EP1857246A1 - Moule pour un dispositif biomédical - Google Patents

Moule pour un dispositif biomédical Download PDF

Info

Publication number
EP1857246A1
EP1857246A1 EP07252060A EP07252060A EP1857246A1 EP 1857246 A1 EP1857246 A1 EP 1857246A1 EP 07252060 A EP07252060 A EP 07252060A EP 07252060 A EP07252060 A EP 07252060A EP 1857246 A1 EP1857246 A1 EP 1857246A1
Authority
EP
European Patent Office
Prior art keywords
mold part
mold
lens
injection molding
core layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07252060A
Other languages
German (de)
English (en)
Inventor
Scott F. Ansell
Changhong Yin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Vision Care Inc
Original Assignee
Johnson and Johnson Vision Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Vision Care Inc filed Critical Johnson and Johnson Vision Care Inc
Publication of EP1857246A1 publication Critical patent/EP1857246A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • B29C45/1645Injecting skin and core materials from the same injection cylinder, e.g. mono-sandwich moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1634Making multilayered or multicoloured articles with a non-uniform dispersion of the moulding material in the article, e.g. resulting in a marble effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0046Details relating to the filling pattern or flow paths or flow characteristics of moulding material in the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • B29L2011/0041Contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/757Moulds, cores, dies

Definitions

  • contact lenses can be used to improve vision.
  • Various contact lenses have been commercially produced for many years. Early designs of contact lenses were fashioned from hard materials. Although these lenses are still currently used in some applications, they are not suitable for all patients due to their poor comfort and relatively low permeability to oxygen. Later developments in the field gave rise to soft contact lenses, based upon hydrogels.
  • Hydrogel contact lenses are very popular today. These lenses are often more comfortable to wear than contact lenses made of hard materials. Malleable soft contact lenses can be manufactured by forming a lens in a multi-part mold where the combined parts form a topography consistent with the desired final lens.
  • Ophthalmic lenses are often made by cast molding, in which a monomer material is deposited in a cavity defined between optical surfaces of opposing mold parts.
  • Multi-part molds used to fashion hydrogels into a useful article, such as an ophthalmic lens can include for example, a first mold part with a convex portion that corresponds with a back curve of an ophthalmic lens and a second mold part with a concave portion that corresponds with a front curve of the ophthalmic lens.
  • an uncured hydrogel lens formulation is placed between the concave and convex surfaces of the mold portions and subsequently cured.
  • the hydrogel lens formulation may be cured, for example by exposure to either, or both, heat and light.
  • the cured hydrogel forms a lens according to the dimensions of the mold portions.
  • the present invention provides mold parts with multiple layers and apparatus, systems and methods for producing mold parts with multiple layers.
  • This invention includes a mold part for making a lens that includes multiple layers of alicyclic co-polymer.
  • the layers of the alicyclic co-polymer comprise, consist essentially of, or consist of at least two alicyclic polymers of different chemical structures wherein a first layer includes a first alicyclic co-polymer and forms a lens surface and a second layer includes a second alicyclic co-polymer and forms a core portion of the mold part.
  • a differential in viscosity of a first material and a second material used to form a lens mold part can be used to create a multilayer lens part.
  • a surface layer and a core layer will be described, but it is understood that multiple layers may be formed according to the materials selected and the process conditions.
  • lens refers to any ophthalmic device that resides in or on the eye. These devices can provide optical correction or may be cosmetic.
  • the term lens includes but is not limited to soft contact lenses, intraocular lenses, overlay lenses, ocular inserts, and optical inserts.
  • the preferred lenses of the invention are soft contact lenses are made from silicone elastomers or hydrogels, which include but are not limited to silicone hydrogels, and fluorohydrogels.
  • alicyclic polymers refers to compounds having at least one saturated carbocyclic ring therein.
  • the saturated carbocyclic rings may be substituted with one or more members of the group consisting of hydrogen, C 1-10 alkyl, halogen, hydroxyl, C 1-10 alkoxycarbonyl, C 1-10 alkoxy, cyano, amido, imido, silyl, and substituted C 1-10 alkyl where the substituents are selected from one or more members of the group consisting of halogen, hydroxyl, C 1-10 alkoxycarbonyl, C 1-10 alkoxy, cyano, amido, imido, and silyl.
  • alicyclic polymers include but are not limited to polymerizable cyclobutanes, cyclopentanes, cyclohexanes, cycloheptanes, cyclooctanes, biscyclobutanes, biscyclopentanes, biscyclohexanes, biscycloheptanes, biscyclooctanes, and norbornanes. It is preferred that the at least two alicyclic polymers be polymerized by ring opening metathesis followed by hydrogenation. Since co-polymers are costly, it is preferable that the molds made from these co-polymers may be used several times to prepare lenses instead of once which is typical. For the preferred molds of the invention, they may be used more than once to produce lenses.
  • examples of alicyclic polymer containing saturated carbocyclic rings include but are not limited to the following structures wherein R 1-6 are independently selected from one or more members of the group consisting of hydrogen, C 1-10 alkyl, halogen, hydroxyl, C 1-10 alkoxycarbonyl, C 1-10 alkoxy, cyano, amido, imido, silyl, and substituted C 1-10 alkyl where the substituents selected from one or more members of the group consisting of halogen, hydroxyl, C 1-10 alkoxycarbonyl, C 1-10 alkoxy, cyano, amido, imido and silyl.
  • R 1-6 may be taken together to form an unsaturated bond, a carbocyclic ring, a carbocyclic ring containing one or more unsaturated bonds, or an aromatic ring.
  • the preferred R 1-6 is selected from the group consisting of C 1-10 alkyl and substituted C 1-10 alkyl where the substituents are selected from the group consisting of halogen, hydroxyl, C 1-10 alkoxycarbonyl, C 1-10 alkoxy, cyano, amido, imido and silyl.
  • the alicyclic co-polymers consist of at least two different alicyclic polymer s.
  • the preferred alicyclic co-polymers contain two or three different alicyclic polymer s, selected from the group consisting of
  • the surface energy of the alicyclic co-polymer is between 30 and 45 dynes/cm at 25 °C.
  • MFR melt flow rate
  • the term "mold” refers to a rigid or semi-rigid object that may be used to form lenses from uncured formulations.
  • the preferred molds are two part molds as described above, where either the front curve or the back curve of the mold is made of the alicyclic co-polymers of the invention and the other curve is made of polyolefin.
  • polyolefin include but are not limited to Zieglar-Natta catalyzed polypropylene that is nucleated and clarified, such as, but not limited to ExxonMobil PP9544 MED® and ATOFINA PP3620WZ®.
  • released from a mold means that a lens is either completely separated from the mold, or is only loosely attached so that it can be removed with mild agitation or pushed off with a swab.
  • the term "lens forming mixture” refers to a prepolymer material which can be cured, to form an ophthalmic lens.
  • Various embodiments can include prepolymer mixtures with one or more additives such as: UV blockers, tints, photoinitiators or catalysts, and other additives one might desire in an ophthalmic lenses such as, contact or intraocular lenses. Lens forming mixtures are more fully described below.
  • a diagram of an exemplary mold for an ophthalmic lens is illustrated.
  • the terms "mold” and “mold assembly” refer to a form 100 having a cavity 105 into which a lens forming mixture can be dispensed such that upon reaction or cure of the lens forming mixture (not illustrated), an ophthalmic lens of a desired shape is produced.
  • the molds and mold assemblies 100 of this invention are made up of more than one "mold parts" or "mold pieces" 101-102.
  • the mold parts 101-102 can be brought together such that a cavity 105 is formed by combination of the mold parts 101-102 and a lens 108 can be fashioned in the cavity 105.
  • This combination of mold parts 101-102 is preferably temporary.
  • the mold parts 101-102 can again be separated for removal of a fashioned lens (not shown.
  • a "mold part” as the term is used in this specification refers to a portion of mold 101-102, which when combined with another portion of a mold 101-102 forms a mold 100 (also referred to as a mold assembly 100).
  • At least one mold part 101-102 is designed to have at least a portion of its surface 103-104 in contact with the lens forming mixture such that upon reaction or cure of the lens forming mixture that surface 103-104 provides a desired shape and form to the portion of the lens with which it is in contact. The same is true of at least one other mold part 101-102.
  • a mold assembly 100 is formed from two parts 101-102, a female concave piece (front curve mold part) 102 and a male convex piece (back curve mold part) 101 with a cavity formed between them.
  • the portion of the concave surface 104 which makes contact with reaction mixture (not shown) has the curvature of the front curve of an ophthalmic lens to be produced in the mold assembly 100 and is sufficiently smooth and formed such that the surface of a ophthalmic lens formed by polymerization of the reaction mixture which is in contact with the concave surface 104 is optically acceptable.
  • the back curve mold part 101 has a convex surface 103 in contact which contacts the lens forming mixture and has the curvature of the back curve of a ophthalmic lens to be produced in the mold assembly 100.
  • the convex surface 103 is sufficiently smooth and formed such that the surface of a ophthalmic lens formed by reaction or cure of the lens forming mixture in contact with the back surface 103 is optically acceptable. Accordingly, the inner concave surface 104 of the front curve mold part 102 defines the outer surface of the ophthalmic lens, while the outer convex surface 103 of the back mold piece 101 defines the inner surface of the ophthalmic lens.
  • the back curve mold part 101 can also include one or more concentric ring shaped ridges 107 which form an excess lens material ring puller 107 by engaging excess prepolymer which is cured and binds to the ridges so that it may be removed when the mold parts 101-102 separate.
  • lenses are formed on at least one surface of both mold parts.
  • one surface of the lenses may be formed from a mold and the other surface could be formed using a lathing method, or other methods.
  • the molds of the invention may contain additives that facilitate the separation of the lens forming surfaces, reduce the adhesion of the cured lens to the molding surface, or both.
  • additives such as metal or ammonium salts of stearic acid, amide waxes, polyethylene or polypropylene waxes, organic phosphate esters, glycerol esters or alcohol esters may be added to alicyclic co-polymers prior to curing said polymers to form a mold.
  • Such additives can include, but are not limited to: Dow Siloxane MB50-321 and Dow Siloxane MB50-321 (a silicone dispersion), Nurcrel 535 & 932 (ethylene-methacrylic acid co-polymer resin Registry No. 25053-53-6), Erucamide (fatty acid amide Registry No. 112-84-5), Oleamide (fatty acid amide Registry No. 301-02-0), Mica (Registry No. 12001-26-2), Atmer 163 (fatty alkyl diethanolamine Registry No.
  • the preferred additives are polyvinyl pyrrolidinone, zinc stearate and glycerol mono stearate, where a weight percentage of additives based upon the total weight of the polymers is about 0.05 to about 10.0 weight percent, preferably about 0.05 to about 3.0, most preferably about 2.0 weight percent.
  • the separation of the lens from a lens forming surfaces may be facilitated by applying surfactants to the lens forming surfaces.
  • suitable surfactants include Tween surfactants, particularly Tween 80 as described in U.S. Pat. No. 5,837,314 which is hereby incorporated by reference in its entirety and Span 80.
  • Tween surfactants particularly Tween 80 as described in U.S. Pat. No. 5,837,314 which is hereby incorporated by reference in its entirety and Span 80.
  • Other examples of surfactants are disclosed in U.S. Pat. No. 5,264,161 which is hereby incorporated by reference in its entirety.
  • the molds of the invention may contain other polymers such as polypropylene, polyethylene, polystyrene, polymethyl methacrylate, and modified polyolefins containing an alicyclic moiety in the main chain.
  • a blend of the alicyclic co-polymers and polypropylene Zieglar Natta or metallocene catalyst process with nucleation, where ATOFINA EOD 00-11
  • This blend can be used on either or both mold halves, where it is preferred that this blend is used on the back curve and the front curve consists of the alicyclic co-polymers.
  • uncured refers to the physical state of a reaction mixture (sometimes referred to as “lens formulation”) prior to final curing to form a lens.
  • lens formulations contain mixtures of monomers which are cured only once.
  • Other lens formulations contain monomers, partially cured monomers, macromers and other components.
  • Front curve mold parts 102 and back curve mold parts 102 can be important to reduction, or even elimination of contact lens defects such as edge chips, tears, holes, delamination pulls, optical distortion, surface marks and other physical aberrations which result from manufacturing process, such as demold.
  • Each particular plastic resin can provide particular advantages and disadvantages.
  • a polypropylene mold part may provide improved surface qualities, and yet have relatively less desirable dimensional stability. Cost of some materials may also be a factor in various applications.
  • a multilayer mold that provides core stability from a first alicyclic co-polymer (hereinafter “core layer”) and a surface quality from a second polyolefin co-polymer (hereinafter “surface layer”).
  • core layer a first alicyclic co-polymer
  • surface layer a second polyolefin co-polymer
  • this invention includes a method of making an ophthalmic lens with steps that include dispensing an uncured lens reaction mixture into a mold comprising, consisting essentially of, or consisting of, an alicyclic co-polymer wherein said alicyclic co-polymer includes a first alicyclic polymer and a second alicyclic polymer, each of different viscosity.
  • the first material and the second material can also each be of different chemical structures.
  • the combined materials form a surface layer and a core layer, such that the core layer includes the first material and the second material and is essentially covered by the first layer.
  • the amount of the first material present in the surface layer is greater than the amount of the first material present in the core layer.
  • a flow diagram illustrates exemplary steps that may be implemented in some embodiments of the present invention. It is to be understood that some or all of the following steps may be implemented in various embodiments of the present invention.
  • injection molding processes are used to form a multilayer mold part including a surface layer and a core layer.
  • the multilayer mold part can be formed by combining at least two materials with a viscosity differential at the injection molding process conditions used to form the mold part.
  • the two materials can be miscible or miscible at a microscopic level.
  • injection molding conditions that can be varied to facilitate the viscosity differential can include, for example: the temperature of the injected materials; the speed of injection of the materials; the pressure under which the materials are injected; the geometry of a hotrunner used in the injection molding process, the size of a gate used in the injection molding process, and other injection molding variables.
  • the mold part can be injection molded.
  • the Reaction Mixture (described in more detail below) is deposited into a first mold part 102, which is utilized to shape the ophthalmic lens 100.
  • the first mold part includes a surface layer of a first material and a second material and comprising a surface area used to form the biomedical device.
  • the first mold part also includes a core layer also formed from the first material and the second material and essentially covered by the first layer. According to the present invention, at any given cross section, the amount of the first material present in the surface layer is greater than the amount of the first material present in the core layer.
  • the first mold part 102 can be combined with at least one other mold part (the second mold part) 101 to shape the deposited silicone monomer or other Reaction Mixture.
  • the Reaction Mixture is cured and formed into a lens 100.
  • Curing can be effected, for example, by various means known in the art, such as, exposure of the monomer to actinic radiation, exposure of the monomer to elevated heat (i.e. 40°C to 75°C), or exposure to both actinic radiation and elevated heat.
  • the lens is exposed to a hydration solution.
  • the hydration solution can include, for example, deionized (DI) water.
  • some embodiments can include an aqueous solution with one or more additives, such PEG; PEO; Tween 80, which is polyoxyethylene sorbitan monooleate; Tyloxapol; octylphenoxy (oxyethylene) ethanol; amphoteric 10); preservatives (e.g. EDTA, sorbic acid, DYMED, chlorhexadine gluconate; hydrogen peroxide; thimerosal; polyquad; polyhexamethylene biguanide; antibacterial agents; lubricants; salts and buffers.
  • additives can be added to the hydration solution in amounts varying between 0.01% and 10% by weight, but cumulatively less than about 10% by weight.
  • the temperatures of the hydration solution can be anywhere from near freezing to near boiling; however, it is preferred that the temperatures between 30° C and 95° C, and even more preferably between 45° C and 75° C.
  • Exposure of the ophthalmic lens 100 to the hydration solution can be accomplished by washing, spraying, soaking, submerging, or any combination of the aforementioned.
  • the lens 100 can be washed with a hydration solution of deionized water and PEG 2000 in a hydration tower.
  • front curve mold parts 102 containing lenses 100 can be placed in pallets or trays and stacked vertically.
  • the solution can be introduced at the top of the stack of lenses 100 so that the solution will flow downwardly over the lenses 100.
  • the solution can also be introduced at various positions along the tower. In some embodiments, the trays can be moved upwardly allowing the lenses 100 to be exposed to increasingly fresher solution.
  • the ophthalmic lenses 100 can cycle through exposure to a hydration solution, such as DI water which is dosed into the mold part 102 and the retention area 106 during the hydration step 205.
  • a hydration solution such as DI water which is dosed into the mold part 102 and the retention area 106 during the hydration step 205.
  • some embodiments can also include rinsing the lens of residual hydration
  • magazines can be accumulated and then lowered into tanks containing the hydration solution.
  • the hydration solution can be heated to a temperature of between about 30°C and 72°C.
  • processing stations 301-304 can be accessible to ophthalmic lenses 100 via a transport mechanism 305.
  • the transport mechanism 305 can include for example one or more of: a robot, a conveyor and a rail system in conjunction with a locomotion means that may include, a conveyor belt, chain, cable or hydraulic mechanism powered by a variable speed motor or other known drive mechanism (not shown).
  • Processing stations 301-304 can include, for example, an injection molding station 301.
  • injection molding apparatus deposits a quantity of a Reaction Mixture, such as, for example, a silicone hydrogel as described above, into the front curve mold portion 102 and preferably completely covers the mold surface 104 with the Reaction Mixture.
  • the Reaction Mixture should comprise any material or mixture of materials, which upon polymerization yields an optically clear, integral shape-sustaining contact lens or contact lens precursor.
  • a "precursor” means an object which has the desired relative dimensions and which upon subsequent hydration in water or buffered isotonic saline aqueous solution can be worn as a contact lens. Examples of such compositions abound in this field and are readily ascertainable by reference to standard literature sources.
  • polymerization of Reaction Mixture can be carried out in an atmosphere with controlled exposure to oxygen, including, in some embodiments, an oxygen-free environment, because oxygen can enter into side reactions which may affect a desired optical quality, as well as the clarity of the polymerized lens.
  • the lens mold halves are also prepared in an atmosphere that has limited oxygen or is oxygen-free. Methods and apparatus for controlling exposure to oxygen are well known in the art.
  • a curing station 302 can include apparatus for polymerizing the Reaction Mixture. Polymerization is preferably carried out by exposing the Reaction Mixture to a source of initiation which can include for example, one or more of: actinic radiation and heat. Curing station 302 therefore includes apparatus that provide a source of initiation of the Reaction Mixture deposited into the front curve mold 102.
  • actinic radiation can be sourced from bulbs under which the mold assemblies travel. The bulbs can provide an intensity of actinic radiation in a given plane parallel to the axis of the bulb that is sufficient to initiate polymerization.
  • a source of heat can include a duct, which blows warm gas, such as, for example, N 2 or air, across and around the mold assembly as it passes under the actinic radiation bulbs.
  • warm gas such as, for example, N 2 or air
  • the end of the duct can be fitted with a plurality of holes through which warm gas passes. Distributing the gas in this way helps achieve uniformity of temperature throughout the area under the housing. Uniform temperatures throughout the regions around the mold assemblies can facilitate more uniform polymerization.
  • a cured lens which includes a polymer/diluent mixture can be treated by exposure to a hydration solution at a hydration station 304 which removes the diluent and ultimately replaces the diluent with water, whereby a silicone hydrogel lens is formed having a final size and shape which are quite similar to the size and shape of the original molded polymer/diluent article.
  • a heat exchanger 307 is used to maintain the temperature of the hydration solution at a temperature greater than typical ambient room temperature.
  • a heat exchanger can be used to raise the temperature of the hydration solution to about 30° C to about 72° C.
  • lens refers to any ophthalmic device that resides in or on the eye. These devices can provide optical correction or may be cosmetic.
  • the term lens includes but is not limited to soft contact lenses, intraocular lenses, overlay lenses, ocular inserts, and optical inserts.
  • preferred lenses of the invention are soft contact lenses are made from silicone elastomers or hydrogels, which include but are not limited to silicone hydrogels, and fluorohydrogels.
  • Soft contact lens formulations are disclosed in U.S. Patent No. 5,710,302 , EP 406161 , JP 2000016905 , U.S. Pat. No. 5,998,498 , U.S. Patent No. 6,087,415 , U.S. Pat.
  • Other preferred embodiments of the resent invention can include lenses of etafilcon A, genfilcon A, lenefilcon A, polymacon, acquafilcon A, balafilcon A, lotrafilcon A, galyfilcon A, senofilcon A, silicone hydrogels, including for example, lenses described in U.S. Patent No. 6,087,415 , U.S. Pat. No. 5,760,100 , U.S. Pat. No.5,776,999 , U.S. Pat. No. 5,789,461 , U.S. Pat. No. 5,849,811 , and U.S. Pat. No. 5,965,631 .
  • Other embodiments can include ophthalmic lenses made from prepolymers.
  • a surface layer and core layer mold is injection molded with a single unit injection molding apparatus by blending or compounding plastic resins with different viscosities under conditions present during injection molding conditions used to form the mold part.
  • the blending or compounding methods can include, for example: simple hand/machine blending; single screw compounding, twin screw compounding; or multiple screw compounding.
  • Other embodiments can include apparatus that utilizes two or more injection molding units to inject two or more materials into the mold cavity.
  • a mold part 400 is injected molded from a compound resin that includes at least a first material and a second material, and as described above, each material can include one or more of a polyolefin and an alicyclic co-polymer.
  • Injection molding of the mold part 400 can be accomplished by introducing melted compound resin into a mold cavity designed to fashion the mold part 400 at a proximate end 405 and pushing the melted compound resin through the mold cavity until it flows to a distal end 406 of the mold part 400.
  • the material with a lower melt viscosity will tend to flow to the surface 401-402 of the mold part 400 and the higher melt viscosity material will tend to remain in the core 403 of the mold part 400.
  • the separation will not be complete, however, at any given cross section the material with the higher melt flow rate will be at a higher concentration in a surface layer 401-402 as compared with the core layer 403.
  • the lower melt viscosity material will separate into the core layer 403 such that at any given cross section, the amount of the low melt viscosity material in the core layer 403 will be greater than the amount of the low melt flow material in the surface layer 401-402.
  • the first material and the second material can include two same type resins but the first material and the second material can have different melt viscosities at the conditions present in the injection molding process used to form the mold part 400.
  • Zeonor 1060R® and polypropylene such as ExxonMobil® PP1654 or PP9544
  • polystyrene and polypropylene Zeonor 1060R® and polyvinyl alcohol
  • polystyrene and polyvinyl alcohol polystyrene and polyvinyl alcohol
  • other combinations of different material or same type resins with differentials in melt viscosity can include Zeonor 1060R® and polypropylene, such as ExxonMobil® PP1654 or PP9544; polystyrene and polypropylene, Zeonor 1060R® and polyvinyl alcohol; polystyrene and polyvinyl alcohol; and other combinations of different material or same type resins with differentials in melt viscosity.
  • chart 500 illustrates a relationship of an amount of a first material comprising polypropylene and a second material to Zeonor 1060R® combined in a mold part and present in a surface layer formed on the mold part.
  • Two different polypropylenes 501-502 are separately charted as the first material.
  • These particular materials indicate that a break point occurs at about 45% 502 of polypropylene which must be present in order to cause a majority of the polypropylene 501-502 to form a surface layer.
  • the surface layer can be made to include both blended materials, but the first material will mostly be present in the surface layer.
  • Other first materials and second materials may have different ratios which define when a surface layer will form over a core layer.
  • Fig. 6A illustrates a cross section of a mold part as it would appear if viewed through a scanning electron microscope (hereinafter "SEM").
  • Fig. 6A illustrates a polypropylene surface layer 601, such as for example, ExxonMobile P9544 ® and a core layer 602, such as Zeonor 1060R®, in a blend of 55%w.t. core material to 45% surface material.
  • Fig. 6A also illustrates a transition 603 from the surface layer 601 to the core layer 602.
  • an additive containing siloxane such as Dow Corning MB50-001 (comprising essentially 50% polypropylene and 50% siloxane) in an amount of about 5% into a blend of the two alicyclic polymers will additionally result in a majority of the silicon separating into the surface layer 601. Therefore, it is within the scope of the present invention to include additives, such as siloxane containing materials in the combined materials used to form a mold part. For example in some preferred embodiments a material including up to about 10% siloxane can the mold material. Other additives are also within the scope of the invention.
  • a cross section of a mold part is illustrated as it may be viewed through an SEM at a higher resolution than Fig. 6A.
  • the high resolution cross section reveals the surface layer 606 and the core layer 607.
  • the high resolution cross section also illustrates how the thickness of the surface layer 606 may vary, such as, for example, from the relatively thin surface layer of 605 to the relatively thicker surface layer of 604.
  • Fig. 7 a cross section of some embodiments of the present invention which include a surface layer 606 as it may be viewed with an SEM at high resolution.
  • the surface layer 700 includes a first material 701, such as, polypropylene and a second material 702, such as Zeonor 1060R®.
  • the SEM illustration differentiates over coated mold parts in that the surface layer includes both the first and second material.
  • other materials or additives may be included in one or more of: the surface layer and the core layer.
  • the present invention provides mold parts, as well as methods and apparatus for forming the mold parts.
  • the mold parts include at least a first material and a second material.
  • the inclusion of multiple materials allows for various desired qualities to be imparted into the mold.
  • a surface layer can include good wettability which can be beneficial to reduction of holes in lenses; a lower surface energy for easy lens demolding and reduction in edge chips and edge tear defects.
  • a core can include a material with desired modulus characteristics and dimensional stability.
  • Some embodiments can include a core material of a low cost material, such as, for example polystyrene.
  • Still other embodiments can include a multilayer mold formed with two or more resin materials with different shrinkage or thermal expansion factors which can facilitate lens demold and lens release during hydration at selected temperatures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Eyeglasses (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
EP07252060A 2006-05-18 2007-05-18 Moule pour un dispositif biomédical Withdrawn EP1857246A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/436,484 US20070267765A1 (en) 2006-05-18 2006-05-18 Biomedical device mold

Publications (1)

Publication Number Publication Date
EP1857246A1 true EP1857246A1 (fr) 2007-11-21

Family

ID=38374061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07252060A Withdrawn EP1857246A1 (fr) 2006-05-18 2007-05-18 Moule pour un dispositif biomédical

Country Status (11)

Country Link
US (1) US20070267765A1 (fr)
EP (1) EP1857246A1 (fr)
JP (1) JP2007307909A (fr)
KR (1) KR20070112072A (fr)
CN (1) CN101073905A (fr)
AR (1) AR061029A1 (fr)
AU (1) AU2007202289A1 (fr)
BR (1) BRPI0704635A (fr)
CA (1) CA2589153A1 (fr)
SG (1) SG137800A1 (fr)
TW (1) TW200813519A (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073076A1 (fr) * 2007-12-06 2009-06-11 Johnson & Johnson Vision Care, Inc. Libération de lentille ophtalmique améliorée
WO2011091529A1 (fr) * 2010-02-01 2011-08-04 Dbm Reflex Enterprises Inc. Appareil d'éclairage utilisant une source à semi-conducteurs et lentille moulée composite épaisse
US8891171B2 (en) 2010-02-01 2014-11-18 Dbm Reflex Enterprises Inc. High sag thick lens for use in an illumination apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003024B2 (en) * 2006-09-18 2011-08-23 Coopervision International Holding Company, Lp Polyolefin contact lens molds and uses thereof
JP4833258B2 (ja) * 2008-06-27 2011-12-07 富士フイルム株式会社 光学素子成形方法
US7794633B2 (en) * 2008-11-26 2010-09-14 Aptina Imaging Corporation Method and apparatus for fabricating lens masters
CN103052496A (zh) * 2010-07-30 2013-04-17 库柏维景国际控股公司 由水溶性乙烯醇共聚物形成的眼科装置模具、其中模制的眼科装置和相关方法
US9316848B2 (en) * 2013-03-15 2016-04-19 Johnson & Johnson Vision Care, Inc. Ophthalmic devices with stabilization features
US10029402B2 (en) 2014-12-19 2018-07-24 Coopervision International Holding Company, Lp Method and apparatus for manufacturing contact lenses
US9937640B2 (en) 2014-12-19 2018-04-10 Coopervision International Holding Company, Lp Apparatus and method for closure of ophthalmic lens molds
US10137612B2 (en) 2014-12-19 2018-11-27 Coopervision International Holding Company, Lp Methods and apparatus for manufacture of ophthalmic lenses
US9938034B2 (en) 2014-12-19 2018-04-10 Coopervision International Holding Company, Lp Method and apparatus relating to manufacture of molds for forming contact lenses
US9764501B2 (en) 2014-12-19 2017-09-19 Coopervision International Holding Company, Lp Contact lens mold parts, contact lens mold assemblies, and methods of making contact lenses
US20180169905A1 (en) * 2016-12-16 2018-06-21 Coopervision International Holding Company, Lp Contact Lenses With Incorporated Components
HUE063055T2 (hu) 2017-08-24 2023-12-28 Alcon Inc Moduláris gyártósor szemlencsék gyártására

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US999A (en) 1838-11-03 Railroad carriage ashd wheel
US5776A (en) 1848-09-19 Improved apparatus for rotting hemp
US4311654A (en) * 1979-02-20 1982-01-19 Essilor International "Cie Generale D'optique" Controlling release of molded material from mold during curing
DE3836386A1 (de) * 1987-10-29 1989-05-11 Cibie Projecteurs Thermoplast-spritzgussverfahren, spritzgussmasse zur herstellung eines mehrlagengegenstandes sowie der auf diese weise hergestellte gegenstand, insbesondere reflektorkoerper
EP0406161A2 (fr) 1989-06-20 1991-01-02 Ciba-Geigy Ag Copolymères bloc poly(alkylène-oxyde) contenant du fluor et/ou du silicone et lentilles de contact
JPH06240437A (ja) * 1993-02-16 1994-08-30 Mitsubishi Electric Corp 表面硬化Al合金およびその製造方法
US5710302A (en) 1995-12-07 1998-01-20 Bausch & Lomb Incorporated Monomeric units useful for reducing the modules of silicone hydrogels
US5760100A (en) 1994-09-06 1998-06-02 Ciba Vision Corporation Extended wear ophthalmic lens
US5789461A (en) 1994-09-06 1998-08-04 Ciba Vision Corporation Methods of forming an extended wear ophthalmic lens having a hydrophilic surface
US5998498A (en) 1998-03-02 1999-12-07 Johnson & Johnson Vision Products, Inc. Soft contact lenses
JP2000016905A (ja) 1998-07-01 2000-01-18 Tokuriki Kagaku Kenkyusho:Kk 抗菌抗かび剤および抗菌抗かび材料
US6087415A (en) 1998-06-11 2000-07-11 Johnson & Johnson Vision Care, Inc. Biomedical devices with hydrophilic coatings
US6308314B1 (en) 1998-03-11 2001-10-23 International Business Machines Corporation Mechanism and method for flexible coupling of processes in an object oriented framework
WO2002032998A2 (fr) * 2000-10-20 2002-04-25 E.I. Du Pont De Nemours And Company Composition moulee de polyester dur/elastomere mou possedant des proprietes amortissant les bruits
US6416690B1 (en) 2000-02-16 2002-07-09 Zms, Llc Precision composite lens
US6419858B1 (en) 2000-06-13 2002-07-16 Zms, Llc Morphology trapping and materials suitable for use therewith
US20030011106A1 (en) * 2001-07-16 2003-01-16 Tokihito Osaki Molding tool and method of fabrication thereof
JP2005288803A (ja) 2004-03-31 2005-10-20 Tadahiro Omi 樹脂製金型又はスタンパ
WO2005102653A1 (fr) * 2004-03-23 2005-11-03 Allibert Equipement Dispositif de manutention antiderapant
US20050253290A1 (en) * 2002-07-10 2005-11-17 3M Innovative Properties Company Flexible mold and method of manufacturing microstructure using the same
EP1629960A2 (fr) 2004-08-26 2006-03-01 Johnson and Johnson Vision Care, Inc. Moules pour la fabrication de lentilles ophthalmiques

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264161A (en) * 1991-09-05 1993-11-23 Bausch & Lomb Incorporated Method of using surfactants as contact lens processing aids
US5837314A (en) * 1994-06-10 1998-11-17 Johnson & Johnson Vision Products, Inc. Method and apparatus for applying a surfactant to mold surfaces
US5843346A (en) * 1994-06-30 1998-12-01 Polymer Technology Corporation Method of cast molding contact lenses
US5690865A (en) * 1995-03-31 1997-11-25 Johnson & Johnson Vision Products, Inc. Mold material with additives
US5849209A (en) * 1995-03-31 1998-12-15 Johnson & Johnson Vision Products, Inc. Mold material made with additives
US6368522B1 (en) * 2000-01-03 2002-04-09 Johnson & Johnson Vision Care, Inc. Mold for forming a contact lens and method of preventing formation of small strands of contact lens material during contact lens manufacture
US6551531B1 (en) * 2000-03-22 2003-04-22 Johnson & Johnson Vision Care, Inc. Molds for making ophthalmic devices
US6827325B2 (en) * 2000-08-28 2004-12-07 Johnson & Johnson Vision Care, Inc. Shape memory polymer or alloy ophthalmic lens mold and methods of forming ophthalmic products
US20040075039A1 (en) * 2002-08-16 2004-04-22 Dubey Dharmesh K. Molds for producing contact lenses
US20070284770A1 (en) * 2006-06-07 2007-12-13 Ansell Scott F Decreased lens delamination during ophthalmic lens manufacture
US20080001317A1 (en) * 2006-06-28 2008-01-03 Jason Tokarski Water soluble biomedical device mold

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US999A (en) 1838-11-03 Railroad carriage ashd wheel
US5776A (en) 1848-09-19 Improved apparatus for rotting hemp
US4311654A (en) * 1979-02-20 1982-01-19 Essilor International "Cie Generale D'optique" Controlling release of molded material from mold during curing
DE3836386A1 (de) * 1987-10-29 1989-05-11 Cibie Projecteurs Thermoplast-spritzgussverfahren, spritzgussmasse zur herstellung eines mehrlagengegenstandes sowie der auf diese weise hergestellte gegenstand, insbesondere reflektorkoerper
EP0406161A2 (fr) 1989-06-20 1991-01-02 Ciba-Geigy Ag Copolymères bloc poly(alkylène-oxyde) contenant du fluor et/ou du silicone et lentilles de contact
JPH06240437A (ja) * 1993-02-16 1994-08-30 Mitsubishi Electric Corp 表面硬化Al合金およびその製造方法
US5760100A (en) 1994-09-06 1998-06-02 Ciba Vision Corporation Extended wear ophthalmic lens
US5789461A (en) 1994-09-06 1998-08-04 Ciba Vision Corporation Methods of forming an extended wear ophthalmic lens having a hydrophilic surface
US5849811A (en) 1994-09-06 1998-12-15 Ciba Vision Corporation Extended wear ophthalmic lens
US5965631A (en) 1994-09-06 1999-10-12 Ciba Vision Corporation Extended wear ophthalmic lens
US5849811B1 (en) 1994-09-06 2000-11-14 Ciba Vision Corporatin Extended wear ophthalmic lens
US5760100B1 (en) 1994-09-06 2000-11-14 Ciba Vision Corp Extended wear ophthalmic lens
US5789461B1 (en) 1994-09-06 2000-11-21 Ciba Vision Corp Methods of forming an extended wear ophthalmic lens having a hydrophilic surface
US5710302A (en) 1995-12-07 1998-01-20 Bausch & Lomb Incorporated Monomeric units useful for reducing the modules of silicone hydrogels
US5998498A (en) 1998-03-02 1999-12-07 Johnson & Johnson Vision Products, Inc. Soft contact lenses
US6308314B1 (en) 1998-03-11 2001-10-23 International Business Machines Corporation Mechanism and method for flexible coupling of processes in an object oriented framework
US6087415A (en) 1998-06-11 2000-07-11 Johnson & Johnson Vision Care, Inc. Biomedical devices with hydrophilic coatings
JP2000016905A (ja) 1998-07-01 2000-01-18 Tokuriki Kagaku Kenkyusho:Kk 抗菌抗かび剤および抗菌抗かび材料
US6416690B1 (en) 2000-02-16 2002-07-09 Zms, Llc Precision composite lens
US6419858B1 (en) 2000-06-13 2002-07-16 Zms, Llc Morphology trapping and materials suitable for use therewith
WO2002032998A2 (fr) * 2000-10-20 2002-04-25 E.I. Du Pont De Nemours And Company Composition moulee de polyester dur/elastomere mou possedant des proprietes amortissant les bruits
US20030011106A1 (en) * 2001-07-16 2003-01-16 Tokihito Osaki Molding tool and method of fabrication thereof
US20050253290A1 (en) * 2002-07-10 2005-11-17 3M Innovative Properties Company Flexible mold and method of manufacturing microstructure using the same
WO2005102653A1 (fr) * 2004-03-23 2005-11-03 Allibert Equipement Dispositif de manutention antiderapant
JP2005288803A (ja) 2004-03-31 2005-10-20 Tadahiro Omi 樹脂製金型又はスタンパ
EP1629960A2 (fr) 2004-08-26 2006-03-01 Johnson and Johnson Vision Care, Inc. Moules pour la fabrication de lentilles ophthalmiques

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199439, Derwent World Patents Index; AN 1994-314129, XP002448198 *
DATABASE WPI Week 200579, Derwent World Patents Index; AN 2005-773273, XP002448197 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073076A1 (fr) * 2007-12-06 2009-06-11 Johnson & Johnson Vision Care, Inc. Libération de lentille ophtalmique améliorée
WO2011091529A1 (fr) * 2010-02-01 2011-08-04 Dbm Reflex Enterprises Inc. Appareil d'éclairage utilisant une source à semi-conducteurs et lentille moulée composite épaisse
JP2013517963A (ja) * 2010-02-01 2013-05-20 ディビーエムレフレックス エンタプライズ インコーポレイテッド 2段階射出成形工程を利用して同じ樹脂層で成形された厚レンズ
US8891171B2 (en) 2010-02-01 2014-11-18 Dbm Reflex Enterprises Inc. High sag thick lens for use in an illumination apparatus

Also Published As

Publication number Publication date
CA2589153A1 (fr) 2007-11-18
CN101073905A (zh) 2007-11-21
JP2007307909A (ja) 2007-11-29
US20070267765A1 (en) 2007-11-22
AR061029A1 (es) 2008-07-30
AU2007202289A1 (en) 2007-12-06
KR20070112072A (ko) 2007-11-22
TW200813519A (en) 2008-03-16
BRPI0704635A (pt) 2008-05-27
SG137800A1 (en) 2007-12-28

Similar Documents

Publication Publication Date Title
EP1857246A1 (fr) Moule pour un dispositif biomédical
US20080001317A1 (en) Water soluble biomedical device mold
US7833443B2 (en) Molds for producing contact lenses
US7875217B2 (en) Excess polymer ring removal during ophthalmic lens manufacture
US20070284770A1 (en) Decreased lens delamination during ophthalmic lens manufacture
US20080290534A1 (en) Ophthalmic lens mold surface energy differential
US20080290535A1 (en) Reduction of excess polymeric flash ring
US20060051454A1 (en) Molds for producing ophthalmic lenses
TWI410317B (zh) 於眼科鏡片製造期間之靜電電荷
KR20090034362A (ko) 과다 중합체성 플래쉬 환을 감소시키는 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080505

17Q First examination report despatched

Effective date: 20080603

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1110270

Country of ref document: HK

AKX Designation fees paid

Designated state(s): DE FR GB IE IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101006

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1110270

Country of ref document: HK