relates to a heat transfer unit for internal combustion engines with a housing in which at least a first channel through which a fluid to be cooled is arranged, at least one channel through which a second fluid can pass and at least one channel through which a coolant can pass, and a heat transfer unit for the oil circuit of an internal combustion engine with an oil-permeable channel and at least one channel through which a coolant can flow, wherein the oil-permeable channel is in heat-conducting contact with the channel through which the coolant can flow.
- Such combined heat transfer units are known from the prior art and are used, for example, to cool in a unit both the charge air and an exhaust gas flow, or to arrange, for example, a lubricating oil cooling either individually or in a housing with a charge air cooling or exhaust gas cooling.
- a lubricating oil cooling either individually or in a housing with a charge air cooling or exhaust gas cooling.
- DE 102 03 003 A1 discloses an exhaust gas heat exchanger having in a housing both the exhaust gas cooling device and a bypass device bypassing the cooling device. Depending on the operating state of the internal combustion engine, the exhaust gas flow is conducted either through the cooling device or via the bypass channel via an upstream bypass flap.
- the object of the invention is therefore to provide a heat transfer unit with which an effective temperature management can be operated in the internal combustion engine, at the same time the space requirement should be minimized.
- the oil circuit of an internal combustion engine is to be completely dispensed with the heater currently used in turbo diesel engines. This should be further reduced in comparison to known embodiments, the high pollutant content generating warm-up phase.
- a bypass channel for the first fluid to be cooled is formed, via which the at least one first channel through which the first fluid to be cooled can be bypassed.
- this object is achieved in that in the heat transfer unit an exhaust gas flow-through channel is formed, which is also in heat conductive contact to the oil flow channel, so that rapid heating of the oil through the warm exhaust gas flow is reached.
- the exhaust gas through-flowable channel is a bypass channel of an exhaust gas cooler.
- the at least one channel through which the second fluid can flow is arranged between the bypass channel and the channel which can be flowed through by the coolant. This ensures that depending on the flow through the bypass channel and the coolant flow-through channel, the second fluid can either be heated or cooled either.
- the fluid mass flow of the first fluid to be cooled in the bypass channel and the first channel through which the first fluid to be cooled can be controlled via at least one control device.
- temperature control of both the first fluid to be cooled and the second fluid becomes possible.
- valves may be formed, for example, flap-shaped and electromotive Adjustment units are dependent or independently regulated. A temperature control is thus easily possible.
- the channel through which the coolant can flow has a first common partition wall with the channel through which the first fluid to be cooled flows and a second common partition wall with the channel through which the second fluid can flow.
- the two common partitions thus serve directly as thermal bridges between the media.
- the channel through which the coolant can flow completely surrounds the channel through which the first fluid to be cooled can flow. This ensures optimized cooling of the first fluid to be cooled.
- ribs protrude into at least one of the channels of at least one of the partitions. These also significantly improve the heat transfer between the media. In particular, with formation of the ribs in the gas-conducting channels, this results in great advantages in terms of heat transfer. Both continuous ribs along the flow direction are conceivable as well as interrupted single ribs.
- the coolant flow is controllable via a control device, so that it can be completely exhibited during the warm-up phase, whereby a much faster heating of the second fluid can be achieved.
- This advantage can also be enhanced by additionally controlling the fluid mass flow of the second fluid via a control direction.
- the first fluid to be cooled is exhaust and the second fluid is oil.
- the exhaust gas flow through channel is bypassed and the exhaust gas flowing through the bypass channel can be used for faster heating of the oil in the combined heat transfer unit.
- the coolant can be used both for cooling the exhaust gas and for cooling the oil in the heat transfer unit.
- the heat transfer unit is produced from die-cast parts which are connected to one another by friction stir welding.
- the heat transfer unit can be at least partially integrated into the cylinder head.
- FIGS. 1 and 2 For better understanding, the exemplary embodiment according to FIGS. 1 and 2 is explained with reference to an exemplary embodiment in which exhaust gas is used as the first fluid to be cooled and as second fluid oil, so that the heat transfer unit is a combined exhaust / oil heat transfer unit ,
- the heat transfer unit is a combined exhaust / oil heat transfer unit
- such a heat transfer unit can also be used for other cooling combinations.
- the heat transfer unit consists of a housing 1 which surrounds the heat transfer unit and defines it to the outside, which housing can be designed in one or more parts.
- a first through-flow of exhaust gas channel 2 is formed in the housing 1, which passage 2 can be traversed by a coolant-flow channel 4, wherein the coolant flow-through channel 4 is designed such that it completely surrounds the exhaust gas flow channel 2 in cross section ,
- a bypass channel 5 is arranged, which is also flowed through by exhaust gas.
- the individual channels 2, 3, 4, 5 are each separated from each other via common partitions, so that a first common partition 6 between the coolant flow-through channel 4 and the exhaust gas permeable channel 2 is arranged, a second common partition 7 between the coolant flow channel 4 and the oil-permeable channel 3 is arranged and a third common partition wall 8 between the bypass channel 5 and the oil-flow channel 3 is arranged.
- ribs 9 protrude in the present embodiment, both in the bypass channel 5 and in the oil-flowed channel 3 and the exhaust gas flowed through channel 2, both in the exhaust gas flowed through channel 2 as well as in the oil flow channel 3 protrude the ribs of two opposite sides , This means for the exhaust gas-permeable channel 2 a significant improvement in the heat transfer, as is significantly improved on the two-sided ribbing of the heat transfer through the surrounding coolant.
- the ribbing means that both the heat transfer from the coolant to the oil is improved by the ribs 9 formed on the dividing wall 7 and the heat transfer by the ribs 9 formed on the dividing wall 8 can be improved by the bypass duct 5 ,
- the coolant flow-through channel 4 has an inlet connection shown in FIG. 1, which in the present exemplary embodiment is arranged laterally in the front region of the heat transfer unit and via which the coolant flows through the channel 4 which can flow through the coolant.
- a corresponding unillustrated coolant outlet pipe is present in the rear region of the heat exchanger unit.
- a coolant regulating device 11 is additionally designed in the form of a control valve, via which the coolant flow can be controlled.
- the oil flow-through channel 3 has in the present example, a laterally arranged oil inlet nozzle 12, in turn, on the opposite side, ie in the rear region of the oil-permeable channel 3, a corresponding outlet nozzle is arranged.
- a control device 13 for controlling the flow rate of the oil in the form of a control valve is arranged.
- FIG. 2 shows the inlet region in the form of an exhaust gas inlet nozzle 14 for the heat transfer unit.
- a first control device 15 in the form of a flap valve and a second control device 16 in the form of a flap valve are formed in the area of the exhaust inlet connection 14. These are arranged in each case in that the exhaust gas flow-through channel 2 can be closed by the first flap 15 and the second bypass channel 5, also through which exhaust gas can flow, through the second flap 16.
- These two flaps 15, 16 can be regulated either independently or independently of each other, depending on whether only a temperature control or an exhaust quantity control is to be realized.
- the oil flow-through channel is closed at its end facing the exhaust gas inlet port 14 by a wall 17.
- the partition 6 and the housing 1 serve as abutment surfaces for the flap 15 to the closure of the channel 2 and the wall 17 and the housing 1 as abutment surfaces for the flap 16 for closing the bypass channel. 5
- a suitably trained exhaust outlet not shown is arranged on the opposite in the flow direction of the exhaust gas side of the heat transfer unit, but without flaps, and it would also be possible to arrange the flaps 15, 16 at corresponding positions on the outlet nozzle.
- the exhaust duct 2 can be bypassed by closing the control device 15, so that in this phase, the flap 16 is in the open position and hot exhaust can flow through the bypass channel 5 uncooled.
- the control valve 11 is preferably closed, so that no coolant flows through the heat transfer unit and thus takes place only a heating of the oil whose volume flow in this phase by means of the Regulating device 13 can be regulated.
- the flap 16 can be closed and the flap 15 can be opened, so that now the exhaust gas flow is reduced to reduce the nitrogen oxides formed during combustion via the exhaust duct 2 and no more exhaust gas passes into the bypass channel 5.
- the control valve 11 is opened, so that the exhaust gas channel 2 is now flowing around coolant and the oil passage 3 receives a heat-conducting contact via the partition wall 7 to the coolant channel 4.
- a heat transfer unit can be created in which only the oil-traversable channel is cooled by both coolant and heated by the exhaust gas.
- changes in the designs of the flow-through channels, for example in the form of plate or tube bundles are of course also conceivable as a different positioning of the input and output nozzle.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
Die Erfindung betrifft eine Wärmeübertragungseinheit für Verbrennungskraftmaschinen mit einem Gehäuse, in dem zumindest ein erster von einem ersten zu kühlenden Fluid durchströmbarer Kanal angeordnet ist, zumindest ein von einem zweiten Fluid durchströmbarer Kanal angeordnet ist und zumindest ein von einem Kühlmittel durchströmbarer Kanal angeordnet ist sowie eine Wärmeübertragungseinheit für den Ölkreislauf einer Verbrennungskraftmaschine mit einem Öl durchströmbaren Kanal und zumindest einem von einem Kühlmittel durchströmbaren Kanal, wobei der Öl durchströmbare Kanal in Wärme leitendem Kontakt zum vom Kühlmittel durchströmbaren Kanal steht.The invention relates to a heat transfer unit for internal combustion engines with a housing in which at least a first channel through which a fluid to be cooled is arranged, at least one channel through which a second fluid can pass and at least one channel through which a coolant can pass, and a heat transfer unit for the oil circuit of an internal combustion engine with an oil-permeable channel and at least one channel through which a coolant can flow, wherein the oil-permeable channel is in heat-conducting contact with the channel through which the coolant can flow.
Derartige kombinierte Wärmeübertragungseinheiten sind aus dem Stand der Technik bekannt und werden beispielsweise dazu genutzt, in einer Einheit sowohl die Ladeluft als auch einen Abgasstrom zu kühlen, oder beispielsweise eine Schmierölkühlung entweder einzeln oder in einem Gehäuse mit einer Ladeluftkühlung oder Abgaskühlung anzuordnen. Durch die Kühlung des Abgases oder auch der Ladeluft wird die Verbrennungstemperatur gesenkt, wodurch wiederum der Anteil der Stickoxide im Abgas reduziert werden kann.Such combined heat transfer units are known from the prior art and are used, for example, to cool in a unit both the charge air and an exhaust gas flow, or to arrange, for example, a lubricating oil cooling either individually or in a housing with a charge air cooling or exhaust gas cooling. By cooling the exhaust gas or the charge air, the combustion temperature is lowered, which in turn can reduce the proportion of nitrogen oxides in the exhaust gas.
So wird in der
Des Weiteren ist es bekannt, dass in der Warmlaufphase des Verbrennungsmotors ein hoher Schadstoffanteil entsteht, weswegen in modernen Verbrennungskraftmaschinen häufig ein den Abgaskühler umgehender Bypasskanal ausgebildet ist, mit dessen Hilfe eine schnellere Aufheizung der Verbrennungskraftmaschine durch das ungekühlt zurückgeführte Abgas erreicht wird.Furthermore, it is known that in the warm-up phase of the internal combustion engine, a high pollutant content arises, which is why in modern internal combustion engines often bypassing the exhaust gas cooler bypass channel is formed, with the aid of a faster heating of the internal combustion engine is achieved by the uncooled recirculated exhaust gas.
So wird beispielsweise in der
Auf diese Weise wird es möglich, ein Temperaturmanagement in der Verbrennungskraftmaschine durchzuführen, wodurch eine schnellere Aufheizung der Verbrennungskraftmaschine realisiert wird. Des weiteren kann nach der Warmlaufphase zur Reduzierung der ausgestoßenen Schadstoffe eine Temperaturführung des zurückgeführten Abgases und somit auch der Verbrennungstemperaturen realisiert werden.In this way it becomes possible to carry out a temperature management in the internal combustion engine, whereby a faster heating of the internal combustion engine is realized. Furthermore, after the warm-up phase to reduce the emitted pollutants, a temperature control of the recirculated exhaust gas and thus also the combustion temperatures can be realized.
Es besteht jedoch weiterhin das Problem einer trotz des vorhandenen Bypasses relativ langen Aufwärmphase insbesondere bei wenig Wärme erzeugenden Turbodieselmotoren. Insbesondere bestehen Probleme bei integrierten Wärmetauschern wie beispielsweise bei dem Ölabgaswärmetauscher der
Aufgabe der Erfindung ist es daher, eine Wärmeübertragungseinheit zu schaffen, mit der ein wirkungsvolles Temperaturmanagement in der Verbrennungskraftmaschine betrieben werden kann, wobei gleichzeitig der Platzbedarf minimiert werden soll. In einer speziellen Anwendung für den Ölkreislauf einer Verbrennungskraftmaschine soll auf die zurzeit in Turbodieselmotoren verwendeten Zuheizer vollständig verzichtet werden können. Hierdurch soll im Vergleich zu bekannten Ausführungsformen die einen hohen Schadstoffanteil generierende Warmlaufphase weiter verkürzt werden.The object of the invention is therefore to provide a heat transfer unit with which an effective temperature management can be operated in the internal combustion engine, at the same time the space requirement should be minimized. In a special application for the oil circuit of an internal combustion engine is to be completely dispensed with the heater currently used in turbo diesel engines. This should be further reduced in comparison to known embodiments, the high pollutant content generating warm-up phase.
Diese Aufgabe wird dadurch gelöst, dass in dem Gehäuse ein Bypasskanal für das erste zu kühlende Fluid ausgebildet ist, über den der zumindest eine erste vom ersten zu kühlenden Fluid durchströmbare Kanal umgehbar ist. Auf diese Weise wird in der Wärmeübertragungseinheit auf geringem Raum eine Temperaturregelung auch in einem kombinierten Kühler ermöglicht.This object is achieved in that in the housing a bypass channel for the first fluid to be cooled is formed, via which the at least one first channel through which the first fluid to be cooled can be bypassed. In this way, in the heat transfer unit in a small space temperature control is also possible in a combined cooler.
Im speziellen Fall einer Wärmeübertragungseinheit für den Ölkreislauf einer Verbrennungskraftmaschine wird diese Aufgabe dadurch gelöst, dass in der Wärmeübertragungseinheit ein Abgas durchströmbarer Kanal ausgebildet ist, der ebenfalls in Wärme leitendem Kontakt zum Öl durchströmbaren Kanal steht, so dass eine schnelle Aufheizung des Öls durch den warmen Abgasstrom erreicht wird. Vorzugsweise ist der Abgas durchströmbare Kanal ein Bypasskanal eines Abgaskühlers.In the specific case of a heat transfer unit for the oil circuit of an internal combustion engine, this object is achieved in that in the heat transfer unit an exhaust gas flow-through channel is formed, which is also in heat conductive contact to the oil flow channel, so that rapid heating of the oil through the warm exhaust gas flow is reached. Preferably, the exhaust gas through-flowable channel is a bypass channel of an exhaust gas cooler.
In einer bevorzugten Weiterbildung ist der zumindest eine von dem zweiten Fluid durchströmbare Kanal zwischen dem Bypasskanal und dem vom Kühlmittel beströmbaren Kanal angeordnet. Hierdurch wird erreicht, dass je nach Durchströmung des Bypasskanals und des Kühlmittel durchströmbaren Kanals das zweite Fluid wahlweise entweder erwärmt oder gekühlt werden kann.In a preferred refinement, the at least one channel through which the second fluid can flow is arranged between the bypass channel and the channel which can be flowed through by the coolant. This ensures that depending on the flow through the bypass channel and the coolant flow-through channel, the second fluid can either be heated or cooled either.
In einer vorteilhaften Ausführungsform ist der Fluidmassenstrom des ersten zu kühlenden Fluids in den Bypasskanal und den ersten von dem ersten zu kühlenden Fluid durchströmbaren Kanal über zumindest eine Regeleinrichtung steuerbar. Somit wird eine Temperatursteuerung sowohl des ersten zu kühlenden Fluids als auch des zweiten Fluids möglich.In an advantageous embodiment, the fluid mass flow of the first fluid to be cooled in the bypass channel and the first channel through which the first fluid to be cooled can be controlled via at least one control device. Thus, temperature control of both the first fluid to be cooled and the second fluid becomes possible.
In einer bevorzugten Ausführungsform ist der Fluidmassenstrom des ersten zu kühlenden Fluids in den Bypasskanal und den ersten von dem ersten zu kühlenden Fluids durchströmbaren Kanal über zwei Ventile regelbar, wovon das erste Ventil im Bereich eines Abgaseintrittsstutzens im Gehäuse vor dem ersten vom zu kühlenden Fluid durchströmbaren Kanal angeordnet ist und das zweite Ventil im Bereich des Abgaseintrittsstutzens im Gehäuse vor dem Bypasskanal angeordnet ist. Derartige Ventile können beispielsweise klappenförmig ausgebildet sein und über elektromotorische Stelleinheiten abhängig oder unabhängig voneinander geregelt werden. Eine Temperatursteuerung ist somit einfach möglich.In a preferred embodiment, the fluid mass flow of the first fluid to be cooled in the bypass channel and the first channel through which the first fluid to flow to be controlled via two valves, of which the first valve in the region of an exhaust gas inlet nozzle in the housing before the first channel to be cooled by the fluid to be cooled is arranged and the second valve is arranged in the region of the exhaust gas inlet nozzle in the housing in front of the bypass channel. Such valves may be formed, for example, flap-shaped and electromotive Adjustment units are dependent or independently regulated. A temperature control is thus easily possible.
Ein optimaler Wärmeübergang zwischen den Medien wird dadurch erzielt, dass der von dem Kühlmittel durchströmbare Kanal eine erste gemeinsame Trennwand mit dem vom ersten zu kühlenden Fluid durchströmbaren Kanal aufweist und eine zweite gemeinsame Trennwand mit dem vom zweiten Fluid durchströmbaren Kanal aufweist. Die beiden gemeinsamen Trennwände dienen somit direkt als Wärmebrücken zwischen den Medien.An optimal heat transfer between the media is achieved in that the channel through which the coolant can flow has a first common partition wall with the channel through which the first fluid to be cooled flows and a second common partition wall with the channel through which the second fluid can flow. The two common partitions thus serve directly as thermal bridges between the media.
Eine derartig ebenfalls verbesserte Wärmeübertragung zur schnelleren Temperaturerhöhung des zweiten Fluids ergibt sich, wenn der Bypasskanal eine gemeinsame Trennwand mit dem vom zweiten Fluid durchströmbaren Kanal aufweist. Hat somit das erste Fluid eine höhere Temperatur als das zweite Fluid wird eine Aufheizung des zweiten Fluids bei Durchströmung des Bypasskanals entstehen.Such a likewise improved heat transfer for faster temperature increase of the second fluid results when the bypass channel has a common partition wall with the channel through which the second fluid can flow. Thus, if the first fluid has a higher temperature than the second fluid, heating of the second fluid will occur when the bypass channel flows through.
In einer bevorzugten Ausführungsform umgibt der vom Kühlmittel durchströmbare Kanal den vom ersten zu kühlenden Fluid durchströmbaren Kanal im Querschnitt vollständig. Hierdurch wird eine optimierte Kühlung des ersten zu kühlenden Fluids sichergestellt.In a preferred embodiment, the channel through which the coolant can flow completely surrounds the channel through which the first fluid to be cooled can flow. This ensures optimized cooling of the first fluid to be cooled.
Vorzugsweise ragen in zumindest einen der Kanäle von zumindest einem der Trennwände Rippen hinein. Diese verbessern zusätzlich deutlich den Wärmeübergang der Medien untereinander. Insbesondere bei Ausbildung der Rippen in den Gas führenden Kanälen ergeben sich hierdurch große Vorteile bezüglich des Wärmeübergangs. Es sind dabei sowohl durchgängige Rippen entlang der Strömungsrichtung denkbar als auch unterbrochene Einzelrippen.Preferably, ribs protrude into at least one of the channels of at least one of the partitions. These also significantly improve the heat transfer between the media. In particular, with formation of the ribs in the gas-conducting channels, this results in great advantages in terms of heat transfer. Both continuous ribs along the flow direction are conceivable as well as interrupted single ribs.
In einer weiterführenden Ausführungsform ist auch der Kühlmittelstrom über eine Regeleinrichtung steuerbar, so dass dieser während der Warmlaufphase komplett ausgestellt werden kann, wodurch eine deutlich schnellere Aufheizung des zweiten Fluids erreicht werden kann.In a further embodiment, the coolant flow is controllable via a control device, so that it can be completely exhibited during the warm-up phase, whereby a much faster heating of the second fluid can be achieved.
Dieser Vorteil kann auch dadurch verstärkt werden, dass zusätzlich der Fluidmassenstrom des zweiten Fluids über eine Regelrichtung steuerbar ist.This advantage can also be enhanced by additionally controlling the fluid mass flow of the second fluid via a control direction.
In einer bevorzugten Anwendung ist das erste zu kühlende Fluid Abgas und das zweite Fluid Öl. Dies bedeutet, dass in der Kaltstartphase der Abgas durchströmbare Kanal umgangen wird und das über den Bypasskanal strömende Abgas zur schnelleren Aufheizung des Öls in der kombinierten Wärmeübertragungseinheit genutzt werden kann. Bei Vollast kann das Kühlmittel sowohl zur Kühlung des Abgases als auch zur Kühlung des Öls in der Wärmeübertragungseinheit genutzt werden.In a preferred application, the first fluid to be cooled is exhaust and the second fluid is oil. This means that in the cold start phase, the exhaust gas flow through channel is bypassed and the exhaust gas flowing through the bypass channel can be used for faster heating of the oil in the combined heat transfer unit. At full load, the coolant can be used both for cooling the exhaust gas and for cooling the oil in the heat transfer unit.
In einer kostengünstig herstellbaren Ausführungsform ist die Wärmeübertragungseinheit aus Druckgussteilen hergestellt, welche durch Reibrührschweißen miteinander verbunden sind.In an embodiment that can be produced cost-effectively, the heat transfer unit is produced from die-cast parts which are connected to one another by friction stir welding.
Zu weiteren Bauraumreduzierung kann die Wärmeübertragungseinheit zumindest teilweise in den Zylinderkopf integriert werden.For further space reduction, the heat transfer unit can be at least partially integrated into the cylinder head.
Es wird deutlich, dass durch eine derartig aufgebaute Wärmeübertragungseinheit ein optimales Temperaturmanagement der Verbrennungskraftmaschine möglich wird und die Aufheizphase der Verbrennungskraftmaschine im Vergleich zu bekannten Ausführungsformen deutlich reduziert werden kann. Zusätzlich kann der Zuheizer bei Turbodieselmotoren entfallen. Mit der Erfindung werden diese Vorteile auf geringstem Bauraum und mit geringen Kosten realisiert.It is clear that an optimal temperature management of the internal combustion engine is possible by a heat transfer unit constructed in this way and the heating phase of the internal combustion engine can be significantly reduced in comparison to known embodiments. In addition, the heater can be omitted in turbodiesel engines. With the invention, these advantages are realized in the smallest space and at low cost.
Ein Ausführungsbeispiel ist in den Zeichnungen dargestellt und wird nachfolgend beschrieben.
Figur 1 zeigt einen Querschnitt durch eine erfindungsgemäße Wärmeübertragungseinheit in geschnittener Darstellung.Figur 2 zeigt einen Längsschnitt durch die erfindungsgemäße Wärmeübertragungseinheit derFigur 1 im Bereich des Einlasses.
- Figure 1 shows a cross section through a heat transfer unit according to the invention in a sectional view.
- FIG. 2 shows a longitudinal section through the heat transfer unit according to the invention of FIG. 1 in the region of the inlet.
Zum besseren Verständnis wird das Ausführungsbeispiel gemäß der Figuren 1 und 2 anhand eines Ausführungsbeispieles erklärt, bei dem als erstes zu kühlendes Fluid Abgas eingesetzt wird und als zweites Fluid Öl, so dass es sich bei der Wärmeübertragungseinheit um eine kombinierte Abgas-/Öl-Wärmeübertragungseinheit handelt. Eine derartige Wärmeübertragungseinheit kann jedoch auch für andere Kühlkombinationen genutzt werden.For better understanding, the exemplary embodiment according to FIGS. 1 and 2 is explained with reference to an exemplary embodiment in which exhaust gas is used as the first fluid to be cooled and as second fluid oil, so that the heat transfer unit is a combined exhaust / oil heat transfer unit , However, such a heat transfer unit can also be used for other cooling combinations.
Die erfindungsgemäße Wärmeübertragungseinheit besteht entsprechend der Figur 1 aus einem die Wärmeübertragungseinheit umgebenden und nach außen begrenzenden Gehäuse 1, welches ein- oder mehrteilig ausgeführt werden kann. Im Gehäuse 1 ist ein erster von Abgas durchströmbarer Kanal 2 ausgebildet. Des Weiteren ist im Gehäuse 1 ein von Öl durchströmbarer Kanal 3 angeordnet, welcher vom Abgas durchströmbaren Kanal 2 durch einen Kühlmittel durchströmbaren Kanal 4 getrennt ist, wobei der Kühlmittel durchströmbare Kanal 4 derart ausgebildet ist, dass er den Abgas durchströmten Kanal 2 im Querschnitt vollständig umgibt. An der vom Kühlmittel durchströmbaren Kanal 4 abgewandten Seite des Öl durchströmbaren Kanals 3 ist ein Bypasskanal 5 angeordnet, welcher ebenfalls von Abgas durchströmbar ist.According to FIG. 1, the heat transfer unit according to the invention consists of a
Die einzelnen Kanäle 2, 3, 4, 5 sind jeweils über gemeinsame Trennwände voneinander getrennt, so dass eine erste gemeinsame Trennwand 6 zwischen dem Kühlmittel durchströmbaren Kanal 4 und dem Abgas durchströmbaren Kanal 2 angeordnet ist, eine zweite gemeinsame Trennwand 7 zwischen dem Kühlmittel durchströmbaren Kanal 4 und dem von Öl durchströmbaren Kanal 3 angeordnet ist sowie eine dritte gemeinsame Trennwand 8 zwischen dem Bypasskanal 5 und dem von Öl durchströmten Kanal 3 angeordnet ist. Auf diese Art und Weise werden unterschiedliche Wärmetauscherflächen zwischen den verschiedenen Medien realisiert. So erfolgt ein Wärmeaustausch über die gemeinsame Trennwand 8 zwischen Abgas und Öl, über die Trennwand 7 zwischen dem Öl und dem Kühlmittel und über die Trennwand 6 zwischen dem Abgas und dem Kühlmittel.The
In die Kanäle 2, 3, 5 ragen in Hauptströmungsrichtung verlaufende Rippen 9, welche sowohl als einteilige Längsrippe ausgeführt werden können als auch als mehrere hintereinander und nebeneinander liegende Einzelrippen ausgeführt werden können. Diese Rippen 9 ragen in vorliegendem Ausführungsbeispiel sowohl in den Bypasskanal 5 als auch in den Öl durchströmten Kanal 3 und den Abgas durchströmten Kanal 2, wobei sowohl in den Abgas durchströmten Kanal 2 als auch in den Öl durchströmten Kanal 3 die Rippen von zwei entgegengesetzten Seiten hineinragen. Dies bedeutet für den Abgas durchströmbaren Kanal 2 eine deutliche Verbesserung des Wärmeübergangs, da über die beidseitige Verrippung der Wärmeübergang durch das umgebende Kühlmittel deutlich verbessert wird. Für den Bereich des Öl durchströmbaren Kanals 3 bedeutet die Verrippung, das sowohl der Wärmeübergang vom Kühlmittel zum Öl durch die an der Trennwand 7 ausgebildeten Rippen 9 verbessert wird als auch der Wärmeübergang durch die an der Trennwand 8 ausgebildeten Rippen 9 vom Bypasskanal 5 verbessert werden kann.In the
Des Weiteren ist zu erkennen, dass der Kühlmittel durchströmbare Kanal 4 einen in Figur 1 dargestellten Eintrittsstutzen aufweist, welcher im vorliegenden Ausführungsbeispiel seitlich im vorderen Bereich der Wärmeübertragungseinheit angeordnet ist und über den Kühlmittel in den Kühlmittel durchströmbaren Kanal 4 einströmt. Selbstverständlich ist im hinteren Bereich der Wärmetauschereinheit ein entsprechender nicht dargestellter Kühlmittelaustrittsstutzen vorhanden. Im Bereich des Kühlmitteleintrittsstutzens 10 ist zusätzlich eine Kühlmittelregeleinrichtung 11 in Form eines Steuerventils ausgebildet, über welches der Kühlmittelstrom steuerbar ist.Furthermore, it can be seen that the coolant flow-through
Auch der Öl durchströmbare Kanal 3 weist im vorliegenden Beispiel einen seitlich angeordneten Öleintrittsstutzen 12 auf, wobei wiederum an der entgegengesetzten Seite, also im hinteren Bereich des Öl durchströmbaren Kanals 3 ein entsprechender Austrittsstutzen angeordnet ist. Auch hier ist im Bereich des Öleintrittsstutzens 12 eine Regeleinrichtung 13 zur Volumenstromregelung des Öls in Form eines Steuerventils angeordnet.Also, the oil flow-through
In Figur 2 ist der Eintrittsbereich in Form eines Abgaseintrittsstutzens 14 zur Wärmeübertragungseinheit dargestellt. Im Bereich des Abgaseintrittsstutzens 14 sind eine erste Regeleinrichtung 15 in Form eines Klappenventils sowie eine zweite Regeleinrichtung 16 in Form eines Klappenventils ausgebildet. Diese sind jeweils so angeordnet, dass der Abgas durchströmbare Kanal 2 durch die erste Klappe 15 und der zweite, ebenfalls von Abgas durchströmbare Bypasskanal 5 durch die zweite Klappe 16 verschließbar ist. Diese beiden Klappen 15, 16 können wahlweise entweder abhängig oder unabhängig voneinander geregelt werden, je nachdem, ob lediglich eine Temperatursteuerung oder auch eine Abgasmengensteuerung realisiert werden soll.FIG. 2 shows the inlet region in the form of an exhaust
Der Öl durchströmbare Kanal ist an seinem zum Abgaseintrittsstutzen 14 weisenden Ende durch eine Wand 17 verschlossenen. Diese Wand 17 sowie die mit der Wand 17 verbundenen Trennwände 6 und 8 unterteilen in Strömungsrichtung des Abgases gesehen die Wärmetauschereinheit im Bereich des Abgaseintrittsstutzens 14 in die Abgas führenden Kanäle 2 und 5. Entsprechend dienen die Trennwand 6 und das Gehäuse 1 als Anschlagflächen für die Klappe 15 zum Verschluss des Kanals 2 und die Wand 17 und das Gehäuse 1 als Anschlagflächen für die Klappe 16 zum Verschluss des Bypasskanals 5.The oil flow-through channel is closed at its end facing the exhaust
Ein entsprechend ausgebildeter nicht dargestellter Abgasaustrittsstutzen ist an der in Strömungsrichtung des Abgases entgegengesetzter Seite der Wärmeübertragungseinheit angeordnet, jedoch ohne Klappen, wobei es ebenfalls möglich wäre die Klappen 15, 16 an entsprechenden Positionen am Austrittsstutzen anzuordnen.A suitably trained exhaust outlet not shown is arranged on the opposite in the flow direction of the exhaust gas side of the heat transfer unit, but without flaps, and it would also be possible to arrange the
Im Folgenden wird beispielhaft eine Möglichkeit zur Steuerung einer derartigen Wärmeübertragungseinheit in der Warmlaufphase einer Verbrennungskraftmaschine beschrieben.In the following, a possibility for controlling such a heat transfer unit in the warm-up phase of an internal combustion engine will be described by way of example.
Bei Kaltstart der Verbrennungskraftmaschine ist es erwünscht, die Temperatur des Schmieröls zur Verringerung der Reibung und der Emissionen möglichst schnell zu erhöhen. Dies dient zusätzlich zum größeren Komfort des Fahrgastes im Winter bei einer Kopplung zur Heizung der Fahrgastzelle.When cold starting the internal combustion engine, it is desirable to increase the temperature of the lubricating oil as quickly as possible to reduce friction and emissions. This is in addition to the greater comfort of the passenger in the winter in a coupling to the heating of the passenger compartment.
Beim Kaltstart kann der Abgaskanal 2 durch Schließen der Regeleinrichtung 15 umgangen werden, so dass sich in dieser Phase die Klappe 16 in geöffneter Stellung befindet und heißes Abgas ungekühlt durch den Bypasskanal 5 strömen kann. Durch diesen Abgasstrom und die Verbindung des Bypasskanals 5 zum Ölkanal 3 über die Trennwand 8 bewirkt der Abgasstrom eine schnelle Aufheizung des Öls im Öl führenden Kanal 3. Zu diesem Zeitpunkt wird vorzugsweise das Steuerventil 11 geschlossen, so dass kein Kühlmittel durch die Wärmeübertragungseinheit strömt und somit lediglich eine Erwärmung des Öls stattfindet, dessen Volumenstrom in dieser Phase mittels der Regeleinrichtung 13 geregelt werden kann.During cold start, the
Nach dieser Warmlaufphase kann die Klappe 16 geschlossen und die Klappe 15 geöffnet werden, so dass nun der Abgasstrom zur Verringerung der bei der Verbrennung entstehenden Stickoxide über den Abgaskanal 2 geleitet wird und kein Abgas mehr in den Bypasskanal 5 gelangt. Gleichzeitig wird das Steuerventil 11 geöffnet, so dass der Abgaskanal 2 nun Kühlmittel umströmt ist und der Ölkanal 3 einen wärmeleitenden Kontakt über die Trennwand 7 zum Kühlmittelkanal 4 erhält. Es wird deutlich, dass der Ölkanal 3 bei einer derartigen Anordnung je nach Schaltung der Regeleinrichtungen 15, 16 sowohl die Funktion eines Ölkühlers als auch eines Ölerwärmers übernehmen kann.After this warm-up phase, the
Im weiteren Verlauf nach Beendigung der Warmlaufphase kann abhängig von den Motorkenndaten und der anliegenden Motorlast eine weiterführende Regelung mittels der Regeleinrichtungen 11, 15, 16 erfolgen, um eine weitergehende Schadstoffminimierung zu erhalten.In the further course after completion of the warm-up phase, depending on the engine characteristics and the applied engine load, a further control by means of the
Die angegebenen einfachen Bauformen verdeutlichen, dass es möglich ist, einen derartigen Kühler im Druckgussverfahren aus mehreren Teilen herzustellen und diese über einen Reibrührschweißverfahren zu verbinden.The stated simple forms illustrate that it is possible to produce such a cooler in the die-casting of several parts and to connect them via a friction stir welding.
Es wird deutlich, dass durch eine derartige Ausführung einer Wärmeübertragungseinheit mit kombiniertem Abgas- und Ölkühler und Bypass zur Ölerwärmung der Schadstoffausstoß eines Fahrzeugs deutlich reduziert werden kann, nicht zuletzt dadurch, dass die Warmlaufphase deutlich verkürzt wird. Auf einen Zuheizer kann vollständig verzichtet werden, so dass die Anzahl verwendeter Bauteile deutlich reduziert wird.It is clear that by such a design of a heat transfer unit with combined exhaust and oil cooler and bypass for oil heating of the pollutant emissions of a vehicle can be significantly reduced, not least by the fact that the warm-up phase is significantly reduced. A heater can be completely eliminated, so that the number of used components is significantly reduced.
Es sollte klar sein, dass je nach gewünschtem Temperaturmanagement und verwendeten Medien auch eine andere Anordnung der Kanäle zueinander denkbar ist, wobei insbesondere dadurch ein Platzvorteil erzielt wird, dass an einem Kanal, im vorliegenden Ausführungsbeispiel der Kanal 3, sowohl eine Erwärmung als auch eine Kühlung stattfinden kann.It should be clear that, depending on the desired temperature management and media used, a different arrangement of the channels to each other is conceivable, in particular by a space advantage is achieved that on a channel, in the present embodiment, the
Selbstverständlich ist die Erfindung nicht auf die dargestellte Ausführungsform beschränkt. So kann auch eine Wärmeübertragungseinheit geschaffen werden bei der lediglich der Öl durchströmbare Kanal sowohl durch Kühlmittel gekühlt als auch durch das Abgas erwärmt wird. Auch Änderungen der Gestaltungen der durchströmten Kanäle beispielsweise in Form von Platten- oder Rohrbündeln sind selbstverständlich ebenso denkbar wie eine unterschiedliche Positionierung der Ein- und Ausgangsstutzen.Of course, the invention is not limited to the illustrated embodiment. Thus, a heat transfer unit can be created in which only the oil-traversable channel is cooled by both coolant and heated by the exhaust gas. Also, changes in the designs of the flow-through channels, for example in the form of plate or tube bundles are of course also conceivable as a different positioning of the input and output nozzle.
Claims (15)
in dem Gehäuse (1) ein Bypasskanal (5) für das erste zu kühlende Fluid ausgebildet ist, über den der zumindest eine erste vom ersten zu kühlenden Fluid durchströmbare Kanal (2) umgehbar ist.Heat transfer unit for internal combustion engines
in the housing (1), a bypass channel (5) is formed for the first fluid to be cooled, via which the at least one first channel (2) through which the first fluid to be cooled can pass is bypassable.
mit einem Öl durchströmbaren Kanal (3)
und zumindest einem von einem Kühlmittel durchströmbaren Kanal (4), wobei der Öl durchströmbare Kanal (3) in Wärme leitendem Kontakt zum vom Kühlmittel durchströmbaren Kanal (4) steht,
dadurch gekennzeichnet, dass
in der Wärmeübertragungseinheit ein Abgas durchströmbarer Kanal (5) ausgebildet ist, der in Wärme leitendem Kontakt zum Öl durchströmbaren Kanal (3) steht.Heat transfer unit for the oil circuit of an internal combustion engine
with an oil-permeable channel (3)
and at least one channel (4) through which a coolant can flow, wherein the oil-permeable channel (3) is in heat-conducting contact with the channel (4) through which the coolant can flow,
characterized in that
in the heat transfer unit, an exhaust gas flow-through channel (5) is formed, which is in heat-conducting contact to the oil-permeable channel (3).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006023809A DE102006023809B3 (en) | 2006-05-20 | 2006-05-20 | Heat transfer unit for oil circulation system of turbo diesel engine, has channels streamed by respective fluids and arranged in housing, and by-pass channel arranged in housing, where one of channels is by-passed by by-pass channel |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1857761A2 true EP1857761A2 (en) | 2007-11-21 |
EP1857761A3 EP1857761A3 (en) | 2011-12-28 |
EP1857761B1 EP1857761B1 (en) | 2015-11-04 |
Family
ID=38329946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07107408.2A Not-in-force EP1857761B1 (en) | 2006-05-20 | 2007-05-03 | Heat exchange device for combustion engines |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1857761B1 (en) |
DE (1) | DE102006023809B3 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011092316A3 (en) * | 2010-01-29 | 2012-12-20 | Tanjung Citech Uk Limited | A heat exchange unit |
CN104727985A (en) * | 2013-12-20 | 2015-06-24 | 现代自动车株式会社 | Apparatus for adjusting temperature of oil for vehicle and method for controlling the apparatus |
KR101551023B1 (en) * | 2013-12-20 | 2015-09-18 | 현대자동차주식회사 | Oil temperature control apparatus and control method thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2072763B1 (en) * | 2007-12-21 | 2015-04-08 | Techspace Aero S.A. | Heat exchange system in a turbomachine |
DE102008056810B4 (en) * | 2008-11-11 | 2011-11-24 | Pierburg Gmbh | Cooling device for an internal combustion engine |
DE102009005879A1 (en) * | 2009-01-23 | 2010-08-05 | Semikron Elektronik Gmbh & Co. Kg | Cooling device with a rib heat sink |
GB2471514B (en) * | 2009-07-03 | 2013-08-14 | Ford Global Tech Llc | Heat exchanging systems for motor vehicles |
FR2982646B1 (en) * | 2011-11-15 | 2015-05-29 | Faurecia Sys Echappement | HEAT EXCHANGER SYSTEM FOR AN INTERNAL COMBUSTION ENGINE AND EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE |
KR101321064B1 (en) * | 2011-12-13 | 2013-10-22 | 주식회사 코렌스 | Automotive combination heat exchanger |
DE102014203896A1 (en) * | 2014-03-04 | 2015-09-10 | Mahle International Gmbh | Motor vehicle with an internal combustion engine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19722256C1 (en) | 1997-05-28 | 1998-10-01 | Daimler Benz Ag | Heat exchanger for a water-cooled internal combustion engine |
EP1099847A2 (en) | 1999-11-10 | 2001-05-16 | Isuzu Motors Limited | Egr and oil cooling system |
EP1275838A1 (en) | 2001-07-11 | 2003-01-15 | Cooper-Standard Automotive (Deutschland) GmbH | Exhaust recirculation system |
DE10203003A1 (en) | 2002-01-26 | 2003-08-07 | Behr Gmbh & Co | Exhaust gas heat exchanger |
FR2846735A1 (en) | 2002-10-30 | 2004-05-07 | Valeo Thermique Moteur Sa | Automobile engine heat exchanger allowing heat exchange between first, second and third fluids comprises central casing comprising tube bundle in which first and second fluids circulate and peripheral casing in which third fluid circulates |
FR2847004A1 (en) | 2002-11-12 | 2004-05-14 | Peugeot Citroen Automobiles Sa | Temperature regulation for engine intake air and recirculated exhaust gas, uses single unit housing two heat exchangers to exchange heat between exhaust gas, fluid and intake air, with control of fluid flow |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4319630A (en) * | 1978-12-07 | 1982-03-16 | United Aircraft Products, Inc. | Tubular heat exchanger |
DE3302304A1 (en) * | 1983-01-25 | 1984-07-26 | Borsig Gmbh, 1000 Berlin | HEAT EXCHANGER FOR COOLING HOT GASES, ESPECIALLY FROM THE AMMONIA SYNTHESIS |
EP0197823A1 (en) * | 1985-03-20 | 1986-10-15 | Valeo | Heat exchanger for a motor vehicle, particularly of the type for exhaust gases |
JPH11311114A (en) * | 1998-04-28 | 1999-11-09 | Aisin Seiki Co Ltd | Lubricating device for engine balancer |
DE10041579A1 (en) * | 2000-08-24 | 2002-03-07 | Siemens Automotive Corp Lp | Valve arrangement with double flap and thermal bridge for an exhaust gas recirculation system and method for its operation |
EP1536198A1 (en) * | 2003-11-25 | 2005-06-01 | Terra Energia S.r.l. | Heat exchanger |
FR2864582B1 (en) * | 2003-12-24 | 2006-03-17 | Valeo Thermique Moteur Sa | HEAT EXCHANGE MODULE FOR CONTROLLING THE TEMPERATURE OF GASES ADMITTED IN A MOTOR VEHICLE THERMAL MOTOR |
FR2869649B1 (en) * | 2004-04-30 | 2006-07-28 | Valeo Thermique Moteur Sas | IMPROVED SYSTEM FOR CONTROLLING THE TEMPERATURE OF GASES ADMITTED IN AN ENGINE |
ES2322728B1 (en) * | 2005-11-22 | 2010-04-23 | Dayco Ensa, S.L. | THREE-STEP HEAT EXCHANGER FOR AN "EGR" SYSTEM. |
-
2006
- 2006-05-20 DE DE102006023809A patent/DE102006023809B3/en active Active
-
2007
- 2007-05-03 EP EP07107408.2A patent/EP1857761B1/en not_active Not-in-force
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19722256C1 (en) | 1997-05-28 | 1998-10-01 | Daimler Benz Ag | Heat exchanger for a water-cooled internal combustion engine |
EP1099847A2 (en) | 1999-11-10 | 2001-05-16 | Isuzu Motors Limited | Egr and oil cooling system |
EP1275838A1 (en) | 2001-07-11 | 2003-01-15 | Cooper-Standard Automotive (Deutschland) GmbH | Exhaust recirculation system |
DE10203003A1 (en) | 2002-01-26 | 2003-08-07 | Behr Gmbh & Co | Exhaust gas heat exchanger |
FR2846735A1 (en) | 2002-10-30 | 2004-05-07 | Valeo Thermique Moteur Sa | Automobile engine heat exchanger allowing heat exchange between first, second and third fluids comprises central casing comprising tube bundle in which first and second fluids circulate and peripheral casing in which third fluid circulates |
FR2847004A1 (en) | 2002-11-12 | 2004-05-14 | Peugeot Citroen Automobiles Sa | Temperature regulation for engine intake air and recirculated exhaust gas, uses single unit housing two heat exchangers to exchange heat between exhaust gas, fluid and intake air, with control of fluid flow |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011092316A3 (en) * | 2010-01-29 | 2012-12-20 | Tanjung Citech Uk Limited | A heat exchange unit |
CN104727985A (en) * | 2013-12-20 | 2015-06-24 | 现代自动车株式会社 | Apparatus for adjusting temperature of oil for vehicle and method for controlling the apparatus |
KR20150072716A (en) * | 2013-12-20 | 2015-06-30 | 현대자동차주식회사 | Oil temperature control apparatus and control method thereof |
KR101551023B1 (en) * | 2013-12-20 | 2015-09-18 | 현대자동차주식회사 | Oil temperature control apparatus and control method thereof |
KR101583889B1 (en) * | 2013-12-20 | 2016-01-21 | 현대자동차주식회사 | Oil temperature control apparatus and control method thereof |
US9441511B2 (en) | 2013-12-20 | 2016-09-13 | Hyundai Motor Company | Apparatus for adjusting temperature of oil for vehicle and method for controlling the apparatus |
CN104727985B (en) * | 2013-12-20 | 2019-01-08 | 现代自动车株式会社 | The device and its control method of adjusting oil temperature for vehicle |
Also Published As
Publication number | Publication date |
---|---|
DE102006023809B3 (en) | 2007-09-13 |
EP1857761B1 (en) | 2015-11-04 |
EP1857761A3 (en) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1857761B1 (en) | Heat exchange device for combustion engines | |
EP2021612B1 (en) | Exhaust gas recirculation device | |
EP2025911B1 (en) | Exhaust gas cooling device for a combustion engine | |
EP2159394B1 (en) | Gas cooler for an internal combustion engine | |
EP2175221B1 (en) | Cooling device | |
EP1996888B1 (en) | Heat exchanger for a motor vehicle | |
WO2007134962A1 (en) | Valve arrangement for an exhaust gas recirculation device | |
DE102014215074A1 (en) | Temperature control arrangement for transmission oil of a motor vehicle and method for controlling the temperature of transmission oil of a motor vehicle | |
DE102005047840A1 (en) | Air-cooled exhaust gas heat exchanger e.g. for exhaust gas cooler for motor vehicles, has exhaust gas channels which are cross-flown by exhaust gas of internal combustion engine, between which ribs for air cooling are arranged | |
DE102013202056A1 (en) | Fresh air supply device of an internal combustion engine | |
DE102010033125A1 (en) | Heat exchanger device for use as e.g. intercooler for combustion engine of motor car, has bypass valve arranged in inlet region or exhaust region and connected with heat exchanger region that is connected with exhaust region | |
DE10355649A1 (en) | Axial flow exhaust gas recirculation (EGR) cooler for use in internal combustion (IC) engine, has separate bypass duct fixed in heat transfer area between exhaust gas inlet and outlet | |
DE102015201242B4 (en) | Control means for controlling the coolant flows of a split cooling system | |
DE102010010332B4 (en) | Exhaust system for an internal combustion engine and method for cleaning an exhaust gas recirculation valve of an exhaust system | |
DE102006048527B4 (en) | Cooling circuit for an internal combustion engine | |
DE102007022859B4 (en) | Arrangement of heating heat exchangers connected in series in a motor vehicle | |
DE202015100577U1 (en) | Control means for controlling the coolant flows of a split cooling system | |
WO2009012897A1 (en) | Apparatus for cooling recirculated exhaust gas of an internal combustion engine | |
DE102005036045B4 (en) | Cooling device for internal combustion engines | |
EP2218897A1 (en) | Device for exhaust gas recirculation for an internal combustion engine | |
DE10340908A1 (en) | Internal combustion engine for motor vehicles | |
DE102015201243A1 (en) | Control means for controlling the coolant flows of a split cooling system | |
DE102013217154A1 (en) | Temperature control arrangement for transmission oil of a motor vehicle and method for controlling the temperature of transmission oil of a motor vehicle | |
DE102009057802B4 (en) | Cooling circuit for an internal combustion engine | |
DE102014222158A1 (en) | Exhaust gas heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070503 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01P 3/18 20060101ALI20111118BHEP Ipc: F02M 25/07 20060101ALI20111118BHEP Ipc: F28D 7/00 20060101AFI20111118BHEP Ipc: F28D 9/00 20060101ALI20111118BHEP Ipc: F01M 5/00 20060101ALI20111118BHEP |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150730 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 759496 Country of ref document: AT Kind code of ref document: T Effective date: 20151115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007014369 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151104 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160304 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160205 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160304 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160525 Year of fee payment: 10 Ref country code: GB Payment date: 20160523 Year of fee payment: 10 Ref country code: CZ Payment date: 20160425 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007014369 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160523 Year of fee payment: 10 Ref country code: IT Payment date: 20160524 Year of fee payment: 10 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160503 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160503 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 759496 Country of ref document: AT Kind code of ref document: T Effective date: 20160503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160503 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007014369 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170503 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170503 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151104 |