EP1825016B1 - Verfahren zur beschichtung eines werkstücks - Google Patents

Verfahren zur beschichtung eines werkstücks Download PDF

Info

Publication number
EP1825016B1
EP1825016B1 EP05820936A EP05820936A EP1825016B1 EP 1825016 B1 EP1825016 B1 EP 1825016B1 EP 05820936 A EP05820936 A EP 05820936A EP 05820936 A EP05820936 A EP 05820936A EP 1825016 B1 EP1825016 B1 EP 1825016B1
Authority
EP
European Patent Office
Prior art keywords
coating
workpiece
fluorescent marker
thermal spraying
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05820936A
Other languages
English (en)
French (fr)
Other versions
EP1825016A1 (de
Inventor
Manuel Hertter
Andreas Jakimov
Wolfgang Wachter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1825016A1 publication Critical patent/EP1825016A1/de
Application granted granted Critical
Publication of EP1825016B1 publication Critical patent/EP1825016B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the invention relates to a method for coating a workpiece according to the preamble of patent claim 1.
  • thermal spraying is a coating method in which a thermally active coating material is sprayed or sprayed onto a surface of a workpiece to be coated. Since almost all meltable coating materials can be used, coatings with different properties or functions such as thermal insulation, corrosion protection or wear protection can be realized by thermal spraying. In thermal spraying, there are virtually unlimited possible combinations between the material of the article or workpiece to be coated and the thermally active coating material to be used for the coating.
  • thermal spraying methods namely, for example, plasma spraying, arc spraying, flame spraying or else high-speed flame spraying.
  • Cold kinetic compaction is also a thermal spraying process.
  • the selection of the corresponding thermal spraying method depends, for example, on the coating material, the desired properties of the coating and on the respective costs.
  • a porous coating on the workpiece to be coated it is already known, in addition to the actual coating material to apply a aggregate by thermal spraying on the workpiece to be coated, wherein the aggregate is decomposed or dissolved after the thermal spraying so to provide the porous coating.
  • the decomposing aggregate leaves pores in the coating.
  • the decomposition of the aggregate material is carried out in particular by a heat treatment of the coated workpiece. If no porosity is desired, the aggregate material can also remain in the layer and affect the properties of the layer, provided that it does not have a detrimental effect.
  • DE-A-10244037 discloses a method for coating a workpiece by thermal spraying wherein the injection process is monitored and evaluated on-line. Properties of the spray jet (eg luminous intensity of the spray particles) are optically recorded and evaluated.
  • US-A-4327120 discloses a method for coating a workpiece by thermal spraying a coating material consisting of a mixture of a coating material and a UV-sensitive marker material.
  • the present invention based on the problem to provide a novel method for coating a workpiece.
  • a method for coating a workpiece according to claim 1 in addition to the coating material, a aggregate material is applied to the workpiece, in which or on which a fluorescent marker material is firmly bound, wherein the injection process is monitored online that at least the particles of the fluorescent marker material located in a spray jet are detected and evaluated.
  • a coating material is used for coating a workpiece, in which or on which a fluorescent marker material is bound.
  • the fluorescent marker material is recorded online during the injection process.
  • the quality of the porous coating which sets up after the decomposition of the aggregate material can already be concluded during the injection process. This makes it possible for the first time to subject coatings produced by thermal spraying to comprehensive online quality control and thus to dispense with destructive test methods.
  • the aggregate material is decomposed after the injection process together with the fluorescent marker material, in particular by heat treatment of the coated workpiece.
  • FIG Fig. 1 described in more detail using the example of the preparation of a porous coating.
  • the invention relates to a method for coating a workpiece by means of thermal spraying.
  • a coating material is applied to the workpiece together with a aggregate material by thermal spraying, namely sprayed or sprayed.
  • the aggregate is decomposed, in particular, by a heat treatment of the coated workpiece so as to provide a porous coating on the workpiece.
  • the invention will be described below for plasma spraying as a preferred thermal spraying process. However, the invention should not be limited to plasma spraying. Rather, the invention can also be used in other thermal spraying processes, for example in flame spraying, high-speed flame spraying, arc wire spraying or cold kinetic compaction.
  • plasma spraying is well known in the art.
  • the EP 0 851 720 B1 a plasmatron suitable for plasma spraying.
  • an arc is ignited during plasma spraying between a cathode and an anode of a non-illustrated plasmatron.
  • This arc heats a plasma gas flowing through the plasmatron.
  • the plasma gases used are, for example, argon, hydrogen, nitrogen, helium or mixtures of these gases.
  • a plasma jet sets in, which can reach temperatures of up to 20,000 ° C in the core.
  • the coating material used for coating is injected into the plasma jet using a carrier gas.
  • this coating material to be used for the coating is accelerated to a high speed by the plasma jet. The accelerated in this way material is applied to the workpiece to be coated, namely sprayed.
  • an aggregate material is also sprayed onto the workpiece to be coated.
  • a spray jet is formed, wherein the spray jet is formed on the one hand by the plasma jet and on the other by the particle beam of the coating material and aggregate material.
  • the particles impinge with high thermal and kinetic energy on a surface of the workpiece to be coated and form a coating there.
  • the desired properties of the coating are formed.
  • a supplemental material is used in the thermal spraying, in which or on which a fluorescent marker material is tied.
  • both the particles of the coating material and the particles of the marker material, which is firmly bound in or on the aggregate, are made to shine, so that the particles of the coating material and the particles of the marker material contained in the spray jet or particle beam collected and evaluated in the sense of online monitoring.
  • the excitation of the fluorescent marker material and of the coating material can take place, for example, via the plasma jet. Alternatively, the excitation can be accomplished via a laser source, which excites the particles to glow.
  • marker materials are used which shine in a different wavelength range than the coating material. This makes it possible to distinguish in the particle beam, the particles of the coating material from the particles of the marker material and thus the aggregate material.
  • marker materials are used in particular laser dyes whose fluorescence is in the visible wavelength range. Particularly suitable as a laser dye rhodamine 6G, the fluorescence emission maximum is at about 560 nm.
  • Rhodamine 6G can be firmly bound in organic aggregates, such as polyester, by, for example, diffusing Rhodamine 6G into polyester.
  • Fig. 1 shows a highly schematic of an adjusting during plasma spraying spray jet 10.
  • the spray jet 10 is optically monitored by a camera 11 through an optical filter 12.
  • the camera 11 is in the illustrated embodiment as a CCD camera educated.
  • the optical filter can be embodied as a gray filter or color filter or bandpass filter. It is also possible to use a plurality of cameras and / or other process control systems, in particular a spectrometer for monitoring the injection process.
  • the image acquired by the camera 11 is supplied to an image processing system not shown in detail.
  • properties of the optically monitored spray jet are determined from the data acquired by the camera 11.
  • the properties of the spray jet 10 determined from the optical monitoring of the spray jet are compared with predetermined desired values for these properties. If a deviation of the determined properties (actual values) of the spray jet from the predetermined values (nominal values) for the properties is detected, the process parameters for the plasma spraying are automatically adapted by a controller.
  • the method described here can also be used in combination with other methods for monitoring the spray jet, in particular the laser-induced fluorescence.
  • the invention is preferably used in the production of porous coatings, it is not limited to this application. Rather, the invention can also be used in the production of solid coatings, in which case the aggregate material with the fluorescent marker material remains in the coating.
  • boron nitride (BN) or bentonite can be introduced as an additive in a massive coating, so as to form a predetermined breaking point in the coating.
  • the boron nitride can be detected online during the coating by a fluorescent marker material bound to or in the boron nitride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Beschichtung eines Werkstücks nach dem Oberbegriff des Patentanspruchs 1.
  • Aus dem Stand der Technik sind zahlreiche Verfahren zur Beschichtung von Werkstücken bekannt. Beim sogenannten thermischen Spritzen handelt es sich um ein Beschichtungsverfahren, bei welchem ein thermisch aktiver Beschichtungswerkstoff auf eine zu beschichtende Oberfläche eines Werkstücks gespritzt bzw. gesprüht wird. Da nahezu alle schmelzbaren Beschichtungswerkstoffe verwendet werden können, lassen sich durch thermisches Spritzen Beschichtungen mit unterschiedlichen Eigenschaften bzw. Funktionen wie zum Beispiel Wärmedämmung, Korrosionsschutz oder Verschleißschutz realisieren. Beim thermischen Spritzen gibt es nahezu unbegrenzte Kombinationsmöglichkeiten zwischen dem Werkstoff des zu beschichtenden Gegenstands bzw. Werkstücks und dem für die Beschichtung zu verwendenden, thermisch aktiven Beschichtungswerkstoff.
  • Abhängig von der verwendeten Wärmequelle unterscheidet man verschiedene thermischen Spritzverfahren, nämlich zum Beispiel das Plasmaspritzen, Lichtbogenspritzen, Flammspritzen oder auch Hochgeschwindigkeitsflammspritzen. Auch das Kalt Kinetische Kompaktieren ist ein thermisches Spritzverfahren. Die Auswahl des entsprechenden thermischen Spritzverfahrens hängt zum Beispiel vom Beschichtungswerkstoff, den gewünschten Eigenschaften der Beschichtung und von den jeweiligen Kosten ab.
  • Zur Bereitstellung von zum Beispiel einer porösen Beschichtung auf dem zu beschichtenden Werkstück ist es bereits bekannt, zusätzlich zu dem eigentlichen Beschichtungswerkstoff einen Zuschlagwerkstoff durch thermisches Spritzen auf das zu beschichtende Werkstück aufzutragen, wobei der Zuschlagwerkstoff nach dem thermischen Spritzvorgang zersetzt bzw. aufgelöst wird, um so die poröse Beschichtung bereitzustellen. So hinterlässt der sich zersetzende Zuschlagwerkstoff in der Beschichtung Poren. Das Zersetzen des Zuschlagwerkstoffs erfolgt dabei insbesondere durch eine Wärmebehandlung des beschichteten Werkstücks. Sollte keine Porosität gewünscht sein, kann der Zuschlagswerkstoff - soweit er sich nicht schädlich auswirkt - auch in der Schicht verbleiben und die Eigenschaften der Schicht beeinflussen.
  • Bei der Beschichtung von Werkstücken mit einem thermischen Spritzverfahren kommt der Qualitätskontrolle der sich einstellenden Beschichtung eine wichtige Rolle zu. Nur dann, wenn die Beschichtung vorgegebene Qualitätskriterien erfüllt, kann das beschichtete Werkstück die Qualitätskontrolle passieren und gegebenenfalls weiterverarbeitet werden. Da die Zuschlagstoffe, die zur Bereitstellung von zum Beispiel einer porösen Beschichtung zusammen mit dem Beschichtungswerkstoff auf das Werkstück aufgetragen werden, im Wege einer Online-Qualitätskontrolle nicht erfasst bzw. detektiert werden können, werden nach dem Stand der Technik zur Qualitätskontrolle zerstörende Prüfmethoden stichprobenartig eingesetzt. Eine das Werkstück zerstörende Qualitätskontrolle ist zum einen kosten- und zeitintensiv, zum anderen können nur stichprobenartige Kontrollen durchgeführt werden.
  • DE-A-10244037 offenbart ein Verfahren zur Beschichtung eines Werkstücks durch thermisches Spritzen wobei der Spritzvorgang on line überwacht und ausgewertet wird. Eigenschaften des Spritzstrahls (z.B. Leuchtintensität der Spritzpartikel) werden optisch erfasst und ausgewertet.
  • US-A-4327120 offenbart ein Verfahren zur Beschichtung eines Werkstücks durch thermisches Spritzen eines Beschichtungsmaterials bestehend aus einer Mischung eines Beschichtungswerkstoffs und eine UV empfindlichen Markerwerkstoffs.
  • Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde ein neuartiges Verfahren zur Beschichtung eines Werkstücks zu schaffen.
  • Dieses Problem wird durch ein Verfahren zur Beschichtung eines Werkstücks gemäß Patentanspruch 1 gelöst. Erfindungsgemäß wird zusätzlich zu dem Beschichtungswerkstoff ein Zuschlagwerkstoff auf das Werkstück aufgetragen, in dem bzw. auf dem ein fluoreszierender Markerwerkstoff fest gebunden ist, wobei der Spritzvorgang dadurch online überwacht wird, dass zumindest die in einem Spritzstrahl befindlichen Partikel des fluoreszierenden Markerwerkstoffs erfasst und ausgewertet werden.
  • Im Sinne des erfindungsgemäßen Verfahrens wird zur Beschichtung eines Werkstücks ein Zuschlagwerkstoff verwendet, in dem bzw. auf dem ein fluoreszierender Markerwerkstoff gebunden ist. Der fluoreszierende Markerwerkstoff wird während des Spritzvorgangs online erfasst. Bei der Herstellung von zum Beispiel porösen Beschichtungen kann so bereits während des Spritzvorgangs auf die Qualität der sich nach dem Zersetzen des Zuschlagwerkstoffs einstellenden, porösen Beschichtung, geschlossen werden. Hierdurch ist es erstmals möglich, durch thermisches Spritzen hergestellte Beschichtungen einer umfassenden Online-Qualitätskontrolle zu unterziehen und damit auf zerstörende Prüfmethoden zu verzichten.
  • Bei der Herstellung poröser Beschichtungen wird nach dem Spritzvorgang der Zuschlagwerkstoff zusammen mit dem fluoreszierenden Markerwerkstoff insbesondere durch Wärmebehandlung des beschichteten Werkstücks zersetzt.
  • Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ein Ausführungsbeispiel der Erfindung wird, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
  • Fig. 1
    eine stark schematisierte Darstellung einer Vorrichtung zur Beschichtung eines Werkstücks zur Verdeutlichung des erfindungsgemäßen Verfahrens.
  • Nachfolgend wird die hier vorliegende Erfindung unter Bezugnahme auf Fig. 1 am Beispiel der Herstellung einer porösen Beschichtung in größerem Detail beschrieben.
  • Die Erfindung betrifft ein Verfahren zur Beschichtung eines Werkstücks mittels thermischem Spritzen. Hierzu wird ein Beschichtungswerkstoff zusammen mit einem Zuschlagwerkstoff durch thermisches Spritzen auf das Werkstück aufgetragen, nämlich gespritzt bzw. gesprüht. Nach dem thermischen Spritzvorgang wird der Zuschlagwerkstoff insbesondere durch eine Wärmebehandlung des beschichteten Werkstücks zersetzt, um so eine poröse Beschichtung auf dem Werkstück bereitzustellen.
  • Nachfolgend wird die Erfindung für das Plasmaspritzen als bevorzugtes thermisches Spritzverfahren beschrieben. Die Erfindung soll jedoch nicht auf das Plasmaspritzen beschränkt sein. Vielmehr kann die Erfindung auch bei anderen thermischen Spritzverfahren, so zum Beispiel beim Flammspritzen, Hochgeschwindigkeitsflammspritzen, Lichtbogendrahtspritzen oder beim Kalt Kinetischen Kompaktieren, zum Einsatz kommen.
  • Das Plasmaspritzen als solches ist aus dem Stand der Technik hinlänglich bekannt. So offenbart zum Beispiel die EP 0 851 720 B1 ein für das Plasmaspritzen geeignetes Plasmatron. Der Vollständigkeit halber soll lediglich angemerkt werden, dass beim Plasmaspritzen zwischen einer Kathode und einer Anode eines nicht-dargestellten Plasmatrons ein Lichtbogen gezündet wird. Dieser Lichtbogen erhitzt ein durch das Plasmatron strömendes Plasmagas. Als Plasmagase werden zum Beispiel Argon, Wasserstoff, Stickstoff, Helium oder Gemische dieser Gase verwendet. Durch das Erhitzen des Plasmagases stellt sich ein Plasmastrahl ein, der im Kern Temperaturen von bis 20.000°C erreichen kann. Der zur Beschichtung verwendete Beschichtungswerkstoff wird mithilfe eines Trägergases in den Plasmastrahl injiziert. Des weiteren wird dieser für die Beschichtung zu verwendende Beschichtungswerkstoff durch den Plasmastrahl auf eine hohe Geschwindigkeit beschleunigt. Der auf diese Art und Weise beschleunigte Werkstoff wird auf das zu beschichtende Werkstück aufgetragen, nämlich aufgespritzt.
  • Zur Bereitstellung der porösen Beschichtung wird neben dem Beschichtungswerkstoff auch ein Zuschlagwerkstoff auf das zu beschichtende Werkstück aufgespritzt. Hierbei bildet sich ein Spritzstrahl aus, wobei der Spritzstrahl zum einen von dem Plasmastrahl und zum anderen von dem Partikelstrahl des Beschichtungswerkstoffs und Zuschlagwerkstoffs gebildet wird. Die Partikel prallen mit einer hohen thermischen sowie kinetischen Energie auf eine Oberfläche des zu beschichtenden Werkstücks auf und bilden dort eine Beschichtung. Abhängig von den Parametern des Spritzprozesses bilden sich die gewünschten Eigenschaften der Beschichtung aus.
  • Im Sinne der hier vorliegenden Erfindung wird beim thermischen Spritzen ein Zuschlagwerkstoff verwendet, in dem bzw. auf dem ein fluoreszierender Markerwerkstoff festgebunden ist. Beim thermischen Spritzen werden sowohl die Partikel des Beschichtungswerkstoffs als auch die Partikel des Markerwerkstoffs, der in dem bzw. auf dem Zuschlagwerkstoff fest gebunden ist, zum Leuchten angeregt, so dass die in dem Spritzstrahl bzw. Partikelstrahl enthaltenen Partikel des Beschichtungswerkstoffs und die Partikel des Markerwerkstoffs im Sinne einer Online-Überwachung erfasst und ausgewertet werden können. Die Anregung des fluoreszierenden Markerwerkstoffs sowie des Beschichtungswerkstoffs kann zum Beispiel über den Plasmastrahl erfolgen. Alternativ kann die Anregung über eine Laserquelle bewerkstelligt werden, welche die Partikel zum Leuchten anregt.
  • In diesem Zusammenhang soll darauf hingewiesen werden, dass Markerwerkstoffe verwendet werden, die in einem anderen Wellenlängenbereich leuchten als der Beschichtungswerkstoff. Hierdurch wird es möglich, im Partikelstrahl die Partikel des Beschichtungswerkstoffs von den Partikeln des Markerwerkstoffs und damit des Zuschlagwerkstoffs zu unterscheiden. Als Markerwerkstoffe finden insbesondere Laserfarbstoffe Verwendung, deren Fluoreszenz im sichtbaren Wellenlängenbereich liegt. Insbesondere eignet sich als Laserfarbstoff Rhodamin 6G, dessen Fluoreszenz-Emissionsmaximum bei ca. 560 nm liegt. Rhodamin 6G kann in organischen Zuschlagstoffen, wie Polyester, fest gebunden werden, indem zum Beispiel Rhodamin 6G in Polyester eindiffundiert wird.
  • Die Überwachung und Auswertung des Spritzvorgangs erfolgt, wie bereits erwähnt, mit Hilfe von Online-Prozesskontroll- bzw. -regelsystemen. Die Überwachung und Auswertung des Spritzvorgangs wird nachfolgend unter Bezugnahme auf Fig. 1 erläutert. Fig. 1 zeigt stark schematisiert einen sich beim Plasmaspritzen einstellenden Spritzstrahl 10. Der Spritzstrahl 10 wird mit einer Kamera 11 durch ein optisches Filter 12 optisch überwacht. Die Kamera 11 ist im gezeigten Ausführungsbeispiel als CCD-Kamera ausgebildet. Das optische Filter kann als Graufilter oder Farbfilter oder Bandpassfilter ausgeführt sein. Auch können mehrere Kameras und/oder andere Prozesskontrollsysteme, insbesondere ein Spektrometer zur Überwachung des Spritzvorgangs verwendet werden.
  • Das von der Kamera 11 erfasste bzw. ermittelte Bild wird einem im Detail nicht-dargestellten Bildverarbeitungssystem zugeführt. Im Bildverarbeitungssystem werden Eigenschaften des optisch überwachten Spritzstrahls aus den von der Kamera 11 erfassten Daten ermittelt. Die aus der optischen Überwachung des Spritzstrahls ermittelten Eigenschaften des Spritzstrahls 10 werden mit vorgegebenen Sollwerten für diese Eigenschaften verglichen. Wird eine Abweichung der ermittelten Eigenschaften (Istwerte) des Spritzstrahls von den vorbestimmten Werten (Sollwerten) für die Eigenschaften erkannt, so erfolgt eine automatische Anpassung der Prozessparameter für das Plasmaspritzen durch einen Regler.
  • Das hier beschriebene Verfahren kann selbstverständlich auch in Kombination mit anderen Methoden zur Überwachung des Spritzstrahls, insbesondere der Laser-induzierten Fluoreszenz, angewendet werden.
  • Abschließend sei darauf hingewiesen, dass die Erfindung zwar bevorzugt bei der Herstellung poröser Beschichtungen verwendet wird, jedoch nicht auf diesen Anwendungsfall beschränkt ist. Vielmehr kann die Erfindung auch bei der Herstellung massiver Beschichtungen angewendet werden, wobei dann der Zuschlagwerkstoff mit dem fluoreszierenden Markerwerkstoff in der Beschichtung verbleibt. So kann zum Beispiel Bornitrid (BN) oder Bentonit als Zuschlagstoff in eine massive Beschichtung eingebracht werden, um so eine Sollbruchstelle in der Beschichtung auszubilden. Das Bornitrid ist bei der Beschichtung durch einen auf bzw. in dem Bornitrid gebundenen, fluoreszierenden Markerwerkstoff online erfassbar.

Claims (6)

  1. Verfahren zur Beschichtung eines Werkstücks, wobei ein Beschichtungswerkstoff und ein Zuschlagwerkstoff durch thermisches Spritzen auf das Werkstück aufgetragen werden,
    dadurch gekennzeichnet,
    dass in dem oder auf dem zuschlagwerkstoff ein fluoreszierender Markerwerkstoff fest gebunden ist, wobei der Spritzvorgang dadurch online überwacht wird, dass zumindest der in dem Spritzstrahl befindliche fluoreszierende Markerwerkstoff erfasst und ausgewertet wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass nach dem Spritzvorgang der Zuschlagwerkstoff insbesondere durch Wärmebehandlung des beschichteten Werkstücks zersetzt wird, um so die poröse Beschichtung bereitzustellen.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet,
    dass nach dem Spritzvorgang der Zuschlagwerkstoff zusammen mit dem fluoreszierenden Markerwerkstoff insbesondere durch Wärmebehandlung des beschichteten Werkstücks zersetzt wird.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass als Zuschlagwerkstoff ein organischer Zuschlagwerkstoff, insbesondere Polyester, verwendet wird.
  5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass als fluoreszierenden Markerwerkstoff ein Laserfarbstoff, insbesondere Rhodamin 6G, verwendet wird.
  6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der fluoreszierende Markerwerkstoff beim Spritzvorgang zum Leuchten angeregt und mit einer Kamera erfasst wird.
EP05820936A 2004-12-10 2005-11-30 Verfahren zur beschichtung eines werkstücks Expired - Fee Related EP1825016B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004059549A DE102004059549A1 (de) 2004-12-10 2004-12-10 Verfahren zur Beschichtung eines Werkstücks
PCT/DE2005/002160 WO2006060991A1 (de) 2004-12-10 2005-11-30 Verfahren zur beschichtung eines werkstücks

Publications (2)

Publication Number Publication Date
EP1825016A1 EP1825016A1 (de) 2007-08-29
EP1825016B1 true EP1825016B1 (de) 2008-05-07

Family

ID=35788710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05820936A Expired - Fee Related EP1825016B1 (de) 2004-12-10 2005-11-30 Verfahren zur beschichtung eines werkstücks

Country Status (4)

Country Link
US (1) US20080131610A1 (de)
EP (1) EP1825016B1 (de)
DE (2) DE102004059549A1 (de)
WO (1) WO2006060991A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016243A1 (de) * 2007-04-04 2008-10-30 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Ermitteln des Anteils zumindest eines Zuschlagstoffes eines Multikomponentenpulvers zum thermischen Spritzen
DE102007016242A1 (de) 2007-04-04 2008-10-09 Mtu Aero Engines Gmbh Verfahren zum Beschichten eines Zuschlagstoffes mit einem Fluoreszenzmarker
DE102012103498A1 (de) * 2012-04-20 2013-10-24 Reinhausen Plasma Gmbh Vorrichtung und Verfahren zum Kennzeichnen eines Substrats sowie Kennzeichnung hierfür
DE102014220180A1 (de) * 2014-10-06 2016-06-09 Siemens Aktiengesellschaft Überwachung und Steuerung eines Beschichtungsvorgangs anhand einer Wärmeverteilung auf dem Werkstück

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269903A (en) * 1979-09-06 1981-05-26 General Motors Corporation Abradable ceramic seal and method of making same
US4336276A (en) * 1980-03-30 1982-06-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fully plasma-sprayed compliant backed ceramic turbine seal
US4327155A (en) * 1980-12-29 1982-04-27 General Electric Company Coated metal structures and method for making
US4327120A (en) * 1981-01-28 1982-04-27 General Electric Company Method for coating a metal substrate
JPS59222566A (ja) * 1983-05-30 1984-12-14 Kawasaki Heavy Ind Ltd 耐熱構造体の製造方法
CA1230017A (en) * 1983-12-27 1987-12-08 United Technologies Corporation Porous metal structures made by thermal spraying fugitive material and metal
JPS62207885A (ja) * 1986-03-07 1987-09-12 Toshiba Corp 高温耐熱部材
JP3297619B2 (ja) * 1996-12-18 2002-07-02 ティーディーケイ株式会社 有機elカラーディスプレイ
DE59700524D1 (de) * 1996-12-23 1999-11-11 Sulzer Metco Ag Wohlen Indirektes Plasmatron
EP0973609B1 (de) * 1997-02-26 2009-04-15 Integument Technologies, Inc. Polymerverbundstoffe sowie verfahren zu deren herstellung und verwendung
US6217252B1 (en) * 1998-08-11 2001-04-17 3M Innovative Properties Company Wear-resistant transportation surface marking method and materials
EP1016862A1 (de) * 1998-12-28 2000-07-05 Siemens Aktiengesellschaft Verfahren sowie Vorrichtung zur Qualitätsüberprüfung einer Beschichtung
US6533961B2 (en) * 2000-02-22 2003-03-18 3M Innovative Properties Company Durable fluorescent organic pigments and methods of making
DE10203884A1 (de) * 2002-01-31 2003-08-14 Flumesys Gmbh Fluidmes Und Sys Vorrichtung und Verfahren zum thermischen Spritzen
JP2004107727A (ja) * 2002-09-18 2004-04-08 Shimane Pref Gov 蛍光発光皮膜の蛍光色の制御方法
DE10244037A1 (de) * 2002-09-21 2004-04-08 Mtu Aero Engines Gmbh Verfahren zur Beschichtung eines Werkstücks

Also Published As

Publication number Publication date
DE102004059549A1 (de) 2006-06-22
DE502005004056D1 (de) 2008-06-19
WO2006060991A1 (de) 2006-06-15
EP1825016A1 (de) 2007-08-29
US20080131610A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
DE102005005359B4 (de) Verfahren zum Kaltgasspritzen
DE2632739C3 (de) Verfahren zum thermischen Aufspritzen eines selbsthaftenden Nickel-Aluminium- oder-Nickel-Titan-Überzugs auf ein Metallsubstrat
EP1342510B1 (de) Verfahren zur Entschichtung von Triebwerksbauteilen und Vorrichtung zur Durchführung des Verfahrens
EP1825016B1 (de) Verfahren zur beschichtung eines werkstücks
DE102016200324A1 (de) Verfahren zum Ermitteln einer Konzentration wenigstens eines Werkstoffs in einem Pulver für ein additives Herstellverfahren
EP3314033A1 (de) EISENBASIERTE LEGIERUNG ZUR HERSTELLUNG THERMISCH AUFGEBRACHTER VERSCHLEIßSCHUTZSCHICHTEN
WO1990014447A1 (de) Verfahren zur herstellung einer verschleissfesten gleitfläche bei gelenkendoprothesen
DE102020003426A1 (de) Verfahren und Vorrichtung zur additiven Fertigung unter Schutzgas
EP3322548A1 (de) Vakuum sls verfahren zur additiven herstellung von metallischen bauteilen
EP2006409B1 (de) Verfahren und Vorrichtung zum Ermitteln des Anteils zumindest eines Zuschlagstoffes eines Multikomponentenpulvers zum thermischen Spritzen
WO2017009044A1 (de) Verfahren zum nitrieren eines bauteils
WO2004029319A2 (de) Verfahen zur beschichtung eines werkstücks
EP0647498B1 (de) Verfahren zur Bearbeitung eines Werkstückes unter Einsatz von Laserstrahlung bei Erhöhung des Absorptionsgrades der Werkstückoberfläche
DE10348036A1 (de) Verfahren zum Herstellen von Gassensorelementen
DE102019132535A1 (de) Druckverfahren zum Herstellen einer Mehrschichtkomponente mit einer Online-Prozesskontrolle und hierfür geeignete Vorrichtung
DE10152204B4 (de) Vorrichtung und Verfahren zum Messen und/oder Regeln der Aufkohlungsatmophäre in einer Vakuumaufkohlungsanlage
DE102016114014B4 (de) Verfahren zur Beschichtung eines Trockenzylinders
DE102013112809A1 (de) Verfahren zur Herstellung einer gespritzten Zylinderlauffläche eines Zylinderkurbelgehäuses einer Verbrennungskraftmaschine sowie derartiges Zylinderkurbelgehäuse
DE2756825C3 (de) Verfahren zur Herstellung von Diffusionsüberzügen
DE102004006857A1 (de) Gradientenschicht und Verfahren zu ihrer Herstellung
DE102021101846A1 (de) Verfahren für die generative fertigung von bauteilen
WO2021116022A1 (de) Additive fertigungsanlage, additives fertigungsverfahren und computerlesbares- speichermedium
DE102015205609A1 (de) Pulverbettbasiertes additives Herstellungsverfahren und Anlage zur Durchführung dieses Verfahrens
DE102022121925A1 (de) Verfahren zur kontrollierten Verbesserung einer an einer Stahloberfläche angeordneten Passivierungsschicht mittels Laseroxidation und Verwendung eines zur Durchführung des Verfahrens geeigneten Lasersystems
DE102021213888A1 (de) Verfahren und Einrichtung zum örtlich begrenzten Nitrieren oder Nitrocarburieren der Oberfläche eines Bauteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WACHTER, WOLFGANG

Inventor name: HERTTER, MANUEL

Inventor name: JAKIMOV, ANDREAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005004056

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101118

Year of fee payment: 6

Ref country code: IT

Payment date: 20101125

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111130

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005004056

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130