EP1857761A2 - Wärmeübertragungseinheit für Verbrennungskraftmaschinen - Google Patents

Wärmeübertragungseinheit für Verbrennungskraftmaschinen Download PDF

Info

Publication number
EP1857761A2
EP1857761A2 EP07107408A EP07107408A EP1857761A2 EP 1857761 A2 EP1857761 A2 EP 1857761A2 EP 07107408 A EP07107408 A EP 07107408A EP 07107408 A EP07107408 A EP 07107408A EP 1857761 A2 EP1857761 A2 EP 1857761A2
Authority
EP
European Patent Office
Prior art keywords
channel
fluid
heat transfer
transfer unit
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07107408A
Other languages
English (en)
French (fr)
Other versions
EP1857761B1 (de
EP1857761A3 (de
Inventor
Hans-Ulrich Kühnel
Dieter Thönnessen
Michael Sanders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Original Assignee
Pierburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH filed Critical Pierburg GmbH
Publication of EP1857761A2 publication Critical patent/EP1857761A2/de
Publication of EP1857761A3 publication Critical patent/EP1857761A3/de
Application granted granted Critical
Publication of EP1857761B1 publication Critical patent/EP1857761B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Definitions

  • the invention relates to a heat transfer unit for internal combustion engines with a housing in which at least a first channel through which a fluid to be cooled is arranged, at least one channel through which a second fluid can pass and at least one channel through which a coolant can pass, and a heat transfer unit for the oil circuit of an internal combustion engine with an oil-permeable channel and at least one channel through which a coolant can flow, wherein the oil-permeable channel is in heat-conducting contact with the channel through which the coolant can flow.
  • Such combined heat transfer units are known from the prior art and are used, for example, to cool in a unit both the charge air and an exhaust gas flow, or to arrange, for example, a lubricating oil cooling either individually or in a housing with a charge air cooling or exhaust gas cooling.
  • a lubricating oil cooling either individually or in a housing with a charge air cooling or exhaust gas cooling.
  • DE 102 03 003 A1 discloses an exhaust gas heat exchanger having in a housing both the exhaust gas cooling device and a bypass device bypassing the cooling device. Depending on the operating state of the internal combustion engine, the exhaust gas flow is conducted either through the cooling device or via the bypass channel via an upstream bypass flap.
  • the object of the invention is therefore to provide a heat transfer unit with which an effective temperature management can be operated in the internal combustion engine, at the same time the space requirement should be minimized.
  • the oil circuit of an internal combustion engine is to be completely dispensed with the heater currently used in turbo diesel engines. This should be further reduced in comparison to known embodiments, the high pollutant content generating warm-up phase.
  • a bypass channel for the first fluid to be cooled is formed, via which the at least one first channel through which the first fluid to be cooled can be bypassed.
  • this object is achieved in that in the heat transfer unit an exhaust gas flow-through channel is formed, which is also in heat conductive contact to the oil flow channel, so that rapid heating of the oil through the warm exhaust gas flow is reached.
  • the exhaust gas through-flowable channel is a bypass channel of an exhaust gas cooler.
  • the at least one channel through which the second fluid can flow is arranged between the bypass channel and the channel which can be flowed through by the coolant. This ensures that depending on the flow through the bypass channel and the coolant flow-through channel, the second fluid can either be heated or cooled either.
  • the fluid mass flow of the first fluid to be cooled in the bypass channel and the first channel through which the first fluid to be cooled can be controlled via at least one control device.
  • temperature control of both the first fluid to be cooled and the second fluid becomes possible.
  • valves may be formed, for example, flap-shaped and electromotive Adjustment units are dependent or independently regulated. A temperature control is thus easily possible.
  • the channel through which the coolant can flow has a first common partition wall with the channel through which the first fluid to be cooled flows and a second common partition wall with the channel through which the second fluid can flow.
  • the two common partitions thus serve directly as thermal bridges between the media.
  • the channel through which the coolant can flow completely surrounds the channel through which the first fluid to be cooled can flow. This ensures optimized cooling of the first fluid to be cooled.
  • ribs protrude into at least one of the channels of at least one of the partitions. These also significantly improve the heat transfer between the media. In particular, with formation of the ribs in the gas-conducting channels, this results in great advantages in terms of heat transfer. Both continuous ribs along the flow direction are conceivable as well as interrupted single ribs.
  • the coolant flow is controllable via a control device, so that it can be completely exhibited during the warm-up phase, whereby a much faster heating of the second fluid can be achieved.
  • This advantage can also be enhanced by additionally controlling the fluid mass flow of the second fluid via a control direction.
  • the first fluid to be cooled is exhaust and the second fluid is oil.
  • the exhaust gas flow through channel is bypassed and the exhaust gas flowing through the bypass channel can be used for faster heating of the oil in the combined heat transfer unit.
  • the coolant can be used both for cooling the exhaust gas and for cooling the oil in the heat transfer unit.
  • the heat transfer unit is produced from die-cast parts which are connected to one another by friction stir welding.
  • the heat transfer unit can be at least partially integrated into the cylinder head.
  • FIGS. 1 and 2 For better understanding, the exemplary embodiment according to FIGS. 1 and 2 is explained with reference to an exemplary embodiment in which exhaust gas is used as the first fluid to be cooled and as second fluid oil, so that the heat transfer unit is a combined exhaust / oil heat transfer unit ,
  • the heat transfer unit is a combined exhaust / oil heat transfer unit
  • such a heat transfer unit can also be used for other cooling combinations.
  • the heat transfer unit consists of a housing 1 which surrounds the heat transfer unit and defines it to the outside, which housing can be designed in one or more parts.
  • a first through-flow of exhaust gas channel 2 is formed in the housing 1, which passage 2 can be traversed by a coolant-flow channel 4, wherein the coolant flow-through channel 4 is designed such that it completely surrounds the exhaust gas flow channel 2 in cross section ,
  • a bypass channel 5 is arranged, which is also flowed through by exhaust gas.
  • the individual channels 2, 3, 4, 5 are each separated from each other via common partitions, so that a first common partition 6 between the coolant flow-through channel 4 and the exhaust gas permeable channel 2 is arranged, a second common partition 7 between the coolant flow channel 4 and the oil-permeable channel 3 is arranged and a third common partition wall 8 between the bypass channel 5 and the oil-flow channel 3 is arranged.
  • ribs 9 protrude in the present embodiment, both in the bypass channel 5 and in the oil-flowed channel 3 and the exhaust gas flowed through channel 2, both in the exhaust gas flowed through channel 2 as well as in the oil flow channel 3 protrude the ribs of two opposite sides , This means for the exhaust gas-permeable channel 2 a significant improvement in the heat transfer, as is significantly improved on the two-sided ribbing of the heat transfer through the surrounding coolant.
  • the ribbing means that both the heat transfer from the coolant to the oil is improved by the ribs 9 formed on the dividing wall 7 and the heat transfer by the ribs 9 formed on the dividing wall 8 can be improved by the bypass duct 5 ,
  • the coolant flow-through channel 4 has an inlet connection shown in FIG. 1, which in the present exemplary embodiment is arranged laterally in the front region of the heat transfer unit and via which the coolant flows through the channel 4 which can flow through the coolant.
  • a corresponding unillustrated coolant outlet pipe is present in the rear region of the heat exchanger unit.
  • a coolant regulating device 11 is additionally designed in the form of a control valve, via which the coolant flow can be controlled.
  • the oil flow-through channel 3 has in the present example, a laterally arranged oil inlet nozzle 12, in turn, on the opposite side, ie in the rear region of the oil-permeable channel 3, a corresponding outlet nozzle is arranged.
  • a control device 13 for controlling the flow rate of the oil in the form of a control valve is arranged.
  • FIG. 2 shows the inlet region in the form of an exhaust gas inlet nozzle 14 for the heat transfer unit.
  • a first control device 15 in the form of a flap valve and a second control device 16 in the form of a flap valve are formed in the area of the exhaust inlet connection 14. These are arranged in each case in that the exhaust gas flow-through channel 2 can be closed by the first flap 15 and the second bypass channel 5, also through which exhaust gas can flow, through the second flap 16.
  • These two flaps 15, 16 can be regulated either independently or independently of each other, depending on whether only a temperature control or an exhaust quantity control is to be realized.
  • the oil flow-through channel is closed at its end facing the exhaust gas inlet port 14 by a wall 17.
  • the partition 6 and the housing 1 serve as abutment surfaces for the flap 15 to the closure of the channel 2 and the wall 17 and the housing 1 as abutment surfaces for the flap 16 for closing the bypass channel. 5
  • a suitably trained exhaust outlet not shown is arranged on the opposite in the flow direction of the exhaust gas side of the heat transfer unit, but without flaps, and it would also be possible to arrange the flaps 15, 16 at corresponding positions on the outlet nozzle.
  • the exhaust duct 2 can be bypassed by closing the control device 15, so that in this phase, the flap 16 is in the open position and hot exhaust can flow through the bypass channel 5 uncooled.
  • the control valve 11 is preferably closed, so that no coolant flows through the heat transfer unit and thus takes place only a heating of the oil whose volume flow in this phase by means of the Regulating device 13 can be regulated.
  • the flap 16 can be closed and the flap 15 can be opened, so that now the exhaust gas flow is reduced to reduce the nitrogen oxides formed during combustion via the exhaust duct 2 and no more exhaust gas passes into the bypass channel 5.
  • the control valve 11 is opened, so that the exhaust gas channel 2 is now flowing around coolant and the oil passage 3 receives a heat-conducting contact via the partition wall 7 to the coolant channel 4.
  • a heat transfer unit can be created in which only the oil-traversable channel is cooled by both coolant and heated by the exhaust gas.
  • changes in the designs of the flow-through channels, for example in the form of plate or tube bundles are of course also conceivable as a different positioning of the input and output nozzle.

Abstract

Kombinierte Wärmeübertragungseinheiten zur Kühlung zweier Fluide sind bekannt. Um jedoch ein Temperaturmanagement in einer Verbrennungskraftmaschine zu ermöglichen wird eine Wärmeübertragungseinheit vorgeschlagen, in der zusätzlich ein Bypasskanal (5) für das erste Fluid angeordnet ist. Vorzugsweise weist das zweite Fluid sowohl eine wärmeübertragende Trennwand (8) zum Bypasskanal (5) auf als auch zu einem Kühlmittel durchströmten Kanal (4). Somit ist sowohl eine Erwärmung als auch eine Abkühlung des zweiten Fluids realisierbar.

Description

  • Die Erfindung betrifft eine Wärmeübertragungseinheit für Verbrennungskraftmaschinen mit einem Gehäuse, in dem zumindest ein erster von einem ersten zu kühlenden Fluid durchströmbarer Kanal angeordnet ist, zumindest ein von einem zweiten Fluid durchströmbarer Kanal angeordnet ist und zumindest ein von einem Kühlmittel durchströmbarer Kanal angeordnet ist sowie eine Wärmeübertragungseinheit für den Ölkreislauf einer Verbrennungskraftmaschine mit einem Öl durchströmbaren Kanal und zumindest einem von einem Kühlmittel durchströmbaren Kanal, wobei der Öl durchströmbare Kanal in Wärme leitendem Kontakt zum vom Kühlmittel durchströmbaren Kanal steht.
  • Derartige kombinierte Wärmeübertragungseinheiten sind aus dem Stand der Technik bekannt und werden beispielsweise dazu genutzt, in einer Einheit sowohl die Ladeluft als auch einen Abgasstrom zu kühlen, oder beispielsweise eine Schmierölkühlung entweder einzeln oder in einem Gehäuse mit einer Ladeluftkühlung oder Abgaskühlung anzuordnen. Durch die Kühlung des Abgases oder auch der Ladeluft wird die Verbrennungstemperatur gesenkt, wodurch wiederum der Anteil der Stickoxide im Abgas reduziert werden kann.
  • So wird in der DE 197 22 256 C1 eine Wärmeübertragungseinheit vorgeschlagen, bei dem ein Abgaskühler und ein Ölkühler in einem gemeinsamen Gehäuse angeordnet sind und durch einen Kühlwasserkanal voneinander getrennt sind. Auf diese Art und Weise kann auf engem Raum sowohl eine Kühlung des Abgases als auch des Schmieröls nach dem Warmlaufen der Verbrennungskraftmaschine erreicht werden.
  • Des Weiteren ist es bekannt, dass in der Warmlaufphase des Verbrennungsmotors ein hoher Schadstoffanteil entsteht, weswegen in modernen Verbrennungskraftmaschinen häufig ein den Abgaskühler umgehender Bypasskanal ausgebildet ist, mit dessen Hilfe eine schnellere Aufheizung der Verbrennungskraftmaschine durch das ungekühlt zurückgeführte Abgas erreicht wird.
  • So wird beispielsweise in der DE 102 03 003 A1 ein Abgaswärmeübertrager offenbart, der in einem Gehäuse sowohl die Abgaskühlvorrichtung als auch einen die Kühlvorrichtung umgehenden Bypasskanal aufweist. Über eine vorgeschaltete Bypassklappe wird der Abgasstrom je nach Betriebszustand der Verbrennungskraftmaschine entweder durch die Kühlvorrichtung oder über den Bypasskanal geleitet.
  • Auf diese Weise wird es möglich, ein Temperaturmanagement in der Verbrennungskraftmaschine durchzuführen, wodurch eine schnellere Aufheizung der Verbrennungskraftmaschine realisiert wird. Des weiteren kann nach der Warmlaufphase zur Reduzierung der ausgestoßenen Schadstoffe eine Temperaturführung des zurückgeführten Abgases und somit auch der Verbrennungstemperaturen realisiert werden.
  • Es besteht jedoch weiterhin das Problem einer trotz des vorhandenen Bypasses relativ langen Aufwärmphase insbesondere bei wenig Wärme erzeugenden Turbodieselmotoren. Insbesondere bestehen Probleme bei integrierten Wärmetauschern wie beispielsweise bei dem Ölabgaswärmetauscher der DE 197 22 256 C1 , bei dem die Warmlaufphase im Vergleich zu bekannten Ausführungen nicht verkürzt werden kann, da der Ölkühler von Kühlmittel ständig umströmt ist.
  • Aufgabe der Erfindung ist es daher, eine Wärmeübertragungseinheit zu schaffen, mit der ein wirkungsvolles Temperaturmanagement in der Verbrennungskraftmaschine betrieben werden kann, wobei gleichzeitig der Platzbedarf minimiert werden soll. In einer speziellen Anwendung für den Ölkreislauf einer Verbrennungskraftmaschine soll auf die zurzeit in Turbodieselmotoren verwendeten Zuheizer vollständig verzichtet werden können. Hierdurch soll im Vergleich zu bekannten Ausführungsformen die einen hohen Schadstoffanteil generierende Warmlaufphase weiter verkürzt werden.
  • Diese Aufgabe wird dadurch gelöst, dass in dem Gehäuse ein Bypasskanal für das erste zu kühlende Fluid ausgebildet ist, über den der zumindest eine erste vom ersten zu kühlenden Fluid durchströmbare Kanal umgehbar ist. Auf diese Weise wird in der Wärmeübertragungseinheit auf geringem Raum eine Temperaturregelung auch in einem kombinierten Kühler ermöglicht.
  • Im speziellen Fall einer Wärmeübertragungseinheit für den Ölkreislauf einer Verbrennungskraftmaschine wird diese Aufgabe dadurch gelöst, dass in der Wärmeübertragungseinheit ein Abgas durchströmbarer Kanal ausgebildet ist, der ebenfalls in Wärme leitendem Kontakt zum Öl durchströmbaren Kanal steht, so dass eine schnelle Aufheizung des Öls durch den warmen Abgasstrom erreicht wird. Vorzugsweise ist der Abgas durchströmbare Kanal ein Bypasskanal eines Abgaskühlers.
  • In einer bevorzugten Weiterbildung ist der zumindest eine von dem zweiten Fluid durchströmbare Kanal zwischen dem Bypasskanal und dem vom Kühlmittel beströmbaren Kanal angeordnet. Hierdurch wird erreicht, dass je nach Durchströmung des Bypasskanals und des Kühlmittel durchströmbaren Kanals das zweite Fluid wahlweise entweder erwärmt oder gekühlt werden kann.
  • In einer vorteilhaften Ausführungsform ist der Fluidmassenstrom des ersten zu kühlenden Fluids in den Bypasskanal und den ersten von dem ersten zu kühlenden Fluid durchströmbaren Kanal über zumindest eine Regeleinrichtung steuerbar. Somit wird eine Temperatursteuerung sowohl des ersten zu kühlenden Fluids als auch des zweiten Fluids möglich.
  • In einer bevorzugten Ausführungsform ist der Fluidmassenstrom des ersten zu kühlenden Fluids in den Bypasskanal und den ersten von dem ersten zu kühlenden Fluids durchströmbaren Kanal über zwei Ventile regelbar, wovon das erste Ventil im Bereich eines Abgaseintrittsstutzens im Gehäuse vor dem ersten vom zu kühlenden Fluid durchströmbaren Kanal angeordnet ist und das zweite Ventil im Bereich des Abgaseintrittsstutzens im Gehäuse vor dem Bypasskanal angeordnet ist. Derartige Ventile können beispielsweise klappenförmig ausgebildet sein und über elektromotorische Stelleinheiten abhängig oder unabhängig voneinander geregelt werden. Eine Temperatursteuerung ist somit einfach möglich.
  • Ein optimaler Wärmeübergang zwischen den Medien wird dadurch erzielt, dass der von dem Kühlmittel durchströmbare Kanal eine erste gemeinsame Trennwand mit dem vom ersten zu kühlenden Fluid durchströmbaren Kanal aufweist und eine zweite gemeinsame Trennwand mit dem vom zweiten Fluid durchströmbaren Kanal aufweist. Die beiden gemeinsamen Trennwände dienen somit direkt als Wärmebrücken zwischen den Medien.
  • Eine derartig ebenfalls verbesserte Wärmeübertragung zur schnelleren Temperaturerhöhung des zweiten Fluids ergibt sich, wenn der Bypasskanal eine gemeinsame Trennwand mit dem vom zweiten Fluid durchströmbaren Kanal aufweist. Hat somit das erste Fluid eine höhere Temperatur als das zweite Fluid wird eine Aufheizung des zweiten Fluids bei Durchströmung des Bypasskanals entstehen.
  • In einer bevorzugten Ausführungsform umgibt der vom Kühlmittel durchströmbare Kanal den vom ersten zu kühlenden Fluid durchströmbaren Kanal im Querschnitt vollständig. Hierdurch wird eine optimierte Kühlung des ersten zu kühlenden Fluids sichergestellt.
  • Vorzugsweise ragen in zumindest einen der Kanäle von zumindest einem der Trennwände Rippen hinein. Diese verbessern zusätzlich deutlich den Wärmeübergang der Medien untereinander. Insbesondere bei Ausbildung der Rippen in den Gas führenden Kanälen ergeben sich hierdurch große Vorteile bezüglich des Wärmeübergangs. Es sind dabei sowohl durchgängige Rippen entlang der Strömungsrichtung denkbar als auch unterbrochene Einzelrippen.
  • In einer weiterführenden Ausführungsform ist auch der Kühlmittelstrom über eine Regeleinrichtung steuerbar, so dass dieser während der Warmlaufphase komplett ausgestellt werden kann, wodurch eine deutlich schnellere Aufheizung des zweiten Fluids erreicht werden kann.
  • Dieser Vorteil kann auch dadurch verstärkt werden, dass zusätzlich der Fluidmassenstrom des zweiten Fluids über eine Regelrichtung steuerbar ist.
  • In einer bevorzugten Anwendung ist das erste zu kühlende Fluid Abgas und das zweite Fluid Öl. Dies bedeutet, dass in der Kaltstartphase der Abgas durchströmbare Kanal umgangen wird und das über den Bypasskanal strömende Abgas zur schnelleren Aufheizung des Öls in der kombinierten Wärmeübertragungseinheit genutzt werden kann. Bei Vollast kann das Kühlmittel sowohl zur Kühlung des Abgases als auch zur Kühlung des Öls in der Wärmeübertragungseinheit genutzt werden.
  • In einer kostengünstig herstellbaren Ausführungsform ist die Wärmeübertragungseinheit aus Druckgussteilen hergestellt, welche durch Reibrührschweißen miteinander verbunden sind.
  • Zu weiteren Bauraumreduzierung kann die Wärmeübertragungseinheit zumindest teilweise in den Zylinderkopf integriert werden.
  • Es wird deutlich, dass durch eine derartig aufgebaute Wärmeübertragungseinheit ein optimales Temperaturmanagement der Verbrennungskraftmaschine möglich wird und die Aufheizphase der Verbrennungskraftmaschine im Vergleich zu bekannten Ausführungsformen deutlich reduziert werden kann. Zusätzlich kann der Zuheizer bei Turbodieselmotoren entfallen. Mit der Erfindung werden diese Vorteile auf geringstem Bauraum und mit geringen Kosten realisiert.
  • Ein Ausführungsbeispiel ist in den Zeichnungen dargestellt und wird nachfolgend beschrieben.
    • Figur 1 zeigt einen Querschnitt durch eine erfindungsgemäße Wärmeübertragungseinheit in geschnittener Darstellung.
    • Figur 2 zeigt einen Längsschnitt durch die erfindungsgemäße Wärmeübertragungseinheit der Figur 1 im Bereich des Einlasses.
  • Zum besseren Verständnis wird das Ausführungsbeispiel gemäß der Figuren 1 und 2 anhand eines Ausführungsbeispieles erklärt, bei dem als erstes zu kühlendes Fluid Abgas eingesetzt wird und als zweites Fluid Öl, so dass es sich bei der Wärmeübertragungseinheit um eine kombinierte Abgas-/Öl-Wärmeübertragungseinheit handelt. Eine derartige Wärmeübertragungseinheit kann jedoch auch für andere Kühlkombinationen genutzt werden.
  • Die erfindungsgemäße Wärmeübertragungseinheit besteht entsprechend der Figur 1 aus einem die Wärmeübertragungseinheit umgebenden und nach außen begrenzenden Gehäuse 1, welches ein- oder mehrteilig ausgeführt werden kann. Im Gehäuse 1 ist ein erster von Abgas durchströmbarer Kanal 2 ausgebildet. Des Weiteren ist im Gehäuse 1 ein von Öl durchströmbarer Kanal 3 angeordnet, welcher vom Abgas durchströmbaren Kanal 2 durch einen Kühlmittel durchströmbaren Kanal 4 getrennt ist, wobei der Kühlmittel durchströmbare Kanal 4 derart ausgebildet ist, dass er den Abgas durchströmten Kanal 2 im Querschnitt vollständig umgibt. An der vom Kühlmittel durchströmbaren Kanal 4 abgewandten Seite des Öl durchströmbaren Kanals 3 ist ein Bypasskanal 5 angeordnet, welcher ebenfalls von Abgas durchströmbar ist.
  • Die einzelnen Kanäle 2, 3, 4, 5 sind jeweils über gemeinsame Trennwände voneinander getrennt, so dass eine erste gemeinsame Trennwand 6 zwischen dem Kühlmittel durchströmbaren Kanal 4 und dem Abgas durchströmbaren Kanal 2 angeordnet ist, eine zweite gemeinsame Trennwand 7 zwischen dem Kühlmittel durchströmbaren Kanal 4 und dem von Öl durchströmbaren Kanal 3 angeordnet ist sowie eine dritte gemeinsame Trennwand 8 zwischen dem Bypasskanal 5 und dem von Öl durchströmten Kanal 3 angeordnet ist. Auf diese Art und Weise werden unterschiedliche Wärmetauscherflächen zwischen den verschiedenen Medien realisiert. So erfolgt ein Wärmeaustausch über die gemeinsame Trennwand 8 zwischen Abgas und Öl, über die Trennwand 7 zwischen dem Öl und dem Kühlmittel und über die Trennwand 6 zwischen dem Abgas und dem Kühlmittel.
  • In die Kanäle 2, 3, 5 ragen in Hauptströmungsrichtung verlaufende Rippen 9, welche sowohl als einteilige Längsrippe ausgeführt werden können als auch als mehrere hintereinander und nebeneinander liegende Einzelrippen ausgeführt werden können. Diese Rippen 9 ragen in vorliegendem Ausführungsbeispiel sowohl in den Bypasskanal 5 als auch in den Öl durchströmten Kanal 3 und den Abgas durchströmten Kanal 2, wobei sowohl in den Abgas durchströmten Kanal 2 als auch in den Öl durchströmten Kanal 3 die Rippen von zwei entgegengesetzten Seiten hineinragen. Dies bedeutet für den Abgas durchströmbaren Kanal 2 eine deutliche Verbesserung des Wärmeübergangs, da über die beidseitige Verrippung der Wärmeübergang durch das umgebende Kühlmittel deutlich verbessert wird. Für den Bereich des Öl durchströmbaren Kanals 3 bedeutet die Verrippung, das sowohl der Wärmeübergang vom Kühlmittel zum Öl durch die an der Trennwand 7 ausgebildeten Rippen 9 verbessert wird als auch der Wärmeübergang durch die an der Trennwand 8 ausgebildeten Rippen 9 vom Bypasskanal 5 verbessert werden kann.
  • Des Weiteren ist zu erkennen, dass der Kühlmittel durchströmbare Kanal 4 einen in Figur 1 dargestellten Eintrittsstutzen aufweist, welcher im vorliegenden Ausführungsbeispiel seitlich im vorderen Bereich der Wärmeübertragungseinheit angeordnet ist und über den Kühlmittel in den Kühlmittel durchströmbaren Kanal 4 einströmt. Selbstverständlich ist im hinteren Bereich der Wärmetauschereinheit ein entsprechender nicht dargestellter Kühlmittelaustrittsstutzen vorhanden. Im Bereich des Kühlmitteleintrittsstutzens 10 ist zusätzlich eine Kühlmittelregeleinrichtung 11 in Form eines Steuerventils ausgebildet, über welches der Kühlmittelstrom steuerbar ist.
  • Auch der Öl durchströmbare Kanal 3 weist im vorliegenden Beispiel einen seitlich angeordneten Öleintrittsstutzen 12 auf, wobei wiederum an der entgegengesetzten Seite, also im hinteren Bereich des Öl durchströmbaren Kanals 3 ein entsprechender Austrittsstutzen angeordnet ist. Auch hier ist im Bereich des Öleintrittsstutzens 12 eine Regeleinrichtung 13 zur Volumenstromregelung des Öls in Form eines Steuerventils angeordnet.
  • In Figur 2 ist der Eintrittsbereich in Form eines Abgaseintrittsstutzens 14 zur Wärmeübertragungseinheit dargestellt. Im Bereich des Abgaseintrittsstutzens 14 sind eine erste Regeleinrichtung 15 in Form eines Klappenventils sowie eine zweite Regeleinrichtung 16 in Form eines Klappenventils ausgebildet. Diese sind jeweils so angeordnet, dass der Abgas durchströmbare Kanal 2 durch die erste Klappe 15 und der zweite, ebenfalls von Abgas durchströmbare Bypasskanal 5 durch die zweite Klappe 16 verschließbar ist. Diese beiden Klappen 15, 16 können wahlweise entweder abhängig oder unabhängig voneinander geregelt werden, je nachdem, ob lediglich eine Temperatursteuerung oder auch eine Abgasmengensteuerung realisiert werden soll.
  • Der Öl durchströmbare Kanal ist an seinem zum Abgaseintrittsstutzen 14 weisenden Ende durch eine Wand 17 verschlossenen. Diese Wand 17 sowie die mit der Wand 17 verbundenen Trennwände 6 und 8 unterteilen in Strömungsrichtung des Abgases gesehen die Wärmetauschereinheit im Bereich des Abgaseintrittsstutzens 14 in die Abgas führenden Kanäle 2 und 5. Entsprechend dienen die Trennwand 6 und das Gehäuse 1 als Anschlagflächen für die Klappe 15 zum Verschluss des Kanals 2 und die Wand 17 und das Gehäuse 1 als Anschlagflächen für die Klappe 16 zum Verschluss des Bypasskanals 5.
  • Ein entsprechend ausgebildeter nicht dargestellter Abgasaustrittsstutzen ist an der in Strömungsrichtung des Abgases entgegengesetzter Seite der Wärmeübertragungseinheit angeordnet, jedoch ohne Klappen, wobei es ebenfalls möglich wäre die Klappen 15, 16 an entsprechenden Positionen am Austrittsstutzen anzuordnen.
  • Im Folgenden wird beispielhaft eine Möglichkeit zur Steuerung einer derartigen Wärmeübertragungseinheit in der Warmlaufphase einer Verbrennungskraftmaschine beschrieben.
  • Bei Kaltstart der Verbrennungskraftmaschine ist es erwünscht, die Temperatur des Schmieröls zur Verringerung der Reibung und der Emissionen möglichst schnell zu erhöhen. Dies dient zusätzlich zum größeren Komfort des Fahrgastes im Winter bei einer Kopplung zur Heizung der Fahrgastzelle.
  • Beim Kaltstart kann der Abgaskanal 2 durch Schließen der Regeleinrichtung 15 umgangen werden, so dass sich in dieser Phase die Klappe 16 in geöffneter Stellung befindet und heißes Abgas ungekühlt durch den Bypasskanal 5 strömen kann. Durch diesen Abgasstrom und die Verbindung des Bypasskanals 5 zum Ölkanal 3 über die Trennwand 8 bewirkt der Abgasstrom eine schnelle Aufheizung des Öls im Öl führenden Kanal 3. Zu diesem Zeitpunkt wird vorzugsweise das Steuerventil 11 geschlossen, so dass kein Kühlmittel durch die Wärmeübertragungseinheit strömt und somit lediglich eine Erwärmung des Öls stattfindet, dessen Volumenstrom in dieser Phase mittels der Regeleinrichtung 13 geregelt werden kann.
  • Nach dieser Warmlaufphase kann die Klappe 16 geschlossen und die Klappe 15 geöffnet werden, so dass nun der Abgasstrom zur Verringerung der bei der Verbrennung entstehenden Stickoxide über den Abgaskanal 2 geleitet wird und kein Abgas mehr in den Bypasskanal 5 gelangt. Gleichzeitig wird das Steuerventil 11 geöffnet, so dass der Abgaskanal 2 nun Kühlmittel umströmt ist und der Ölkanal 3 einen wärmeleitenden Kontakt über die Trennwand 7 zum Kühlmittelkanal 4 erhält. Es wird deutlich, dass der Ölkanal 3 bei einer derartigen Anordnung je nach Schaltung der Regeleinrichtungen 15, 16 sowohl die Funktion eines Ölkühlers als auch eines Ölerwärmers übernehmen kann.
  • Im weiteren Verlauf nach Beendigung der Warmlaufphase kann abhängig von den Motorkenndaten und der anliegenden Motorlast eine weiterführende Regelung mittels der Regeleinrichtungen 11, 15, 16 erfolgen, um eine weitergehende Schadstoffminimierung zu erhalten.
  • Die angegebenen einfachen Bauformen verdeutlichen, dass es möglich ist, einen derartigen Kühler im Druckgussverfahren aus mehreren Teilen herzustellen und diese über einen Reibrührschweißverfahren zu verbinden.
  • Es wird deutlich, dass durch eine derartige Ausführung einer Wärmeübertragungseinheit mit kombiniertem Abgas- und Ölkühler und Bypass zur Ölerwärmung der Schadstoffausstoß eines Fahrzeugs deutlich reduziert werden kann, nicht zuletzt dadurch, dass die Warmlaufphase deutlich verkürzt wird. Auf einen Zuheizer kann vollständig verzichtet werden, so dass die Anzahl verwendeter Bauteile deutlich reduziert wird.
  • Es sollte klar sein, dass je nach gewünschtem Temperaturmanagement und verwendeten Medien auch eine andere Anordnung der Kanäle zueinander denkbar ist, wobei insbesondere dadurch ein Platzvorteil erzielt wird, dass an einem Kanal, im vorliegenden Ausführungsbeispiel der Kanal 3, sowohl eine Erwärmung als auch eine Kühlung stattfinden kann.
  • Selbstverständlich ist die Erfindung nicht auf die dargestellte Ausführungsform beschränkt. So kann auch eine Wärmeübertragungseinheit geschaffen werden bei der lediglich der Öl durchströmbare Kanal sowohl durch Kühlmittel gekühlt als auch durch das Abgas erwärmt wird. Auch Änderungen der Gestaltungen der durchströmten Kanäle beispielsweise in Form von Platten- oder Rohrbündeln sind selbstverständlich ebenso denkbar wie eine unterschiedliche Positionierung der Ein- und Ausgangsstutzen.

Claims (15)

  1. Wärmeübertragungseinheit für Verbrennungskraftmaschinen
    - mit einem Gehäuse (1), in dem
    - zumindest ein erster von einem ersten zu kühlenden Fluid durchströmbarer Kanal (2) angeordnet ist,
    - zumindest ein von einem zweiten Fluid durchströmbarer Kanal (3) angeordnet ist,
    - und zumindest ein von einem Kühlmittel durchströmbarer Kanal (4) angeordnet ist,
    dadurch gekennzeichnet, dass
    in dem Gehäuse (1) ein Bypasskanal (5) für das erste zu kühlende Fluid ausgebildet ist, über den der zumindest eine erste vom ersten zu kühlenden Fluid durchströmbare Kanal (2) umgehbar ist.
  2. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach Anspruch 1, dadurch gekennzeichnet, dass der zumindest eine von dem zweiten Fluid durchströmbare Kanal (3) zwischen dem Bypasskanal (5) und dem vom Kühlmittel durchströmbaren Kanal (4) angeordnet ist.
  3. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Fluidmassenstrom des ersten zu kühlenden Fluids in den Bypasskanal (5) und den ersten von dem ersten zu kühlenden Fluid durchströmbaren Kanal (2) über zumindest eine Regeleinrichtung (15, 16) steuerbar ist.
  4. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach Anspruch 3, dadurch gekennzeichnet, dass der Fluidmassenstrom des ersten zu kühlenden Fluids in den Bypasskanal (5) und den ersten von dem ersten zu kühlenden Fluid durchströmbaren Kanal (2) über zwei Ventile (15, 16) regelbar ist, wovon das erste Ventil (15) im Bereich eines Abgaseintrittsstutzens (14) im Gehäuse (1) vor dem ersten vom zu kühlenden Fluid durchströmbaren Kanals (2) angeordnet ist und das zweite Ventil (16) im Bereich des Abgaseintrittsstutzens (14) im Gehäuse (1) vor dem Bypasskanal (5) angeordnet ist.
  5. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der von dem Kühlmittel durchströmbare Kanal (4) eine erste gemeinsame Trennwand (6) mit dem vom ersten zu kühlenden Fluid durchströmbaren Kanal (2) aufweist und eine zweite gemeinsame Trennwand (7) mit dem vom zweiten Fluid durchströmbaren Kanal (3) aufweist.
  6. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Bypasskanal (5) eine gemeinsame Trennwand (8) mit dem vom zweiten Fluid durchströmbaren Kanal (4) aufweist.
  7. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der vom Kühlmittel durchströmbare Kanal (4) den vom ersten zu kühlenden Fluid durchströmbaren Kanal (2) im Querschnitt vollständig umgibt.
  8. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in zumindest einen der Kanäle (2, 3, 4, 5) von zumindest einer der Trennwände (6, 7, 8) Rippen (9) hineinragen.
  9. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kühlmittelstrom über eine Regeleinrichtung (11) steuerbar ist.
  10. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der der Fluidmassenstrom des zweiten Fluids über eine Regeleinrichtung (13) steuerbar ist.
  11. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste zu kühlende Fluid Abgas ist und das zweite Fluid Öl ist.
  12. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmeübertragungseinheit aus Druckgussteilen aufgebaut ist, welche durch Reibrührschweißen miteinander verbunden sind.
  13. Wärmeübertragungseinheit für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmeübertragungseinheit zumindest teilweise in den Zylinderkopf integriert ist.
  14. Wärmeübertragungseinheit für den Ölkreislauf einer Verbrennungskraftmaschine
    mit einem Öl durchströmbaren Kanal (3)
    und zumindest einem von einem Kühlmittel durchströmbaren Kanal (4), wobei der Öl durchströmbare Kanal (3) in Wärme leitendem Kontakt zum vom Kühlmittel durchströmbaren Kanal (4) steht,
    dadurch gekennzeichnet, dass
    in der Wärmeübertragungseinheit ein Abgas durchströmbarer Kanal (5) ausgebildet ist, der in Wärme leitendem Kontakt zum Öl durchströmbaren Kanal (3) steht.
  15. Wärmeübertragungseinheit für den Ölkreislauf einer Verbrennungskraftmaschine nach Anspruch 13, dadurch gekennzeichnet, dass der Abgas durchströmbare Kanal (5) der Bypasskanal einer Abgaswärmeübertragungseinheit (2, 4) ist.
EP07107408.2A 2006-05-20 2007-05-03 Wärmeübertragungseinheit für Verbrennungskraftmaschinen Not-in-force EP1857761B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006023809A DE102006023809B3 (de) 2006-05-20 2006-05-20 Wärmeübertragungseinheit für Verbrennungskraftmaschinen

Publications (3)

Publication Number Publication Date
EP1857761A2 true EP1857761A2 (de) 2007-11-21
EP1857761A3 EP1857761A3 (de) 2011-12-28
EP1857761B1 EP1857761B1 (de) 2015-11-04

Family

ID=38329946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07107408.2A Not-in-force EP1857761B1 (de) 2006-05-20 2007-05-03 Wärmeübertragungseinheit für Verbrennungskraftmaschinen

Country Status (2)

Country Link
EP (1) EP1857761B1 (de)
DE (1) DE102006023809B3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092316A3 (en) * 2010-01-29 2012-12-20 Tanjung Citech Uk Limited A heat exchange unit
CN104727985A (zh) * 2013-12-20 2015-06-24 现代自动车株式会社 用于车辆的调节油温的装置及其控制方法
KR101551023B1 (ko) * 2013-12-20 2015-09-18 현대자동차주식회사 차량의 오일온도 조절장치 및 그 제어방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072763B1 (de) * 2007-12-21 2015-04-08 Techspace Aero S.A. Wärmetauschersystem in einer Strömungsmaschine
DE102008056810B4 (de) * 2008-11-11 2011-11-24 Pierburg Gmbh Kühlvorrichtung für eine Verbrennungskraftmaschine
DE102009005879A1 (de) * 2009-01-23 2010-08-05 Semikron Elektronik Gmbh & Co. Kg Kühleinrichtung mit einem Rippenkühlkörper
GB2471514B (en) * 2009-07-03 2013-08-14 Ford Global Tech Llc Heat exchanging systems for motor vehicles
FR2982646B1 (fr) * 2011-11-15 2015-05-29 Faurecia Sys Echappement Systeme d'echangeur de chaleur pour un moteur a combustion interne et ligne d'echappement d'un moteur a combustion interne
KR101321064B1 (ko) * 2011-12-13 2013-10-22 주식회사 코렌스 차량용 통합형 열교환기
DE102014203896A1 (de) * 2014-03-04 2015-09-10 Mahle International Gmbh Kraftfahrzeug mit einer Brennkraftmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722256C1 (de) 1997-05-28 1998-10-01 Daimler Benz Ag Wärmetauscher für eine wassergekühlte Brennkraftmaschine
EP1099847A2 (de) 1999-11-10 2001-05-16 Isuzu Motors Limited Kühlsystem für ruckgeführtes Abgas und Öl
EP1275838A1 (de) 2001-07-11 2003-01-15 Cooper-Standard Automotive (Deutschland) GmbH Abgasrückführsystem
DE10203003A1 (de) 2002-01-26 2003-08-07 Behr Gmbh & Co Abgaswärmeübertrager
FR2846735A1 (fr) 2002-10-30 2004-05-07 Valeo Thermique Moteur Sa Echangeur de chaleur a plusieurs fluides, notamment pour un vehicule automobile, et systeme de gestion de l'energie thermique associe.
FR2847004A1 (fr) 2002-11-12 2004-05-14 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique de l'air d'admission d'un moteur et de gaz d'echappement recircules emis par ce moteur

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319630A (en) * 1978-12-07 1982-03-16 United Aircraft Products, Inc. Tubular heat exchanger
DE3302304A1 (de) * 1983-01-25 1984-07-26 Borsig Gmbh, 1000 Berlin Waermetauscher zum kuehlen von heissen gasen, insbesondere aus der ammoniak-synthese
EP0197823A1 (de) * 1985-03-20 1986-10-15 Valeo Wärmetauscher für Kraftfahrzeug, insbesondere Abgaswärmetauscher
JPH11311114A (ja) * 1998-04-28 1999-11-09 Aisin Seiki Co Ltd エンジンバランサの潤滑装置
DE10041579A1 (de) * 2000-08-24 2002-03-07 Siemens Automotive Corp Lp Ventilanordnung mit Doppelklappe und Wärmebrücke für ein Abgasrückführungssystem und Verfahren zu deren Betrieb
EP1536198A1 (de) * 2003-11-25 2005-06-01 Terra Energia S.r.l. Wärmetauscher
FR2864582B1 (fr) * 2003-12-24 2006-03-17 Valeo Thermique Moteur Sa Module d'echange de chaleur pour la regulation de la temperature des gaz admis dans un moteur thermique de vehicule automobile
FR2869649B1 (fr) * 2004-04-30 2006-07-28 Valeo Thermique Moteur Sas Systeme ameliore de regulation de la temperature des gaz admis dans un moteur
ES2322728B1 (es) * 2005-11-22 2010-04-23 Dayco Ensa, S.L. Intercambiador de calor de tres pasos para un sistema "egr".

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722256C1 (de) 1997-05-28 1998-10-01 Daimler Benz Ag Wärmetauscher für eine wassergekühlte Brennkraftmaschine
EP1099847A2 (de) 1999-11-10 2001-05-16 Isuzu Motors Limited Kühlsystem für ruckgeführtes Abgas und Öl
EP1275838A1 (de) 2001-07-11 2003-01-15 Cooper-Standard Automotive (Deutschland) GmbH Abgasrückführsystem
DE10203003A1 (de) 2002-01-26 2003-08-07 Behr Gmbh & Co Abgaswärmeübertrager
FR2846735A1 (fr) 2002-10-30 2004-05-07 Valeo Thermique Moteur Sa Echangeur de chaleur a plusieurs fluides, notamment pour un vehicule automobile, et systeme de gestion de l'energie thermique associe.
FR2847004A1 (fr) 2002-11-12 2004-05-14 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique de l'air d'admission d'un moteur et de gaz d'echappement recircules emis par ce moteur

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092316A3 (en) * 2010-01-29 2012-12-20 Tanjung Citech Uk Limited A heat exchange unit
CN104727985A (zh) * 2013-12-20 2015-06-24 现代自动车株式会社 用于车辆的调节油温的装置及其控制方法
KR20150072716A (ko) * 2013-12-20 2015-06-30 현대자동차주식회사 차량의 오일온도 조절장치 및 그 제어방법
KR101551023B1 (ko) * 2013-12-20 2015-09-18 현대자동차주식회사 차량의 오일온도 조절장치 및 그 제어방법
KR101583889B1 (ko) * 2013-12-20 2016-01-21 현대자동차주식회사 차량의 오일온도 조절장치 및 그 제어방법
US9441511B2 (en) 2013-12-20 2016-09-13 Hyundai Motor Company Apparatus for adjusting temperature of oil for vehicle and method for controlling the apparatus
CN104727985B (zh) * 2013-12-20 2019-01-08 现代自动车株式会社 用于车辆的调节油温的装置及其控制方法

Also Published As

Publication number Publication date
EP1857761B1 (de) 2015-11-04
DE102006023809B3 (de) 2007-09-13
EP1857761A3 (de) 2011-12-28

Similar Documents

Publication Publication Date Title
EP1857761B1 (de) Wärmeübertragungseinheit für Verbrennungskraftmaschinen
EP2021612B1 (de) Abgasrückführeinrichtung
EP2025911B1 (de) Abgaskühlvorrichtung für eine Verbrennungskraftmaschine
EP2175221B1 (de) Kühleinrichtung
EP2159394B1 (de) Gaskühler für einen Verbrennungsmotor
WO2007134962A1 (de) Ventilanordnung für eine abgasrückführeinrichtung
DE102007011953A1 (de) Wärmetauscher für ein Kraftfahrzeug
DE102005047840A1 (de) Luftgekühlter Abgaswärmeübertrager, insbesondere Abgaskühler für Kraftfahrzeuge
DE102014215074A1 (de) Temperieranordnung für Getriebeöl eines Kraftfahrzeugs sowie Verfahren zum Temperieren von Getriebeöl eines Kraftfahrzeugs
DE102010033125A1 (de) Wärmetauschereinrichtung
DE10355649A1 (de) Längsdurchströmter Abgaskühler
DE102015201242B4 (de) Regelmittel zur Steuerung der Kühlmittelströme eines Split-Kühlsystems
DE102010010332B4 (de) Abgassystem für eine Verbrennungskraftmaschine sowie Verfahren zur Reinigung eines Abgasrückführventils eines Abgassystems
DE102006048527B4 (de) Kühlkreislauf für eine Brennkraftmaschine
DE102007022859B4 (de) Anordnung von in Reihe geschalteten Heizungswärmeaustauschern in einem Kraftfahrzeug
DE202015100577U1 (de) Regelmittel zur Steuerung der Kühlmittelströme eines Split Kühlsystems
WO2009012897A1 (de) Vorrichtung zur kühlung von rückgeführtem abgas eines verbrennungsmotors
DE102005036045B4 (de) Kühlvorrichtung für Verbrennungskraftmaschinen
EP2218897A1 (de) Vorrichtung zur Abgasrückführung für einen Verbrennungsmotor
EP2194245A2 (de) Öl-Abgas-Kühlmodul für eine Verbrennungskraftmaschine
DE10340908A1 (de) Brennkraftmaschine für Kraftfahrzeuge
DE102015201243A1 (de) Regelmittel zur Steuerung der Kühlmittelströme eines Split-Kühlsystems
DE102013217154A1 (de) Temperieranordnung für Getriebeöl eines Kraftfahrzeugs sowie Verfahren zum Temperieren von Getriebeöl eines Kraftfahrzeugs
DE102009057802B4 (de) Kühlkreislauf für eine Brennkraftmaschine
DE102014222158A1 (de) Abgaswärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070503

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 3/18 20060101ALI20111118BHEP

Ipc: F02M 25/07 20060101ALI20111118BHEP

Ipc: F28D 7/00 20060101AFI20111118BHEP

Ipc: F28D 9/00 20060101ALI20111118BHEP

Ipc: F01M 5/00 20060101ALI20111118BHEP

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150730

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 759496

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014369

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160205

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160525

Year of fee payment: 10

Ref country code: GB

Payment date: 20160523

Year of fee payment: 10

Ref country code: CZ

Payment date: 20160425

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014369

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160523

Year of fee payment: 10

Ref country code: IT

Payment date: 20160524

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 759496

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007014369

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104