EP1996888B1 - Heat exchanger for a motor vehicle - Google Patents

Heat exchanger for a motor vehicle Download PDF

Info

Publication number
EP1996888B1
EP1996888B1 EP07723149.6A EP07723149A EP1996888B1 EP 1996888 B1 EP1996888 B1 EP 1996888B1 EP 07723149 A EP07723149 A EP 07723149A EP 1996888 B1 EP1996888 B1 EP 1996888B1
Authority
EP
European Patent Office
Prior art keywords
flow path
flow
heat exchanger
exchanger according
ducts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07723149.6A
Other languages
German (de)
French (fr)
Other versions
EP1996888A1 (en
Inventor
Christian Domes
Peter Geskes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP1996888A1 publication Critical patent/EP1996888A1/en
Application granted granted Critical
Publication of EP1996888B1 publication Critical patent/EP1996888B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • F28D7/1692Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0075Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the same heat exchange medium flowing through sections having different heat exchange capacities or for heating or cooling the same heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Definitions

  • the present invention relates to a heat exchanger for a motor vehicle according to the preamble of claim 1.
  • the document JP2001027157 discloses in Figures 4 and 5 such a heat exchanger.
  • the fluid is the exhaust gas of an internal combustion engine of the motor vehicle.
  • a particularly large temperature difference of typically several 100 ° C is achieved in the fluid cooling, so that the adjustment of the flow resistance of the two downstream flow paths in the course of cooling of the exhaust gas is particularly effective.
  • the first flow path has a smaller flow resistance than the second flow path.
  • the region of the first flow path on average there is a higher temperature difference to the coolant than in the region of the second flow path.
  • a high cooling capacity is already given due to the temperature difference. Due to the temperature of at least gaseous fluids, high pressure losses are present anyway in this region, so that the flow resistance, in particular the generation of turbulence to improve the heat transfer, can be kept relatively small in the first flow path.
  • the fluid is already partially cooled, so that in the second flow path to obtain a sufficient heat transfer advantageously a greater flow resistance, in particular a larger proportion of turbulent flows, is present. In this way, an overall optimization of the heat exchanger performance is achieved taking into account the lowest possible total pressure drop across the heat exchanger.
  • turbulence-generating means are provided in at least one of the two flow paths, whereby the heat exchanger performance is improved.
  • the turbulence-generating means are formed as protruding into the flow path formations of walls of the flow path. These may be dimples or so-called " winglets" (V-shaped aligned embossed webs).
  • the turbulence-generating means may also be deposits defined in the flow path. Such inserts may be, for example, rib ribs or corrugated ribs or the like.
  • all turbulence-generating agents which are known from the prior art are suitable for the purposes of the present invention. What is essential is only the different design of the flow resistances in the first flow path and in the second flow path.
  • ribs are arranged to increase a contact area with the fluid, wherein the ribs in the first flow path and in the second flow path have a different density. Even in a case where, for example, are longitudinal ribs such as corrugated fins, in which predominantly laminar and less turbulent flows are formed, a different density of the ribs leads to different flow resistances.
  • the flow resistances of the flow paths can therefore be influenced in principle both by generating turbulences and by influencing laminar flow fractions.
  • first flow path and the second flow path may each comprise a plurality of separate, parallel flow channels.
  • the number of channels of the first flow path is different, in particular smaller, than the number of channels of the second flow path.
  • the channels of the first flow path can each have a different, in particular larger, cross-sectional area than the channels of the second flow path.
  • the channels of a flow path have different flow resistances among one another.
  • the flow resistance of an outer channel with respect to the deflection region is greater than the flow resistance of an inner channel of the same flow path.
  • the first flow path preferably has a different, in particular larger, free cross-sectional area than the second flow path.
  • free cross-sectional area is meant the geometric cross-sectional area for free flow of the fluid.
  • the flow paths are arranged in a housing through which the coolant flows.
  • the coolant is advantageously a liquid, in particular cooling liquid of a main cooling circuit of the motor vehicle. As a result, an overall effective cooling of the fluid is ensured.
  • the heat exchanger comprises a connection region with a first connection for supplying the fluid to the first flow path and a second connection for discharging the fluid from the second flow path, thereby enabling a compact and cost-saving design of the heat exchanger.
  • an adjusting element is provided in the connection region, by means of which a direct connection of the first connection and the second connection for bypassing the flow paths is selectably adjustable. This makes it possible to bypass the cooling of the fluid selectable, which is desired especially in internal combustion engines of motor vehicles under certain operating conditions such as the warm-up phase of the engine.
  • the flow paths and / or the flow channels are made of aluminum.
  • the flow paths and / or the flow channels are made of stainless steel.
  • the flow paths and / or the flow channels are made of aluminum and stainless steel.
  • the fluid is exhaust gas of an internal combustion engine of the motor vehicle.
  • turbulence-generating means are formed as defined in the flow path deposits.
  • the flow paths are arranged in a housing through which the coolant flows.
  • the flow paths in particular the flow channels made of aluminum and / or stainless steel are formed.
  • Fig. 1 shows a U-flow heat exchanger for cooling recirculated exhaust gas of a motor vehicle diesel engine, in which a first flow path 1 and a second flow path 2 are arranged in parallel and side by side within a housing 3.
  • the housing 3 is flowed through by means of two ports 4, 5 of a liquid coolant, which is branched off from a main cooling circuit of the diesel engine.
  • the flow paths 1, 2 each comprise a number of flow channels 6, 7, which in the present case are designed as flat tubes with a rectangular cross-section.
  • the cross section can in principle also have another, approximately round, shape.
  • the connection region 8 has a first connection 9 for supplying exhaust gas of a diesel engine of the motor vehicle and a second connection 10 for discharging the cooled exhaust gas.
  • a control element 11 designed as a pivotable flap is provided, which is adjustable via a rotary shaft 12.
  • the exhaust gas is passed from the first port 9 in the first flow path 1, where it first undergoes a first cooling. After flowing through the first flow path 1, the exhaust gas enters a deflecting region 13 arranged at the end of the housing 3.
  • the deflection region 13 here is a substantially semi-cylindrical, hollow housing part, in which the exhaust gas flow is deflected by 180 °, after which it enters the second flow path 2.
  • the second flow path 2 flows through the exhaust gas in the opposite direction to the first flow path 1, wherein it undergoes a further cooling.
  • When leaving the second Flow path 2 enters the exhaust gas again in the connection area 8, where it in the case of the first position of the actuating element 11 according to Fig. 1 is guided in the second terminal 10.
  • each of the flow paths 1, 2 comprises a bundle of nine flow channels 6, 7 each of rectangular cross-section.
  • the outer dimensions of the flow channels 6, 7 are each identical.
  • the flow channels 6 of the first flow path 1 and the flow channels 7 of the second flow path 2 turbulence generating means in the form of indentations 6a, 7a, which have a different size.
  • the impressions 6a of the first flow channels 6 protrude less deeply into the channel cross section than the impressions 7a of the second flow channels 7. In this way, the geometric free flow cross section of the second flow channels 7 becomes smaller compared to the geometric free cross section of the first flow channels 6.
  • more turbulence is introduced into the exhaust gas flow in the second flow channels 7 through the deeper protruding turbulence-generating means 7a than in the first flow channels 6.
  • the turbulence-generating means 6a, 7a can be dimples and / or winglets. Alternatively or in addition, it may also be in itself act known structured deposits, which are inserted into the flow channels 6, 7 and welded.
  • the second heat exchanger In the second heat exchanger according to Fig. 3 is the first flow path 1 as well as constructed in the first heat exchanger.
  • the second flow path 2 In contrast to the first heat exchanger, the second flow path 2 not only has different turbulence-generating means 7a, but also has a smaller number of flow channels 7 than the first flow path 1, which have a different outer dimension relative to the flow channels 6 of the first flow path 1.
  • the second flow path comprises fewer flow channels 7 with a larger external dimension, a greater flow resistance is generated for the second flow path 2 by the deeper projecting turbulence-generating means 7a than for the first flow path 1. Due to the changed number and outer geometry of the flow channels 7 the flow resistance of the second flow path in the second embodiment is slightly smaller than the flow resistance of the second flow path in the first heat exchanger.
  • each of the flow paths 1, 2 each have three parallel flat tubes 6, 7 as flow channels, each having identical outer dimensions.
  • the flow channels 6, 7 are provided with rib-like inserts 6b, 7b, whereby the contact area between the exhaust gas flow and heat-conducting metal is increased.
  • fewer fins are provided in the case of the flow channels 6 of the first flow path 1 than in the case of the flow channels 7 of the second flow path 2. Due to the greater fin density of the second flow path 2 with otherwise identical dimensions and numbers the flow channels 6, 7, the second flow path 2 has a greater flow resistance than the first flow path 1.
  • the embodiment illustrates that even with predominantly laminar flows by appropriate design of the flow channels 6, 7 different flow resistance can be generated.
  • the fluid to be cooled is in particular exhaust gas.
  • the fluid to be cooled charge air, oil, especially transmission oil, a water-containing cooling liquid, refrigerant of an air conditioner such as CO2.
  • the heat exchanger is at least one exhaust gas cooler.
  • the heat exchanger is at least one intercooler and / or an oil cooler and / or a coolant radiator and / or a condenser of an air conditioner and / or an evaporator of an air conditioner and / or a gas cooler of an air conditioner.
  • the heat exchanger is a combination of at least one exhaust gas cooler and at least one other of the aforementioned heat exchangers.
  • the heat exchanger has a flow resistance of the flow path 1, which is between 0.1% and 300%, in particular between 1% and 100%, in particular between 5% and 80%, between 10% and 70%, between 20 % and 60%, between 30% and 50% is above the flow resistance of the flow path 2, preferably only 10% above the flow resistance of the flow path. 2
  • the flow resistance of the first flow path 1 is below the flow resistance of the flow path 2.
  • Heat exchangers with a deflection region 13 are referred to as U-flow heat exchangers, since the fluid to be cooled flows in a first flow path as far as a deflection section and flows back in a first flow path in the first flow path after deflection in a second flow path substantially in the opposite direction.

Description

Die vorliegende Erfindung betrifft einen Wärmetauscher für ein Kraftfahrzeug nach dem Oberbegriff des Anspruchs 1. Das Dokument JP2001027157 offenbart in Abbildungen 4 und 5 so einen Wärmetauscher.The present invention relates to a heat exchanger for a motor vehicle according to the preamble of claim 1. The document JP2001027157 discloses in Figures 4 and 5 such a heat exchanger.

Die Entwicklung von insbesondere Abgas-Wärmetauschern für Kraftfahrzeuge bringt besondere Anforderungen mit sich. So müssen erhebliche Temperaturdifferenzen bei oft sehr begrenztem Bauraum bewältigt werden, wobei der Druckabfall über den Wärmetauscher klein sein muss und wobei zudem weitere Probleme wie mögliche Kondensation und Bildung von hartnäckigen Ablagerungen zu beachten sind.The development of particular exhaust heat exchangers for motor vehicles brings with it special requirements. Thus, considerable temperature differences have to be overcome with often very limited installation space, wherein the pressure drop across the heat exchanger must be small and, in addition, further problems such as possible condensation and the formation of stubborn deposits must be taken into account.

Hinsichtlich einer Anpassung an den begrenzten Bauraum haben sich sogenannte U-Flow-Bauweisen von Wärmetauschern als vorteilhaft erwiesen. Bei dieser Bauweise wird der Abgasstrom durch einen ersten Strömungspfad geführt, dann um zumeist 180 Grad umgelenkt und durch einen zweiten Strömungspfad zur weiteren Kühlung zurückgeführt. Dies ermöglicht einen kompakten Anschlussbereich mit benachbarter Zu- und Ableitung an einer Seite sowie eine kompakte und insbesondere relativ kurze Bauweise. Im direkten Vergleich mit z. B. gerade bauenden Wärmetauschern weisen U-Flow-Wärmetauscher bei gegebener Kühlleistung und gegebenem Bauraumvolumen zumeist einen höheren Strömungswiderstand auf.With regard to an adaptation to the limited space, so-called U-flow constructions of heat exchangers have proved to be advantageous. In this construction, the exhaust gas flow is guided through a first flow path, then deflected by mostly 180 degrees and returned through a second flow path for further cooling. This allows a compact connection area with adjacent inlet and outlet on one side and a compact and in particular relatively short construction. In direct comparison with z. B. just built heat exchangers have U-flow heat exchanger for a given cooling capacity and given space volume mostly a higher flow resistance.

Es ist die Aufgabe der Erfindung, einen Wärmetauscher für ein Kraftfahrzeug anzugeben, der hinsichtlich seines Strömungswiderstandes verbessert ist.It is the object of the invention to provide a heat exchanger for a motor vehicle, which is improved in terms of its flow resistance.

Diese Aufgabe wird für einen eingangs genannten Wärmetauscher erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst. Durch die unterschiedliche Auslegung der Strömungswiderstände der beiden einzelnen Strömungspfade wird der Gesamtströmungswiderstand bei gegebenem Wirkungsgrad und gegebener Baugröße optimiert, da der bereits erfolgten Kühlung des Fluids im ersten Strömungspfad bei Eintritt in den zweiten Strömungspfad Rechnung getragen wird. In bevorzugter Ausführung ist dabei das Fluid das Abgas eines Verbrennungsmotors des Kraftfahrzeugs. Bei der Kühlung von Abgas, die insbesondere zur Abgas-Rückführung zwecks Schadstoffreduktion von Dieselmotoren vorgenommen wird, wird eine besonders große Temperaturdifferenz von typisch mehreren 100 °C bei der Fluidkühlung erzielt, so dass die Anpassung der Strömungswiderstände der beiden einander nachgeordneten Strömungspfade im Verlauf der Kühlung des Abgases besonders wirkungsvoll ist.This object is achieved according to the invention for a heat exchanger mentioned above with the characterizing features of claim 1. Due to the different design of the flow resistance of the two individual flow paths, the total flow resistance is optimized for a given efficiency and given size, since the already made cooling of the fluid in the first flow path is taken into account when entering the second flow path. In a preferred embodiment, the fluid is the exhaust gas of an internal combustion engine of the motor vehicle. In the cooling of exhaust gas, which is carried out in particular for exhaust gas recirculation for pollutant reduction of diesel engines, a particularly large temperature difference of typically several 100 ° C is achieved in the fluid cooling, so that the adjustment of the flow resistance of the two downstream flow paths in the course of cooling of the exhaust gas is particularly effective.

Vorteilhaft weist dabei der erste Strömungspfad einen kleineren Strömungswiderstand auf als der zweite Strömungspfad. Im Bereich des ersten Strömungspfades liegt durchschnittlich eine höhere Temperaturdifferenz zum Kühlmittel vor als im Bereich des zweiten Strömungspfades. Hierdurch ist bereits aufgrund der Temperaturdifferenz eine hohe Kühlleistung gegeben. In diesem Bereich liegen zudem aufgrund der Temperatur zumindest von gasförmigen Fluiden ohnehin hohe Druckverluste vor, so dass der Strömungswiderstand, hierbei insbesondere die Erzeugung von Turbulenzen zur Verbesserung des Wärmeübergangs, in dem ersten Strömungspfad relativ klein gehalten werden kann. Bei Eintritt in den zweiten Strömungspfad ist das Fluid bereits teilweise abgekühlt, so dass im zweiten Strömungspfad zur Erlangung eines ausreichenden Wärmeübergangs vorteilhaft ein größerer Strömungswiderstand, insbesondere ein größerer Anteil an turbulenten Strömungen, vorliegt. Auf diese Weise wird insgesamt eine Optimierung der Wärmetauscherleistung unter Berücksichtigung des möglichst geringen gesamten Druckabfalls über dem Wärmetauscher erzielt.Advantageously, the first flow path has a smaller flow resistance than the second flow path. In the region of the first flow path, on average there is a higher temperature difference to the coolant than in the region of the second flow path. As a result, a high cooling capacity is already given due to the temperature difference. Due to the temperature of at least gaseous fluids, high pressure losses are present anyway in this region, so that the flow resistance, in particular the generation of turbulence to improve the heat transfer, can be kept relatively small in the first flow path. When entering the second flow path, the fluid is already partially cooled, so that in the second flow path to obtain a sufficient heat transfer advantageously a greater flow resistance, in particular a larger proportion of turbulent flows, is present. In this way, an overall optimization of the heat exchanger performance is achieved taking into account the lowest possible total pressure drop across the heat exchanger.

In bevorzugter Ausführungsform sind in zumindest einem der beiden Strömungspfade turbulenzerzeugende Mittel vorgesehen, wodurch die Wärmetauscherleistung verbessert wird. Bevorzugt sind die turbulenzerzeugenden Mittel als in den Strömungspfad ragende Ausformungen von Wänden des Strömungspfads ausgebildet. Hierbei kann es sich um Dimpel oder sogenannte "Winglets" (V-förmig ausgerichtete, eingeprägte Stege), handeln. Alternativ oder ergänzend kann es sich bei den turbulenzerzeugenden Mitteln auch um in dem Strömungspfad festgelegte Einlagen handeln. Solche Einlagen können zum Beispiel Stegrippen oder Wellrippen oder Ähnliches sein. Grundsätzlich sind sämtliche turbulenzerzeugenden Mittel, die aus dem Stand der Technik bekannt sind, im Sinne der vorliegenden Erfindung geeignet. Wesentlich ist lediglich die unterschiedliche Auslegung der Strömungswiderstände im ersten Strömungspfad und im zweiten Strömungspfad.In a preferred embodiment, turbulence-generating means are provided in at least one of the two flow paths, whereby the heat exchanger performance is improved. Preferably, the turbulence-generating means are formed as protruding into the flow path formations of walls of the flow path. These may be dimples or so-called " winglets" (V-shaped aligned embossed webs). Alternatively or additionally, the turbulence-generating means may also be deposits defined in the flow path. Such inserts may be, for example, rib ribs or corrugated ribs or the like. In principle, all turbulence-generating agents which are known from the prior art are suitable for the purposes of the present invention. What is essential is only the different design of the flow resistances in the first flow path and in the second flow path.

In den Strömungspfaden sind Rippen zur Vergrößerung einer Kontaktfläche mit dem Fluid angeordnet, wobei die Rippen in dem ersten Strömungspfad und in dem zweiten Strömungspfad eine unterschiedliche Dichte aufweisen. Auch in einem Fall, bei dem es sich zum Beispiel um Längsrippen wie etwa Wellrippen handelt, bei dem vorwiegend laminare und weniger turbulente Strömungen ausgebildet werden, führt eine unterschiedliche Dichte der Rippen zu unterschiedlichen Strömungswiderständen. Die Strömungswiderstände der Strömungspfade sind daher grundsätzlich sowohl durch Erzeugung von Turbulenzen als auch durch Beeinflussung laminarer Strömungsanteile beeinflussbar.In the flow paths, ribs are arranged to increase a contact area with the fluid, wherein the ribs in the first flow path and in the second flow path have a different density. Even in a case where, for example, are longitudinal ribs such as corrugated fins, in which predominantly laminar and less turbulent flows are formed, a different density of the ribs leads to different flow resistances. The flow resistances of the flow paths can therefore be influenced in principle both by generating turbulences and by influencing laminar flow fractions.

Weiterhin ergänzend können der erste Strömungspfad und der zweite Strömungspfad jeweils eine Mehrzahl von separaten, parallelen Strömungskanälen umfassen. Bevorzugt ist dabei die Anzahl der Kanäle des ersten Strömungspfads unterschiedlich, insbesondere kleiner, als die Anzahl der Kanäle des zweiten Strömungspfads. Alternativ oder ergänzend können die Kanäle des ersten Strömungspfads jeweils eine unterschiedliche, insbesondere größere, Querschnittsfläche aufweisen als die Kanäle des zweiten Strömungspfads. Auf jede der genannten Weisen kann eine geeignete Anpassung der Strömungswiderstände der Strömungspfade unter Berücksichtigung der geforderten Betriebsbedingungen des Wärmetauschers erfolgen.In addition, the first flow path and the second flow path may each comprise a plurality of separate, parallel flow channels. Preferably, the number of channels of the first flow path is different, in particular smaller, than the number of channels of the second flow path. Alternatively or additionally, the channels of the first flow path can each have a different, in particular larger, cross-sectional area than the channels of the second flow path. In any of the above ways, a suitable adaptation of the flow resistance of the flow paths taking into account the required operating conditions of the heat exchanger can take place.

Zur weiteren Verbesserung ist es zudem vorteilhaft vorgesehen, dass die Kanäle eines Strömungspfades untereinander verschiedene Strömungswiderstände aufweisen. Besonders vorteilhaft ist der Strömungswiderstand eines bezüglich des Umlenkbereichs außenliegenden Kanals größer als der Strömungswiderstand eines innenliegenden Kanals des gleichen Strömungspfads. Hierdurch wird eine weitere Feinoptimierung erreicht, da die Strömungswege, Strömungsgeschwindigkeiten und Temperaturen des Fluidstroms über den Querschnitt eines der Strömungspfade im Allgemeinen variieren.For further improvement, it is also advantageously provided that the channels of a flow path have different flow resistances among one another. Particularly advantageously, the flow resistance of an outer channel with respect to the deflection region is greater than the flow resistance of an inner channel of the same flow path. As a result, further fine tuning is achieved because the flow paths, flow rates, and temperatures of the fluid flow generally vary across the cross-section of one of the flow paths.

Allgemein bevorzugt weist der erste Strömungspfad eine gegenüber dem zweiten Strömungspfad unterschiedliche, insbesondere größere, freie Querschnittsfläche auf. Unter der freien Querschnittsfläche ist dabei die geometrische Querschnittsfläche zur freien Durchströmung des Fluids gemeint.Generally, the first flow path preferably has a different, in particular larger, free cross-sectional area than the second flow path. By the free cross-sectional area is meant the geometric cross-sectional area for free flow of the fluid.

Die Strömungspfade sind in einem von dem Kühlmittel durchströmten Gehäuse angeordnet. Weiterhin vorteilhaft ist dabei das Kühlmittel eine Flüssigkeit, insbesondere Kühlflüssigkeit eines Hauptkühlkreislaufs des Kraftfahrzeugs. Hierdurch ist insgesamt eine effektive Kühlung des Fluids gewährleistet.The flow paths are arranged in a housing through which the coolant flows. Furthermore, the coolant is advantageously a liquid, in particular cooling liquid of a main cooling circuit of the motor vehicle. As a result, an overall effective cooling of the fluid is ensured.

In einer besonders bevorzugten Ausführungsform umfasst der Wärmetauscher einen Anschlussbereich mit einem ersten Anschluss zur Zuleitung des Fluids zu dem ersten Strömungspfad und einem zweiten Anschluss zur Ableitung des Fluids von dem zweiten Strömungspfad, wodurch eine kompakte und kostensparende Bauweise des Wärmetauschers ermöglicht ist. In weiterhin bevorzugter Ausführung ist in dem Anschlussbereich ein Stellelement vorgesehen, mittels dessen eine unmittelbare Verbindung von erstem Anschluss und zweiten Anschluss zur Umgehung der Strömungspfade selektierbar einstellbar ist. Hierdurch lässt sich die Kühlung des Fluids selektierbar umgehen, was gerade bei Verbrennungsmotoren von Kraftfahrzeugen unter bestimmten Betriebsbedingungen wie etwa der Warmlaufphase des Motors gewünscht ist.In a particularly preferred embodiment, the heat exchanger comprises a connection region with a first connection for supplying the fluid to the first flow path and a second connection for discharging the fluid from the second flow path, thereby enabling a compact and cost-saving design of the heat exchanger. In a further preferred embodiment, an adjusting element is provided in the connection region, by means of which a direct connection of the first connection and the second connection for bypassing the flow paths is selectably adjustable. This makes it possible to bypass the cooling of the fluid selectable, which is desired especially in internal combustion engines of motor vehicles under certain operating conditions such as the warm-up phase of the engine.

In einer vorteilhaften Weiterbildung der Erfindung sind die Strömungspfade und/oder die Strömungskanäle aus Aluminium ausgebildet.In an advantageous development of the invention, the flow paths and / or the flow channels are made of aluminum.

In einer vorteilhaften Weiterbildung der Erfindung sind die Strömungspfade und/oder die Strömungskanäle aus Edelstahl ausgebildet.In an advantageous development of the invention, the flow paths and / or the flow channels are made of stainless steel.

In einer vorteilhaften Weiterbildung der Erfindung sind die Strömungspfade und/oder die Strömungskanäle aus Aluminium und aus Edelstahl ausgebildet.In an advantageous development of the invention, the flow paths and / or the flow channels are made of aluminum and stainless steel.

Vorteilhaft ist, dass das Fluid Abgas eines Verbrennungsmotors des Kraftfahrzeugs ist.It is advantageous that the fluid is exhaust gas of an internal combustion engine of the motor vehicle.

Vorteilhaft ist, dass die turbulenzerzeugenden Mittel als in dem Strömungspfad festgelegte Einlagen ausgebildet sind.It is advantageous that the turbulence-generating means are formed as defined in the flow path deposits.

Vorteilhaft ist, dass die Strömungspfade in einem von dem Kühlmittel durchströmten Gehäuse angeordnet sind.It is advantageous that the flow paths are arranged in a housing through which the coolant flows.

Vorteilhaft ist, dass die Strömungspfade insbesondere die Strömungskanäle aus Aluminium und/oder aus Edelstahl ausgebildet sind.It is advantageous that the flow paths, in particular the flow channels made of aluminum and / or stainless steel are formed.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den nachfolgend beschriebenen Ausführungsbeispielen sowie aus den abhängigen Ansprüchen.Further advantages and features of the invention will become apparent from the embodiments described below and from the dependent claims.

Nachfolgend werden drei bevorzugte Ausführungsbeispiele eines Wärmetauschers beschrieben und anhand der anliegenden Zeichnungen näher erläutert.

Fig. 1
zeigt eine schematische räumliche Ansicht eines allgemeinen U-Flow-Wärmetauschers.
Fig. 2
zeigt einen schematischen Querschnitt durch einen ersten Wärmetauscher.
Fig. 3
zeigt einen schematischen Querschnitt durch einen zweiten Wärmetauscher.
Fig. 4
zeigt einen schematischen Querschnitt durch ein Ausführungsbeispiel eines erfindungsgemäßen Wärmetauschers.
Hereinafter, three preferred embodiments of a heat exchanger will be described and explained in more detail with reference to the accompanying drawings.
Fig. 1
shows a schematic spatial view of a general U-flow heat exchanger.
Fig. 2
shows a schematic cross section through a first heat exchanger.
Fig. 3
shows a schematic cross section through a second heat exchanger.
Fig. 4
shows a schematic cross section through an embodiment of a heat exchanger according to the invention.

Fig. 1 zeigt einen U-Flow-Wärmetauscher zur Kühlung von rückgeführtem Abgas eines Kraftfahrzeug-Dieselmotors, bei dem ein erster Strömungspfad 1 und ein zweiter Strömungspfad 2 parallel und nebeneinander innerhalb eines Gehäuses 3 angeordnet sind. Das Gehäuse 3 wird mittels zweier Anschlüsse 4, 5 von einem flüssigen Kühlmittel durchströmt, das aus einem Hauptkühlkreislauf des Dieselmotors abgezweigt ist. Die Strömungspfade 1, 2 umfassen jeweils eine Anzahl von Strömungskanälen 6, 7, die vorliegend als Flachrohre mit rechteckigem Querschnitt ausgebildet sind. Der Querschnitt kann grundsätzlich auch eine andere, etwa runde, Form aufweisen. Fig. 1 shows a U-flow heat exchanger for cooling recirculated exhaust gas of a motor vehicle diesel engine, in which a first flow path 1 and a second flow path 2 are arranged in parallel and side by side within a housing 3. The housing 3 is flowed through by means of two ports 4, 5 of a liquid coolant, which is branched off from a main cooling circuit of the diesel engine. The flow paths 1, 2 each comprise a number of flow channels 6, 7, which in the present case are designed as flat tubes with a rectangular cross-section. The cross section can in principle also have another, approximately round, shape.

Jedes der Rohre 6, 7 wird innerhalb des Gehäuses 3 von dem flüssigen Kühlmittel umströmt. An einer vorderen Seite des Gehäuses 3 ist ein Anschlussbereich 8 angeordnet und durch Verschweißung verbunden, der in Fig. 1 aus Gründen der Übersichtlichkeit separiert von dem Gehäuse 3 dargestellt ist. Der Anschlussbereich 8 weist einen ersten Anschluss 9 zur Zuführung von Abgas eines Dieselmotors des Kraftfahrzeugs sowie einen zweiten Anschluss 10 zur Abführung des gekühlten Abgases auf. Innerhalb des Anschlussbereichs 8 ist ein als schwenkbare Klappe ausgebildetes Stellelement 11 vorgesehen, welches über eine Drehwelle 12 verstellbar ist. In einer ersten Stellung des Stellelements 11, die in Fig. 1 dargestellt ist, wird das Abgas von dem ersten Anschluss 9 in den ersten Strömungspfad 1 geleitet, wo es zunächst eine erste Kühlung erfährt. Nach Durchströmen des ersten Strömungspfades 1 tritt das Abgas in einen endseitig des Gehäuses 3 angeordneten Umlenkbereich 13 ein.Each of the tubes 6, 7 is flowed around within the housing 3 of the liquid coolant. On a front side of the housing 3, a terminal portion 8 is arranged and connected by welding, which in Fig. 1 for reasons of clarity separated from the housing 3 is shown. The connection region 8 has a first connection 9 for supplying exhaust gas of a diesel engine of the motor vehicle and a second connection 10 for discharging the cooled exhaust gas. Within the connection region 8, a control element 11 designed as a pivotable flap is provided, which is adjustable via a rotary shaft 12. In a first position of the actuating element 11, the in Fig. 1 is shown, the exhaust gas is passed from the first port 9 in the first flow path 1, where it first undergoes a first cooling. After flowing through the first flow path 1, the exhaust gas enters a deflecting region 13 arranged at the end of the housing 3.

Der Umlenkbereich 13 ist hier ein im Wesentlichen halbzylindrisches, hohles Gehäuseteil, in dem der Abgasstrom um 180° umgelenkt wird, wonach er in den zweiten Strömungspfad 2 eintritt. Den zweiten Strömungspfad 2 durchströmt das Abgas in zu dem ersten Strömungspfad 1 entgegengesetzter Richtung, wobei es eine weitere Abkühlung erfährt. Bei Verlassen des zweiten Strömungspfades 2 tritt das Abgas wieder in den Anschlussbereich 8 ein, wo es im Fall der ersten Stellung des Stellelementes 11 gemäß Fig. 1 in den zweiten Anschluss 10 geführt wird.The deflection region 13 here is a substantially semi-cylindrical, hollow housing part, in which the exhaust gas flow is deflected by 180 °, after which it enters the second flow path 2. The second flow path 2 flows through the exhaust gas in the opposite direction to the first flow path 1, wherein it undergoes a further cooling. When leaving the second Flow path 2 enters the exhaust gas again in the connection area 8, where it in the case of the first position of the actuating element 11 according to Fig. 1 is guided in the second terminal 10.

Bei einer anderen, nicht dargestellten Stellung des Stellelementes 11 wird das Abgas an einer Durchströmung der Strömungspfade 1, 2 gehindert, wobei es unmittelbar von dem ersten Anschluss 9 in den zweiten Anschluss 10 geleitet wird. Hierbei erfährt es keine wesentliche Abkühlung, so dass diese Betriebsart vornehmlich bestimmten Betriebsbedingungen wie etwa einer Warmlaufphase des Verbrennungsmotors zugeordnet ist ("Bypass-Betrieb").In another, not shown position of the actuating element 11, the exhaust gas is prevented from flowing through the flow paths 1, 2, wherein it is passed directly from the first port 9 into the second port 10. In this case, it experiences no significant cooling, so that this mode is assigned primarily to certain operating conditions such as a warm-up phase of the internal combustion engine ("bypass operation").

Im Fall der ersten Stellung des Stellelementes 8 weist das Abgas im ersten Strömungspfad 1 ein deutlich höheres mittleres Temperaturniveau auf als in dem zweiten Strömungspfad 2. Zur Optimierung der Wärmetauscherleistung, insbesondere unter Berücksichtigung eines möglichst geringen gesamten Strömungswiderstandes, sind die Strömungswiderstände des ersten Strömungspfades 1 und des zweiten Strömungspfads 2 unterschiedlich gestaltet:
Bei einem ersten Wärmetauscher gemäß Fig. 2 umfasst jeder der Strömungspfade 1, 2 ein Bündel von jeweils neun Strömungskanälen 6, 7 von jeweils rechteckigem Querschnitt. Die Außenmaße der Strömungskanäle 6, 7 sind dabei jeweils identisch. Allerdings weisen die Strömungskanäle 6 des ersten Strömungspfades 1 sowie die Strömungskanäle 7 des zweiten Strömungspfades 2 turbulenzerzeugende Mittel in Form von Einprägungen 6a, 7a auf, die eine unterschiedliche Größe haben. Die Einprägungen 6a der ersten Strömungskanäle 6 ragen weniger tief in den Kanalquerschnitt hinein als die Einprägungen 7a der zweiten Strömungskanäle 7. Hierdurch wird der geometrische freie Strömungsquerschnitt der zweiten Strömungskanäle 7 im Vergleich zu dem geometrischen freien Querschnitt der ersten Strömungskanäle 6 kleiner. Zudem werden in den zweiten Strömungskanälen 7 durch die tiefer einragenden turbulenzerzeugenden Mittel 7a mehr Turbulenzen in den Abgasstrom eingebracht als in den ersten Strömungskanälen 6. Bei den turbulenzerzeugenden Mitteln 6a, 7a kann es sich um Dimpel und/oder Winglets handeln. Alternativ oder ergänzend kann es sich auch um an sich bekannte strukturierte Einlagen handeln, die in die Strömungskanäle 6, 7 eingeschoben und verschweißt sind.
In the case of the first position of the actuating element 8, the exhaust gas in the first flow path 1 to a significantly higher average temperature level than in the second flow path 2. To optimize the heat exchanger performance, especially taking into account the lowest possible total flow resistance, the flow resistance of the first flow path 1 and the second flow path 2 designed differently:
In a first heat exchanger according to Fig. 2 Each of the flow paths 1, 2 comprises a bundle of nine flow channels 6, 7 each of rectangular cross-section. The outer dimensions of the flow channels 6, 7 are each identical. However, the flow channels 6 of the first flow path 1 and the flow channels 7 of the second flow path 2 turbulence generating means in the form of indentations 6a, 7a, which have a different size. The impressions 6a of the first flow channels 6 protrude less deeply into the channel cross section than the impressions 7a of the second flow channels 7. In this way, the geometric free flow cross section of the second flow channels 7 becomes smaller compared to the geometric free cross section of the first flow channels 6. In addition, more turbulence is introduced into the exhaust gas flow in the second flow channels 7 through the deeper protruding turbulence-generating means 7a than in the first flow channels 6. The turbulence-generating means 6a, 7a can be dimples and / or winglets. Alternatively or in addition, it may also be in itself act known structured deposits, which are inserted into the flow channels 6, 7 and welded.

Bei dem zweiten Wärmetauscher gemäß Fig. 3 ist der erste Strömungspfad 1 ebenso wie im ersten Wärmetauscher aufgebaut. Im Unterschied zum ersten Wärmetauscher weist der zweite Strömungspfad 2 nicht nur unterschiedliche turbulenzerzeugende Mittel 7a auf, sondern hat auch eine gegenüber dem ersten Strömungspfad 1 kleinere Anzahl von Strömungskanälen 7, welche jeweils gegenüber den Strömungskanälen 6 des ersten Strömungspfads 1 ein anderes Außenmaß aufweisen. Obwohl im zweiten Wärmetauscher der zweite Strömungspfad weniger Strömungskanäle 7 mit dafür größerem Außenmaß umfasst, wird durch die tiefer einragenden turbulenzerzeugenden Mittel 7a insgesamt für den zweiten Strömungspfad 2 ein größerer Strömungswiderstand erzeugt als für den ersten Strömungspfad 1. Durch die geänderte Anzahl und Außengeometrie der Strömungskanäle 7 ist der Strömungswiderstand des zweiten Strömungspfades im zweiten Ausführungsbeispiel etwas kleiner als der Strömungswiderstand des zweiten Strömungspfades im ersten Wärmetauscher.In the second heat exchanger according to Fig. 3 is the first flow path 1 as well as constructed in the first heat exchanger. In contrast to the first heat exchanger, the second flow path 2 not only has different turbulence-generating means 7a, but also has a smaller number of flow channels 7 than the first flow path 1, which have a different outer dimension relative to the flow channels 6 of the first flow path 1. Although in the second heat exchanger the second flow path comprises fewer flow channels 7 with a larger external dimension, a greater flow resistance is generated for the second flow path 2 by the deeper projecting turbulence-generating means 7a than for the first flow path 1. Due to the changed number and outer geometry of the flow channels 7 the flow resistance of the second flow path in the second embodiment is slightly smaller than the flow resistance of the second flow path in the first heat exchanger.

In dem Ausführungsbeispiel gemäß Fig. 4 weist jeder der Strömungspfade 1, 2 jeweils drei parallele Flachrohre 6, 7 als Strömungskanäle auf, die jeweils identische Außenmaße aufweisen. Die Strömungskanäle 6, 7 sind mit rippenartigen Einlagen 6b, 7b versehen, wodurch die Kontaktfläche zwischen Abgasstrom und wärmeleitendem Metall vergrößert wird. Zur Bereitstellung unterschiedlicher Strömungswiderstände des ersten und zweiten Strömungspfads 1, 2 sind im Fall der Strömungskanäle 6 des ersten Strömungspfads 1 weniger Rippen vorgesehen als im Fall der Strömungskanäle 7 des zweiten Strömungspfads 2. Aufgrund der größeren Rippendichte des zweiten Strömungspfads 2 bei ansonsten gleichen Abmessungen und Anzahlen der Strömungskanäle 6, 7 hat der zweite Strömungspfad 2 einen größeren Strömungswiderstand als der erste Strömungspfad 1. Das Ausführungsbeispiel verdeutlicht, dass auch bei vorwiegend laminaren Strömungen durch entsprechender Auslegung der Strömungskanäle 6, 7 unterschiedliche Strömungswiderstände erzeugt werden können.In the embodiment according to Fig. 4 each of the flow paths 1, 2 each have three parallel flat tubes 6, 7 as flow channels, each having identical outer dimensions. The flow channels 6, 7 are provided with rib-like inserts 6b, 7b, whereby the contact area between the exhaust gas flow and heat-conducting metal is increased. To provide different flow resistances of the first and second flow paths 1, 2 fewer fins are provided in the case of the flow channels 6 of the first flow path 1 than in the case of the flow channels 7 of the second flow path 2. Due to the greater fin density of the second flow path 2 with otherwise identical dimensions and numbers the flow channels 6, 7, the second flow path 2 has a greater flow resistance than the first flow path 1. The embodiment illustrates that even with predominantly laminar flows by appropriate design of the flow channels 6, 7 different flow resistance can be generated.

Die verschiedenen Ansätze zur Erzielung unterschiedlicher Strömungswiderstände gemäß der beschriebenen Beispiele können beliebig miteinander kombiniert werden. Dabei ist zu berücksichtigen, dass im Fall von Abgas-Wärmetauschern nicht nur der resultierende Strömungswiderstand ein wichtiges Kriterium ist, sondern auch andere Parameter wie die Neigung zur Kondensation von Ablagerungen, die einer konstanten Wirkung des Wärmetauschers über seine Lebensdauer entgegenstehen. Solche Ablagerungen bilden sich vornehmlich im kühleren Teil des Abgasstroms. Daher kann es im Einzelfall auch vorteilhaft sein, dass der Strömungswiderstand des zweiten Strömungspfads größer ist als der Strömungswiderstand des ersten Strömungspfads, wobei die Kondensation von Ablagerungen durch stark turbulente Anteile verringert wird.The various approaches to achieve different flow resistance according to the examples described can be combined with each other. It should be noted that in the case of exhaust gas heat exchangers not only the resulting flow resistance is an important criterion, but also other parameters such as the tendency for condensation of deposits, which preclude a constant effect of the heat exchanger over its lifetime. Such deposits are formed primarily in the cooler part of the exhaust stream. Therefore, it may also be advantageous in individual cases that the flow resistance of the second flow path is greater than the flow resistance of the first flow path, wherein the condensation of deposits is reduced by highly turbulent components.

Das zu kühlende Fluid ist insbesondere Abgas. In einer anderen Ausführung ist das zu kühlende Fluid Ladeluft, Öl, insbesondere Getriebeöl, eine wasserhaltige Kühlflüssigkeit, Kältemittel einer Klimaanlage wie CO2.The fluid to be cooled is in particular exhaust gas. In another embodiment, the fluid to be cooled charge air, oil, especially transmission oil, a water-containing cooling liquid, refrigerant of an air conditioner such as CO2.

In dem dargestellten Ausführungsbeispiel ist der Wärmetauscher zumindest ein Abgaskühler. In einem anderen Ausführungsbeispiel ist der Wärmetauscher zumindest ein Ladeluftkühler und/oder ein Ölkühler und/oder ein Kühlmittelkühler und/oder ein Kondensator einer Klimaanlage und/oder ein Verdampfer einer Klimaanlage und/oder ein Gaskühler einer Klimaanlage. In einem anderen Ausführungsbeispiel ist der Wärmetauscher eine Kombination aus zumindest einem Abgaskühler und zumindest einem anderen der zuvor genannten Wärmetauscher.In the illustrated embodiment, the heat exchanger is at least one exhaust gas cooler. In another embodiment, the heat exchanger is at least one intercooler and / or an oil cooler and / or a coolant radiator and / or a condenser of an air conditioner and / or an evaporator of an air conditioner and / or a gas cooler of an air conditioner. In another embodiment, the heat exchanger is a combination of at least one exhaust gas cooler and at least one other of the aforementioned heat exchangers.

In einer anderen Ausführung weist der Wärmetauscher einen Strömungswiderstand des Strömungspfades 1 auf, der zwischen 0,1% und zu 300%, insbesondere zwischen 1% und 100%, insbesondere zwischen 5% und 80%, zwischen 10% und 70%, zwischen 20% und 60%, zwischen 30% und 50% über dem Strömungswiderstand des Strömungspfades 2 liegt, vorzugsweise nur um 10% über dem Strömungswiderstand des Strömungspfades 2.In another embodiment, the heat exchanger has a flow resistance of the flow path 1, which is between 0.1% and 300%, in particular between 1% and 100%, in particular between 5% and 80%, between 10% and 70%, between 20 % and 60%, between 30% and 50% is above the flow resistance of the flow path 2, preferably only 10% above the flow resistance of the flow path. 2

In einer anderen Ausführungsform liegt der Strömungswiderstand des ersten Strömungspfades 1 unter dem Strömungswiderstand des Strömungspfades 2.In another embodiment, the flow resistance of the first flow path 1 is below the flow resistance of the flow path 2.

Wärmetauscher mit einem Umlenkbereich 13 werden als U-Flow- Wärmetauscher bezeichnet, da das zu kühlende Fluid in einem ersten Strömungspfad bis zu einem Umlenkabschnitt strömt und nach dem Umlenken in einem zweiten Strömungspfad im Wesentlichen in entgegengesetzter Richtung zur Strömungsrichtung im ersten Strömungspfad zurückströmt.Heat exchangers with a deflection region 13 are referred to as U-flow heat exchangers, since the fluid to be cooled flows in a first flow path as far as a deflection section and flows back in a first flow path in the first flow path after deflection in a second flow path substantially in the opposite direction.

Die vorbeschriebenen Beispiele skizzieren jeweils Bauformen von Rohrbündel-Wärmetauschern. Die Erfindung ist nicht hierauf beschränkt, sondern erstreckt sich auch auf Scheibenbauweisen und andere Bauweisen, bei denen der Abgasstrom nacheinander verschiedene Strömungspfade durchläuft. The examples described above each sketch designs of tube bundle heat exchangers. The invention is not limited thereto, but also extends to disc designs and other constructions in which the exhaust gas flow successively passes through different flow paths.

Claims (14)

  1. A heat exchanger for a motor vehicle, comprising a housing, a first flow path (1), a deflection region (13) following the first flow path (1), and a second flow path (2) following the deflection region (13), wherein a coolant can flow through the housing and the flow paths are arranged inside the housing, wherein a fluid to be cooled is capable of flowing through the first and the second flow path (1, 2), and wherein the coolant is capable of flowing around the first and the second flow path (1, 2) for the discharge of heat, wherein the second flow path (2) has a flow resistance deviating from that of the first flow path (1), characterised in that ribs (6b, 7b) for enlarging a contact surface with the fluid are arranged in the flow paths (1, 2), wherein the ribs (6b, 7b) in the first flow path (1) and in the second flow path (2) have a different density.
  2. The heat exchanger according to claim 1, characterised in that the first flow path (1) has a lower flow resistance than the second flow path (2).
  3. The heat exchanger according to claim 1 or 2, characterised in that the first flow path (1) has a higher flow resistance than the second flow path (2).
  4. The heat exchanger according to one of the preceding claims, characterised in that turbulence-generating means (6a, 7a) are provided in at least one of the two flow paths (1, 2).
  5. The heat exchanger according to claim 4, characterised in that the turbulence-generating means (6a, 7a) are designed as shaped-out portions of walls of the flow path projecting into the flow path (6, 7) .
  6. The heat exchanger according to one of the preceding claims, characterised in that the first flow path (1) and the second flow path (2) comprise in each case a plurality of separate parallel flow ducts (6, 7).
  7. The heat exchanger according to claim 6, characterised in that the number of ducts (6) of the first flow path is different from, in particular smaller than, the number of ducts (7) of the second flow path.
  8. The heat exchanger according to one of claims 6 or 7, characterised in that the ducts (6) of the first flow path have in each case a different, in particular larger, cross-sectional area from the ducts (7) of the second flow path.
  9. The heat exchanger according to one of claims 6 to 8, characterised in that the ducts (6, 7) of a flow path have flow resistances different from one another.
  10. The heat exchanger according to claim 9, characterised in that the flow resistance of a duct lying externally with respect to the deflection region (13) is higher than the flow resistance of an internally lying duct of the same flow path.
  11. The heat exchanger according to one of the preceding claims, characterised in that the first flow path (1) has a free cross-sectional area which is different from, in particular larger than, that of the second flow path (2).
  12. The heat exchanger according to one of claims 1 to 11, characterised in that the coolant is a liquid, in particular the cooling liquid of a main cooling circuit of the motor vehicle.
  13. The heat exchanger according to one of the preceding claims, further comprising a connection region (8) with a first connection (9) for supplying the fluid to the first flow path (1) and with a second connection (10) for discharging the fluid from the second flow path (2).
  14. The heat exchanger according to claim 13, characterised in that the connection region (8) comprises an actuating element (11), by means of which a direct link between the first connection (9) and the second connection (10) can be set selectively in order to bypass the flow paths (1, 2).
EP07723149.6A 2006-03-10 2007-03-09 Heat exchanger for a motor vehicle Active EP1996888B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006011592 2006-03-10
PCT/EP2007/002084 WO2007104491A1 (en) 2006-03-10 2007-03-09 Heat exchanger for a motor vehicle

Publications (2)

Publication Number Publication Date
EP1996888A1 EP1996888A1 (en) 2008-12-03
EP1996888B1 true EP1996888B1 (en) 2019-07-24

Family

ID=38222113

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07723149.6A Active EP1996888B1 (en) 2006-03-10 2007-03-09 Heat exchanger for a motor vehicle

Country Status (5)

Country Link
US (1) US8573286B2 (en)
EP (1) EP1996888B1 (en)
CN (1) CN101400960B (en)
DE (1) DE102007011953A1 (en)
WO (1) WO2007104491A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333577A1 (en) * 2003-07-24 2005-02-24 Bayer Technology Services Gmbh Method and apparatus for removing volatile substances from highly viscous media
WO2005033489A1 (en) * 2003-10-02 2005-04-14 Behr Gmbh & Co. Kg Charge intercooler for a motor vehicle
EP2137478A2 (en) * 2007-04-11 2009-12-30 Behr GmbH & Co. KG Heat exchanger
FR2923859B1 (en) * 2007-11-15 2009-12-18 Valeo Systemes Thermiques Branche Thermique Habitacle HEAT EXCHANGER FOR AN AIR SUPPLY CIRCUIT FOR A MOTOR VEHICLE ENGINE
US20110100342A1 (en) * 2009-11-02 2011-05-05 International Engine Intellectual Property Company Llc Forced convection egr cooling system
DE102011007748A1 (en) * 2011-04-20 2012-10-25 Behr Gmbh & Co. Kg An exhaust gas cooler for cooling combustion exhaust gas of an internal combustion engine, a water collection adapter, an exhaust gas cooling system, and a method of manufacturing an exhaust gas cooling system
US20140366573A1 (en) * 2011-12-08 2014-12-18 Carrier Corporation Method and apparatus of forming heat exchanger tubes
DE102012202883A1 (en) * 2012-02-24 2013-08-29 Bayerische Motoren Werke Aktiengesellschaft heat exchangers
DE102013221151A1 (en) * 2013-10-17 2015-04-23 MAHLE Behr GmbH & Co. KG Heat exchanger
DE102013224038A1 (en) * 2013-11-25 2015-05-28 MAHLE Behr GmbH & Co. KG Exhaust gas heat exchanger for exhaust gas cooling of an internal combustion engine, preferably for a motor vehicle
US10690233B2 (en) * 2016-07-27 2020-06-23 Ford Global Technologies, Llc Bypass control for U-flow transmission oil coolers
US20180156165A1 (en) * 2016-12-07 2018-06-07 Ford Global Technologies, Llc Charge air cooler with an integrated bypass
JP2018169073A (en) * 2017-03-29 2018-11-01 株式会社デンソー Heat exchanger
JP6915460B2 (en) * 2017-08-30 2021-08-04 株式会社デンソー Air conditioning unit
KR20210066557A (en) * 2019-11-28 2021-06-07 현대자동차주식회사 Intercooler of vehicle

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1834070A (en) * 1928-05-14 1931-12-01 Parkinson Heater Corp Heating device
US3161234A (en) * 1962-10-16 1964-12-15 United Aircraft Corp Multipass evaporator
US3211217A (en) * 1963-07-12 1965-10-12 Westinghouse Electric Corp Fluid reversing valve structure
US3447602A (en) * 1967-06-22 1969-06-03 David Dalin Heat exchanger especially adapted for indirect heat transfer by convection
DE3103198A1 (en) 1981-01-30 1982-08-26 Oskar Dr.-Ing. 8031 Stockdorf Schatz Heat exchanger for operating with exhaust gases from reciprocating engines, in particular for heating motor vehicles
DE3140687A1 (en) 1981-10-13 1983-04-28 Michael 8011 Putzbrunn Behncke Tubular heat exchanger
US5314009A (en) * 1992-10-08 1994-05-24 Gas Research Institute Exhaust gas recuperator
JP2001027157A (en) * 1999-07-13 2001-01-30 Mitsubishi Motors Corp Strut for egr cooler
US6318455B1 (en) * 1999-07-14 2001-11-20 Mitsubishi Heavy Industries, Ltd. Heat exchanger
GB0001283D0 (en) * 2000-01-21 2000-03-08 Serck Heat Transfer Limited Twin flow valve gas cooler
DE10216773B4 (en) 2002-04-15 2004-09-16 Benteler Automobiltechnik Gmbh Cooler for an exhaust gas taken from the main exhaust gas stream of an internal combustion engine
US6634419B1 (en) * 2002-05-31 2003-10-21 Honeywell International Inc. Multi-pass exhaust gas recirculation cooler
DE10302948A1 (en) * 2003-01-24 2004-08-05 Behr Gmbh & Co. Kg Heat exchanger, in particular exhaust gas cooler for motor vehicles
US6948559B2 (en) * 2003-02-19 2005-09-27 Modine Manufacturing Company Three-fluid evaporative heat exchanger
US7337832B2 (en) * 2003-04-30 2008-03-04 Valeo, Inc. Heat exchanger
ES2234398B1 (en) 2003-04-30 2006-12-01 Valeo Termico, S.A. HEAT EXCHANGER, ESPECIALLY OF EXHAUST GASES OF AN ENGINE.
US7073573B2 (en) * 2004-06-09 2006-07-11 Honeywell International, Inc. Decreased hot side fin density heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1996888A1 (en) 2008-12-03
CN101400960A (en) 2009-04-01
US20090090495A1 (en) 2009-04-09
CN101400960B (en) 2010-12-29
WO2007104491A1 (en) 2007-09-20
DE102007011953A1 (en) 2007-11-15
US8573286B2 (en) 2013-11-05

Similar Documents

Publication Publication Date Title
EP1996888B1 (en) Heat exchanger for a motor vehicle
EP1999423B1 (en) Exhaust gas cooler for a motor vehicle
EP1985953B1 (en) Heat exchanger, in particular exhaust gas cooler, method for operating such a heat exchanger, system with an exhaust gas cooler
EP1800078B1 (en) Air-cooled exhaust gas heat exchanger, in particular exhaust gas cooler for motor vehicles
EP1837499B1 (en) Device for cooling an exhaust gas stream
WO2004065876A1 (en) Heat exchanger, particularly exhaust gas cooler for motor vehicles
DE102008036222B3 (en) Heat transfer unit for an internal combustion engine
EP1941224A1 (en) Heat exchanger
EP2044319A1 (en) Device for cooling a gas flow of an internal combustion engine
WO2003046457A1 (en) Heat exchanger
EP1911946A2 (en) Device for charge air cooling for a combustion motor, system with a device for charge air cooling
DE112013007041B4 (en) Heat exchanger
DE102007005370A1 (en) heat exchangers
EP2134941B1 (en) Flow channel, heat exchanger, exhaust gas recycling system, charge air supply system, use of a heat exchanger
DE102007013302A1 (en) Heat exchanger e.g. u-flow exhaust gas heat exchanger, for e.g. Otto engine of passenger car, has flow path with flow channels sustained as continuous channels, which are separated from each other, in deflecting area and in another path
DE102006012219B4 (en) Heat transfer unit with a closable fluid part inlet
EP2159394A2 (en) Gas cooler for an internal combustion engine
EP2863157B1 (en) Heat exchanger
DE102015110974B4 (en) Exhaust gas heat exchanger with several heat exchanger channels
DE102006029043B4 (en) Heat transfer unit for an internal combustion engine
DE102007033148A1 (en) Device e.g. exhaust gas cooler, for cooling exhaust gas in exhaust gas recirculation system of internal combustion engine i.e. diesel engine, of motor vehicle i.e. passenger car, has housing with wall sections formed as single-piece
DE102007041338B3 (en) Heat transfer unit for an internal combustion engine
DE102005036045B4 (en) Cooling device for internal combustion engines
DE102007041357A1 (en) Heat exchanger, for use in vehicles comprises stack of metal plates in contact with first fluid, plates having rows of slots which are aligned to form channels allowing one or more additional fluids to be passed through them
EP2278149A2 (en) Heat exchanger and charging system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150224

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

INTG Intention to grant announced

Effective date: 20190617

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016732

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1158697

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191025

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016732

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200309

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200309

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1158697

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230525

Year of fee payment: 17