EP1846161A1 - Filling a microchannel of a component of a fluidic microsystem - Google Patents
Filling a microchannel of a component of a fluidic microsystemInfo
- Publication number
- EP1846161A1 EP1846161A1 EP06704667A EP06704667A EP1846161A1 EP 1846161 A1 EP1846161 A1 EP 1846161A1 EP 06704667 A EP06704667 A EP 06704667A EP 06704667 A EP06704667 A EP 06704667A EP 1846161 A1 EP1846161 A1 EP 1846161A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- microchannel
- liquid
- filling
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000007788 liquid Substances 0.000 claims abstract description 44
- 239000007789 gas Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000007872 degassing Methods 0.000 claims abstract description 11
- 238000010521 absorption reaction Methods 0.000 claims abstract description 6
- 239000000806 elastomer Substances 0.000 claims description 10
- 229920001971 elastomer Polymers 0.000 claims description 10
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 7
- 238000009849 vacuum degassing Methods 0.000 claims description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims 1
- 238000005429 filling process Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims 1
- 239000013536 elastomeric material Substances 0.000 abstract 1
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 230000009102 absorption Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 2
- -1 polydimethylsiloxane Polymers 0.000 description 2
- 230000009103 reabsorption Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502723—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0642—Filling fluids into wells by specific techniques
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0684—Venting, avoiding backpressure, avoid gas bubbles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0825—Test strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0864—Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
Definitions
- the invention relates to the filling of a microchannel of a component of a fluidic microsystem and such a component adapted to this filling.
- the components of fluidic microsystems are most often made of plastic material or elastomer and include microchannels whose width and height are from a few tens to a few hundred micrometers. It is difficult to fill these microchannels with liquid, especially since some of the materials most used to make these components are hydrophobic, especially polydimethylsiloxane or PDMS.
- the liquid introduced into a microchannel of such a component does not contain any air bubbles or gases that could hinder or even stop the flow of liquid in the microchannel.
- the plastic material or elastomer in which the component is formed easily absorbs the gases and is therefore capable of degassing and releasing gas bubbles into the liquid contained in the microchannel, for example as a consequence of a rise in temperature or a drop in pressure in the microchannel.
- the present invention is intended in particular to provide a simple, effective and economical solution to these problems.
- the plastic or elastomer component that has been degassed has a tendency to immediately reabsorb the gases with which it is in contact.
- the invention uses this phenomenon to create a suction in a microchannel of the component and uses this suction to fill the microchannel liquid.
- the suction caused by the reabsorption of gas by the degassed component is largely sufficient to fill a liquid microchannel of usual size.
- the liquid introduced into the microchannel itself contains bubbles of air or gas, they will be absorbed by the component so that the liquid filling the channel is purged of these air bubbles or gas.
- this method also consists in enclosing the degassed component under vacuum in a hermetic package and, subsequently, opening this package to use the component, this use comprising introducing a liquid into a microchannel of the component, the time interval between the opening of the package of the component and the introduction of the liquid in the microchannel of the component being less than a predetermined time.
- This predetermined time is about 15 to 20 minutes when the component is a PDMS elastomer.
- Degassing of the component is carried out under a partial vacuum for a predetermined minimum period which, for example, is about 1 to 2 hours when the degassing is carried out at a pressure of about 100 to 200 mbar (1 to 2.10 4 Pa).
- liquid is introduced into a feed well formed at one end of the microchannel, so that the liquid introduced into this well forms an obstacle isolating the microchannel from the surrounding atmosphere.
- the absorption of the gas contained in the microchannel by the component then allows complete filling of the microchannel by the liquid without any air or gas bubbles.
- the invention also proposes a component of a fluidic microsystem, at least partly made of plastic or elastomer capable of absorbing gases and comprising at least one microchannel intended to be filled with a liquid, this component being characterized by it has been previously degassed under vacuum and in that it is vacuum-packed in an airtight package.
- the component comprises a feed well open at one end and connected to the microchannel at its other end.
- the end of the microchannel opposite this feed well may be closed or may open into another feed well.
- a median portion of the microchannel has a larger cross section than the end portions of the microchannel connected to the feed well and forms a liquid mixing zone.
- microchannels can be connected by one of their ends to a same feed well.
- the microchannel is formed in a lower face of the component which is applied to a suitable support forming the bottom of the microchannel, and the aforementioned supply well opens on an upper face of the component.
- the support may be of glass, non-degassable plastic material or any other suitable material and may or may not constitute a set unit with the component.
- the invention is applicable in many fields: fluidic damping, analysis of biological or chemical samples, heterogeneous catalysis reactions, DNA hybridization, particle aggregation, etc.
- FIG. schematically a component according to the invention packaged under vacuum in a hermetic package
- FIG. 2 is a schematic sectional view of this component out of its packaging and placed on a suitable support;
- FIGS. 3, 4 and 5 are views corresponding to FIG. 2 and show three stages of filling a microchannel of the component with a liquid;
- FIG. 6 is a schematic top view of an alternative embodiment of the component
- FIG. 7 is a schematic top view of another embodiment of the component.
- FIG. 8 is a flow chart of the main steps of the method according to the invention.
- the component 10 shown diagrammatically in FIGS. 1 to 5 is a component of a fluidic microsystem made at least partly of an elastomer such as PDMS (polydimethylsiloxane) and is in the form of a small block or wafer, one of which face comprises a microchannel 12 connected at one of its ends to a feed well 14 which opens on an opposite face of the component 10, the other end of the microchannel being closed (non-opening).
- PDMS polydimethylsiloxane
- This elastomer component was, according to the invention, degassed under vacuum and vacuum packed in a hermetic package. made of a suitable gas-tight material.
- the packaging 16 forms for example a cell in which the component 10 is placed and which is sealed by a cover 18.
- the degassing to which the component 10 is subjected before its conditioning is carried out under a partial vacuum at a pressure of 100.degree. 200 mbar for example (1 to 2.10 4 Pa) for a period of one to two hours.
- the component 10 is taken out of its packaging 16 and placed on a suitable support 20 such as for example a plate of glass or of suitable plastic material, the component 10 being placed on this plate 20 by its face in which is formed the microchannel 12.
- a suitable support 20 such as for example a plate of glass or of suitable plastic material, the component 10 being placed on this plate 20 by its face in which is formed the microchannel 12.
- This microchannel contains a reagent 22 which is fixed, for example by grafting, at a predetermined point of the support 20.
- a reagent 22 which is fixed, for example by grafting, at a predetermined point of the support 20.
- the component 10 is PDMS or the like, its adhesion to the support 20 of glass or plastic material is natural.
- a liquid 24 is then introduced into the well 14 as shown in FIG. 3, so as to fill at least a portion of this well with the liquid 24 which then forms a plug separating the microchannel 12 from the surrounding atmosphere.
- the material of the component 10 is naturally hydrophobic and this property of the material and the gas contained in the microchannel 12 prevent the liquid 24 from filling the microchannel 12 and coming into contact with the reagent 22.
- the component 10 which has been degassed under vacuum, absorbs the gases with which it is in contact and in particular the gas (that is to say air in most cases) which fills the microchannel 12. This absorption is reflected in a pressure drop in the microchannel 12 and thus by suction of the liquid contained in the well 14.
- the gas absorption capacity of the degassed material component 10 are such that all the gas contained in the microchannel 12 can be absorbed by the component 10 and gradually replaced by the liquid 24 contained in the well 14, as shown schematically in FIGS. 4 and 5.
- the liquid 24 itself contains air or gas bubbles, these bubbles will be absorbed by the material of the component 10 during the filling of the microchannel 12 with the liquid 24.
- the operations provided for carrying out a given reaction of the liquid 24 on the reagent 22 can be carried out, these operations comprising, for example, cycles of heating, temperature maintenance, etc. for a longer or shorter period.
- the material of component 10 which has reabsorbed relatively little gas since its deconditioning is not likely, for a period of several hours, to release air or gas bubbles in the liquid 24 contained in the microchannel 12, which allows to achieve without difficulty the expected reactions.
- a degassed and vacuum-packed component as indicated above, should be used within 15 to 20 minutes after the opening of the package 16, the reabsorption of gas by the material of the component 10 being sufficient to ensure the filling the microchannel (s) 12 with the appropriate liquid or liquids, after which the component 10 may be used for approximately 5-6 hours without releasing gas bubbles into the microchannel (s) 12 during its use.
- the configuration of the component and its or its microchannels and feed wells can be arbitrary.
- a same feed well 14 can be connected to the ends of several microchannels 12 extending in a star around the well 14.
- the same microchannel 12 can be connected at its ends to two feed wells 14 and comprise a median zone 26 of larger size, forming a mixing zone for the liquids introduced into the wells 14.
- a median zone 26 of larger size, forming a mixing zone for the liquids introduced into the wells 14.
- the dimensions of the microchannels 12 are from a few tens to a few hundred microns in height and width.
- the present invention makes it possible, if it is useful, to produce microchannels whose dimensions in height and in width are smaller than those indicated above and which would be very difficult to fill with liquid by the means known from the prior art.
- the filling method according to the invention makes it possible in all cases to ensure complete filling of the microchannels 12, even if their dimensions are very small and if the material of the component 10 is hydrophobic.
- the process according to the invention consists essentially in a prior degassing of the component 10 by exposure to a partial vacuum for a sufficient duration, this degassing being followed by a vacuum packaging 32 in a hermetic package, the component 10 and packaged that can be stored for some time.
- the component 10 is deconditioned (step 34) and must be used at 36 within 15 to 20 minutes after opening the sealed package.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Micromachines (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
The invention relates to a method for filling a microchannel (12) formed in a component (10) of a fluidic microsystem, made of plastic or elastomeric material capable of absorbing the gases. The method consists of degassing the component (10) and then introducing a liquid (24) into a feed hole (14) of the microchannel (12), this liquid filling the microchannel (12) by suction produced by absorption by the material of the gas contained in the microchannel (12).
Description
REMPLISSAGE D'UN MICROCANAL D'UN COMPOSANT D'UN MICROSYSTEME FLUIDIQUE FILLING A MICROCANAL OF A COMPONENT OF A FLUIDIC MICROSYSTEM
L'invention concerne le remplissage d'un microcanal d'un composant d'un microsystème fluidique ainsi qu'un tel composant adapté à ce remplissage.The invention relates to the filling of a microchannel of a component of a fluidic microsystem and such a component adapted to this filling.
Les composants des microsystèmes fluidiques sont le plus souvent réalisés en matériau plastique ou en élastomère et comprennent des microcanaux dont la largeur et la hauteur sont de quelques dizaines à quelques centaines de micromètres. Il est difficile de remplir de liquide ces microcanaux, d'autant plus que certains des matériaux les plus utilisés pour fabriquer ces composants sont hydrophobes, notamment le polydiméthylsiloxane ou PDMS.The components of fluidic microsystems are most often made of plastic material or elastomer and include microchannels whose width and height are from a few tens to a few hundred micrometers. It is difficult to fill these microchannels with liquid, especially since some of the materials most used to make these components are hydrophobic, especially polydimethylsiloxane or PDMS.
Il faut aussi veiller à ce que le liquide introduit dans un microcanal d'un tel composant ne contienne pas de bulles d'air ou de gaz qui seraient susceptibles de gêner, voire d'arrêter l'écoulement du liquide dans le microcanal. De plus, le matériau plastique ou l'élastomère dans lequel est formé le composant absorbe facilement les gaz et est donc susceptible de dégazer et de libérer des bulles de gaz dans Ie liquide contenu dans le microcanal, par exemple en conséquence d'une élévation de température ou d'une baisse de la pression dans le microcanal.It must also be ensured that the liquid introduced into a microchannel of such a component does not contain any air bubbles or gases that could hinder or even stop the flow of liquid in the microchannel. In addition, the plastic material or elastomer in which the component is formed easily absorbs the gases and is therefore capable of degassing and releasing gas bubbles into the liquid contained in the microchannel, for example as a consequence of a rise in temperature or a drop in pressure in the microchannel.
La présente invention a notamment pour but d'apporter une solution simple, efficace et économique à ces problèmes.The present invention is intended in particular to provide a simple, effective and economical solution to these problems.
Elle propose un procédé de remplissage d'un microcanal dans un composant d'un microsystème fluidique, ce composant étant réalisé au moins en partie en matériau plastique ou en élastomère susceptible d'absorber des gaz avec lesquels il est en contact, le procédé étant caractérisé en ce qu'il consiste à soumettre ledit composant à un dégazage sous vide, puis à placer ce composant dans une atmosphère ambiante ou environnante, à introduire un liquide dans le microcanal du composant et à remplir le microcanal dudit liquide en laissant agir sur le liquide une aspiration résultant d'une absorption par le composant des gaz contenus
dans le microcanal.It proposes a process for filling a microchannel in a component of a fluidic microsystem, this component being made at least partly of plastic material or elastomer capable of absorbing gases with which it is in contact, the process being characterized in that it consists in subjecting said component to vacuum degassing, then placing this component in an ambient or surrounding atmosphere, introducing a liquid into the microchannel of the component and filling the microchannel of said liquid by letting it act on the liquid an aspiration resulting from absorption by the component of the gases contained in the microchannel.
Le composant en matériau plastique ou en élastomère qui a été dégazé a tendance à réabsorber immédiatement les gaz avec lesquels il est en contact. L'invention met à profit ce phénomène pour créer une aspiration dans un microcanal du composant et utilise cette aspiration pour remplir le microcanal de liquide.The plastic or elastomer component that has been degassed has a tendency to immediately reabsorb the gases with which it is in contact. The invention uses this phenomenon to create a suction in a microchannel of the component and uses this suction to fill the microchannel liquid.
L'aspiration provoquée par la réabsorption de gaz par le composant dégazé est largement suffisante pour remplir de liquide un microcanal de dimension usuelle.The suction caused by the reabsorption of gas by the degassed component is largely sufficient to fill a liquid microchannel of usual size.
Si le liquide introduit dans Ie microcanal contient lui-même des bulles d'air ou de gaz, celles-ci vont être absorbées par le composant de sorte que le liquide remplissant le canal est purgé de ces bulles d'air ou de gaz.If the liquid introduced into the microchannel itself contains bubbles of air or gas, they will be absorbed by the component so that the liquid filling the channel is purged of these air bubbles or gas.
Le remplissage d'un microcanal d'un composant du type précité peut donc être réalisé automatiquement et de façon particulièrement fiable, sans qu'il soit nécessaire d'utiliser les moyens connus à cet effet dans la technique antérieure, qui sont en général peu faciles à mettre en œuvre et qui ne permettent pas de résoudre les problèmes causés par la présence de bulles d'air ou de gaz dans le liquide. Selon une autre caractéristique de l'invention, ce procédé consiste également à enfermer sous vide le composant dégazé dans un emballage hermétique et, ultérieurement, à ouvrir cet emballage pour utiliser le composant, cette utilisation comprenant une introduction d'un liquide dans un microcanal du composant, l'intervalle de temps entre l'ouverture de l'emballage du composant et l'introduction du liquide dans le microcanal du composant étant inférieur à une durée prédéterminée.The filling of a microchannel of a component of the aforementioned type can therefore be performed automatically and in a particularly reliable manner, without it being necessary to use the means known for this purpose in the prior art, which are generally not very easy to implement and that do not solve the problems caused by the presence of air bubbles or gas in the liquid. According to another characteristic of the invention, this method also consists in enclosing the degassed component under vacuum in a hermetic package and, subsequently, opening this package to use the component, this use comprising introducing a liquid into a microchannel of the component, the time interval between the opening of the package of the component and the introduction of the liquid in the microchannel of the component being less than a predetermined time.
Cette durée prédéterminée est de 15 à 20 minutes environ quand le composant est en un élastomère du type PDMS.This predetermined time is about 15 to 20 minutes when the component is a PDMS elastomer.
Le dégazage du composant est réalisé sous un vide partiel pendant une durée minimale prédéterminée qui, par exemple, est d'environ 1 à 2 heures quand le dégazage est réalisé à une pression d'environ 100 à 200
mbar (1 à 2.104 Pa).Degassing of the component is carried out under a partial vacuum for a predetermined minimum period which, for example, is about 1 to 2 hours when the degassing is carried out at a pressure of about 100 to 200 mbar (1 to 2.10 4 Pa).
De préférence, pour le remplissage du microcanal du composant, du liquide est introduit dans un puits d'alimentation formé à une extrémité du microcanal, de sorte que le liquide introduit dans ce puits forme un obstacle isolant le microcanal de l'atmosphère environnante.Preferably, for the filling of the microchannel of the component, liquid is introduced into a feed well formed at one end of the microchannel, so that the liquid introduced into this well forms an obstacle isolating the microchannel from the surrounding atmosphere.
L'absorption du gaz contenu dans le microcanal par le composant permet alors un remplissage complet du microcanal par le liquide sans aucune bulle d'air ou de gaz.The absorption of the gas contained in the microchannel by the component then allows complete filling of the microchannel by the liquid without any air or gas bubbles.
L'invention propose également un composant d'un microsystème fluidique, réalisé au moins en partie en matière plastique ou en élastomère susceptible d'absorber des gaz et comprenant au moins un microcanal destiné à être rempli d'un liquide, ce composant étant caractérisé en ce qu'il a été préalablement dégazé sous vide et en ce qu'il est conditionné sous vide dans un emballage hermétique. Dans un mode de réalisation préféré de l'invention, le composant comprend un puits d'alimentation ouvert à une extrémité et relié au microcanal par son autre extrémité.The invention also proposes a component of a fluidic microsystem, at least partly made of plastic or elastomer capable of absorbing gases and comprising at least one microchannel intended to be filled with a liquid, this component being characterized by it has been previously degassed under vacuum and in that it is vacuum-packed in an airtight package. In a preferred embodiment of the invention, the component comprises a feed well open at one end and connected to the microchannel at its other end.
L'extrémité du microcanal opposée à ce puits d'alimentation peut être fermée ou bien peut déboucher dans un autre puits d'alimentation. Dans ce dernier cas, une partie médiane du microcanal a une section supérieure à celle des parties d'extrémités du microcanal reliées au puits d'alimentation et forme une zone de mélange de liquide.The end of the microchannel opposite this feed well may be closed or may open into another feed well. In the latter case, a median portion of the microchannel has a larger cross section than the end portions of the microchannel connected to the feed well and forms a liquid mixing zone.
Selon une autre caractéristique de l'invention, plusieurs microcanaux peuvent être reliés par une de leurs extrémités à un même puits d'alimentation.According to another characteristic of the invention, several microchannels can be connected by one of their ends to a same feed well.
Dans le mode de réalisation préféré de l'invention, le microcanal est formé dans une face inférieure du composant qui est appliquée sur un support approprié formant le fond du microcanal, et le puits d'alimentation précité débouche sur une face supérieure du composant. Le support peut être en verre, en matériau plastique non dégazable ou en toute autre matière appropriée et peut ou non constituer un ensemble
unitaire avec le composant.In the preferred embodiment of the invention, the microchannel is formed in a lower face of the component which is applied to a suitable support forming the bottom of the microchannel, and the aforementioned supply well opens on an upper face of the component. The support may be of glass, non-degassable plastic material or any other suitable material and may or may not constitute a set unit with the component.
L'invention est applicable dans de nombreux domaines : amortissement fluidique, analyse d'échantillons biologiques ou chimiques, réactions de catalyse hétérogène, d'hybridation d'ADN, d'agrégation de particules, etc ..The invention is applicable in many fields: fluidic damping, analysis of biological or chemical samples, heterogeneous catalysis reactions, DNA hybridization, particle aggregation, etc.
L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement à la lecture de la description qui suit, faite à titre d'exemple en référence aux dessins annexés dans lesquels : - la figure 1 représente schématiquement un composant selon l'invention conditionné sous vide dans un emballage hermétique ;The invention will be better understood and other characteristics, details and advantages thereof will appear more clearly on reading the description which follows, given by way of example with reference to the accompanying drawings, in which: FIG. schematically a component according to the invention packaged under vacuum in a hermetic package;
- la figure 2 est une vue schématique en coupe de ce composant sorti de son emballage et posé sur un support approprié ;- Figure 2 is a schematic sectional view of this component out of its packaging and placed on a suitable support;
- les figures 3, 4 et 5 sont des vues correspondant à la figure 2 et représentent trois étapes du remplissage d'un microcanal du composant par un liquide ;FIGS. 3, 4 and 5 are views corresponding to FIG. 2 and show three stages of filling a microchannel of the component with a liquid;
- la figure 6 est une vue schématique de dessus d'une variante de réalisation du composant ;- Figure 6 is a schematic top view of an alternative embodiment of the component;
- la figure 7 est une vue schématique de dessus d'une autre variante de réalisation du composant ;- Figure 7 is a schematic top view of another embodiment of the component;
- la figure 8 est un organigramme des principales étapes du procédé selon l'invention.- Figure 8 is a flow chart of the main steps of the method according to the invention.
Le composant 10 représenté schématiquement aux figures 1 à 5 est un composant d'un microsystème fluidique réalisé au moins en partie en un élastomère tel que du PDMS (polydiméthylsiloxane) et se présente sous forme d'un petit bloc ou d'une plaquette dont une face comporte un microcanal 12 relié par l'une de ses extrémités à un puits d'alimentation 14 qui débouche sur une face opposée du composant 10, l'autre extrémité du microcanal étant fermée (non débouchante). Ce composant 10 en élastomère a été, selon l'invention, dégazé sous vide et conditionné sous vide dans un emballage hermétique 16
réalisé en un matériau approprié étanche aux gaz.The component 10 shown diagrammatically in FIGS. 1 to 5 is a component of a fluidic microsystem made at least partly of an elastomer such as PDMS (polydimethylsiloxane) and is in the form of a small block or wafer, one of which face comprises a microchannel 12 connected at one of its ends to a feed well 14 which opens on an opposite face of the component 10, the other end of the microchannel being closed (non-opening). This elastomer component was, according to the invention, degassed under vacuum and vacuum packed in a hermetic package. made of a suitable gas-tight material.
L'emballage 16 forme par exemple une alvéole dans laquelle est placé le composant 10 et qui est fermée de façon étanche par un opercule 18. Le dégazage auquel est soumis le composant 10 avant son conditionnement est réalisé sous un vide partiel à une pression de 100 à 200 mbars par exemple (1 à 2.104 Pa) pendant une durée d'une à deux heures environ.The packaging 16 forms for example a cell in which the component 10 is placed and which is sealed by a cover 18. The degassing to which the component 10 is subjected before its conditioning is carried out under a partial vacuum at a pressure of 100.degree. 200 mbar for example (1 to 2.10 4 Pa) for a period of one to two hours.
Pour être utilisé, le composant 10 est sorti de son emballage 16 et posé sur un support approprié 20 tel par exemple qu'une plaque de verre ou de matériau plastique approprié, le composant 10 étant posé sur cette plaque 20 par sa face dans laquelle est formé le microcanal 12.To be used, the component 10 is taken out of its packaging 16 and placed on a suitable support 20 such as for example a plate of glass or of suitable plastic material, the component 10 being placed on this plate 20 by its face in which is formed the microchannel 12.
Ce microcanal contient un réactif 22 qui est fixé, par exemple par greffage, en un point prédéterminé du support 20. Lorsque le composant 10 est en PDMS ou analogue, son adhérence sur le support 20 en verre ou en matériau plastique est naturelle.This microchannel contains a reagent 22 which is fixed, for example by grafting, at a predetermined point of the support 20. When the component 10 is PDMS or the like, its adhesion to the support 20 of glass or plastic material is natural.
On introduit ensuite un liquide 24 dans le puits 14 comme représenté en figure 3, de façon à remplir au moins une partie de ce puits par le liquide 24 qui forme alors un bouchon séparant le microcanal 12 de l'atmosphère environnante.A liquid 24 is then introduced into the well 14 as shown in FIG. 3, so as to fill at least a portion of this well with the liquid 24 which then forms a plug separating the microchannel 12 from the surrounding atmosphere.
Le matériau du composant 10 est dans cet exemple naturellement hydrophobe et cette propriété du matériau et le gaz contenu dans le microcanal 12 s'opposent à ce que le liquide 24 remplisse le microcanal 12 et vienne au contact du réactif 22. Toutefois, le composant 10 qui a été dégazé sous vide, absorbe les gaz avec lesquels il est en contact et notamment le gaz (c'est-à-dire de l'air dans la plupart des cas) qui remplit le microcanal 12. Cette absorption se traduit par une baisse de pression dans le microcanal 12 et donc par une aspiration du liquide contenu dans le puits 14. Les capacités d'absorption de gaz par le matériau dégazé du composant 10 sont telles que tout le gaz contenu dans le microcanal 12 peut être absorbé par le composant 10 et
remplacé au fur et à mesure par le liquide 24 contenu dans le puits 14, comme représenté schématiquement aux figures 4 et 5.In this example, the material of the component 10 is naturally hydrophobic and this property of the material and the gas contained in the microchannel 12 prevent the liquid 24 from filling the microchannel 12 and coming into contact with the reagent 22. However, the component 10 which has been degassed under vacuum, absorbs the gases with which it is in contact and in particular the gas (that is to say air in most cases) which fills the microchannel 12. This absorption is reflected in a pressure drop in the microchannel 12 and thus by suction of the liquid contained in the well 14. The gas absorption capacity of the degassed material component 10 are such that all the gas contained in the microchannel 12 can be absorbed by the component 10 and gradually replaced by the liquid 24 contained in the well 14, as shown schematically in FIGS. 4 and 5.
Si, éventuellement, le liquide 24 contient lui-même des bulles d'air ou de gaz, ces bulles vont être absorbées par le matériau du composant 10 lors du remplissage du microcanal 12 par le liquide 24.If, possibly, the liquid 24 itself contains air or gas bubbles, these bubbles will be absorbed by the material of the component 10 during the filling of the microchannel 12 with the liquid 24.
Lorsque le microcanal 12 est totalement rempli comme représenté en figure 5, on peut procéder aux opérations prévues pour réaliser une réaction donnée du liquide 24 sur le réactif 22, ces opérations comprenant par exemple des cycles de chauffage, de maintien en température, etc .. pendant une durée plus ou moins longue.When the microchannel 12 is completely filled as shown in FIG. 5, the operations provided for carrying out a given reaction of the liquid 24 on the reagent 22 can be carried out, these operations comprising, for example, cycles of heating, temperature maintenance, etc. for a longer or shorter period.
Lors de ce traitement, le matériau du composant 10 qui a réabsorbé relativement peu de gaz depuis son déconditionnement, n'est pas susceptible, pendant une durée de plusieurs heures, de libérer des bulles d'air ou de gaz dans le liquide 24 contenu dans le microcanal 12, ce qui permet de réaliser sans difficulté les réactions prévues.During this treatment, the material of component 10 which has reabsorbed relatively little gas since its deconditioning, is not likely, for a period of several hours, to release air or gas bubbles in the liquid 24 contained in the microchannel 12, which allows to achieve without difficulty the expected reactions.
Typiquement, un composant 10 dégazé et conditionné sous vide comme indiqué plus haut, doit être utilisé dans les 15 à 20 minutes qui suivent l'ouverture de l'emballage 16, la réabsorption de gaz par le matériau du composant 10 étant suffisante pour assurer le remplissage du ou des microcanaux 12 par le ou les liquides appropriés, après quoi le composant 10 peut être utilisé pendant 5 à 6 heures environ sans libérer de bulles de gaz dans le ou les microcanaux 12 au cours de son utilisation.Typically, a degassed and vacuum-packed component as indicated above, should be used within 15 to 20 minutes after the opening of the package 16, the reabsorption of gas by the material of the component 10 being sufficient to ensure the filling the microchannel (s) 12 with the appropriate liquid or liquids, after which the component 10 may be used for approximately 5-6 hours without releasing gas bubbles into the microchannel (s) 12 during its use.
La configuration du composant et de son ou de ses microcanaux et puits d'alimentation peut être quelconque. Par exemple, comme représenté schématiquement en figure 6, un même puits d'alimentation 14 peut être relié aux extrémités de plusieurs microcanaux 12 s'étendant en étoile autour du puits 14.The configuration of the component and its or its microchannels and feed wells can be arbitrary. For example, as shown schematically in FIG. 6, a same feed well 14 can be connected to the ends of several microchannels 12 extending in a star around the well 14.
Comme représenté schématiquement en figure 7, un même microcanal 12 peut être relié à ses extrémités à deux puits d'alimentation 14 et comprendre une zone médiane 26 de plus grande dimension, formant une zone de mélange des liquides introduits dans les puits 14.
De nombreuses autres variantes de configuration sont bien entendu possibles.As shown diagrammatically in FIG. 7, the same microchannel 12 can be connected at its ends to two feed wells 14 and comprise a median zone 26 of larger size, forming a mixing zone for the liquids introduced into the wells 14. Many other configuration variants are of course possible.
Typiquement et de façon classique, les dimensions des microcanaux 12 sont de quelques dizaines à quelques centaines de μm en hauteur et en largeur.Typically and conventionally, the dimensions of the microchannels 12 are from a few tens to a few hundred microns in height and width.
La présente invention permet toutefois, si cela est utile, de réaliser des microcanaux dont les dimensions en hauteur et en largeur sont inférieures à celles indiquées ci-dessus et qui seraient très difficiles à remplir de liquide par les moyens connus de Ia technique antérieure. Le procédé de remplissage selon l'invention permet dans tous les cas d'assurer un remplissage total des microcanaux 12, même si leurs dimensions sont très faibles et si le matériau du composant 10 est hydrophobe.The present invention however makes it possible, if it is useful, to produce microchannels whose dimensions in height and in width are smaller than those indicated above and which would be very difficult to fill with liquid by the means known from the prior art. The filling method according to the invention makes it possible in all cases to ensure complete filling of the microchannels 12, even if their dimensions are very small and if the material of the component 10 is hydrophobic.
Comme représenté schématiquement en figure 8, le procédé selon l'invention consiste essentiellement en un dégazage préalable 30 du composant 10 par exposition à un vide partiel pendant une durée suffisante, ce dégazage étant suivi par un conditionnement sous vide 32 dans un emballage hermétique, le composant 10 ainsi conditionné pouvant être stocké un certain temps. Pour son utilisation, le composant 10 est déconditionné (étape 34) et doit être utilisé en 36 dans les 15 à 20 minutes qui suivent l'ouverture de l'emballage hermétique.As shown diagrammatically in FIG. 8, the process according to the invention consists essentially in a prior degassing of the component 10 by exposure to a partial vacuum for a sufficient duration, this degassing being followed by a vacuum packaging 32 in a hermetic package, the component 10 and packaged that can be stored for some time. For its use, the component 10 is deconditioned (step 34) and must be used at 36 within 15 to 20 minutes after opening the sealed package.
En variante, il est bien entendu possible de dégazer le composant 10 de la façon indiquée, puis de l'utiliser dans les 15 à 20 minutes qui suivent la fin du dégazage, sans le conditionner entre temps dans un emballage hermétique.Alternatively, it is of course possible to degas the component 10 as indicated, then use it within 15 to 20 minutes after the end of degassing, without conditioning it in time in a sealed package.
Dans une autre variante, il est aussi possible de poser ou fixer le composant 10 sur le support 20 comportant le ou les réactifs 22, de dégazer de la façon précitée l'ensemble composant 10-support 20, d'enfermer sous vide cet ensemble dans un emballage étanche et de le stocker avant de l'utiliser.
In another variant, it is also possible to place or fix the component 10 on the support 20 comprising the reagent or reagents 22, to degas the above-mentioned component 10-support 20, to enclose this assembly in a vacuum in this manner. a sealed package and store it before using it.
Claims
1. Procédé de remplissage d'un microcanal dans un composant d'un microsystème fluidique, ce composant étant réalisé au moins en partie en un matériau plastique ou en un élastomère susceptible d'absorber des gaz avec lesquels il est en contact, caractérisé en ce qu'il consiste à soumettre le composant (10) à un dégazage sous vide, puis à placer ce composant dans une atmosphère ambiante ou environnante, à introduire un liquide (24) dans le microcanal (12) du composant et à remplir le microcanal (12) du liquide (24) en laissant agir sur le liquide une aspiration résultant d'une absorption par le composant du gaz contenu dans le microcanal (12).1. A process for filling a microchannel in a component of a fluidic microsystem, this component being at least partly made of a plastic material or an elastomer capable of absorbing gases with which it is in contact, characterized in that it consists in subjecting the component (10) to vacuum degassing, then placing this component in an ambient or surrounding atmosphere, introducing a liquid (24) into the microchannel (12) of the component and filling the microchannel ( 12) liquid (24) by letting the liquid act on the suction resulting from absorption by the component of the gas contained in the microchannel (12).
2. Procédé de remplissage selon la revendication 1 , caractérisé en ce qu'il consiste à enfermer sous vide le composant dégazé (10) dans un emballage hermétique (16) et, ultérieurement à ouvrir cet emballage pour utiliser le composant (10), cette utilisation comprenant une introduction de liquide dans le microcanal (12) du composant, l'intervalle de temps entre l'ouverture de l'emballage (16) du composant et l'introduction du liquide dans le microcanal (12) du composant étant inférieur à une valeur prédéterminée. 2. A method of filling according to claim 1, characterized in that it consists in enclosing under vacuum the degassed component (10) in a hermetic package (16) and, subsequently to open this package to use the component (10), this use comprising introducing liquid into the microchannel (12) of the component, the time interval between opening the package (16) of the component and introducing the liquid into the microchannel (12) of the component being less than a predetermined value.
3. Procédé de remplissage selon la revendication 2, caractérisé en ce que l'intervalle de temps est de 15 à 20 minutes environ quand le composant est en élastomère du type PDMS.3. Filling process according to claim 2, characterized in that the time interval is approximately 15 to 20 minutes when the component is elastomeric PDMS type.
4. Procédé de remplissage selon l'une des revendications précédentes, caractérisé en ce qu'il consiste à introduire le liquide (24) dans un puits d'alimentation (14) formé à une extrémité du microcanal (12) de sorte que le liquide introduit dans ce puits forme un obstacle isolant le microcanal (12) de l'atmosphère environnante.4. Filling method according to one of the preceding claims, characterized in that it consists in introducing the liquid (24) into a feed well (14) formed at one end of the microchannel (12) so that the liquid introduced into this well forms an obstacle isolating the microchannel (12) from the surrounding atmosphere.
5. Procédé de remplissage selon l'une des revendications précédentes, caractérisé en ce que le dégazage du composant (10) est réalisé sous un vide partiel pendant une durée minimale prédéterminée.5. Filling method according to one of the preceding claims, characterized in that the degassing of the component (10) is carried out under a partial vacuum for a predetermined minimum time.
6. Procédé de remplissage selon la revendication 5, caractérisé en ce que la durée du dégazage est d'environ 1 à 2 heures quand le dégazage est réalisé à une pression d'environ 100 à 200 mbars (1 à 2.104 Pa).6. Filling method according to claim 5, characterized in the degassing time is approximately 1 to 2 hours when the degassing is carried out at a pressure of about 100 to 200 mbar (1 to 2.10 4 Pa).
7. Procédé de remplissage selon l'une des revendications précédentes, caractérisé en ce que le composant (10) est posé ou fixé sur un support (20) quand il est dégazé puis conditionné sous vide.7. Filling method according to one of the preceding claims, characterized in that the component (10) is placed or fixed on a support (20) when it is degassed and vacuum packed.
8. Composant d'un microsystème fluidique, réalisé au moins en partie en matière plastique ou en élastomère susceptible d'absorber des gaz et comprenant au moins un microcanal (12) destiné à être rempli d'un liquide, caractérisé en ce qu'il a été préalablement dégazé sous vide et est conditionné sous vide dans un emballage hermétique (16).8. Component of a fluidic microsystem, made at least in part of plastic or elastomer capable of absorbing gases and comprising at least one microchannel (12) intended to be filled with a liquid, characterized in that has been previously degassed under vacuum and is vacuum-packed in an airtight package (16).
9. Composant selon la revendication 8, caractérisé en ce qu'il comprend au moins un puits d'alimentation (14) ouvert à l'une de ses extrémités et relié au microcanal (12) à son autre extrémité.9. Component according to claim 8, characterized in that it comprises at least one feed shaft (14) open at one of its ends and connected to the microchannel (12) at its other end.
10. Composant selon la revendication 9, caractérisé en ce que l'extrémité du microcanal (12) opposée au puits d'alimentation (14) est fermée.10. Component according to claim 9, characterized in that the end of the microchannel (12) opposite the supply well (14) is closed.
11. Composant selon la revendication 9, caractérisé en ce que l'extrémité du microcanal (12) opposée au puits d'alimentation (14) débouche dans un autre puits d'alimentation (14). 11. Component according to claim 9, characterized in that the end of the microchannel (12) opposite the feed well (14) opens into another feed well (14).
12. Composant selon Ia revendication 11 , caractérisé en ce qu'une partie médiane (26) du microcanal a des dimensions en section supérieure à celles des parties d'extrémités du microcanal reliées aux puits d'alimentation (14) et forme une zone de mélange de liquide.12. Component according to claim 11, characterized in that a median portion (26) of the microchannel has dimensions in section greater than those of the end portions of the microchannel connected to the feed wells (14) and forms a zone of mixture of liquid.
13. Composant selon l'une des revendications 9 à 12, caractérisé en ce que plusieurs microcanaux (12) sont reliés à un même puits d'alimentation (14).13. Component according to one of claims 9 to 12, characterized in that several microchannels (12) are connected to a same feed well (14).
14. Composant selon l'une des revendications 8 à 12, caractérisé en ce que le microcanal (12) est formé dans une face inférieure du composant (10) qui est appliquée sur un support approprié (20) formant le fond du microcanal (12) et en ce que le puits d'alimentation (14) débouche sur une face supérieure du composant (10). 14. Component according to one of claims 8 to 12, characterized in that the microchannel (12) is formed in a lower face of the component (10) which is applied on a suitable support (20) forming the bottom of the microchannel (12). ) and that the supply well (14) opens on an upper face of the component (10).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0500511A FR2880880B1 (en) | 2005-01-18 | 2005-01-18 | FILLING A MICROCANAL OF A COMPONENT OF A FLUIDIC MICROSYSTEM |
PCT/FR2006/000010 WO2006077299A1 (en) | 2005-01-18 | 2006-01-04 | Filling a microchannel of a component of a fluidic microsystem |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1846161A1 true EP1846161A1 (en) | 2007-10-24 |
Family
ID=34953988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06704667A Withdrawn EP1846161A1 (en) | 2005-01-18 | 2006-01-04 | Filling a microchannel of a component of a fluidic microsystem |
Country Status (6)
Country | Link |
---|---|
US (1) | US20080008627A1 (en) |
EP (1) | EP1846161A1 (en) |
JP (1) | JP2008533437A (en) |
CA (1) | CA2594975A1 (en) |
FR (1) | FR2880880B1 (en) |
WO (1) | WO2006077299A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100287189A1 (en) * | 2009-05-05 | 2010-11-11 | Pioneer Hi-Bred International, Inc. | Acceleration of tag placement using custom hardware |
DE102009052828A1 (en) * | 2009-11-13 | 2011-05-19 | Stiftung Caesar Center Of Advanced European Studies And Research | Method for producing micro cavity in infra red sensor, involves removing structure parts with filled micro cavities from liquid after complete immersion of structure parts that are guided together and interconnected to micro cavities |
ES2977951T3 (en) * | 2015-06-23 | 2024-09-03 | Nanocellect Biomedical Inc | Systems, apparatus and methods for cell sorting and flow cytometry |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4537747A (en) * | 1983-03-16 | 1985-08-27 | Chemetrics, Inc. | Disposable device for sampling and diluting |
US6143496A (en) * | 1997-04-17 | 2000-11-07 | Cytonix Corporation | Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly |
DE19750452A1 (en) * | 1997-11-14 | 1999-06-02 | Juergen Bethkenhagen | Blood sample package |
US6899137B2 (en) * | 1999-06-28 | 2005-05-31 | California Institute Of Technology | Microfabricated elastomeric valve and pump systems |
US6743399B1 (en) * | 1999-10-08 | 2004-06-01 | Micronics, Inc. | Pumpless microfluidics |
US6875619B2 (en) * | 1999-11-12 | 2005-04-05 | Motorola, Inc. | Microfluidic devices comprising biochannels |
JP2002018271A (en) * | 2000-07-05 | 2002-01-22 | Kawamura Inst Of Chem Res | Micro chemical device |
US6553319B1 (en) * | 2001-07-10 | 2003-04-22 | Southwest Research Institute | Unattended liquid sample monitoring and liquid sample storage system |
JP2003299485A (en) * | 2002-04-10 | 2003-10-21 | Sekisui Chem Co Ltd | Temperature control-type microreactor and microreactor system |
EP1587623A2 (en) * | 2003-01-14 | 2005-10-26 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
-
2005
- 2005-01-18 FR FR0500511A patent/FR2880880B1/en active Active
-
2006
- 2006-01-04 CA CA002594975A patent/CA2594975A1/en not_active Abandoned
- 2006-01-04 EP EP06704667A patent/EP1846161A1/en not_active Withdrawn
- 2006-01-04 JP JP2007551695A patent/JP2008533437A/en active Pending
- 2006-01-04 WO PCT/FR2006/000010 patent/WO2006077299A1/en active Application Filing
-
2007
- 2007-07-17 US US11/778,925 patent/US20080008627A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2006077299A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2880880A1 (en) | 2006-07-21 |
JP2008533437A (en) | 2008-08-21 |
US20080008627A1 (en) | 2008-01-10 |
WO2006077299A1 (en) | 2006-07-27 |
CA2594975A1 (en) | 2006-07-27 |
FR2880880B1 (en) | 2008-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9983105B2 (en) | Liquid reagent storage and operation of analytical devices | |
FR2971500A1 (en) | MICROSYSTEM FOR FLUIDIC APPLICATIONS, METHOD FOR MANUFACTURING AND USE FOR A MICROSYSTEM | |
FR2816924A1 (en) | Plastic package used to transport medical or pharmaceutical items that are to be sterilized, comprises a box with a selectively sealed cover, which allows the passage of radiation. | |
EP1846161A1 (en) | Filling a microchannel of a component of a fluidic microsystem | |
JP2014503426A (en) | Method of filling blister packaging material with liquid and blister packaging material with cavity for filling liquid | |
FR2891908A1 (en) | DEVICE AND METHOD FOR PERFORMING TESTS ON MATERIALS | |
EP1657158B1 (en) | Opening and/or closing device for an hermetic package, in particular for foodstuffs | |
JP2013542146A (en) | Blister packaging material for liquid | |
WO2004000449A1 (en) | Hydraulic device for the thermo-pneumatic insulation and optional agitation of the contents of an operative cavity | |
EP1312556B1 (en) | Closing and opening device for hermetically sealed package | |
EP1225437B1 (en) | Device for holding a solid material in a tube, and test device using this holding device | |
EP0917862A1 (en) | Tube having an insert adapter | |
CA2362701A1 (en) | Test sample card filled in combination with at least a buffer supply | |
CA2362739A1 (en) | Pumping device for transferring at least a fluid into a consumable | |
EP1241108A1 (en) | Package | |
US20240342710A1 (en) | Device, in Particular Microfluidic Cartridge, and Method, Comprising a Removal Chamber and a Removable Cover | |
EP3173114B1 (en) | Device for producing a tight connection between a needle and a container | |
WO2023237539A1 (en) | Pcr detection chip, associated test apparatus, and analysis system for implementation | |
FR2590239A1 (en) | Container-applicator for a product obtained extemporaneously by mixing. | |
WO2007096491A1 (en) | Device for opening and/or closing a sealed package designed particularly for storing food products | |
FR2837802A1 (en) | FLUID PRODUCT DISPENSING DEVICE | |
FR2897342A1 (en) | PROCESS FOR MANUFACTURING A CONTAINER OF THE TYPE COMPRISING TWO OR MORE COMPARTMENTS | |
FR2698375A1 (en) | Container for transporting and storing liquids used in kits for in vitro tests - comprises series of holders with caps which have central outlets and sealing layers. | |
FR2644757A1 (en) | Closure device for container containing acids in the liquid state | |
BE724684A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070727 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20101230 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110510 |