EP1827694B1 - Tropfenspendervorrichtung - Google Patents

Tropfenspendervorrichtung Download PDF

Info

Publication number
EP1827694B1
EP1827694B1 EP05848241A EP05848241A EP1827694B1 EP 1827694 B1 EP1827694 B1 EP 1827694B1 EP 05848241 A EP05848241 A EP 05848241A EP 05848241 A EP05848241 A EP 05848241A EP 1827694 B1 EP1827694 B1 EP 1827694B1
Authority
EP
European Patent Office
Prior art keywords
electrode
electrodes
drop
reservoir
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05848241A
Other languages
English (en)
French (fr)
Other versions
EP1827694A1 (de
Inventor
Yves Fouillet
Dorothée JARY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1827694A1 publication Critical patent/EP1827694A1/de
Application granted granted Critical
Publication of EP1827694B1 publication Critical patent/EP1827694B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers

Definitions

  • the invention relates to a device and a method for forming drops or small volumes of liquid from a liquid reservoir, using electrostatic forces.
  • the invention particularly relates to a liquid dispensing device that can be applied in discrete microfluidic, or microfluidic drop, for example for chemical or biological applications.
  • the invention applies to the formation of drops in devices, for biochemical, chemical or biological analysis, whether in the medical field, or in environmental monitoring, or in the field of quality control.
  • the forces used for displacement are electrostatic forces.
  • the document FR 2 841 063 describes a device implementing a catenary facing electrodes activated for displacement.
  • a drop 2 rests on a network 4 of electrodes, from which it is isolated by a dielectric layer 6 and a hydrophobic layer 8 ( Figure 1A ), all resting on a substrate 9.
  • Each electrode is connected to a common electrode via a switch, or rather an individual electrical relay control system 11.
  • the counterelectrode 10 may be either a catenary as described in FR-2 841 063 either a buried wire or a planar electrode on a hood in the case of a confined system.
  • the drop can thus be moved step by step ( figure 1C ), on the hydrophobic surface 8, by successive activation of the electrodes 4-1, 4-2, etc. and along the catenary 10.
  • the drops rest on the surface of a substrate comprising the matrix of electrodes, as illustrated in FIG. Figure 1A and as described in the document FR 2 841 063 .
  • a second family of embodiments consists in confining the droplet between two substrates, as explained, for example, in the document by G. POLLAK et al, already mentioned above.
  • the system generally consists of a chip and a control system.
  • the chips have electrodes as described above.
  • the electrical control system comprises a set of relays and a PLC or a PC for programming the switching of the relays.
  • the chip is electrically connected to the control system, so each relay can control one or more electrodes.
  • all the electrodes can be placed at a potential V0 or V1.
  • the liquid segment obtained is cut off by deactivating one of the activated electrodes (electrode Ec on the Figure 2C ). A drop 22 is thus obtained, as illustrated on the 2D figure .
  • This method can be applied by inserting electrodes between the reservoir R and one or more electrodes Ec ( Figure 2C ) said breaking electrode.
  • a liquid to be dispensed is deposited in a well 35 of this device ( figure 3A ).
  • This well is for example made in the upper cover 36 of the device.
  • the lower part is similar to the structure of the Figures 1A-1C .
  • a series of electrodes 31 is therefore used to stretch ( Figures 3B and 3C ) then to cut that liquid finger ( 3D figure ) as explained above in connection with the Figures 2A-2D .
  • the invention relates firstly to a liquid dispensing device as defined in claim 1.
  • the device may further comprise at least one second reservoir electrode and at least one second transfer electrode located between two adjacent reservoir electrodes, at least two drop forming electrodes being associated with each reservoir electrode.
  • the device may further comprise at least one second reservoir electrode, and at least one second transfer electrode located at least partially opposite the opening and at least two drop forming electrodes associated with the second reservoir electrode.
  • At least one second reservoir electrode, or each reservoir electrode has a surface at least equal to 3 times the area of each drop-forming electrode of the drop-forming electrodes associated therewith.
  • At least one reservoir electrode has a surface at least 10 times or 20 times the area of each drop forming electrode.
  • At least one reservoir electrode has a comb shape, the teeth of which can be tapered on the side of the transfer electrode.
  • At least one reservoir electrode has a star shape.
  • a device according to the invention may comprise a confinement wall between a reservoir electrode and the opening, or even a confinement wall around at least one reservoir electrode.
  • One of the drop forming electrodes advantageously has a rounded shape on one side and a pointed one on the other, thus favoring the drop ejection mechanism minimizing the dependence on the nature of the liquids and the parameters of use. of the device.
  • the first substrate may include conductive means to form a counter electrode.
  • This first substrate may also have a hydrophobic surface.
  • the second substrate may also have a hydrophobic surface, and optionally a dielectric layer under the hydrophobic surface.
  • the invention also relates to a method of forming a liquid reservoir as defined in claim 19.
  • the invention also relates to a liquid drop dispensing method comprising a method of forming a liquid reservoir as described above, and the formation of a drop of liquid by activation of at least n electrodes for forming a liquid droplet. drops, n ⁇ 2, then deactivating at least one of these electrodes among the n-1 electrodes closest to the reservoir electrode, in order to pinch a finger of liquid.
  • the invention also relates to a liquid drop dispensing method using a device as described above, the formation of a liquid reservoir facing or above the reservoir electrode or at least two tank electrodes, and ejecting a drop of liquid through activating n drop-forming electrodes, n > 2, and then deactivating at least one of these electrodes from the n-1 electrodes closest to the reservoir electrode for which a reservoir is formed.
  • a first embodiment of the invention is illustrated on the Figures 4A and 4D, respectively in top view and in side view.
  • the Figure 4A represents in fact only the electrode system used in a device for dispensing calibrated drops according to the invention.
  • This well is placed at least partially in front of a transfer electrode 44, which is in fact formed in the substrate 46 of the device.
  • a reservoir electrode 48 which will allow to define a liquid holding micro-reservoir.
  • a counter electrode 47 is disposed in the cover 42.
  • the invention therefore proposes the organization of a series of electrodes in a drop dispensing device, these electrodes having different functions, a series of drop-forming electrodes and a transfer electrode being associated with each reservoir electrode.
  • the reservoir electrode is located between the transfer electrode and the formation electrodes drops, but other configurations are possible, as illustrated in the Figures 8A and 8B .
  • the first electrode 44 is used to pump the liquid from the reservoir and bring it near the second electrode 48, said reservoir electrode.
  • this reservoir electrode can be accumulated a certain amount of liquid. It is represented as having a square or rectangular shape on the Figure 4A but its form can be any. Preferably, it can accumulate at least three to four times the volume of drops to be dispensed, and preferably at least 10 times or 20 times the volume of each drop dispensed.
  • the distance between the two substrates 42, 46 is substantially constant (as can be seen in FIG. Figure 4B it is in fact the surface of the electrode 48 which is at least three to four times equal, or at least 10 or 20 times equal to the area of each of the drop forming electrodes 50, 52, 54, 56.
  • the transfer electrode when activated, makes it possible to bring a portion of liquid, located in the well 40, close to the reservoir electrode 48.
  • the drops that will then be able to be formed using the electrodes 50-56 will themselves be independent of the pressure of the liquid in the well 40.
  • the transfer electrode 44 is not activated, the liquid defined by the reservoir electrode 48 is not in contact with the well 40.
  • the ejection or the drop dispensing that can be carried out at From the liquid stored above the electrode 48 can therefore be performed in a calibrated manner, while using a well 40, and regardless of the pressure therein, to fill the component.
  • the user fills the well 40 with the liquid to be dispensed in the microfluidic component.
  • the electrical control of the different electrodes is then controlled and controlled by an electric controller or a PC, which drives relays assigned to each of the electrodes.
  • steps 1 to 5 When the reservoir electrode is empty, or is no longer sufficiently filled, it is possible to start a new cycle (steps 1 to 5) again to repel the liquid in the well 40 and bring it to the level of the reservoir electrode thanks to the 44 transfer electrode, etc.
  • the device comprises at least two forming electrodes, but other electrodes may be provided for the manipulation of the drops in the microsystem (electrodes 54, 56 in dotted line on the Figure 4A ).
  • the volume of the well is defined by its diameter (or section) and by its height.
  • the height of the well may be of the order of a millimeter to a few millimeters, for example between 1 mm and 10 mm.
  • the volume of liquid stored in the well can be large with a minimum footprint (chip surface).
  • containment means for example in the form of walls 60, to better confine the liquids.
  • the spacer can be a thick layer of resin whose shape can be structured: for example by using a layer of photoresist (SU8, ordyl ...) and defining the patterns by photolithography.
  • a wall is made with an opening 61 between the reservoir electrode 48 and the well 40).
  • This first pattern makes it possible to ensure that the liquid of the reservoir electrode 48 does not rise towards the well 40, which is explained by the capillarity forces: the narrowing acts as a dam as long as the surfaces are non-wetting. is as long as there is no activation by the electrodes.
  • the surfaces of the walls 60 are preferably rendered hydrophobic.
  • the shape of the reservoir electrode 48 in order to constantly press or attract the liquid towards the drop formation electrodes 50 and 56 and to always allow the initiation of the finger formation process to take place. liquid when dispensing with gout.
  • This improvement also makes it possible to empty the tank completely.
  • the transfer electrode 44 has a shape adapted to bring the liquid to the reservoir electrode 48.
  • the finger is cut to form a new drop.
  • the future drop has a pointed shape on one side, and is rather spherical or angular on the other ( Figure 7B ).
  • the spherical or angular shape is explained by the competition between capillary forces and the effect of electrowetting on a square electrode. In the end, the volume of the drop depends very much on the values of the surface tension and the value of the voltage applied to the electrodes.
  • the finger takes a shape gooseneck.
  • This gooseneck geometry can also depend on a certain number of parameters such as the surface tension, the values of the voltage applied to the electrodes, as well as the geometry of the cutoff electrode.
  • a drop forming electrode can be defined by a shape limiting angle effects on one side, and controlling the shape of the gooseneck. This is obtained by producing an electrode, for example the electrode 54, in the form of a "drop": it is round on one side 54-1 and pointed on the other side 54-2, as shown in FIG. Figure 7A .
  • FIG. 8A and 8B Another example of an application is illustrated on the Figures 8A and 8B , schematically in top view.
  • the upper substrate providing confinement and in which the well is formed, is not shown. Only the distribution of the transfer electrodes, the reservoir electrodes and the drop forming electrodes is represented.
  • a well 100 feeds several reservoir electrodes 104, 106, 108, 110 according to the invention, via transfer electrodes 101, 103, 105, 107.
  • formation electrodes droplets generally designated by references 154, 156, 158, 160.
  • Each series of forming electrodes is associated with a reservoir electrode.
  • the tanks 104, 106, 108, 110 are arranged in series from the well and the drops are formed in parallel from each tank.
  • a well 200 supplies in parallel a plurality of reservoir electrodes 204, 206, 208 according to the invention, via transfer electrodes 201, 203, 205.
  • drop forming electrodes At the outlet of each reservoir electrode are arranged drop forming electrodes globally designated by references 254, 256, 258. Again, each series of formation electrodes is associated with a reservoir electrode.
  • the tanks 204, 206, 208 are arranged in parallel with the well, and the drops are formed in parallel from each tank.
  • the electrical control of the different electrodes can be controlled by a electric controller or a PC, which drives relays assigned to each of the electrodes.
  • Figures 8A and 8B can be combined with one or more of the embodiments of the Figures 5A-7C .
  • One or more of the reservoir electrodes may be provided with means of confinement, as on the Figures 5A and 5B , and / or have a shape as illustrated on the Figures 6A-6B , while one or more of the drop forming electrodes may have a shape as illustrated on the Figure 7A .
  • the buried electrodes are obtained by depositing and then etching a thin layer of a metal chosen from Au, Al, Ito, Pt, Cu, Cr, ... by means of conventional microtechnologies microelectronics.
  • the thickness of the electrodes is from a few tens of nm to a few microns, for example between 10 nm and 1 ⁇ m.
  • the width of the pattern is from a few ⁇ m to a few mm (flat electrodes) for the electrodes 50-56 and the transfer electrode 44.
  • the two substrates 42, 46 are typically spaced apart by a distance of, for example, 10 ⁇ m and 100 ⁇ m or 500 ⁇ m.
  • a drop ejected liquid 22 will have a volume between, for example, a few picoliters and a few microliters, for example between 1 pl or 10 pl and 5 .mu.l or 10 .mu.l.
  • each of the electrodes 50-56, 150, 152, 154, 250, 252, 254 has, for example, a the order of a few tens of ⁇ m 2 (for example 10 ⁇ m 2 ) up to 1 mm 2 , depending on the size of the drops to be transported, the spacing between adjacent electrodes being for example between 1 micron and 10 microns.
  • the structuring of the electrodes can be obtained by conventional microtechnology methods, for example by photolithography.
  • the electrodes are for example made by depositing a metal layer (Au, Al, ITO, Pt, Cr, Cu, ...) by photolithography.
  • the substrate is then covered with a dielectric layer of Si 3 N 4 , SiO 2 , ... Finally, a deposit of a hydrophobic layer is performed, such as a teflon deposit made by spinning.
  • Methods for producing chips incorporating a device according to the invention may be directly derived from the methods described in the document FR-2 841 063 .
  • Conductors and in particular buried catenaries, may be made by depositing a conductive layer and etching this layer in the appropriate pattern of conductors, before deposition of the hydrophobic layer.
  • Each of the different electrodes is connected to a relay means to bring it to a potential defined by a voltage source.
  • the whole is controlled by an electric automaton or a PC.
  • the chips measure 13mm by 13mm, and the drop displacement electrodes measure 800 ⁇ m per 800 ⁇ m.
  • the hatched discs 350, 352, 354, 356, 358 ( Figure 9A ) 351, 353, 355 ( Figure 9B ) represent the location of the holes in the hood (sinks).
  • the disk 360 represents a trash zone.
  • main tank 400 - opening on a first electrode line 255, whose left end opens to the trash zone 360. Through this line, drops of liquids can be removed and transported by electrowetting from the main tank 400.
  • the Figures 9A and 9B are two chip structures showing different shapes and arrangements of the tanks 350, 352, 354, 356 and 351, 353, 355.
  • the chip of the Figure 9A has 4 secondary tanks 350, 352, 354, 356 open on the outside by wells.
  • the chip of the Figure 9B has 3 secondary tanks 351, 353, 355 open on the outside by wells.
  • Each reservoir is associated with a set of electrodes 360, 362, 364, 366 and 361, 363 which make it possible to bring one or more drops from the corresponding reservoir to the path 402.
  • a section 257 also formed of electrodes allows to link the path 255 and the loop 402.
  • the references 410, 411 represent zones or addressing pads of the electrodes which constitute the paths 255, 402 and electrodes located at the outlet of the different reservoirs. These zones or pads may themselves be controlled by electronic or computer means.
  • the tanks are configured and used according to the invention: they comprise a series of electrodes for confining a volume of liquid at a reservoir electrode from a well to allow reproducible dispensing drops.
  • the tanks comprise containment means 480, 481 (tank electrodes) star or tip, arranged, according to the invention, downstream of the transfer electrodes from the tank.
  • a drop dispensing method according to the invention can implement a device as described in connection with the Figures 9A and 9B .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Claims (24)

  1. Tropfenspendervorrichtung, ein erstes und ein zweites Substrat (46, 42) umfassend, wobei das erste Substrat (42) eine Öffnung (40) zum Einleiten einer Flüssigkeit aufweist und das zweite Substrat (46) eine Vielzahl Elektroden umfasst, darunter:
    - mindestens eine wenigstens teilweise der Öffnung (40) gegenüberstehende so genannte Transfer-Elektrode (44),
    - mindestens zwei Tropfenbildungselektroden (50, 52),
    - und mindestens eine so genannte Reservoir-Elektrode (48), angeordnet zwischen der Transfer-Elektrode (44) und den Tropfenbildungselektroden (50, 52), die eine wenigstens 3-mal größere Fläche als jede Tropfenbildungselektroden hat, wobei diese Reservoir-Elektrode aktiviert werden kann ohne dabei die Transfer-Elektrode zu aktivieren, und umgekehrt,
  2. Vorrichtung nach Anspruch 1, mit außerdem mindestens einer zweiten Reservoir-Elektrode (104, 106, 108, 110) und mindestens einer zweiten Transfer-Elektrode (101, 103, 105, 107), zwischen zwei benachbarten Reservoir-Elektroden angeordnet oder mit ihnen verbunden, wobei wenigstens zwei Tropfenbildungselektroden (154, 156, 158, 160) mit jeder Reservoir-Elektrode verbunden sind.
  3. Vorrichtung nach Anspruch 1, mit außerdem mindestens einer zweiten Reservoir-Elektrode (204, 206, 208) und mindestens einer wenigstens teilweise der Öffnung (40) gegenüberstehenden zweiten Transfer-Elektrode (201, 203, 205) und mindestens zwei mit der zweiten Reservoir-Elektrode verbundene Tropfenbildungselektroden (254, 256, 258).
  4. Vorrichtung nach einem der Ansprüche 2 oder 3, wobei mindestens eine zweite Reservoir-Elektrode eine wenigstens 3-mal größere Fläche als jede Tropfenbildungselektroden unter den Tropfenbildungselektroden hat, die mit ihr verbunden sind.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, wobei mindestens eine der Reservoir-Elektroden (48) eine wenigstens 10-mal größere Fläche als jede Tropfenbildungselektroden unter den Tropfenbildungselektroden hat, die mit ihr verbunden sind.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, wobei wenigstens eine der Reservoir-Elektroden die Form eines Kamms oder einer Spitze hat.
  7. Vorrichtung nach Anspruch 6, wobei der Kamm auf der Seite der Transfer-Elektrode spitzige Zähne hat, oder die Spitze auf der Seite der Transfer-Elektrode spitzig ist.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, wobei wenigstens eine der Reservoir-Elektroden sternförmig ist.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, mit einer Begrenzungsmauer (60) zwischen wenigstens einer Reservoir-Elektrode und der Öffnung (40).
  10. Vorrichtung nach einem der Ansprüche 1 bis 9, mit einer Begrenzungsmauer (62) um wenigstens eine Reservoir-Elektrode herum.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, wobei wenigstens eine der Tropfenbildungselektroden auf der einen Seite eine runde und der andren Seite eine spitze Form aufweist.
  12. Vorrichtung nach einem der Ansprüche 1 bis 11, wobei das erste Substrat (42) leitende Einrichtungen (47) umfasst.
  13. Vorrichtung nach einem der Ansprüche 1 bis 12, wobei das erste Substrat (42) eine hydrophobe Oberfläche aufweist.
  14. Vorrichtung nach einem der Ansprüche 1 bis 13, wobei das zweite Substrat (42) eine hydrophobe Oberfläche (8) aufweist.
  15. Vorrichtung nach Anspruch 14, wobei das zweite Substrat (42) unter der hydrophoben Oberfläche (8) eine dielektrische Schicht umfasst.
  16. Vorrichtung nach einem der Ansprüche 1 bis 15, die außerdem in Schleifenform (402) angeordnete Einrichtungen zur Tropfenverschiebung durch Elektrobenetzung umfasst.
  17. Vorrichtung nach Anspruch 16, mit außerdem einem oder mehreren um die Schleife (402) herum angeordneten sekundären Reservoirs (350, 352, 354, 356, 358, 351, 353, 355).
  18. Vorrichtung nach Anspruch 17, bei der jedes sekundäre Reservoir durch eine oder mehrere Transfer-Elektroden (360, 361, 362, 363, 364, 366) mit der Schleife (402) verbunden ist.
  19. Verfahren zur Bildung eines Flüssigkeitsreservoirs (51), ausgehend von einem Flüssigkeitstopf (40), umfassend :
    - den Transfer eines Teils der Flüssigkeit von dem Topf (40) zu einer so genannten Reservoir-Elektrode (48) mit Hilfe einer dem Topf (40) wenigstens teilweise gegenüberstehenden so genannten Transfer-Elektrode (44), wobei die Reservoir-Elektrode zwischen der Transfer-Elektrode (44) und den Tropfenbildungselektroden (50, 52) angeordnet ist und eine mindestens 3-mal größere Fläche als jede der Tropfenbildungselektroden aufweist,
    - die Deaktivierung der Transfer-Elektrode (44), was den Druck in dem Flüssigkeitsreservoir unabhängig macht von dem Druck der Flüssigkeit in dem Topf (40) (S. 9, Z. 13-16).
  20. Flüssigkeitstropfen-Spendeverfahren, ein Verfahren zur Bildung eines Flüssigkeitsreservoirs nach Anspruch 19 und die Bildung eines Flüssigkeitstropfens durch Aktivierung von mindestens n Tropfenbildungselektroden (50, 52) umfassend, mit n ≥ 2, sodann Deaktivierung von wenigstens einer dieser Elektroden unter den n-1 Elektroden mit der größten Nähe zur Reservoir-Elektrode, um einen Flüssigkeitsfinger einzuklemmen.
  21. Flüssigkeitstropfen-Spendeverfahren mit einer Vorrichtung nach einem der Ansprüche 1 bis 18, der Bildung eines Flüssigkeitsreservoirs (51) gegenüber der Reservoir-Elektrode (51), und dem Auswurf eines Flüssigkeitstropfens durch Aktivierung von n Tropfenbildungselektroden, mit n ≥ 2, sodann Deaktivierung von wenigstens einer dieser Elektroden unter den n-1 Elektroden mit der größten Nähe zur Reservoir-Elektrode.
  22. Flüssigkeitstropfen-Spendeverfahren mit einer Vorrichtung nach einem der Ansprüche 16 bis 18.
  23. Verfahren nach Anspruch 22, bei dem ein gebildeter Tropfen gemäß einem schleifenförmigen Weg (402) bewegt wird.
  24. Verfahren nach Anspruch 23, bei dem ein gebildeter Tropfen gemischt wird mit einem oder mehreren Tropfen aufs den um die Schleife (402) herum angeordneten Reservoirs.
EP05848241A 2004-12-23 2005-12-22 Tropfenspendervorrichtung Active EP1827694B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0453211A FR2879946B1 (fr) 2004-12-23 2004-12-23 Dispositif de dispense de gouttes
PCT/FR2005/051131 WO2006070162A1 (fr) 2004-12-23 2005-12-22 Dispositif de dispense de gouttes

Publications (2)

Publication Number Publication Date
EP1827694A1 EP1827694A1 (de) 2007-09-05
EP1827694B1 true EP1827694B1 (de) 2013-02-20

Family

ID=34953970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05848241A Active EP1827694B1 (de) 2004-12-23 2005-12-22 Tropfenspendervorrichtung

Country Status (5)

Country Link
US (1) US7922886B2 (de)
EP (1) EP1827694B1 (de)
JP (1) JP4824697B2 (de)
FR (1) FR2879946B1 (de)
WO (1) WO2006070162A1 (de)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897780B2 (ja) 2005-01-28 2016-03-30 デューク ユニバーシティ プリント回路基板上の液滴操作装置及び方法
JP2008539759A (ja) 2005-05-11 2008-11-20 ナノリティックス・インコーポレイテッド 多数の温度で生化学的又は化学的な反応を実施する方法及び装置
FR2888912B1 (fr) 2005-07-25 2007-08-24 Commissariat Energie Atomique Procede de commande d'une communication entre deux zones par electromouillage, dispositif comportant des zones isolables les unes des autres et procede de realisation d'un tel dispositif
US8734003B2 (en) * 2005-09-15 2014-05-27 Alcatel Lucent Micro-chemical mixing
US9476856B2 (en) 2006-04-13 2016-10-25 Advanced Liquid Logic, Inc. Droplet-based affinity assays
US20140193807A1 (en) 2006-04-18 2014-07-10 Advanced Liquid Logic, Inc. Bead manipulation techniques
WO2007123908A2 (en) 2006-04-18 2007-11-01 Advanced Liquid Logic, Inc. Droplet-based multiwell operations
US7901947B2 (en) 2006-04-18 2011-03-08 Advanced Liquid Logic, Inc. Droplet-based particle sorting
US10078078B2 (en) 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US8809068B2 (en) * 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US8658111B2 (en) * 2006-04-18 2014-02-25 Advanced Liquid Logic, Inc. Droplet actuators, modified fluids and methods
US8637324B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US7439014B2 (en) 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
US8716015B2 (en) 2006-04-18 2014-05-06 Advanced Liquid Logic, Inc. Manipulation of cells on a droplet actuator
US8980198B2 (en) * 2006-04-18 2015-03-17 Advanced Liquid Logic, Inc. Filler fluids for droplet operations
US7851184B2 (en) 2006-04-18 2010-12-14 Advanced Liquid Logic, Inc. Droplet-based nucleic acid amplification method and apparatus
US9675972B2 (en) 2006-05-09 2017-06-13 Advanced Liquid Logic, Inc. Method of concentrating beads in a droplet
EP2040082A4 (de) * 2006-07-10 2014-04-23 Hitachi High Tech Corp Flüssigkeitsübertragungsvorrichtung
US8685344B2 (en) 2007-01-22 2014-04-01 Advanced Liquid Logic, Inc. Surface assisted fluid loading and droplet dispensing
CA2856143C (en) * 2007-02-09 2016-11-01 Advanced Liquid Logic, Inc. Droplet actuator devices and methods employing magnetic beads
US8872527B2 (en) 2007-02-15 2014-10-28 Advanced Liquid Logic, Inc. Capacitance detection in a droplet actuator
EP2126038B1 (de) 2007-03-22 2015-01-07 Advanced Liquid Logic, Inc. Enzymassays für einen tropfenaktuator
US8202686B2 (en) * 2007-03-22 2012-06-19 Advanced Liquid Logic, Inc. Enzyme assays for a droplet actuator
JP2010524002A (ja) * 2007-04-10 2010-07-15 アドヴァンスト リキッド ロジック インコーポレイテッド 液滴分配装置および方法
US8951732B2 (en) 2007-06-22 2015-02-10 Advanced Liquid Logic, Inc. Droplet-based nucleic acid amplification in a temperature gradient
US8702938B2 (en) 2007-09-04 2014-04-22 Advanced Liquid Logic, Inc. Droplet actuator with improved top substrate
WO2009052123A2 (en) * 2007-10-17 2009-04-23 Advanced Liquid Logic, Inc. Multiplexed detection schemes for a droplet actuator
US20100236929A1 (en) * 2007-10-18 2010-09-23 Advanced Liquid Logic, Inc. Droplet Actuators, Systems and Methods
EP2232535A4 (de) * 2007-12-10 2016-04-13 Advanced Liquid Logic Inc Tröpfchenaktorkonfigurationen und verfahren
CN101945767B (zh) 2007-12-23 2013-10-30 先进液体逻辑公司 液滴致动器配置以及引导液滴操作的方法
FR2930457B1 (fr) * 2008-04-24 2010-06-25 Commissariat Energie Atomique Procede de fabrication de microcanaux reconfigurables
WO2009133499A2 (en) * 2008-04-28 2009-11-05 Nxp B.V. Microfluidic pump
WO2009137415A2 (en) 2008-05-03 2009-11-12 Advanced Liquid Logic, Inc. Reagent and sample preparation, loading, and storage
EP2286228B1 (de) * 2008-05-16 2019-04-03 Advanced Liquid Logic, Inc. Tröpfchenaktuatorvorrichtungen und verfahren zur manipulation von kügelchen
FR2937690B1 (fr) * 2008-10-28 2010-12-31 Commissariat Energie Atomique Micropome a actionnement par gouttes
WO2010062163A1 (en) * 2008-11-25 2010-06-03 Miortech Holding B.V. Electrowetting optical element and mirror system comprising said element
US8877512B2 (en) 2009-01-23 2014-11-04 Advanced Liquid Logic, Inc. Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator
US8926065B2 (en) 2009-08-14 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
DE102009038469B4 (de) * 2009-08-21 2015-02-12 Advanced Display Technology Ag Anzeigeelement und Verfahren zum Ansteuern eines Anzeigeelementes
JP5610258B2 (ja) * 2009-09-09 2014-10-22 国立大学法人 筑波大学 送液装置
US8846414B2 (en) 2009-09-29 2014-09-30 Advanced Liquid Logic, Inc. Detection of cardiac markers on a droplet actuator
US9091649B2 (en) 2009-11-06 2015-07-28 Advanced Liquid Logic, Inc. Integrated droplet actuator for gel; electrophoresis and molecular analysis
EP2516669B1 (de) 2009-12-21 2016-10-12 Advanced Liquid Logic, Inc. Enzymassays auf einem tropfenaktuator
US9248450B2 (en) 2010-03-30 2016-02-02 Advanced Liquid Logic, Inc. Droplet operations platform
WO2012012090A2 (en) 2010-06-30 2012-01-26 Advanced Liquid Logic, Inc. Droplet actuator assemblies and methods of making same
US9188615B2 (en) 2011-05-09 2015-11-17 Advanced Liquid Logic, Inc. Microfluidic feedback using impedance detection
US9140635B2 (en) 2011-05-10 2015-09-22 Advanced Liquid Logic, Inc. Assay for measuring enzymatic modification of a substrate by a glycoprotein having enzymatic activity
CN103733059B (zh) 2011-07-06 2016-04-06 先进流体逻辑公司 在微滴执行机构上的试剂储存
US8901043B2 (en) 2011-07-06 2014-12-02 Advanced Liquid Logic, Inc. Systems for and methods of hybrid pyrosequencing
US9513253B2 (en) 2011-07-11 2016-12-06 Advanced Liquid Logic, Inc. Droplet actuators and techniques for droplet-based enzymatic assays
US9446404B2 (en) 2011-07-25 2016-09-20 Advanced Liquid Logic, Inc. Droplet actuator apparatus and system
EP2776165A2 (de) 2011-11-07 2014-09-17 Illumina, Inc. Integrierte sequenzierungsvorrichtungen und verwendungsverfahren
US10731199B2 (en) 2011-11-21 2020-08-04 Advanced Liquid Logic, Inc. Glucose-6-phosphate dehydrogenase assays
US9223317B2 (en) 2012-06-14 2015-12-29 Advanced Liquid Logic, Inc. Droplet actuators that include molecular barrier coatings
CN104603595B (zh) 2012-06-27 2017-08-08 先进流体逻辑公司 用于减少气泡形成的技术和液滴致动器设计
WO2014062551A1 (en) 2012-10-15 2014-04-24 Advanced Liquid Logic, Inc. Digital microfluidics cartridge and system for operating a flow cell
CN108656746B (zh) 2014-04-16 2020-03-20 雅培制药有限公司 液滴致动器制造装置、系统和相关方法
FR3127810A1 (fr) 2021-10-01 2023-04-07 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de tri de gouttes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008424A2 (fr) * 2004-07-09 2006-01-26 Commissariat A L'energie Atomique Methode d'adressage d'electrodes
EP1627685A1 (de) * 2004-08-17 2006-02-22 Hitachi High-Technologies Corporation Mikrofluidischer Chip zur chemischen Analyse, basierend auf Elektrobenetzung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548431B1 (fr) * 1983-06-30 1985-10-25 Thomson Csf Dispositif a commande electrique de deplacement de fluide
IL69431A (en) * 1983-08-04 1987-12-31 Omikron Scient Ltd Liquid delivery system particularly useful as an implantable micro-pump for delivering insulin or other drugs
FI980874A (fi) * 1998-04-20 1999-10-21 Wallac Oy Menetelmä ja laite pienten nestemäärien kemiallisen analyysin suorittamiseksi
FR2794039B1 (fr) * 1999-05-27 2002-05-03 Osmooze Sa Dispositif de formation, de deplacement et de diffusion de petites quantites calibrees de liquides
US7016560B2 (en) * 2001-02-28 2006-03-21 Lightwave Microsystems Corporation Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices
FR2841063B1 (fr) 2002-06-18 2004-09-17 Commissariat Energie Atomique Dispositif de deplacement de petits volumes de liquide le long d'un micro-catenaire par des forces electrostatiques
US6989234B2 (en) * 2002-09-24 2006-01-24 Duke University Method and apparatus for non-contact electrostatic actuation of droplets
US7329545B2 (en) * 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
CN1732026A (zh) * 2002-12-30 2006-02-08 皇家飞利浦电子股份有限公司 流体分配系统
KR100474851B1 (ko) * 2003-01-15 2005-03-09 삼성전자주식회사 잉크 토출 방법 및 이를 채용한 잉크젯 프린트헤드

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008424A2 (fr) * 2004-07-09 2006-01-26 Commissariat A L'energie Atomique Methode d'adressage d'electrodes
EP1627685A1 (de) * 2004-08-17 2006-02-22 Hitachi High-Technologies Corporation Mikrofluidischer Chip zur chemischen Analyse, basierend auf Elektrobenetzung

Also Published As

Publication number Publication date
FR2879946A1 (fr) 2006-06-30
JP2008525778A (ja) 2008-07-17
EP1827694A1 (de) 2007-09-05
US7922886B2 (en) 2011-04-12
JP4824697B2 (ja) 2011-11-30
US20080142376A1 (en) 2008-06-19
FR2879946B1 (fr) 2007-02-09
WO2006070162A1 (fr) 2006-07-06

Similar Documents

Publication Publication Date Title
EP1827694B1 (de) Tropfenspendervorrichtung
EP1891329B1 (de) Elektrobenetzungs-pumpvorrichtung und ihre verwendung zum messen elektrischer aktivität
EP2318136A1 (de) Verfahren und vorrichtung zur handhabung und überwachung von flüssigkeitstropfen
EP1376846B1 (de) Vorrichtung zum Austragen kleiner Volumen Flüssigkeit einer Mikrokettenlinie entlang
EP1949145B1 (de) Herstellen eines zweiphasen-flüssigkeits- bzw. flüssigkeits- oder gassystems in der mikrofluidik
EP1778976B1 (de) Elektrodenadressierungsverfahren
EP1984110B1 (de) Verfahren zur steuerung des verlaufs einer flüssigkeit in einer mikrofluidischen einheit
FR2933315A1 (fr) Dispositif microfluidique de deplacement de liquide
EP1567269B1 (de) Mikrofluides system mit stabilisierter flüssig-flüssig-grenzfläche
FR2866493A1 (fr) Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides
EP2282827A2 (de) Vorrichtung zur trennung von biomolekülen aus einer flüssigkeit
FR2887030A1 (fr) Dispositif planaire avec adressage de puits automatise par electromouillage dynamique
EP3347128A1 (de) Trägersubstrat für flüssigkeitsprobe, anordnung mit solch einem substrat und verwendung davon
EP2161449B1 (de) Mikropumpe für kontinuierliche mikrofluidische Förderung
EP2268404A1 (de) Verfahren zur herstellung neukonfigurierbarer mikrokanäle
WO2007138227A1 (fr) Dispositif microfluidique avec materiau de volume variable
EP2749527A1 (de) Verfahren zur Erzeugung eines mikrofluidischen Netzwerks
EP2182212B1 (de) Mikropumpe mit Betätigung durch Tropfen
FR2884243A1 (fr) Dispositif et procede de commutation par electromouillage
CN117615851A (zh) 涉及微流体装置的改进
CA2438859A1 (fr) Appareil pour le prelevement et le depot en microreseaux de solutions
FR2853565A1 (fr) Microdispositif de transfert collectif d'une pluralite de liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

RBV Designated contracting states (corrected)

Designated state(s): CH DE GB IT LI

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

17Q First examination report despatched

Effective date: 20110301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005038243

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01L0003000000

Ipc: B01L0003020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B01L 3/02 20060101AFI20120629BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005038243

Country of ref document: DE

Effective date: 20130418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

26N No opposition filed

Effective date: 20131121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005038243

Country of ref document: DE

Effective date: 20131121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 19