EP1845179B1 - Continuous process for the production of carbon fibres - Google Patents

Continuous process for the production of carbon fibres Download PDF

Info

Publication number
EP1845179B1
EP1845179B1 EP06007926A EP06007926A EP1845179B1 EP 1845179 B1 EP1845179 B1 EP 1845179B1 EP 06007926 A EP06007926 A EP 06007926A EP 06007926 A EP06007926 A EP 06007926A EP 1845179 B1 EP1845179 B1 EP 1845179B1
Authority
EP
European Patent Office
Prior art keywords
fibres
process according
coaxial conductor
conductor
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06007926A
Other languages
German (de)
French (fr)
Other versions
EP1845179A1 (en
Inventor
Mathias Dr. Kaiser
Rudolf Dr. Emmerich
Ralf Dreher
Lukas Dr. Alberts
Christian Dr. Hunyar
Peter Dr. Elsner
Frank Dr. Henning
Klaus-Dieter Dr. Nauenburg
Bernd Dr. Wohlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE502006007528T priority Critical patent/DE502006007528D1/en
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to EP06007926A priority patent/EP1845179B1/en
Priority to ES06007926T priority patent/ES2348590T3/en
Priority to AT06007926T priority patent/ATE475728T1/en
Priority to US12/226,325 priority patent/US20090277772A1/en
Priority to PCT/EP2007/002909 priority patent/WO2007118596A1/en
Priority to CA2649131A priority patent/CA2649131C/en
Priority to BRPI0710157A priority patent/BRPI0710157B1/en
Priority to AU2007237521A priority patent/AU2007237521B2/en
Priority to CN2007800135079A priority patent/CN101421448B/en
Priority to JP2009504606A priority patent/JP5191004B2/en
Priority to TW096112685A priority patent/TWI372798B/en
Priority to ARP070101532A priority patent/AR060505A1/en
Publication of EP1845179A1 publication Critical patent/EP1845179A1/en
Application granted granted Critical
Publication of EP1845179B1 publication Critical patent/EP1845179B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • D01F9/328Apparatus therefor for manufacturing filaments from polyaddition, polycondensation, or polymerisation products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles

Definitions

  • the invention relates to a method for the continuous production of carbon fibers, wherein stabilized precursor fibers are carbonized and graphitized with the aid of high-frequency electromagnetic waves.
  • Stabilized precursor fibers are fibers which have been converted into infusible fibers by methods known per se. Only such infusible fibers are suitable for the subsequent carbonation steps required to produce carbon fibers.
  • Fibers, yarns and strands of stabilized precursor fibers are poor electrical conductors and moderate absorbers of high-frequency electromagnetic Waves such as microwaves. With the irradiation of the high-frequency electromagnetic waves, the transition to complete carbonization and increasing graphitization begins, resulting in a large increase in the electrical conductivity of the treated fibers.
  • the fiber behaves like a wire in the waveguide and leads to strong distortions and disturbances of the electric field in the waveguide or in the resonator arrangement. Without control, inhomogeneities and perturbations occur that affect the homogeneity and process stability of the graphitization, or in extreme cases can lead to the ignition of discharges and arcing or the thermal vaporization of the fiber.
  • the object of the present invention is to provide a simple process for the continuous production of carbon fibers, in which stabilized precursor fibers are carbonized and graphitized with the aid of high-frequency electromagnetic waves, which can be carried out economically and with reasonable outlay in terms of process control.
  • the stabilized precursor fibers are continuously fed as an inner conductor of a coaxial conductor consisting of outer conductor and inner conductor and through a treatment zone, in the treatment zone the stabilized precursor fibers high-frequency electromagnetic waves are supplied, which absorb the Precursorfasern whereby the precursor fibers are heated and converted into carbon fibers, and that the stabilized precursor fibers or the carbon fibers are conducted under a protective gas atmosphere through the coaxial conductor and the treatment zone.
  • the high-frequency electromagnetic waves are preferably microwaves.
  • the decoupling of microwave energy from a rectangular waveguide is for example off DE 10 2004 021 016 A1 known, wherein both the outer conductor and the inner conductor are fixed components of the coaxial conductor.
  • This type of coupling is used to bring microwave energy into hot process spaces, since with the help of coaxial conductors microwave power can be transmitted with high power density.
  • the microwave energy which is supplied from a waveguide, coupled via a suitable device, for example via a coupling cone in the coaxial conductor.
  • a protective gas atmosphere around the stabilized precursor fibers in the outcoupling region and in the coaxial conductor can be maintained in a simple manner, for example, by arranging a tube permeable to the energy of the high-frequency electromagnetic waves or microwaves within the outer conductor of the coaxial conductor and the treatment zone and the stabilized precursor fibers as Inner conductor as well as the protective gas are passed through this tube.
  • the resulting carbon fibers become increasingly more conductive, decoupling the microwave energy more and more into the coaxial junction and preventing further treatment of the carbon fibers.
  • the coupled-out microwave energy already starts the treatment of the stabilized precursor fibers in the coaxial conductor, so that when the stabilized precursor fibers are passed through the coaxial conductor, a self-regulating system is established.
  • the method according to the invention is characterized in that the stabilized precursor fibers are guided through the coaxial conductor at such a speed that they carbonize or graphitise on leaving the coaxial conductor and thus are carbon fibers.
  • pre-carbonated precursor fibers are used to carry out the process according to the invention.
  • stabilized precursor fibers produced very particularly from polyacrylonitrile are particularly suitable for this purpose.
  • gas used is nitrogen.
  • the speed with which the stabilized precursor fibers are guided through the coaxial conductor is controlled by measuring the electrical resistance of the resulting carbon fiber. It has been found that the level of electrical resistance can draw conclusions about the quality of the carbon fibers.
  • precursor fibers which are already precarbonized still have an electrical resistance which is in the region of 30 M ⁇ , while carbon fibers with good properties in terms of strength, elongation and modulus have an electrical resistance which is within the range of a few ⁇ , for example in the range of 10 to 50 ⁇ .
  • the measurement of the electrical resistance is carried out via two copper electrodes, which are arranged on the fibers at a distance of 50 cm.
  • oxygen is added to the protective gas atmosphere.
  • the treatment step of the oxidation which is usually carried out after completion of the carbonization or graphitization, can be carried out in the process according to the invention directly during carbonization.
  • the addition of oxygen can be effected, for example, by the fact that the air contained between the fibers in the supplied precursor fibers is not removed before introduction into the coaxial conductor. But it is also readily possible to supply oxygen in a targeted uniform dosage of the inert gas atmosphere.
  • the process according to the invention can be carried out particularly advantageously when the stabilized precursor fibers are separated by two or more arranged consisting of coaxial conductor and treatment zone reactors are performed.
  • stabilized precursor fibers 1 are guided as an inner conductor 2 through a coaxial conductor with an outer conductor 3.
  • a tube 4 Arranged around the inner conductor 2 and within the outer conductor 3 and inside the resonator 9 is a tube 4 which is permeable to high-frequency electromagnetic waves or microwaves and into which protective gas is injected to produce a protective gas atmosphere.
  • the microwave energy supplied in a waveguide 5 is transmitted via coupling cone 6 (FIG. FIG. 1 ) or via a cavity resonator 9 (FIG. FIG.
  • the microwave supply via a coaxial conductor the inner conductor 11 is T-shaped and electrically conductive, whereby the microwave to the treatment zone 10th is redirected.
  • This inner conductor 11 may for example be tubular.
  • carbon fibers 7 are produced from the stabilized precursor fibers 1.
  • a field distribution of the microwave energy in the form of standing waves in the coaxial conductor is achieved.
  • Further embodiments which are suitable for carrying out the method according to the invention are, for example, in DE 26 16 217 . EP 0 508 867 or WO 00/075 955 described.
  • the stabilized precursor fibers used were stabilized precursor polycarboxylate-precursor fibers, which were precarbonated, which were combined into a strand of 12,000 filaments.
  • a cylindrical resonator For coupling the microwave energy, a cylindrical resonator became similar FIG. 2 used with walls made of aluminum Muegge Electronics GmbH. This has a diameter of 100 mm and is designed to connect rectangular waveguide R 26 type with a microwave generator with a microwave power of 3 kW. The microwave energy generated is decoupled into a coaxial conductor whose outer jacket has an inner diameter of 100 mm.
  • the precarbonated stabilized precursor fibers were passed through the apparatus described above under a protective gas atmosphere using nitrogen, wherein the resulting carbon fibers were withdrawn from the apparatus at different rates.
  • the used Microwave energy was set to 2 kW.
  • the obtained carbon fibers had the following properties off speed tensile strenght module elongation m / h MPa GPa % 50 3200 220 1.4 150 3100 218 1.4 240 3500 217 1.5 420 2700 180 1.4

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)

Description

Die Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung von Kohlenstofffasern, wobei stabilisierte Precursorfasern unter Zuhilfenahme von hochfrequenten elektromagnetischen Wellen karbonisiert und graphitisiert werden.The invention relates to a method for the continuous production of carbon fibers, wherein stabilized precursor fibers are carbonized and graphitized with the aid of high-frequency electromagnetic waves.

Stabilisierte Precursorfasern sind Fasern, die durch an sich bekannte Verfahrensmaßnahmen in unschmelzbare Fasern umgewandelt wurden. Nur derartige unschmelzbare Fasern eigen sich für die sich anschließenden Karbonisierungsschritte, die zur Erzeugung von Kohlenstofffasern erforderlich sind.Stabilized precursor fibers are fibers which have been converted into infusible fibers by methods known per se. Only such infusible fibers are suitable for the subsequent carbonation steps required to produce carbon fibers.

Ein derartiges Verfahren zur Herstellung von Kohlenstofffasern aus Pech unter Zuhilfenahme von Mikrowellen ist aus US 4,197,282 bekannt geworden. Allerdings wird zu diesem Verfahren ausgeführt, dass die Mikrowellenbehandlung erst nach einer vorbereitenden Hitzebehandlung durchgeführt werden kann. Die Hitzebehandlung bewirkt gemäß US 4,197,282 , dass die Precursorfasern bereits so weit umgewandelt werden (Mesophase bei Pechfasern), dass sie durch die hohe Frequenz der Mikrowelle angeregt werden können. Ein Hinweis, in welcher Weise die Mikrowelle auf die stabilisierten Precursorfasern einwirken soll, kann dieser Schrift nicht entnommen werden.Such a method for the production of carbon fibers from pitch with the aid of microwaves is out US 4,197,282 known. However, it is stated in this method that the microwave treatment can be performed only after a preliminary heat treatment. The heat treatment effected according to US 4,197,282 in that the precursor fibers are already transformed so far (mesophase in pitch fibers) that they can be excited by the high frequency of the microwave. An indication of how the microwave should act on the stabilized Precursorfasern can not be found in this document.

Fasern, Garne und Stränge aus stabilisierten Precursorfasern sind schlechte elektrische Leiter und mäßige Absorber von hochfrequenten elektromagnetischen Wellen wie beispielsweise Mikrowellen. Mit der Bestrahlung mit den hochfrequenten elektromagnetischen Wellen beginnt der Übergang zur vollständigen Karbonisierung und zunehmender Graphitisierung, was zu einem starken Anwachsen der elektrischen Leitfähigkeit der behandelten Fasern führt.Fibers, yarns and strands of stabilized precursor fibers are poor electrical conductors and moderate absorbers of high-frequency electromagnetic Waves such as microwaves. With the irradiation of the high-frequency electromagnetic waves, the transition to complete carbonization and increasing graphitization begins, resulting in a large increase in the electrical conductivity of the treated fibers.

Ist die Graphitisierung abgeschlossen, verhält sich die Faser wie ein Draht im Hohlleiter und führt zu starken Verzerrungen und Störungen des elektrischen Feldes im Hohlleiter oder in der Resonatoranordnung. Ohne Regelung treten Inhomogenitäten und Störungen auf, die die Homogenität und die Prozessstabilität der Graphitisierung beeinflussen, oder im Extrem zur Zündung von Entladungen und Lichtbögen oder der thermischen Verdampfung der Faser führen können.Once the graphitization has been completed, the fiber behaves like a wire in the waveguide and leads to strong distortions and disturbances of the electric field in the waveguide or in the resonator arrangement. Without control, inhomogeneities and perturbations occur that affect the homogeneity and process stability of the graphitization, or in extreme cases can lead to the ignition of discharges and arcing or the thermal vaporization of the fiber.

Für die Prozesskontrolle der homogenen und kontinuierlichen Faserbehandlung mit Mikrowellenenergie war bisher eine aufwändige Messapparatur und Regelungstechnik erforderlich. Dies mag der Grund sein, warum das Verfahren großtechnisch bisher nicht eingesetzt wurde.For the process control of the homogeneous and continuous fiber treatment with microwave energy, a complex measuring apparatus and control technology was previously required. This may be the reason why the process has not yet been used on a large scale.

Aufgabe der vorliegenden Erfindung ist es, ein einfaches Verfahren zur kontinuierlichen Herstellung von Kohlenstofffasern, bei dem stabilisierte Precursorfasern unter Zuhilfenahme von hochfrequenten elektromagnetischen Wellen karbonisiert und graphitisiert werden, zur Verfügung zu stellen, welches wirtschaftlich und mit vertretbarem Aufwand hinsichtlich der Prozesskontrolle durchführbar ist.The object of the present invention is to provide a simple process for the continuous production of carbon fibers, in which stabilized precursor fibers are carbonized and graphitized with the aid of high-frequency electromagnetic waves, which can be carried out economically and with reasonable outlay in terms of process control.

Diese Aufgabe wird durch ein Verfahren der eingangs genannten Art dadurch gelöst, dass die stabilisierten Precursorfasern kontinuierlich als Innenleiter eines aus Außenleiter und Innenleiter bestehenden Koaxialleiters und durch eine Behandlungszone geführt werden, in der Behandlungszone den stabilisierten Precursorfasern hochfrequente elektromagnetische Wellen zugeführt werden, welche die Precursorfasern absorbieren, wodurch sich die Precursorfasern erhitzen und zu Kohlenstofffasern umgewandelt werden, und dass die stabilisierten Precursorfasern beziehungsweise die Kohlenstofffasern unter Schutzgasatmosphäre durch den Koaxialleiter und die Behandlungszone geführt werden.This object is achieved by a method of the type mentioned in that the stabilized precursor fibers are continuously fed as an inner conductor of a coaxial conductor consisting of outer conductor and inner conductor and through a treatment zone, in the treatment zone the stabilized precursor fibers high-frequency electromagnetic waves are supplied, which absorb the Precursorfasern whereby the precursor fibers are heated and converted into carbon fibers, and that the stabilized precursor fibers or the carbon fibers are conducted under a protective gas atmosphere through the coaxial conductor and the treatment zone.

Bevorzugt sind die hochfrequenten elektromagnetischen Wellen Mikrowellen.The high-frequency electromagnetic waves are preferably microwaves.

Überraschender Weise kann bei Durchführung des erfindungsgemäßen Verfahrens beobachtet werden, dass sich im Auskoppelungsbereich, in dem die Energie von hochfrequenten elektromagnetischen Wellen beziehungsweise die Energie von Mikrowellen ausgekoppelt wird, eine kurze , meist wenige Zentimeter aufweisende Reaktionszone bildet, in welcher zumindest überwiegend die Reaktion zur Umwandlung der Kohlenstofffaser erfolgt.Surprisingly, it can be observed when carrying out the process according to the invention that in the decoupling region, in which the energy is decoupled from high-frequency electromagnetic waves or the energy from microwaves, a short, usually a few centimeters, reaction zone is formed, in which at least predominantly the reaction for conversion the carbon fiber takes place.

Die Auskoppelung von Mikrowellenenergie aus einem Rechteckhohlleiter ist beispielsweise aus DE 10 2004 021 016 A1 bekannt, wobei sowohl der Außenleiter als auch der Innenleiter feste Bestandteile des Koaxialleiters sind. Diese Art der Koppelung wird dazu benutzt, Mikrowellenenergie in heiße Prozessräume einzubringen, da mit Hilfe von Koaxialleitern Mikrowellenenergie mit hoher Leistungsdichte übertragen werden kann. Hierbei wird die Mikrowellenenergie, die aus einem Hohlleiter zugeführt wird, über eine geeignete Vorrichtung, beispielsweise über einen Koppelkegel in den Koaxialleiter ausgekoppelt.The decoupling of microwave energy from a rectangular waveguide is for example off DE 10 2004 021 016 A1 known, wherein both the outer conductor and the inner conductor are fixed components of the coaxial conductor. This type of coupling is used to bring microwave energy into hot process spaces, since with the help of coaxial conductors microwave power can be transmitted with high power density. Here, the microwave energy, which is supplied from a waveguide, coupled via a suitable device, for example via a coupling cone in the coaxial conductor.

Eine Schutzgasatmosphäre um die stabilisierten Precursorfasern im Auskopplungsbereich und im Koaxialleiter kann in einfacher Weise beispielsweise dadurch aufrecht erhalten werden, dass eine für die Energie der hochfrequenten elektromagnetischen Wellen bzw. Mikrowellen durchlässige Röhre innerhalb des Außenleiters des Koaxialleiters und der Behandlungszone angeordnet wird und die stabilisierten Precursorfasern als Innenleiter wie auch das Schutzgas durch diese Röhre hindurch geführt werden.A protective gas atmosphere around the stabilized precursor fibers in the outcoupling region and in the coaxial conductor can be maintained in a simple manner, for example, by arranging a tube permeable to the energy of the high-frequency electromagnetic waves or microwaves within the outer conductor of the coaxial conductor and the treatment zone and the stabilized precursor fibers as Inner conductor as well as the protective gas are passed through this tube.

Überraschender Weise konnte festgestellt werden, dass bei Anwendung einer solchen Koppelungsvorrichtung derart, dass der Innenleiter des Koaxialleiters durch die durch den Koaxialleiter sich bewegenden und zu karbonisierenden stabilisierten Precursorfasern ersetzt wird, diese stabilisierten Precursorfasern auf einfache Weise in Kohlenstofffasern umgewandelt werden können. Da die stabilisierten Precursorfasern eine sehr geringe Leitfähigkeit aufweisen, bewirkt die Mikrowellenenergie, dass die stabilisierten Precursorfasern über Absorption im Auskoppelungsbereich erwärmt werden. Mit zunehmender Erwärmung wandeln sich die stabilisierten Precursorfasern in ein Material um, das zunächst besser absorbiert und sich dadurch noch besser erwärmt und infolge der steigenden Erwärmung auch karbonisiert und graphitisiert, wodurch aus den stabilisierten Precursorfasern nunmehr Kohlenstofffasern entstanden sind. Durch diese Umwandlung werden die entstehenden Kohlenstofffasern zunehmend leitfähiger, wodurch die Mikrowellenenergie immer mehr in den Koaxialübergang ausgekoppelt wird, und wodurch eine weitere Behandlung der Kohlenstofffasern verhindert wird. Die ausgekoppelte Mikrowellenenergie startet im Koaxialleiter bereits die Behandlung der stabilisierten Precursorfasern, so dass beim Hindurchführen der stabilisierten Precursorfasern durch den Koaxialleiter sich ein selbstregulierendes System einstellt.Surprisingly, it has been found that when such a coupling device is used such that the inner conductor of the coaxial conductor is replaced by the stabilized precursor fibers moving and to be carbonized by the coaxial conductor, these stabilized precursor fibers can be easily converted into carbon fibers. Since the stabilized precursor fibers have a very low conductivity, the microwave energy causes the stabilized precursor fibers to be heated via absorption in the decoupling region. With increasing warming, the stabilized precursor fibers are transformed into a material that initially absorbs better and thereby heats even better and also carbonized and graphitized as a result of increasing heating, as a result of which carbon fibers have now been formed from the stabilized precursor fibers. As a result of this transformation, the resulting carbon fibers become increasingly more conductive, decoupling the microwave energy more and more into the coaxial junction and preventing further treatment of the carbon fibers. The coupled-out microwave energy already starts the treatment of the stabilized precursor fibers in the coaxial conductor, so that when the stabilized precursor fibers are passed through the coaxial conductor, a self-regulating system is established.

Insbesondere zeichnet sich das erfindungsgemäße Verfahren dadurch aus, dass die stabilisierten Precursorfasern mit einer solchen Geschwindigkeit durch den Koaxialleiter geführt werden, dass sie beim Verlassen des Koaxialleiters karbonisiert beziehungsweise graphitisiert und somit Kohlenstofffasern sind.In particular, the method according to the invention is characterized in that the stabilized precursor fibers are guided through the coaxial conductor at such a speed that they carbonize or graphitise on leaving the coaxial conductor and thus are carbon fibers.

Auch kann es von Vorteil sein, wenn zur Durchführung des erfindungsgemäßen Verfahrens vorkarbonisierte Precursorfasern eingesetzt werden. Obwohl bei dem erfindungsgemäßen Verfahren praktisch alle bekannten stabilisierten Precursorfasern eingesetzt werden können, eignen sich hierfür ganz besonders aus Polyacrylnitril hergestellte stabilisierte Precursorfasern. Weiterhin hat es sich als Vorteil herausgestellt, wenn das für die Erzeugung der Schutzgasathmosphäre, durch welche die stabilisierten Precursorfasern im Koaxialleiter geführt werden, verwendete Gas Stickstoff ist.It may also be advantageous if pre-carbonated precursor fibers are used to carry out the process according to the invention. Although virtually all known stabilized precursor fibers can be used in the process according to the invention, stabilized precursor fibers produced very particularly from polyacrylonitrile are particularly suitable for this purpose. Furthermore, it has proven to be an advantage if that for the generation of the Inert gas atmosphere, through which the stabilized precursor fibers are guided in the coaxial conductor, gas used is nitrogen.

Besonders günstig ist es, wenn die Geschwindigkeit, mit welcher die stabilisierten Precursorfasern durch den Koaxialleiter geführt werden, über die Messung des elektrischen Widerstandes der entstandenen Kohlenstofffaser gesteuert wird. Es hat sich nämlich herausgestellt, dass die Höhe des elektrischen Widerstandes Rückschlüsse hinsichtlich der Qualität der Kohlenstofffasern ziehen lassen. Bei Durchführung des erfindungsgemäßen Verfahrens konnte ermittelt werden, dass Precursorfasern, die bereits vorkarbonisiert sind noch einen elektrischen Widerstand aufweisen, welcher im Bereich von 30 MΩ liegt, während Kohlenstofffasern mit guten Eigenschaften hinsichtlich Festigkeit, Dehnung und Modul einen elektrischen Widerstand aufweisen, die im Bereich von wenigen Ω, beispielsweise im Bereich von 10 bis 50 Ω liegen. Die Messung des elektrischen Widerstandes erfolgt hierbei über zwei Kupferelektroden, die an den Fasern in einem Abstand von 50 cm angeordnet sind.It is particularly favorable if the speed with which the stabilized precursor fibers are guided through the coaxial conductor is controlled by measuring the electrical resistance of the resulting carbon fiber. It has been found that the level of electrical resistance can draw conclusions about the quality of the carbon fibers. When carrying out the method according to the invention, it was possible to determine that precursor fibers which are already precarbonized still have an electrical resistance which is in the region of 30 MΩ, while carbon fibers with good properties in terms of strength, elongation and modulus have an electrical resistance which is within the range of a few Ω, for example in the range of 10 to 50 Ω. The measurement of the electrical resistance is carried out via two copper electrodes, which are arranged on the fibers at a distance of 50 cm.

Von besonderem Vorteil ist es, wenn in die Schutzgasatmosphäre geringe Mengen an Sauerstoff beigegeben wird. Auf diese Weise kann der in der Regel nach Abschluss der Karbonisierung beziehungsweise Graphitisierung vorgenommene Behandlungsschritt der Oxidierung bei dem erfindungsgemäßen Verfahren direkt beim Karbonisieren durchgeführt werden. Die Zugabe von Sauerstoff kann beispielsweise dadurch bewirkt werden, dass bei den zugeführten Precursorfasern die zwischen den Fasern enthaltene Luft vor Einführung in den Koaxialleiter nicht entfernt wird. Es ist aber auch ohne weiteres möglich, Sauerstoff in gezielter gleichmäßiger Dosierung der Schutzgasatmosphäre zuzuführen.It is particularly advantageous if small amounts of oxygen are added to the protective gas atmosphere. In this way, the treatment step of the oxidation, which is usually carried out after completion of the carbonization or graphitization, can be carried out in the process according to the invention directly during carbonization. The addition of oxygen can be effected, for example, by the fact that the air contained between the fibers in the supplied precursor fibers is not removed before introduction into the coaxial conductor. But it is also readily possible to supply oxygen in a targeted uniform dosage of the inert gas atmosphere.

Besonders günstig lässt sich das erfindungsgemäße Verfahren durchführen, wenn die stabilisierten Precursorfasern durch zwei oder mehr hintereinander angeordnete aus Koaxialleiter und Behandlungszone bestehende Reaktoren geführt werden.The process according to the invention can be carried out particularly advantageously when the stabilized precursor fibers are separated by two or more arranged consisting of coaxial conductor and treatment zone reactors are performed.

Im nachfolgenden werden zur Durchführung des erfindungsgemäßen Verfahrens geeignete Vorrichtungen näher beschrieben.In the following, suitable devices for carrying out the method according to the invention will be described in more detail.

Es zeigen:

Figur 1
den schematischen Aufbau einer Vorrichtung, bei welcher die Auskopplung der Mikrowellenenergie über einen Koppelkegel erfolgt,
Figur 2
den schematischen Aufbau einer Vorrichtung, bei welcher ein Hohlraumresonator zur Auskopplung der Mikrowellenenergie eingesetzt ist.
Figur 3
den schematischen Aufbau einer Vorrichtung, bei welcher eine koaxiale Mikrowellenzuführung zur Auskopplung der Mikrowellen eingesetzt ist.
Show it:
FIG. 1
the schematic structure of a device in which the coupling out of the microwave energy via a coupling cone,
FIG. 2
the schematic structure of a device in which a cavity resonator for coupling the microwave energy is used.
FIG. 3
the schematic structure of a device in which a coaxial microwave feed is used for coupling the microwaves.

Zur Durchführung des erfindungsgemäßen Verfahrens werden stabilisierte Precursorfasern 1 als Innenleiter 2 durch einen Koaxialleiter mit einem Außenleiter 3 geführt. Um den Innenleiter 2 und innerhalb des Außenleiters 3 und innerhalb des Resonators 9 ist ein für hochfrequente elektromagnetische Wellen beziehungsweise Mikrowellen durchlässiges Rohr 4 angeordnet, in welches Schutzgas zur Erzeugung einer Schutzgasatmosphäre eingeblasen wird. Die in einem Hohlleiter 5 zugeführte Mikrowellenenergie wird über Koppelkegel 6 (Figur 1) beziehungsweise über einen Hohlraumresonator 9 (Figur 2) in den aus Innenleiter 2 und Außenleiter 3 bestehenden Koaxialleiter in einer sich bildenden Behandlungszone 10 zugeführt und infolge der Umwandlung in Kohlenstofffasern in den Koaxialleiter 2,3 ausgekoppelt. Gemäß Figur 3 erfolgt die Mikrowellenzuführung über einen Koaxialleiter, dessen Innenleiter 11 T-förmig und elektrisch leitend ausgebildet ist, wodurch die Mikrowelle zur Behandlungszone 10 umgeleitet wird. Dieser Innenleiter 11 kann beispielsweise rohrförmig ausgebildet sein. Beim Verlassen des Innenleiters 11 am Übergang 12 übernehmen die stabilisierten Precursorfasern die Funktion des Innenleiters 2 des Koaxialleiters dessen Außenleiter mit 3 bezeichnet ist.To carry out the method according to the invention, stabilized precursor fibers 1 are guided as an inner conductor 2 through a coaxial conductor with an outer conductor 3. Arranged around the inner conductor 2 and within the outer conductor 3 and inside the resonator 9 is a tube 4 which is permeable to high-frequency electromagnetic waves or microwaves and into which protective gas is injected to produce a protective gas atmosphere. The microwave energy supplied in a waveguide 5 is transmitted via coupling cone 6 (FIG. FIG. 1 ) or via a cavity resonator 9 (FIG. FIG. 2 ) are fed into the coaxial conductor consisting of inner conductor 2 and outer conductor 3 in a forming treatment zone 10 and decoupled into the coaxial conductor 2, 3 as a result of the conversion into carbon fibers. According to FIG. 3 the microwave supply via a coaxial conductor, the inner conductor 11 is T-shaped and electrically conductive, whereby the microwave to the treatment zone 10th is redirected. This inner conductor 11 may for example be tubular. When leaving the inner conductor 11 at the transition 12, the stabilized precursor fibers assume the function of the inner conductor 2 of the coaxial conductor whose outer conductor is designated 3.

Nach Verlassen der Behandlungszone 10 sind aus den stabilisierten Precursorfasern 1 Kohlenstofffasern 7 entstanden. Durch einen koaxialen Abschluss 8 wird eine Feldverteilung der Mikrowellenenergie in Form von stehenden Wellen im Koaxialleiter erreicht. Weitere Ausführungsformen, die für die Durchführung des erfindungsgemäßen Verfahrens geeignet sind, sind beispielsweise in DE 26 16 217 , EP 0 508 867 oder WO 00/075 955 beschrieben.After leaving the treatment zone 10, carbon fibers 7 are produced from the stabilized precursor fibers 1. By means of a coaxial termination 8, a field distribution of the microwave energy in the form of standing waves in the coaxial conductor is achieved. Further embodiments which are suitable for carrying out the method according to the invention are, for example, in DE 26 16 217 . EP 0 508 867 or WO 00/075 955 described.

Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert.The invention will be explained in more detail with reference to the following examples.

Als stabilisierte Precursorfasern wurden aus Polyacylnitril hergestellte und stabilisierte Precursorfasern, welche vorkarbonisiert waren, eingesetzt, die zu einem Strang von 12.000 Filamenten zusammengefasst waren.The stabilized precursor fibers used were stabilized precursor polycarboxylate-precursor fibers, which were precarbonated, which were combined into a strand of 12,000 filaments.

Zur Einkoppelung der Mikrowellenenergie wurde ein zylindrischer Resonator ähnlich Figur 2 mit Wänden aus Aluminium der Firma Muegge Electronics GmbH eingesetzt. Dieser weist einen Durchmesser von 100 mm auf und ist darauf ausgelegt, Rechteckhohlleiter des Typs R 26 mit einem Mikrowellengenerator mit einer Mikrowellenleistung von 3 kW zu verbinden. Die erzeugte Mikrowellenenergie wird in einen Koaxialleiter, dessen Außenmantel einen Innendurchmesser von 100 mm aufwies, ausgekoppelt.For coupling the microwave energy, a cylindrical resonator became similar FIG. 2 used with walls made of aluminum Muegge Electronics GmbH. This has a diameter of 100 mm and is designed to connect rectangular waveguide R 26 type with a microwave generator with a microwave power of 3 kW. The microwave energy generated is decoupled into a coaxial conductor whose outer jacket has an inner diameter of 100 mm.

Die vorkarbonisierten stabilisierten Precursorfasern wurden durch die oben beschriebene Apparatur unter Schutzgasatmosphäre unter Verwendung von Stickstoff geleitet, wobei die entstandenen Kohlenstofffasern mit unterschiedlichen Geschwindigkeiten aus der Apparatur abgezogen wurden. Die eingesetzte Mikrowellenenergie war auf 2 kW eingestellt. Die erhaltenen Kohlenstofffasern hatten folgende Eigenschaften Abzugsgeschwindigkeit Zugfestigkeit Modul Bruchdehnung m/h MPa GPa % 50 3.200 220 1,4 150 3.100 218 1,4 240 3.500 217 1,5 420 2.700 180 1,4 The precarbonated stabilized precursor fibers were passed through the apparatus described above under a protective gas atmosphere using nitrogen, wherein the resulting carbon fibers were withdrawn from the apparatus at different rates. The used Microwave energy was set to 2 kW. The obtained carbon fibers had the following properties off speed tensile strenght module elongation m / h MPa GPa % 50 3200 220 1.4 150 3100 218 1.4 240 3500 217 1.5 420 2700 180 1.4

Claims (9)

  1. A process for continuous production of carbon fibres whereby stabilised precursor fibres are carbonised and graphitised with the help of high-frequency electromagnetic waves, characterised in that the stabilised precursor fibres are continuously conveyed, as the inner conductor of a coaxial conductor consisting of an outer and an inner conductor, through the coaxial conductor and a treatment zone; that the stabilised precursor fibres are irradiated in the treatment zone with high-frequency electromagnetic waves that are absorbed by the precursor fibres, which are thereby heated and converted into carbon fibres; and that the stabilised precursor fibres or carbon fibres are conveyed under an inert gas atmosphere through the coaxial conductor and the treatment zone.
  2. Process according to Claim 1, characterised in that microwaves are used as the high-frequency electromagnetic waves.
  3. Process according to Claim 1 or 2, characterised in that the stabilised precursor fibres are conveyed through the coaxial conductor at such a speed that on leaving the coaxial conductor they have been carbonised or graphitised and are therefore carbon fibres.
  4. Process according to one or more of Claims 1 to 3, characterised in that precarbonised precursor fibres are used.
  5. Process according to one or more of Claims 1 to 4, characterised in that the stabilised precursor fibres are made from polyacrylonitrile.
  6. Process according to one or more of Claims 1 to 5, characterised in that the gas used for producing the inert atmosphere through which the stabilised precursor fibres are conveyed is nitrogen.
  7. Process according to one or more of Claims 1 to 6, characterised in that the speed at which the stabilised precursor fibres are conveyed through the coaxial conductor is controlled via measurement of the electrical resistance of the carbon fibres formed.
  8. Process according to one or more of Claims 1 to 7, characterised in that small amounts of oxygen are added to the inert gas atmosphere.
  9. Process according to one or more of Claims 1 to 8, characterised in that the stabilised precursor fibres are conveyed through two or more successive reactors, each consisting of a coaxial conductor and treatment zone.
EP06007926A 2006-04-15 2006-04-15 Continuous process for the production of carbon fibres Active EP1845179B1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EP06007926A EP1845179B1 (en) 2006-04-15 2006-04-15 Continuous process for the production of carbon fibres
ES06007926T ES2348590T3 (en) 2006-04-15 2006-04-15 PROCEDURE FOR CONTINUOUS CARBON FIBER PRODUCTION.
AT06007926T ATE475728T1 (en) 2006-04-15 2006-04-15 METHOD FOR CONTINUOUSLY PRODUCING CARBON FIBERS
DE502006007528T DE502006007528D1 (en) 2006-04-15 2006-04-15 Process for the continuous production of carbon fibers
BRPI0710157A BRPI0710157B1 (en) 2006-04-15 2007-03-31 process for the continuous production of carbon fibers
CA2649131A CA2649131C (en) 2006-04-15 2007-03-31 Process for continuous production of carbon fibres
US12/226,325 US20090277772A1 (en) 2006-04-15 2007-03-31 Process for Continous Production of Carbon Fibres
AU2007237521A AU2007237521B2 (en) 2006-04-15 2007-03-31 Process for continuous production of carbon fibers
CN2007800135079A CN101421448B (en) 2006-04-15 2007-03-31 Continuous process for the production of carbon fibres
JP2009504606A JP5191004B2 (en) 2006-04-15 2007-03-31 Continuous production method of carbon fiber
PCT/EP2007/002909 WO2007118596A1 (en) 2006-04-15 2007-03-31 Method for the continuous production of carbon fibers
TW096112685A TWI372798B (en) 2006-04-15 2007-04-11 Process for continuous production of carbon fibres
ARP070101532A AR060505A1 (en) 2006-04-15 2007-04-11 PROCESS FOR THE CONTINUOUS PRODUCTION OF CARBON FIBERS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06007926A EP1845179B1 (en) 2006-04-15 2006-04-15 Continuous process for the production of carbon fibres

Publications (2)

Publication Number Publication Date
EP1845179A1 EP1845179A1 (en) 2007-10-17
EP1845179B1 true EP1845179B1 (en) 2010-07-28

Family

ID=36956018

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06007926A Active EP1845179B1 (en) 2006-04-15 2006-04-15 Continuous process for the production of carbon fibres

Country Status (13)

Country Link
US (1) US20090277772A1 (en)
EP (1) EP1845179B1 (en)
JP (1) JP5191004B2 (en)
CN (1) CN101421448B (en)
AR (1) AR060505A1 (en)
AT (1) ATE475728T1 (en)
AU (1) AU2007237521B2 (en)
BR (1) BRPI0710157B1 (en)
CA (1) CA2649131C (en)
DE (1) DE502006007528D1 (en)
ES (1) ES2348590T3 (en)
TW (1) TWI372798B (en)
WO (1) WO2007118596A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015110777A1 (en) 2015-07-03 2017-01-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Process and plant for the production of carbon fibers
WO2023180971A1 (en) * 2022-03-25 2023-09-28 Aspen Aerogels, Inc. Apparatus and method for heating at pyrolytic temperatures using microwave radiation

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100909363B1 (en) * 2006-07-21 2009-07-24 학교법인 포항공과대학교 Method of surface modification of carbon fiber by electromagnetic radiation
WO2009049981A1 (en) 2007-10-11 2009-04-23 Toho Tenax Co. Ltd. Hollow carbon fibres and method for the production thereof
TW201031692A (en) * 2009-01-15 2010-09-01 Toho Tenax Europe Gmbh Lignin derivative, shaped body comprising the derivative and carbon fibres produced from the shaped body
RU2416682C1 (en) * 2009-07-28 2011-04-20 Марина Владимировна Соболева Method of stabilising carbonaceous fibre and method of producing carbon fibre
US20120137446A1 (en) * 2009-09-11 2012-06-07 Toho Tenax Europe Gmbh Stabilization of polyacrylonitrile precursor yarns
TWI384098B (en) 2009-12-30 2013-02-01 High module carbon fiber and fabricating method thereof
KR101219724B1 (en) * 2010-12-21 2013-01-08 한국에너지기술연구원 hybrid carbon fiber production method
KR101219721B1 (en) * 2010-12-21 2013-01-08 한국에너지기술연구원 Continuous Hybrid Carbon Fiber Production Method
TWI563136B (en) 2012-11-22 2016-12-21 Mitsubishi Rayon Co Fabricating method of carbon fibrous bundle
EP3026150B1 (en) 2013-07-26 2018-08-29 Toho Tenax Co., Ltd. Carbonization method and carbon fiber production method
CN106460243B (en) * 2014-03-31 2019-08-06 国立大学法人东京大学 Carbon fiber manufacturing device and carbon fiber production method
DE102014113338B4 (en) * 2014-09-16 2017-07-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for tempering and tempering this
JP6486169B2 (en) * 2015-03-31 2019-03-20 帝人株式会社 Heating method, carbon fiber manufacturing method, carbon fiber, and heating device
CN105696113B (en) * 2015-12-04 2018-06-26 江西大有科技有限公司 A kind of devices and methods therefor using nonequilibrium plasma manufacture carbon fiber
JP6151844B1 (en) 2016-12-26 2017-06-21 弘治 大石橋 Microwave heating device
JP2018115395A (en) * 2017-01-16 2018-07-26 永虹先進材料股▲ふん▼有限公司 Method for producing carbonized fiber
KR102405323B1 (en) * 2018-07-23 2022-06-07 주식회사 엘지화학 Carbonated apparatus for cabon fiber using microwave
CN109594151A (en) * 2018-12-25 2019-04-09 中国科学院合肥物质科学研究院 A kind of equipment optimizing carbon fiber and graphite
CN109944057A (en) * 2019-03-08 2019-06-28 常熟市翔鹰特纤有限公司 A kind of polyacrylonitrile filament microwave densification device
CN112301548B (en) * 2020-10-15 2021-10-29 厦门大学 Fiber membrane with hollow bead chain structure and preparation method and preparation device thereof
CN112575412A (en) * 2020-12-17 2021-03-30 太仓旭云特种纤维科技有限公司 Continuous carbonization method of polyacrylonitrile short fiber
WO2022168830A1 (en) * 2021-02-02 2022-08-11 帝人株式会社 Microwave heating unit, and carbon fiber manufacturing method using same

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508871A (en) * 1963-05-29 1970-04-28 Carborundum Co Carbonizing fibrous materials
US3540848A (en) * 1967-07-12 1970-11-17 Hitco Continuous process for preparing electrically conductive carbonaceous fibers
US3595946A (en) * 1968-06-04 1971-07-27 Great Lakes Carbon Corp Process for the production of carbon filaments from coal tar pitch
US3679475A (en) * 1969-03-27 1972-07-25 United Aircraft Corp Method for producing boron-carbon fibers
US3612819A (en) * 1969-08-14 1971-10-12 Hitco Apparatus for preparing high modulus carbonaceous materials
US3607063A (en) * 1969-10-09 1971-09-21 United Aircraft Corp Manufacture of carbon filaments of high strength and modulus
DE2012284A1 (en) * 1970-03-14 1971-10-07 Bayer Process for the manufacture of fiber products with thin carbon fibers
US3716331A (en) * 1970-04-10 1973-02-13 Union Carbide Corp Process for producing carbon fibers having a high young's modulus of elasticity
US3745104A (en) * 1970-12-17 1973-07-10 Celanese Corp Surface modification of carbon fibers
US3689220A (en) * 1971-06-30 1972-09-05 Carborundum Co Process for carbonizing fibrous cellulosic material
US3824398A (en) * 1971-08-12 1974-07-16 Celanese Corp Method for plasma treatment of substrates
US3780255A (en) * 1971-09-30 1973-12-18 Celanese Corp Apparatus for heat treatment of substrates
JPS51119833A (en) * 1975-04-08 1976-10-20 Toho Rayon Co Ltd A process for manufacturing carbon fibers
FR2392143A1 (en) * 1977-05-25 1978-12-22 British Petroleum Co PROCESS FOR MANUFACTURING CARBON OR GRAPHITE FIBERS FROM NATURAL ORGANIC MATERIAL FIBERS BY USE OF HYPERFREQUENCES
US4370141A (en) * 1981-05-18 1983-01-25 Celanese Corporation Process for the thermal stabilization of acrylic fibers
US4435376A (en) * 1982-03-26 1984-03-06 Phillips Petroleum Company Fibrous carbon production
JPS59106523A (en) * 1982-12-07 1984-06-20 Toray Ind Inc Yarn-guiding method in preoxidation furnace and apparatus therefor
US4856179A (en) * 1983-04-21 1989-08-15 Hoechst Celanese Corp. Method of making an electrical device made of partially pyrolyzed polymer
US4473372A (en) * 1983-05-12 1984-09-25 Celanese Corporation Process for the stabilization of acrylic fibers
US5098688A (en) * 1983-08-05 1992-03-24 Hercules Incorporated Carbon fibres
US5281477A (en) * 1983-10-13 1994-01-25 Mitsubishi Rayon Co., Ltd. Carbon fibers having high tenacity and high modulus of elasticity and process for producing the same
DE3485026D1 (en) * 1983-10-13 1991-10-10 Mitsubishi Rayon Co CARBON FIBERS WITH HIGH STRENGTH AND HIGH ELASTICITY MODULE AND THEIR PRODUCTION PROCESS.
US5193996A (en) * 1983-10-13 1993-03-16 Bp Chemicals (Hitco) Inc. Method and system for producing carbon fibers
US4610860A (en) * 1983-10-13 1986-09-09 Hitco Method and system for producing carbon fibers
US5078926A (en) * 1984-03-07 1992-01-07 American Cyanamid Company Rapid stabilization process for carbon fiber precursors
US4685940A (en) * 1984-03-12 1987-08-11 Abraham Soffer Separation device
US5266294A (en) * 1984-04-30 1993-11-30 Amoco Corporation Continuous, ultrahigh modulus carbon fiber
KR870000533B1 (en) * 1984-05-18 1987-03-14 미쓰비시레이욘 가부시끼가이샤 Carbon fiber's making method
GB2168966B (en) * 1984-11-14 1988-09-01 Toho Beslon Co High-strength carbonaceous fiber
JPS61289132A (en) * 1985-06-14 1986-12-19 Nikkiso Co Ltd Production of flameproofing yarn for carbon fiber and flame proofing furnace
JPS62117820A (en) * 1985-11-19 1987-05-29 Nitto Boseki Co Ltd Production of carbon fiber chopped strand
US5156831A (en) * 1986-01-21 1992-10-20 Clemson University Method for producing high strength, melt spun carbon fibers
US5149517A (en) * 1986-01-21 1992-09-22 Clemson University High strength, melt spun carbon fibers and method for producing same
CN87104047A (en) * 1986-05-02 1988-04-13 东亚燃料工业株式会社 High modulus pitch-based carbon fiber and manufacture method thereof
JPS6245725A (en) * 1986-08-15 1987-02-27 Hirochiku:Kk Production of carbon fiber
US5268158A (en) * 1987-03-11 1993-12-07 Hercules Incorporated High modulus pan-based carbon fiber
US5089135A (en) * 1988-01-20 1992-02-18 Mitsubishi Rayon Co., Ltd. Carbon based porous hollow fiber membrane and method for producing same
US5066433A (en) * 1988-02-16 1991-11-19 Hercules Incorporated Method of manufacturing carbon fiber using preliminary stretch
JPH0742615B2 (en) * 1988-03-28 1995-05-10 東燃料株式会社 High-strength, high-modulus pitch-based carbon fiber
WO1990010101A1 (en) * 1989-02-23 1990-09-07 Mitsubishi Rayon Co., Ltd. Flameproofing apparatus
US5238672A (en) * 1989-06-20 1993-08-24 Ashland Oil, Inc. Mesophase pitches, carbon fiber precursors, and carbonized fibers
US5209975A (en) * 1989-10-30 1993-05-11 Tonen Kabushiki Kaisha High elongation, high strength pitch-type carbon fiber
US5338605A (en) * 1990-01-31 1994-08-16 Ketema, Inc. Hollow carbon fibers
US5298313A (en) * 1990-01-31 1994-03-29 Ketema Inc. Ablative and insulative structures and microcellular carbon fibers forming same
US5595720A (en) * 1992-09-04 1997-01-21 Nippon Steel Corporation Method for producing carbon fiber
US5714009A (en) * 1995-01-11 1998-02-03 Deposition Sciences, Inc. Apparatus for generating large distributed plasmas by means of plasma-guided microwave power
US5543605A (en) * 1995-04-13 1996-08-06 Avco Corporation Microwave fiber coating apparatus
DE19726663A1 (en) * 1997-06-23 1999-01-28 Sung Spitzl Hildegard Dr Ing Device for generating homogeneous microwave plasmas
DE19749475A1 (en) * 1997-11-08 1999-05-20 Fraunhofer Ges Forschung Fibers, especially natural fibers for producing carbon fiber composites
DE19907911C2 (en) * 1999-02-24 2003-02-27 Mag Maschinen Und Appbau Ag Gr Device and method for the treatment of electrically conductive continuous material
US6375875B1 (en) * 2000-01-27 2002-04-23 Ut-Battelle, Llc Diagnostic monitor for carbon fiber processing
US6372192B1 (en) * 2000-01-28 2002-04-16 Ut-Battelle, Inc. Carbon fiber manufacturing via plasma technology
US7223376B2 (en) * 2000-02-10 2007-05-29 Industrial Technology And Equipment Company Apparatus and method for making carbon fibers
US6514449B1 (en) * 2000-09-22 2003-02-04 Ut-Battelle, Llc Microwave and plasma-assisted modification of composite fiber surface topography
US6514072B1 (en) * 2001-05-23 2003-02-04 Harper International Corp. Method of processing carbon fibers
DE102004021016B4 (en) * 2004-04-29 2015-04-23 Neue Materialien Bayreuth Gmbh Device for feeding microwave radiation into hot process spaces
CN100339523C (en) * 2004-05-11 2007-09-26 陈新谋 Microwave thermal reaction device for carbonizing pre-oxidized fiber, and processing technique
CN1327052C (en) * 2004-05-11 2007-07-18 陈新谋 Microwave thermal reaction device for graphitizing carbon fiber and processing technique
US7534854B1 (en) * 2005-03-29 2009-05-19 Ut-Battelle, Llc Apparatus and method for oxidation and stabilization of polymeric materials
US7649078B1 (en) * 2005-03-29 2010-01-19 Ut-Battelle, Llc Apparatus and method for stabilization or oxidation of polymeric materials
US7824495B1 (en) * 2005-11-09 2010-11-02 Ut-Battelle, Llc System to continuously produce carbon fiber via microwave assisted plasma processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015110777A1 (en) 2015-07-03 2017-01-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Process and plant for the production of carbon fibers
WO2023180971A1 (en) * 2022-03-25 2023-09-28 Aspen Aerogels, Inc. Apparatus and method for heating at pyrolytic temperatures using microwave radiation

Also Published As

Publication number Publication date
CA2649131C (en) 2013-03-12
JP5191004B2 (en) 2013-04-24
WO2007118596A1 (en) 2007-10-25
CN101421448A (en) 2009-04-29
EP1845179A1 (en) 2007-10-17
BRPI0710157A2 (en) 2011-08-23
CN101421448B (en) 2012-05-23
JP2009533562A (en) 2009-09-17
TWI372798B (en) 2012-09-21
AU2007237521A1 (en) 2007-10-25
US20090277772A1 (en) 2009-11-12
AR060505A1 (en) 2008-06-25
AU2007237521A8 (en) 2008-11-27
CA2649131A1 (en) 2007-10-25
AU2007237521B2 (en) 2011-01-20
ES2348590T3 (en) 2010-12-09
BRPI0710157B1 (en) 2016-12-13
ATE475728T1 (en) 2010-08-15
DE502006007528D1 (en) 2010-09-09
TW200745395A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
EP1845179B1 (en) Continuous process for the production of carbon fibres
EP2475812B1 (en) Stabilisation of polyacrylonitrile precursor yarn
DE2822428A1 (en) PROCESS FOR MANUFACTURING CARBON AND / OR GRAPHITE FIBERS
DE2128907C3 (en) Process for graphitizing fiber material
DE2504593A1 (en) METHOD FOR MANUFACTURING CARBON FIBERS
EP2203244B1 (en) Method for the production of hollow carbon fibres
EP3371350B1 (en) Apparatus for producing carbon fibers
DE3305055C2 (en)
EP1460883B1 (en) Linking parts for carboneceous based electrodes
DE2211639C3 (en) Process for the production of carbon threads
DE3726861A1 (en) HIGH CARBON COMPOSITE
DE102017203822B4 (en) Device and a method for producing graphitized carbon fibers or textile structures formed with these carbon fibers
DE4333683A1 (en) Process and device for producing fullerenes
DE2049298A1 (en) Process for the pyrolytic storage of a covering on a fadenformi conditions support body
DE2053491C (en) Process for the production of carbon fibers
DE102017203826A1 (en) Device and a method for producing graphitized carbon fibers or textile structures formed with these carbon fibers
DE102017200494A1 (en) Module usable for the production of carbon fibers and a process for the production of carbon fibers
DE2732484A1 (en) Improving breakdown resistance of polyethylene insulated HT cables - through interlinking and cooling by selected media
DE2338357A1 (en) METHOD FOR PRODUCING GRAPHITE FIBER
DE2146448B2 (en) Process for the continuous deposition of boron on a carbon filament produced from pitch
DE2130403B2 (en) Process for the production of carbon fiber from acrylonitrile polymer fibers
DE2053491B2 (en) METHOD OF MANUFACTURING CARBON FIBERS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080417

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006007528

Country of ref document: DE

Date of ref document: 20100909

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100728

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20101125

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101028

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101128

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E010036

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006007528

Country of ref document: DE

Effective date: 20110429

BERE Be: lapsed

Owner name: TOHO TENAX CO., LTD.

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 475728

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006007528

Country of ref document: DE

Representative=s name: SCHROEDER OBERLEIN PATENTANWALTS UG (HAFTUNGSB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170424

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170522

Year of fee payment: 12

Ref country code: IT

Payment date: 20170428

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20170321

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180415

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230425

Year of fee payment: 18

Ref country code: DE

Payment date: 20230426

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230710