EP1853071B1 - Videosignalprozessor für Farbvideokamera - Google Patents

Videosignalprozessor für Farbvideokamera Download PDF

Info

Publication number
EP1853071B1
EP1853071B1 EP06009116A EP06009116A EP1853071B1 EP 1853071 B1 EP1853071 B1 EP 1853071B1 EP 06009116 A EP06009116 A EP 06009116A EP 06009116 A EP06009116 A EP 06009116A EP 1853071 B1 EP1853071 B1 EP 1853071B1
Authority
EP
European Patent Office
Prior art keywords
value
pixel
white balance
matrixing
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06009116A
Other languages
English (en)
French (fr)
Other versions
EP1853071A1 (de
Inventor
Brian Stewart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics Research and Development Ltd
Original Assignee
STMicroelectronics Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics Research and Development Ltd filed Critical STMicroelectronics Research and Development Ltd
Priority to EP06009116A priority Critical patent/EP1853071B1/de
Priority to US11/743,446 priority patent/US7791615B2/en
Publication of EP1853071A1 publication Critical patent/EP1853071A1/de
Application granted granted Critical
Publication of EP1853071B1 publication Critical patent/EP1853071B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6058Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/045Picture signal generators using solid-state devices having a single pick-up sensor using mosaic colour filter
    • H04N2209/046Colour interpolation to calculate the missing colour values

Definitions

  • This invention relates to a method and apparatus for processing colour picture signals.
  • the invention relates particularly to the processing of colour video (moving picture) signals from solid state image sensors, but may have application in other forms of picture signals.
  • the present invention can be carried out either by means of software or by hardware, for example in an ASIC implementation, and seeks to reduce the computation required and thus in software to require less computation power and/or better image quality, and in hardware to require lower operational power and reduced silicon design area.
  • the invention provides a method of processing image data produced by a solid state image sensor having a colour filter array of pixels to produce three-component colour signals for each pixel; the method comprising:
  • the data retrieval from a main memory for white balance statistics collection is performed only on a sample of the pixel data from selected pixels.
  • the sampling is between 1:4 and 1:16 linearly.
  • range scaling is performed by use of a look-up table as pixel values are retrieved for demosaicing.
  • the colour filter array is a RBG Bayer pattern; in which demosaicing is performed on 2x2 blocks or quads each containing two green, one red, and one blue pixel; and in which a single red value is calculated and applied to all pixels of the quad, and a single blue value is calculated and applied to all pixels of the quad.
  • said single red value is calculated as (2r 1 +r 2 +r 3 )/4 where r 1 is the value from the red pixel within the quad and r 2 and r 3 are the values from red pixels adjacent the quad
  • said single blue value is calculated as (2b 1 +b 2 +b 3 )/4 where b 1 is the value from the blue pixel within the quad and b 2 and b 3 are the values from blue pixels adjacent the quad.
  • said single red and blue values are used in performing white balancing and matrixing.
  • said testing comprises testing each colour component value of each pixel against a pre-calculated value for that colour.
  • the pre-calculated values are derived from white balance gain values.
  • range clipping and gamma correction are performed as a single operation by reference to a look-up table.
  • the look-up table is organised such that negative input values wrap to high values of an unsigned short value.
  • a solid state image sensor comprising a colour filter array of pixels providing three-component colour signals for each pixel, and image processing apparatus in accordance with the second aspect.
  • the colour filter array is a red/green/blue Bayer pattern.
  • a webcam including a solid state image sensor in accordance with the third aspect.
  • At least part of said range scaling, demosaicing, application of white balance statistics, matrixing, range clipping and gamma correction means is implemented by software loaded in a computer with which the webcam is associated.
  • a digital still or video camera including an image sensor in accordance with third aspect.
  • a mobile telephone including an image sensor in accordance with the third aspect.
  • a PDA including an image sensor in accordance with the third aspect.
  • Fig. 1 there is shown a flow chart for a conventional process of converting Bayer Colour Filter Array (CFA) signals to RG signals for each pixel.
  • the process comprises separate steps of: gathering white balance statistics; range scaling; demosaicing; applying white balance; matrix and range clipping; and gamma correction.
  • This process has the advantage that it is entirely modular, and thus the steps can be implemented and modified independently.
  • each step requires a complete pass through the entire image.
  • Each of these passes implies data retrieval which, in the absence of a large cache, implies multiple accesses to/from the main memory, often to the same data. This puts limits to the speed and/or accuracy of the process, or requires additional computational hardware.
  • soft-vp software video processing
  • LUTs look-up tables
  • the required for LUT memory in the present example is 64Kbytes+256 bytes.
  • the present implementation can be written in ANSI 'C' without making use of assembler. This choice is in order to maintain a good degree of portability across host platforms. Obviously optimisation through targeted use of specific host assembler would lead to improvements in efficiency in terms of execution speed.
  • Fig. 2 gives an overview of one embodiment of the invention. In this process, only two passes through the pixel data are required. The first pass makes use of only a sample of the pixels, while the second pass uses all pixels. The first pass makes use of a first look-up table LUT1 and the second pass makes use of a second look-up table LUT2.
  • colour channel gains are calculated and applied later in the process.
  • the statistics required to calculate the colour channel gains are gathered first. This is done by accumulating the energy in each of the colour channels from all pixels which are not saturated. In the interests of reducing computational load, this statistics gathering is not applied to every pixel, rather a subsampled image is used instead.
  • the sampling depends on the original image size to a certain extent in that after subsampling there should be enough data from which to derive a statistically relevant assessment of the colour channel energies.
  • a sampling of 8x or 16x is usually sufficient in say a image of vga dimensions (640x480).
  • the sampled pixels are arranged as seen in Fig. 3 (example shown for 4x).
  • g Acc ⁇ 1 ⁇ x , y
  • b Acc ⁇ x , y
  • the first process after gathering stats is range scaling. This compensates for black-level and saturation points and can be used to scale the capture pixel data to a known range.
  • Max and Min are the maximum and minimum values desired in the output range.
  • I sat is the saturation value of the input data (generally 254), while B L is the black-level of the input data.
  • the constants are correct for 8-bit input and output data widths. Importantly, from an efficiency point of view this range scaling can be implemented in a LUT. For 8-bit data a 256 byte LUT is required, where all the possible input values are converted to the re-scaled range. In this way the single lookup per pixel replaces the following 5 operations per pixel:1 test, 2 additions, 1 multiply, 1 shift
  • the LUT for scaling is consulted as the pixel values are retrieved from memory for the demosaic process. Demosaic is described next.
  • the Bayer array is processed in blocks of 2x2, or quads.
  • Fig. 4 shows an array in which one quad is highlighted. This contains four pixels q1-q4, of which q1 and q4 are green, q2 is red and q3 is blue.
  • Processing occurs in order to generate a red, green and blue channel pixel value for each and every pixel location. This is done by first calculating a red and blue value for the entire quad.
  • red 2 ⁇ r 1 + r 2 + r 3 4
  • each green component is calculated as follows, with reference to Fig. 7 .
  • green q ⁇ 2 g ⁇ 1 + g ⁇ 2 + g ⁇ 3 + g ⁇ 4 4 4 data acess , 6 additions
  • 1 shift 11 ops
  • q ⁇ 3 g ⁇ 1 + g ⁇ 4 + g ⁇ 5 + g ⁇ 6 4 4 data acess , 6 additions
  • r ⁇ g ⁇ b ⁇ m 0 , 0 m 0 , 1 m 0 , 2 m 1 , 0 m 1 , 1 m 1 , 2 m 2 , 0 m 2 , 1 m 2 , 2 ⁇ r ⁇ g ⁇ b ⁇
  • Clipping can be achieved using a 16-bit LUT by making use of the 2's compliment nature of negative integers stored in computers.
  • the LUT is laid out as shown in Fig. 8 .
  • the valid output 10 occupies a small fraction of the 64Kbyte LUT. Why use such a large LUT if the valid output occupies only 256 bytes?
  • the input value to the LUT can be negative and it can also be greater than 255, by using a 64K LUT arranged as shown a single array can be set up to handle all cases of valid, underflow and overflow. Normally this would not be possible as a negative array access is invalid.
  • the alternative would be to add an offset in order to make negative values into positive values, but this would cost an addition (of the offset) per pixel. Instead, by casting the input pixel value to an unsigned short prior to lookup we wrap the negative values to the high values of the unsigned short value 12.
  • gamma correction is implemented as a LUT in most reconstruction chains, however the saving in computation by including the clipping is 2 tests per colour channel, that is, 6 tests per pixel.
  • the table below shows the measured processing time for a vga sized Bayer image (640x480) on a 2.6GHz Pentium4 PC running Win2K with 512MB of RAM. Also shown are estimated cpu loading figures for several specs of machine processing vga sized images at 30 frames per second. VGA (640x480) Per Frame 2.6GHz P4 2GHz P4 at 30fps 1.5GHz P4 at 30fps 1GHz P4 at 30fps Quad 4.8mS 19% 28% 37.5%
  • the method of the invention may be implemented wholly or partially in hardware rather than software.
  • the image sensor will typically be formed by CMOS technology as part of a chip which also performs various image processing steps, and the present invention can be incorporated as hardware at the design stage.
  • the invention in this form is particularly applicable to digital still and video cameras with viewfinders, mobile phone cameras, and PDAs.
  • the image sensor is used as a webcam or similar device in combination with a standard PC or other computer.
  • the invention makes it possible to perform software reconstruction of images at video rates (e.g. 30fps) with the processing being carried out on a host general purpose computer, or on an embedded processor of sufficient power, because of the significantly reduced computational cost per pixel.
  • This also offers considerable flexibility in an end product such as a web camera or streaming digital stills camera, as the reconstruction is carried out by software which can be easily updated, modified or enhanced as part of the camera's driver.
  • the invention offers lower computation and hence lower operational power and smaller silicon design area, and thus lower cost per die.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)
  • Processing Of Color Television Signals (AREA)

Claims (19)

  1. Ein Verfahren zur Verarbeitung von Bilddaten, produziert durch einen integrierten Bildsensor mit einer Farbfiltermatrix von Pixeln, um für jedes Pixel Dreikomponentenfarbsignale zu produzieren, wobei das Verfahren Folgendes beinhaltet:
    Durchführen der Sammlung von Weißabgleichstatistiken bei einer einzelnen Wiedergewinnung von Daten aus einem Hauptspeicher von Pixelbilddaten; und
    Durchführen von mindestens Range Scaling, Demosaicing, Anwendung von Weißabgleichstatistiken, Matrixing, Range Clipping und Gammakorrektur bei einer einzelnen Wiedergewinnung von Daten aus einem Hauptspeicher von Pixelbilddaten,
    wobei die Anwendung der bei der Wiedergewinnung von Daten aus einem Hauptspeicher gesammelten Weißabgleichstatistiken gemeinsam mit dem Matrixing innerhalb eines Satzes arithmetischer Berechnungen vorgenommen wird, und dem einen Satz arithmetischer Berechnungen ein Schritt des Testens, um zu bestimmen, ob die Anwendung eines Verstärkungswerts einen Pixelwert in Sättigung bringt, vorausgeht, und dann, wenn der Wert in Sättigung gebracht wird, Clipping des Pixelwerts auf einen gesättigten Wert vor dem Matrixing.
  2. Verfahren gemäß Anspruch 1, bei dem die Wiedergewinnung von Daten aus einem Hauptspeicher zur Sammlung von Weißabgleichstatistiken nur auf einer Probe der Pixeldaten von ausgewählten Pixeln durchgeführt wird.
  3. Verfahren gemäß Anspruch 2, bei dem das Sampling linear zwischen 1:4 und 1:16 ist.
  4. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem das Range Scaling durch die Verwendung einer Verweistabelle durchgeführt wird, wenn Pixelwerte zum Demosaicing wiedergewonnen werden.
  5. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Farbfiltermatrix ein RBG-Bayer-Muster ist, bei dem Demosaicing auf 2x2-Blöcken oder Vierergruppen, von denen jeder/jede zwei grüne, ein rotes und ein blaues Pixel enthält, durchgeführt wird; und bei dem ein einzelner roter Wert berechnet und auf alle Pixel der Vierergruppe angewendet wird und ein einzelner blauer Wert berechnet und auf alle Pixel der Vierergruppe angewendet wird.
  6. Verfahren gemäß Anspruch 5, bei dem der einzelne rote Wert als (2r1 + r2 + r3)/4 berechnet wird, wobei r1 der Wert von dem roten Pixel innerhalb der Vierergruppe ist und r2 und r3 die Werte von roten Pixeln angrenzend an die Vierergruppe sind, und der einzelne blaue Wert als (2b1 + b2 + b3)/4 berechnet wird, wobei b1 der Wert von dem blauen Pixel innerhalb der Vierergruppe ist und b2 und b3 die Werte von blauen Pixeln angrenzend an die Vierergruppe sind.
  7. Verfahren gemäß Anspruch 5, bei dem die einzelnen roten und blauen Werte beim Durchführen von Weißabgleichung und Matrixing verwendet werden.
  8. Verfahren gemäß Anspruch 1, bei dem das Testen das Testen jedes Farbkomponentenwerts jedes Pixels gegen einen vorberechneten Wert für diese Farbe beinhaltet.
  9. Verfahren gemäß Anspruch 8, bei dem die vorberechneten Werte aus Weißabgleichverstärkungswerten erlangt werden.
  10. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem Range Clipping und Gammakorrektur als ein einzelner Vorgang unter Bezug auf eine Verweistabelle durchgeführt werden.
  11. Verfahren gemäß Anspruch 10, bei dem die Verweistabelle so organisiert ist, dass negative Eingabewerte hohen Werten eines vorzeichenlosen Kurzwerts gleichgesetzt werden.
  12. Vorrichtung zur Verarbeitung von Bilddaten, produziert durch einen integrierten Bildsensor mit einer Farbfiltermatrix von Pixeln, um für jedes Pixel Dreikomponentenfarbsignale zu produzieren, wobei die Vorrichtung Folgendes beinhaltet:
    Mittel, das angepasst ist, um Weißabgleichstatistiken von den Bilddaten bei einer einzelnen Wiedergewinnung von Daten aus einem Hauptspeicher zu sammeln; und
    Range Scaling-Mittel, Demosaicing-Mittel, Mittel zur Anwendung von Weißabgleichstatistiken, Matrixing-Mittel, Range Clipping-Mittel und Gammakorrektur-Mittel, die angepasst sind, um die Bilddaten zu empfangen und Range Scaling, Demosaicing, Anwendung von Weißabgleichstatistiken, Matrixing, Range Clipping und Gammakorrektur in einer weiteren einzelnen Wiedergewinnung von Daten aus dem Hauptspeicher durchzuführen, wobei:
    das Range Scaling-Mittel, das Demosaicing-Mittel, das Mittel zur Anwendung von Weißabgleichstatistiken, das Matrixing-Mittel, das Range Clipping-Mittel und das Gammakorrektur-Mittel Berechnungsmittel beinhalten, die angepasst sind, um die gesammelten Weißabgleichstatistiken gemeinsam mit dem Matrixing unter Verwendung von einem Satz arithmetischer Berechnungen anzuwenden; und
    das Berechnungsmittel mit einem Testmittel verbunden ist, wobei das Testmittel zum Testen ist, um zu bestimmen, ob die Anwendung eines Verstärkungswerts einen Pixelwert in Sättigung bringt, und dann, wenn der Wert in Sättigung gebracht wird, Clipping des Pixelwerts auf einen gesättigten Wert vor dem Matrixing.
  13. Ein integrierter Bildsensor, der eine Farbfiltermatrix von Pixeln beinhaltet, die für jedes Pixel Dreikomponentenfarbsignale bereitstellt, und eine Bildverarbeitungsvorrichtung gemäß Anspruch 12.
  14. Integrierter Bildsensor gemäß Anspruch 13, bei dem die Farbfiltermatrix ein rotes/grünes/blaues Bayer-Muster ist.
  15. Eine Webcam, die einen integrierten Bildsensor gemäß Anspruch 13 oder Anspruch 14 umfasst.
  16. Webcam gemäß Anspruch 15, bei der mindestens ein Teil des Range Scaling-Mittels, des Demosaicing-Mittels, des Mittels zur Anwendung von Weißabgleichstatistiken, des Matrixing-Mittels, des Range Clipping-Mittels und des Gammakorrektur-Mittels durch Software implementiert wird, die in einem Computer, mit dem die Webcam verbunden ist, geladen ist.
  17. Eine digitale Standbild- oder Videokamera, die einen Bildsensor gemäß Anspruch 13 oder Anspruch 14 umfasst.
  18. Ein Mobiltelefon, das einen Bildsensor gemäß Anspruch 13 oder Anspruch 14 umfasst.
  19. Ein PDA, der einen Bildsensor gemäß Anspruch 13 oder Anspruch 14 umfasst.
EP06009116A 2006-05-03 2006-05-03 Videosignalprozessor für Farbvideokamera Not-in-force EP1853071B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06009116A EP1853071B1 (de) 2006-05-03 2006-05-03 Videosignalprozessor für Farbvideokamera
US11/743,446 US7791615B2 (en) 2006-05-03 2007-05-02 Processing of image data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06009116A EP1853071B1 (de) 2006-05-03 2006-05-03 Videosignalprozessor für Farbvideokamera

Publications (2)

Publication Number Publication Date
EP1853071A1 EP1853071A1 (de) 2007-11-07
EP1853071B1 true EP1853071B1 (de) 2011-09-14

Family

ID=37037043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06009116A Not-in-force EP1853071B1 (de) 2006-05-03 2006-05-03 Videosignalprozessor für Farbvideokamera

Country Status (2)

Country Link
US (1) US7791615B2 (de)
EP (1) EP1853071B1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8165389B2 (en) 2004-03-15 2012-04-24 Microsoft Corp. Adaptive interpolation with artifact reduction of images
US8260002B2 (en) * 2008-09-26 2012-09-04 Axis Ab Video analytics system, computer program product, and associated methodology for efficiently using SIMD operations
US8755515B1 (en) 2008-09-29 2014-06-17 Wai Wu Parallel signal processing system and method
WO2010088465A1 (en) * 2009-02-02 2010-08-05 Gentex Corporation Improved digital image processing and systems incorporating the same
CN104115211B (zh) 2012-02-14 2017-09-22 金泰克斯公司 高动态范围成像系统
TWI743628B (zh) * 2019-12-18 2021-10-21 瑞昱半導體股份有限公司 影像過曝修正方法與電路系統

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971065A (en) 1975-03-05 1976-07-20 Eastman Kodak Company Color imaging array
US5008739A (en) 1989-02-13 1991-04-16 Eastman Kodak Company Real-time digital processor for producing full resolution color signals from a multi-color image sensor
JP3392564B2 (ja) * 1995-02-27 2003-03-31 三洋電機株式会社 単板式カラービデオカメラ
US6366692B1 (en) * 1998-03-30 2002-04-02 Intel Corporation Median computation-based integrated color interpolation and color space conversion methodology from 8-bit bayer pattern RGB color space to 24-bit CIE XYZ color space
US6757012B1 (en) 2000-01-13 2004-06-29 Biomorphic Vlsi, Inc. Color selection for sparse color image reconstruction
US7221381B2 (en) * 2001-05-09 2007-05-22 Clairvoyante, Inc Methods and systems for sub-pixel rendering with gamma adjustment
US7236190B2 (en) * 2002-10-31 2007-06-26 Freescale Semiconductor, Inc. Digital image processing using white balance and gamma correction
US7170529B2 (en) * 2003-10-24 2007-01-30 Sigmatel, Inc. Image processing
JP4678218B2 (ja) * 2005-03-24 2011-04-27 コニカミノルタホールディングス株式会社 撮像装置及び画像処理方法

Also Published As

Publication number Publication date
EP1853071A1 (de) 2007-11-07
US7791615B2 (en) 2010-09-07
US20070285432A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US6526181B1 (en) Apparatus and method for eliminating imaging sensor line noise
US6348929B1 (en) Scaling algorithm and architecture for integer scaling in video
US6201530B1 (en) Method and system of optimizing a digital imaging processing chain
EP1853071B1 (de) Videosignalprozessor für Farbvideokamera
US9013611B1 (en) Method and device for generating a digital image based upon a selected set of chrominance groups
US7598990B2 (en) Image signal processing system and electronic imaging device
US8009201B2 (en) Sensitivity-settable image capture apparatus
WO2007108317A1 (ja) 画像信号処理装置及び画像信号処理方法
WO2003085963A1 (en) Digital color image pre-processing
KR100548611B1 (ko) 영상 처리에 있어서의 에지 강조를 위한 장치 및 방법
JP3551857B2 (ja) 高ダイナミックレンジ画像処理装置および方法
US20070002153A1 (en) Hue preservation
CN101009851A (zh) 一种图像处理方法及其装置
EP2360929B1 (de) Bildverarbeitungsvorrichtung
US9083890B2 (en) Image capturing apparatus, image processing apparatus and image processing method
US20100321520A1 (en) Digital camera and method
US6982752B2 (en) Circuit and method for correcting a digital color sampled signal
JP5600163B2 (ja) デジタル画像処理方法及び前記画像を明るくする装置
JP4725520B2 (ja) 画像処理装置、非撮像色信号算出装置及び画像処理方法
JP2000244936A (ja) ディジタルスチルカメラの動作方法
US7394929B2 (en) Digital picture image color conversion
JP4004849B2 (ja) 色補正回路と撮像装置
US7551204B2 (en) Imaging apparatus having a color image data measuring function
JP3914633B2 (ja) 色信号処理装置および色信号処理方法
JP3605856B2 (ja) 画像処理装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080417

17Q First examination report despatched

Effective date: 20080516

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006024327

Country of ref document: DE

Effective date: 20111208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006024327

Country of ref document: DE

Effective date: 20120615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130423

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006024327

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006024327

Country of ref document: DE

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170426

Year of fee payment: 12

Ref country code: FR

Payment date: 20170421

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180503

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531