EP1824468A2 - Inhibiteurs de glycogene synthase kinase-3 - Google Patents
Inhibiteurs de glycogene synthase kinase-3Info
- Publication number
- EP1824468A2 EP1824468A2 EP05809234A EP05809234A EP1824468A2 EP 1824468 A2 EP1824468 A2 EP 1824468A2 EP 05809234 A EP05809234 A EP 05809234A EP 05809234 A EP05809234 A EP 05809234A EP 1824468 A2 EP1824468 A2 EP 1824468A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- gsk
- compound
- atom
- group
- activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003572 glycogen synthase kinase 3 inhibitor Substances 0.000 title description 2
- 108010014905 Glycogen Synthase Kinase 3 Proteins 0.000 claims abstract description 281
- 150000001875 compounds Chemical class 0.000 claims abstract description 248
- 230000000694 effects Effects 0.000 claims abstract description 153
- 230000003993 interaction Effects 0.000 claims abstract description 113
- 238000000034 method Methods 0.000 claims abstract description 83
- 239000000758 substrate Substances 0.000 claims abstract description 74
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 48
- 238000011282 treatment Methods 0.000 claims abstract description 22
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 19
- 102000002254 Glycogen Synthase Kinase 3 Human genes 0.000 claims abstract 22
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 128
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 93
- -1 heteroalicyclic Chemical group 0.000 claims description 88
- 125000006850 spacer group Chemical group 0.000 claims description 84
- 125000003118 aryl group Chemical group 0.000 claims description 74
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 71
- 230000002209 hydrophobic effect Effects 0.000 claims description 67
- 102000004877 Insulin Human genes 0.000 claims description 64
- 108090001061 Insulin Proteins 0.000 claims description 64
- 229940125396 insulin Drugs 0.000 claims description 64
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 54
- 230000003197 catalytic effect Effects 0.000 claims description 53
- 238000002360 preparation method Methods 0.000 claims description 49
- 125000001072 heteroaryl group Chemical group 0.000 claims description 44
- 125000000217 alkyl group Chemical group 0.000 claims description 43
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 41
- 239000004480 active ingredient Substances 0.000 claims description 34
- 125000000539 amino acid group Chemical group 0.000 claims description 31
- 125000004122 cyclic group Chemical group 0.000 claims description 31
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims description 31
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 29
- 229910052757 nitrogen Inorganic materials 0.000 claims description 28
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 27
- 229940024606 amino acid Drugs 0.000 claims description 26
- 150000001413 amino acids Chemical class 0.000 claims description 26
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 26
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 25
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 24
- 230000011664 signaling Effects 0.000 claims description 24
- 125000004432 carbon atom Chemical group C* 0.000 claims description 23
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 23
- 239000000126 substance Substances 0.000 claims description 23
- 229910052799 carbon Inorganic materials 0.000 claims description 22
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 21
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 claims description 19
- 125000005842 heteroatom Chemical group 0.000 claims description 19
- 239000003814 drug Substances 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 18
- 230000026731 phosphorylation Effects 0.000 claims description 18
- 238000006366 phosphorylation reaction Methods 0.000 claims description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 17
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 17
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 16
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 16
- 125000003545 alkoxy group Chemical group 0.000 claims description 15
- 125000004104 aryloxy group Chemical group 0.000 claims description 15
- 125000005843 halogen group Chemical group 0.000 claims description 15
- 125000005309 thioalkoxy group Chemical group 0.000 claims description 15
- 125000005296 thioaryloxy group Chemical group 0.000 claims description 15
- 125000005190 thiohydroxy group Chemical group 0.000 claims description 15
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 14
- 125000003342 alkenyl group Chemical group 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 239000004202 carbamide Substances 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 claims description 14
- 125000000304 alkynyl group Chemical group 0.000 claims description 13
- 230000001419 dependent effect Effects 0.000 claims description 13
- 230000003389 potentiating effect Effects 0.000 claims description 13
- 229910052717 sulfur Inorganic materials 0.000 claims description 13
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 12
- 229940009098 aspartate Drugs 0.000 claims description 12
- 238000000338 in vitro Methods 0.000 claims description 12
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 12
- 239000004475 Arginine Substances 0.000 claims description 11
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 11
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 claims description 11
- 125000002947 alkylene group Chemical group 0.000 claims description 11
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 11
- 150000002148 esters Chemical class 0.000 claims description 11
- 125000004385 trihaloalkyl group Chemical group 0.000 claims description 11
- 125000005423 trihalomethanesulfonamido group Chemical group 0.000 claims description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 10
- 238000001727 in vivo Methods 0.000 claims description 10
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 claims description 10
- 239000011593 sulfur Substances 0.000 claims description 10
- 229960004441 tyrosine Drugs 0.000 claims description 10
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 10
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 claims description 9
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 9
- 208000019022 Mood disease Diseases 0.000 claims description 9
- 208000028017 Psychotic disease Diseases 0.000 claims description 9
- 229930195712 glutamate Natural products 0.000 claims description 9
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 claims description 9
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 claims description 8
- 239000004472 Lysine Substances 0.000 claims description 8
- 239000003937 drug carrier Substances 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- 230000004770 neurodegeneration Effects 0.000 claims description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 7
- 150000003568 thioethers Chemical class 0.000 claims description 7
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 claims description 6
- CREUERHWPBNLFU-UHFFFAOYSA-N azanylidyne-[(nitrodiazenyl)sulfonylamino]methane Chemical compound [O-][N+](=O)N=NS(=O)(=O)NC#N CREUERHWPBNLFU-UHFFFAOYSA-N 0.000 claims description 6
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 6
- 150000004665 fatty acids Chemical group 0.000 claims description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 6
- 125000005647 linker group Chemical group 0.000 claims description 6
- 239000005022 packaging material Substances 0.000 claims description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 5
- 208000008589 Obesity Diseases 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 5
- 239000000194 fatty acid Substances 0.000 claims description 5
- 229930195729 fatty acid Natural products 0.000 claims description 5
- 235000020824 obesity Nutrition 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 230000035578 autophosphorylation Effects 0.000 claims description 4
- ISNICOKBNZOJQG-UHFFFAOYSA-O guanidinium ion Chemical compound C[NH+]=C(N(C)C)N(C)C ISNICOKBNZOJQG-UHFFFAOYSA-O 0.000 claims description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 4
- 229960000310 isoleucine Drugs 0.000 claims description 4
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 4
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 4
- 229960005190 phenylalanine Drugs 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 125000004434 sulfur atom Chemical group 0.000 claims description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- 208000017194 Affective disease Diseases 0.000 claims description 3
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 3
- 239000005639 Lauric acid Substances 0.000 claims description 3
- 239000005642 Oleic acid Substances 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 235000021314 Palmitic acid Nutrition 0.000 claims description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 3
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- 125000002723 alicyclic group Chemical group 0.000 claims description 3
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 claims description 3
- 235000020661 alpha-linolenic acid Nutrition 0.000 claims description 3
- 235000021342 arachidonic acid Nutrition 0.000 claims description 3
- 229940114079 arachidonic acid Drugs 0.000 claims description 3
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 claims description 3
- 101150090422 gsk-3 gene Proteins 0.000 claims description 3
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- 229960004488 linolenic acid Drugs 0.000 claims description 3
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 claims description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- 235000021313 oleic acid Nutrition 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 claims description 3
- 150000003852 triazoles Chemical class 0.000 claims description 3
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 claims description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 claims description 2
- 230000003467 diminishing effect Effects 0.000 claims description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims description 2
- 235000020778 linoleic acid Nutrition 0.000 claims description 2
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 claims description 2
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 2
- PYHOFAHZHOBVGV-UHFFFAOYSA-N triazane Chemical compound NNN PYHOFAHZHOBVGV-UHFFFAOYSA-N 0.000 claims description 2
- 230000005764 inhibitory process Effects 0.000 abstract description 34
- 230000001404 mediated effect Effects 0.000 abstract description 7
- 102000001267 GSK3 Human genes 0.000 description 253
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 158
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 93
- 239000000243 solution Substances 0.000 description 92
- 239000003112 inhibitor Substances 0.000 description 86
- 239000000203 mixture Substances 0.000 description 86
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 75
- 238000005160 1H NMR spectroscopy Methods 0.000 description 56
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 53
- 210000004027 cell Anatomy 0.000 description 51
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 50
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 43
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 42
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 40
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 38
- 239000000047 product Substances 0.000 description 37
- 102000004190 Enzymes Human genes 0.000 description 36
- 108090000790 Enzymes Proteins 0.000 description 36
- 229940088598 enzyme Drugs 0.000 description 36
- 238000004679 31P NMR spectroscopy Methods 0.000 description 32
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 32
- 238000003786 synthesis reaction Methods 0.000 description 32
- 230000015572 biosynthetic process Effects 0.000 description 31
- 230000002829 reductive effect Effects 0.000 description 31
- 239000002904 solvent Substances 0.000 description 29
- 229910019142 PO4 Inorganic materials 0.000 description 28
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 27
- 239000010452 phosphate Substances 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 26
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 25
- 235000001014 amino acid Nutrition 0.000 description 24
- 235000021317 phosphate Nutrition 0.000 description 24
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 22
- 108010001483 Glycogen Synthase Proteins 0.000 description 22
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 22
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 21
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 21
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 21
- 235000019445 benzyl alcohol Nutrition 0.000 description 20
- 229960004217 benzyl alcohol Drugs 0.000 description 20
- YTFJQDNGSQJFNA-UHFFFAOYSA-L benzyl phosphate Chemical compound [O-]P([O-])(=O)OCC1=CC=CC=C1 YTFJQDNGSQJFNA-UHFFFAOYSA-L 0.000 description 20
- 235000019439 ethyl acetate Nutrition 0.000 description 20
- 238000003756 stirring Methods 0.000 description 20
- 108091034117 Oligonucleotide Proteins 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 230000004913 activation Effects 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 18
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 18
- 239000011541 reaction mixture Substances 0.000 description 18
- 239000000741 silica gel Substances 0.000 description 18
- 229910002027 silica gel Inorganic materials 0.000 description 18
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 17
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 17
- 150000003384 small molecules Chemical class 0.000 description 17
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 16
- 238000003556 assay Methods 0.000 description 16
- 239000003480 eluent Substances 0.000 description 16
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 16
- 239000000725 suspension Substances 0.000 description 16
- FHCSBLWRGCOVPT-UHFFFAOYSA-N AZD2858 Chemical compound C1CN(C)CCN1S(=O)(=O)C1=CC=C(C=2N=C(C(N)=NC=2)C(=O)NC=2C=NC=CC=2)C=C1 FHCSBLWRGCOVPT-UHFFFAOYSA-N 0.000 description 15
- 102100038145 Homeobox protein goosecoid-2 Human genes 0.000 description 15
- 101710150873 Homeobox protein goosecoid-2 Proteins 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 230000004190 glucose uptake Effects 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 14
- 102000004196 processed proteins & peptides Human genes 0.000 description 14
- 229920006395 saturated elastomer Polymers 0.000 description 14
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 13
- 206010012601 diabetes mellitus Diseases 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 13
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 12
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 238000004088 simulation Methods 0.000 description 12
- 102000013498 tau Proteins Human genes 0.000 description 12
- 108010026424 tau Proteins Proteins 0.000 description 12
- 208000024827 Alzheimer disease Diseases 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 11
- CHDFCCGMFONCRG-UHFFFAOYSA-N [3,5-bis(2-aminoethyl)phenyl]methyl dihydrogen phosphate Chemical compound NCCC1=CC(CCN)=CC(COP(O)(O)=O)=C1 CHDFCCGMFONCRG-UHFFFAOYSA-N 0.000 description 11
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 11
- 239000012267 brine Substances 0.000 description 11
- 230000002860 competitive effect Effects 0.000 description 11
- 125000000524 functional group Chemical group 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- 239000012044 organic layer Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 102000001253 Protein Kinase Human genes 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 239000008346 aqueous phase Substances 0.000 description 10
- YTFJQDNGSQJFNA-UHFFFAOYSA-N benzyl dihydrogen phosphate Chemical compound OP(O)(=O)OCC1=CC=CC=C1 YTFJQDNGSQJFNA-UHFFFAOYSA-N 0.000 description 10
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 10
- 238000004587 chromatography analysis Methods 0.000 description 10
- 208000035475 disorder Diseases 0.000 description 10
- 239000012299 nitrogen atmosphere Substances 0.000 description 10
- 230000037361 pathway Effects 0.000 description 10
- 108060006633 protein kinase Proteins 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 10
- 239000007858 starting material Substances 0.000 description 10
- 108091027757 Deoxyribozyme Proteins 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 9
- 210000001789 adipocyte Anatomy 0.000 description 9
- 235000011089 carbon dioxide Nutrition 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000008103 glucose Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 9
- 239000011589 pyridoxal 5'-phosphate Substances 0.000 description 9
- 229960001327 pyridoxal phosphate Drugs 0.000 description 9
- 238000010992 reflux Methods 0.000 description 9
- 125000001424 substituent group Chemical group 0.000 description 9
- 238000004809 thin layer chromatography Methods 0.000 description 9
- 208000020925 Bipolar disease Diseases 0.000 description 8
- 206010022489 Insulin Resistance Diseases 0.000 description 8
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 8
- 239000002775 capsule Substances 0.000 description 8
- 150000001721 carbon Chemical group 0.000 description 8
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 239000000706 filtrate Substances 0.000 description 8
- 239000012467 final product Substances 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- YGFLCNPXEPDANQ-UHFFFAOYSA-N n-[bis[(2-methylpropan-2-yl)oxy]phosphanyl]-n-propan-2-ylpropan-2-amine Chemical compound CC(C)N(C(C)C)P(OC(C)(C)C)OC(C)(C)C YGFLCNPXEPDANQ-UHFFFAOYSA-N 0.000 description 8
- CMPQUABWPXYYSH-UHFFFAOYSA-N phenyl phosphate Chemical compound OP(O)(=O)OC1=CC=CC=C1 CMPQUABWPXYYSH-UHFFFAOYSA-N 0.000 description 8
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 8
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 8
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 8
- 235000000346 sugar Nutrition 0.000 description 8
- 108091008611 Protein Kinase B Proteins 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 7
- 125000004093 cyano group Chemical group *C#N 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 150000002357 guanidines Chemical class 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 102000005636 Cyclic AMP Response Element-Binding Protein Human genes 0.000 description 6
- 108010045171 Cyclic AMP Response Element-Binding Protein Proteins 0.000 description 6
- 108010010803 Gelatin Proteins 0.000 description 6
- 229920002527 Glycogen Polymers 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 6
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229920002472 Starch Polymers 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 6
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 6
- 238000003818 flash chromatography Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 229920000159 gelatin Polymers 0.000 description 6
- 239000008273 gelatin Substances 0.000 description 6
- 235000019322 gelatine Nutrition 0.000 description 6
- 235000011852 gelatine desserts Nutrition 0.000 description 6
- 229940096919 glycogen Drugs 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 238000010348 incorporation Methods 0.000 description 6
- 230000002452 interceptive effect Effects 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 230000003278 mimic effect Effects 0.000 description 6
- 102000040430 polynucleotide Human genes 0.000 description 6
- 108091033319 polynucleotide Proteins 0.000 description 6
- 239000002157 polynucleotide Substances 0.000 description 6
- PHUAPJQOWVQEEB-UHFFFAOYSA-N pyridin-3-ylmethyl dihydrogen phosphate Chemical compound OP(O)(=O)OCC1=CC=CN=C1 PHUAPJQOWVQEEB-UHFFFAOYSA-N 0.000 description 6
- 230000019491 signal transduction Effects 0.000 description 6
- 238000002922 simulated annealing Methods 0.000 description 6
- 229940124530 sulfonamide Drugs 0.000 description 6
- 150000003456 sulfonamides Chemical class 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- UMOZLQVSOVNSCA-UHFFFAOYSA-N tert-butyl n-(diaminomethylidene)carbamate Chemical compound CC(C)(C)OC(=O)NC(N)=N UMOZLQVSOVNSCA-UHFFFAOYSA-N 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 5
- 102000005765 Proto-Oncogene Proteins c-akt Human genes 0.000 description 5
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 238000004440 column chromatography Methods 0.000 description 5
- 230000009881 electrostatic interaction Effects 0.000 description 5
- 230000009368 gene silencing by RNA Effects 0.000 description 5
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 5
- 230000004155 insulin signaling pathway Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 201000006417 multiple sclerosis Diseases 0.000 description 5
- 230000016273 neuron death Effects 0.000 description 5
- 239000012074 organic phase Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 235000019698 starch Nutrition 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 229940086542 triethylamine Drugs 0.000 description 5
- 238000012800 visualization Methods 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 4
- 108010033040 Histones Proteins 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 102000003746 Insulin Receptor Human genes 0.000 description 4
- 108010001127 Insulin Receptor Proteins 0.000 description 4
- 101001116283 Phanerodontia chrysosporium Manganese peroxidase H4 Proteins 0.000 description 4
- 101001018261 Protopolybia exigua Mastoparan-1 Proteins 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 230000008499 blood brain barrier function Effects 0.000 description 4
- 210000001218 blood-brain barrier Anatomy 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- BXPNTDPMFSVKQQ-UHFFFAOYSA-N diazonio-[phenyl(phosphonooxy)methyl]azanide Chemical class OP(O)(=O)OC([N-][N+]#N)C1=CC=CC=C1 BXPNTDPMFSVKQQ-UHFFFAOYSA-N 0.000 description 4
- 229960004132 diethyl ether Drugs 0.000 description 4
- 238000002050 diffraction method Methods 0.000 description 4
- 239000008298 dragée Substances 0.000 description 4
- 239000003596 drug target Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 238000000302 molecular modelling Methods 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- SMJFNRPDPQQAGL-UHFFFAOYSA-N sulfanylcarbonylsulfanylformic acid Chemical compound OC(=O)SC(O)=S SMJFNRPDPQQAGL-UHFFFAOYSA-N 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- PMMURAAUARKVCB-CERMHHMHSA-N 2-deoxy-D-glucopyranose Chemical compound OC[C@H]1OC(O)C[C@@H](O)[C@@H]1O PMMURAAUARKVCB-CERMHHMHSA-N 0.000 description 3
- 208000030507 AIDS Diseases 0.000 description 3
- 208000035143 Bacterial infection Diseases 0.000 description 3
- 201000006474 Brain Ischemia Diseases 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 206010008120 Cerebral ischaemia Diseases 0.000 description 3
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 206010012289 Dementia Diseases 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010034219 Insulin Receptor Substrate Proteins Proteins 0.000 description 3
- 102100025087 Insulin receptor substrate 1 Human genes 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 208000030886 Traumatic Brain injury Diseases 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- OSOVOLOHPUUXMU-UHFFFAOYSA-N [3,5-bis(bromomethyl)phenyl]methanol Chemical compound OCC1=CC(CBr)=CC(CBr)=C1 OSOVOLOHPUUXMU-UHFFFAOYSA-N 0.000 description 3
- USIPEYFLVYHCFW-UHFFFAOYSA-N [3-(diaminomethylideneamino)phenyl]methyl dihydrogen phosphate Chemical compound NC(N)=NC1=CC=CC(COP(O)(O)=O)=C1 USIPEYFLVYHCFW-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- RXWGKZMNACHQDD-UHFFFAOYSA-N azido(phenyl)methanol Chemical class [N-]=[N+]=NC(O)C1=CC=CC=C1 RXWGKZMNACHQDD-UHFFFAOYSA-N 0.000 description 3
- 208000022362 bacterial infectious disease Diseases 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 208000028683 bipolar I disease Diseases 0.000 description 3
- AOJDZKCUAATBGE-UHFFFAOYSA-N bromomethane Chemical compound Br[CH2] AOJDZKCUAATBGE-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 206010008118 cerebral infarction Diseases 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000013058 crude material Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000013020 embryo development Effects 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 201000010063 epididymitis Diseases 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000001502 gel electrophoresis Methods 0.000 description 3
- 235000013922 glutamic acid Nutrition 0.000 description 3
- 239000004220 glutamic acid Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000012280 lithium aluminium hydride Substances 0.000 description 3
- 238000001819 mass spectrum Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000004050 mood stabilizer Substances 0.000 description 3
- 229940127237 mood stabilizer Drugs 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000008506 pathogenesis Effects 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 238000001394 phosphorus-31 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 201000000980 schizophrenia Diseases 0.000 description 3
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 3
- 150000003536 tetrazoles Chemical class 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000009529 traumatic brain injury Effects 0.000 description 3
- MSRILKIQRXUYCT-UHFFFAOYSA-M valproate semisodium Chemical compound [Na+].CCCC(C(O)=O)CCC.CCCC(C([O-])=O)CCC MSRILKIQRXUYCT-UHFFFAOYSA-M 0.000 description 3
- 229960000604 valproic acid Drugs 0.000 description 3
- CRDNMYFJWFXOCH-YPKPFQOOSA-N (3z)-3-(3-oxo-1h-indol-2-ylidene)-1h-indol-2-one Chemical compound N/1C2=CC=CC=C2C(=O)C\1=C1/C2=CC=CC=C2NC1=O CRDNMYFJWFXOCH-YPKPFQOOSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- OYIFNHCXNCRBQI-UHFFFAOYSA-N 2-aminoadipic acid Chemical compound OC(=O)C(N)CCCC(O)=O OYIFNHCXNCRBQI-UHFFFAOYSA-N 0.000 description 2
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 2
- 102100040623 60S ribosomal protein L41 Human genes 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 108060000903 Beta-catenin Proteins 0.000 description 2
- 102000015735 Beta-catenin Human genes 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 102000019058 Glycogen Synthase Kinase 3 beta Human genes 0.000 description 2
- 102100038104 Glycogen synthase kinase-3 beta Human genes 0.000 description 2
- 241000711549 Hepacivirus C Species 0.000 description 2
- 101000674326 Homo sapiens 60S ribosomal protein L41 Proteins 0.000 description 2
- 101000880770 Homo sapiens Protein SSX2 Proteins 0.000 description 2
- 208000023105 Huntington disease Diseases 0.000 description 2
- 101710144867 Inositol monophosphatase Proteins 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 101710203526 Integrase Proteins 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- 102000016267 Leptin Human genes 0.000 description 2
- 108010092277 Leptin Proteins 0.000 description 2
- 102000029749 Microtubule Human genes 0.000 description 2
- 108091022875 Microtubule Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 102000043276 Oncogene Human genes 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 235000019502 Orange oil Nutrition 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 102100037686 Protein SSX2 Human genes 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 229940124639 Selective inhibitor Drugs 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 2
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 2
- 108091008605 VEGF receptors Proteins 0.000 description 2
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 2
- 102000013814 Wnt Human genes 0.000 description 2
- 108050003627 Wnt Proteins 0.000 description 2
- BBBQNAXNSQHGLQ-UHFFFAOYSA-N [3-(2-aminoethyl)phenyl]methanol Chemical compound NCCC1=CC=CC(CO)=C1 BBBQNAXNSQHGLQ-UHFFFAOYSA-N 0.000 description 2
- KCTYUINIEPILPS-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanol Chemical compound NCC1=CC=CC(CO)=C1 KCTYUINIEPILPS-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- QFXCYVQBDIKUCN-UHFFFAOYSA-N benzyl dihydrogen phosphate;hydrochloride Chemical compound Cl.OP(O)(=O)OCC1=CC=CC=C1 QFXCYVQBDIKUCN-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- IYYIVELXUANFED-UHFFFAOYSA-N bromo(trimethyl)silane Chemical compound C[Si](C)(C)Br IYYIVELXUANFED-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 208000015114 central nervous system disease Diseases 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000012230 colorless oil Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000006352 cycloaddition reaction Methods 0.000 description 2
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002222 downregulating effect Effects 0.000 description 2
- 238000000132 electrospray ionisation Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 201000001421 hyperglycemia Diseases 0.000 description 2
- 230000006951 hyperphosphorylation Effects 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 102000006029 inositol monophosphatase Human genes 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N isopropyl alcohol Natural products CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 2
- 229940039781 leptin Drugs 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 210000004688 microtubule Anatomy 0.000 description 2
- 238000004776 molecular orbital Methods 0.000 description 2
- 238000012900 molecular simulation Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 238000012585 nuclear overhauser effect spectroscopy experiment Methods 0.000 description 2
- 239000010502 orange oil Substances 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- USRGIUJOYOXOQJ-GBXIJSLDSA-N phosphothreonine Chemical compound OP(=O)(O)O[C@H](C)[C@H](N)C(O)=O USRGIUJOYOXOQJ-GBXIJSLDSA-N 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229920001296 polysiloxane Chemical group 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 125000006413 ring segment Chemical group 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- GOKJGHKZVIPEJO-UHFFFAOYSA-N tert-butyl n-[2-[3-(hydroxymethyl)-5-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethyl]phenyl]ethyl]carbamate Chemical compound CC(C)(C)OC(=O)NCCC1=CC(CO)=CC(CCNC(=O)OC(C)(C)C)=C1 GOKJGHKZVIPEJO-UHFFFAOYSA-N 0.000 description 2
- UQJXXWHAJKRDKY-UHFFFAOYSA-N tert-butyl n-[[(2-methylpropan-2-yl)oxycarbonylamino]-methylsulfanylmethylidene]carbamate Chemical compound CC(C)(C)OC(=O)NC(SC)=NC(=O)OC(C)(C)C UQJXXWHAJKRDKY-UHFFFAOYSA-N 0.000 description 2
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 2
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 238000001551 total correlation spectroscopy Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 229960005356 urokinase Drugs 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 229940124676 vascular endothelial growth factor receptor Drugs 0.000 description 2
- GCSZJMUFYOAHFY-SDQBBNPISA-N (1z)-1-(3-ethyl-5-hydroxy-1,3-benzothiazol-2-ylidene)propan-2-one Chemical compound C1=C(O)C=C2N(CC)\C(=C\C(C)=O)SC2=C1 GCSZJMUFYOAHFY-SDQBBNPISA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 description 1
- OHLQBRYVKXJYHZ-UHFFFAOYSA-N (3,5-diaminophenyl)methanol Chemical compound NC1=CC(N)=CC(CO)=C1 OHLQBRYVKXJYHZ-UHFFFAOYSA-N 0.000 description 1
- OJZQOQNSUZLSMV-UHFFFAOYSA-N (3-aminophenyl)methanol Chemical compound NC1=CC=CC(CO)=C1 OJZQOQNSUZLSMV-UHFFFAOYSA-N 0.000 description 1
- BBWVHPYOSCPZGJ-UHFFFAOYSA-N (3-azidophenyl)methanol Chemical compound OCC1=CC=CC(N=[N+]=[N-])=C1 BBWVHPYOSCPZGJ-UHFFFAOYSA-N 0.000 description 1
- GEKVUCLUCOBNIE-UHFFFAOYSA-N (4-azidophenyl)methanol Chemical compound OCC1=CC=C(N=[N+]=[N-])C=C1 GEKVUCLUCOBNIE-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- XXJGBENTLXFVFI-UHFFFAOYSA-N 1-amino-methylene Chemical compound N[CH2] XXJGBENTLXFVFI-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- 238000004293 19F NMR spectroscopy Methods 0.000 description 1
- KAESVJOAVNADME-UHFFFAOYSA-N 1H-pyrrole Natural products C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 1
- NWRXEGKWQXAEHC-UHFFFAOYSA-N 2-(hydroxymethyl)benzonitrile Chemical compound OCC1=CC=CC=C1C#N NWRXEGKWQXAEHC-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- HZLCGUXUOFWCCN-UHFFFAOYSA-N 2-hydroxynonadecane-1,2,3-tricarboxylic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)(C(O)=O)CC(O)=O HZLCGUXUOFWCCN-UHFFFAOYSA-N 0.000 description 1
- 238000005084 2D-nuclear magnetic resonance Methods 0.000 description 1
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 1
- MVQVNTPHUGQQHK-UHFFFAOYSA-N 3-pyridinemethanol Chemical compound OCC1=CC=CN=C1 MVQVNTPHUGQQHK-UHFFFAOYSA-N 0.000 description 1
- KMTDMTZBNYGUNX-UHFFFAOYSA-N 4-methylbenzyl alcohol Chemical compound CC1=CC=C(CO)C=C1 KMTDMTZBNYGUNX-UHFFFAOYSA-N 0.000 description 1
- 108091027075 5S-rRNA precursor Proteins 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 108090000644 Angiozyme Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 101100207331 Arabidopsis thaliana TPPI gene Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000242587 Aurelia Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 125000006847 BOC protecting group Chemical group 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- CRDNMYFJWFXOCH-BUHFOSPRSA-N Couroupitine B Natural products N\1C2=CC=CC=C2C(=O)C/1=C1/C2=CC=CC=C2NC1=O CRDNMYFJWFXOCH-BUHFOSPRSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- VVNCNSJFMMFHPL-VKHMYHEASA-N D-penicillamine Chemical compound CC(C)(S)[C@@H](N)C(O)=O VVNCNSJFMMFHPL-VKHMYHEASA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 1
- 208000010837 Diabetic eye disease Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 102000038624 GSKs Human genes 0.000 description 1
- 108091007911 GSKs Proteins 0.000 description 1
- 102000017011 Glycated Hemoglobin A Human genes 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 102000003964 Histone deacetylase Human genes 0.000 description 1
- 108090000353 Histone deacetylase Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Natural products NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100025092 Insulin receptor substrate 2 Human genes 0.000 description 1
- 101710201820 Insulin receptor substrate 2 Proteins 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 238000000292 Malcolm Levitt pulse sequence Methods 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 1
- 108010020004 Microtubule-Associated Proteins Proteins 0.000 description 1
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 1
- 101710115937 Microtubule-associated protein tau Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoryl-L-serine Natural products OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 description 1
- BYQMGBFWSHUAMZ-UHFFFAOYSA-N OP(O)(=O)OCC1=CC=C([N-][N+]#N)C=C1 Chemical compound OP(O)(=O)OCC1=CC=C([N-][N+]#N)C=C1 BYQMGBFWSHUAMZ-UHFFFAOYSA-N 0.000 description 1
- RTQYJHDBEMTDPG-UHFFFAOYSA-N OP(O)(=O)OCC1=CC=CC([N-][N+]#N)=C1 Chemical compound OP(O)(=O)OCC1=CC=CC([N-][N+]#N)=C1 RTQYJHDBEMTDPG-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 1
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 1
- 101710092489 Protein kinase 2 Proteins 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 125000005631 S-sulfonamido group Chemical group 0.000 description 1
- 239000012722 SDS sample buffer Substances 0.000 description 1
- 102000014400 SH2 domains Human genes 0.000 description 1
- 108050003452 SH2 domains Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229910008355 Si-Sn Inorganic materials 0.000 description 1
- 229910006453 Si—Sn Inorganic materials 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- YWKVRKZTCKYAEB-UHFFFAOYSA-N [3,5-bis(diaminomethylideneamino)phenyl]methyl dihydrogen phosphate;dihydrochloride Chemical compound Cl.Cl.NC(=N)NC1=CC(COP(O)(O)=O)=CC(NC(N)=N)=C1 YWKVRKZTCKYAEB-UHFFFAOYSA-N 0.000 description 1
- SQAMZFDWYRVIMG-UHFFFAOYSA-N [3,5-bis(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC(CO)=CC(CO)=C1 SQAMZFDWYRVIMG-UHFFFAOYSA-N 0.000 description 1
- VFDXWSNRJNLJAS-UHFFFAOYSA-N [3-[2-(diaminomethylideneamino)ethyl]phenyl]methyl dihydrogen phosphate Chemical compound NC(N)=NCCC1=CC=CC(COP(O)(O)=O)=C1 VFDXWSNRJNLJAS-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009692 acute damage Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940040563 agaric acid Drugs 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- QTQUJRIHTSIVOF-UHFFFAOYSA-N amino(phenyl)methanol Chemical compound NC(O)C1=CC=CC=C1 QTQUJRIHTSIVOF-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000008236 biological pathway Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000012455 biphasic mixture Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 125000005621 boronate group Chemical group 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- MDQDBTCGQGXTBP-UHFFFAOYSA-N bromomethyl benzoate Chemical compound BrCOC(=O)C1=CC=CC=C1 MDQDBTCGQGXTBP-UHFFFAOYSA-N 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 1
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000006957 competitive inhibition Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- AMCQNAFTZBNILI-UHFFFAOYSA-N cyanomethyl benzoate Chemical compound N#CCOC(=O)C1=CC=CC=C1 AMCQNAFTZBNILI-UHFFFAOYSA-N 0.000 description 1
- CHVJITGCYZJHLR-UHFFFAOYSA-N cyclohepta-1,3,5-triene Chemical compound C1C=CC=CC=C1 CHVJITGCYZJHLR-UHFFFAOYSA-N 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 1
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 229950006137 dexfosfoserine Drugs 0.000 description 1
- 208000033679 diabetic kidney disease Diseases 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- DROMNWUQASBTFM-UHFFFAOYSA-N dinonyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCC DROMNWUQASBTFM-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000005677 ethinylene group Chemical class [*:2]C#C[*:1] 0.000 description 1
- VFRSADQPWYCXDG-LEUCUCNGSA-N ethyl (2s,5s)-5-methylpyrrolidine-2-carboxylate;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CCOC(=O)[C@@H]1CC[C@H](C)N1 VFRSADQPWYCXDG-LEUCUCNGSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000003492 excitotoxic effect Effects 0.000 description 1
- 231100000063 excitotoxicity Toxicity 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 238000007446 glucose tolerance test Methods 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 108091005995 glycated hemoglobin Proteins 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 108010049611 glycogen synthase kinase 3 alpha Proteins 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 235000009200 high fat diet Nutrition 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Natural products NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N inositol Chemical compound OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- RGXCTRIQQODGIZ-UHFFFAOYSA-O isodesmosine Chemical compound OC(=O)C(N)CCCC[N+]1=CC(CCC(N)C(O)=O)=CC(CCC(N)C(O)=O)=C1CCCC(N)C(O)=O RGXCTRIQQODGIZ-UHFFFAOYSA-O 0.000 description 1
- CRDNMYFJWFXOCH-UHFFFAOYSA-N isoindigotin Natural products N1C2=CC=CC=C2C(=O)C1=C1C2=CC=CC=C2NC1=O CRDNMYFJWFXOCH-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000968 medical method and process Methods 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 239000002032 methanolic fraction Substances 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- XSNUGLQVCGENEM-UHFFFAOYSA-N methyl 3-(cyanomethyl)benzoate Chemical compound COC(=O)C1=CC=CC(CC#N)=C1 XSNUGLQVCGENEM-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 238000007479 molecular analysis Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- RRHNGIRRWDWWQQ-UHFFFAOYSA-N n-iodoaniline Chemical compound INC1=CC=CC=C1 RRHNGIRRWDWWQQ-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000009125 negative feedback regulation Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000009223 neuronal apoptosis Effects 0.000 description 1
- 230000003961 neuronal insult Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 150000002829 nitrogen Chemical group 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960001639 penicillamine Drugs 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 210000000229 preadipocyte Anatomy 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000955 prescription drug Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 208000037920 primary disease Diseases 0.000 description 1
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000029160 regulation of glycogen catabolic process Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- QEVHRUUCFGRFIF-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 QEVHRUUCFGRFIF-MDEJGZGSSA-N 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 238000001896 rotating frame Overhauser effect spectroscopy Methods 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000012439 solid excipient Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004052 statestime proportional phase incrementation Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000012258 stirred mixture Substances 0.000 description 1
- 208000023516 stroke disease Diseases 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 230000004654 survival pathway Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- IFKVMPISMLHLNS-UHFFFAOYSA-N tert-butyl N-[N'-[(2-methylpropan-2-yl)oxycarbonyl]carbamimidoyl]-N-[3-[(2-methylpropan-2-yl)oxycarbonyl-[N'-[(2-methylpropan-2-yl)oxycarbonyl]carbamimidoyl]amino]-5-(2,2,4,4-tetramethyl-3-phosphonooxypentan-3-yl)phenyl]carbamate Chemical compound CC(C)(C)OC(=O)N=C(N)N(C(=O)OC(C)(C)C)C1=CC(N(C(N)=NC(=O)OC(C)(C)C)C(=O)OC(C)(C)C)=CC(C(OP(O)(O)=O)(C(C)(C)C)C(C)(C)C)=C1 IFKVMPISMLHLNS-UHFFFAOYSA-N 0.000 description 1
- KBNJSVMZJIIECV-UHFFFAOYSA-N tert-butyl n-[2-[3-[bis[(2-methylpropan-2-yl)oxy]phosphoryloxymethyl]phenyl]ethyl]-n-[n'-[(2-methylpropan-2-yl)oxycarbonyl]carbamimidoyl]carbamate Chemical compound CC(C)(C)OC(=O)N=C(N)N(C(=O)OC(C)(C)C)CCC1=CC=CC(COP(=O)(OC(C)(C)C)OC(C)(C)C)=C1 KBNJSVMZJIIECV-UHFFFAOYSA-N 0.000 description 1
- VPWFNCFRPQFWGS-UHFFFAOYSA-N tert-butyl n-[amino-[(2-methylpropan-2-yl)oxycarbonylamino]methylidene]carbamate Chemical compound CC(C)(C)OC(=O)NC(N)=NC(=O)OC(C)(C)C VPWFNCFRPQFWGS-UHFFFAOYSA-N 0.000 description 1
- WHHOGPZOKSLDPP-UHFFFAOYSA-N tert-butyl n-carbamimidoyl-n-[(2-methylpropan-2-yl)oxycarbonyl]carbamate Chemical compound CC(C)(C)OC(=O)N(C(N)=N)C(=O)OC(C)(C)C WHHOGPZOKSLDPP-UHFFFAOYSA-N 0.000 description 1
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 238000004324 time-proportional phase incrementation Methods 0.000 description 1
- 229940098465 tincture Drugs 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229940100611 topical cream Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000012582 total correlation spectroscopy experiment Methods 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 125000005152 trihalomethanesulfonyl group Chemical group 0.000 description 1
- 125000004953 trihalomethyl group Chemical group 0.000 description 1
- RGCHNYAILFZUPL-UHFFFAOYSA-N trimethyl benzene-1,3,5-tricarboxylate Chemical compound COC(=O)C1=CC(C(=O)OC)=CC(C(=O)OC)=C1 RGCHNYAILFZUPL-UHFFFAOYSA-N 0.000 description 1
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 1
- CWMFRHBXRUITQE-UHFFFAOYSA-N trimethylsilylacetylene Chemical group C[Si](C)(C)C#C CWMFRHBXRUITQE-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 238000002495 two-dimensional nuclear magnetic resonance spectrum Methods 0.000 description 1
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 238000001363 water suppression through gradient tailored excitation Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/38—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
- C07F9/40—Esters thereof
- C07F9/4003—Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
- C07F9/4056—Esters of arylalkanephosphonic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4192—1,2,3-Triazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/12—Antidiuretics, e.g. drugs for diabetes insipidus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/38—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
- C07F9/3804—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
- C07F9/3882—Arylalkanephosphonic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6515—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having three nitrogen atoms as the only ring hetero atoms
- C07F9/6518—Five-membered rings
Definitions
- the present invention relates to novel compounds for inhibiting glycogen synthase kinase-3 (GSK-3) and their use in regulating biological conditions mediated by GSK-3 activity and, more particularly, to the use of these compounds in the treatment of biological conditions such as type II diabetes, neurodegenerative disorders and diseases and affective disorders.
- GSK-3 glycogen synthase kinase-3
- Protein kinases the enzymes that phosphorylate protein substrates, are key players in the signaling of extracellular events to the cytoplasm and the nucleus, and take part in practically any event relating to the life and death of cells, including mitosis, differentiation and apoptosis. As such, protein kinases have long been favorable drug targets. However, since the activity of protein kinases is crucial to the well being of the cell, while their inhibition oftentimes leads to cell death, their use as drug targets is limited. Although cell death is a desirable effect for anticancer drugs, it is a major drawback for most other therapeutics.
- Glycogen synthase kinase-3 (GSK-3), a member of the protein kinases family, is a cytoplasmic proline-directed serine-threonine kinase that is involved in insulin signaling and metabolic regulation, as well as in Wnt signaling and the scheme of cell fate during embryonic development.
- GSK-3 ⁇ and GSK-3 ⁇ Two similar isoforms of the enzyme, termed GSK-3 ⁇ and GSK-3 ⁇ , have been identified.
- GSK-3 has long been considered as a favorable drug target among the protein kinase family since unlike other protein kinases, which are typically activated by signaling pathways, GSK-3 is normally activated in resting cells, and its activity is attenuated by the activation of certain signaling pathways such as those generated by the binding of insulin to its cell-surface receptor. Activation of the insulin receptor leads to the activation of protein kinase B (PKB, also called Akt), which in turn phosphorylates GSK-3, thereby inactivating it. The inhibition of GSK-3 presumably leads to the activation of glycogen synthesis.
- PKA protein kinase B
- the intricate insulin-signaling pathway is further complicated by negative-feedback regulation of insulin signaling by GSK-3 itself, which phosphorylates insulin-receptor substrate- 1 on serine residues (Eldar- Finkelman et al, 1997). Therefore, synthetic GSK-3 inhibitors might mimic the action of certain hormones and growth factors, such as insulin, which use the GSK-3 pathway. In certain pathological situations, this scheme might permit the bypassing of a defective receptor, or another faulty component of the signaling machinery, such that the biological signal will take effect even when some upstream players of the signaling cascade are at fault, as in non-insulin-dependent type II diabetes.
- glycogen catabolism in cells is a critical biological function that involves a complex array of signaling elements, including the hormone insulin.
- insulin exerts its regulatory effect by increasing the synthesis of glycogen by glycogen synthase (GS).
- a key event in insulin action is the phosphorylation of insulin receptor substrates (IRS-I, IRS-2) on multiple-tyrosine residues, which results in simultaneous activation of several signaling components, including PI3 kinase (Myers et al, 1992)).
- insulin receptor substrates IRS-I, IRS-2
- PI3 kinase Myers et al, 1992
- the activity of glycogen synthase is suppressed by its phosphorylation.
- There is a marked decrease in glycogen synthase activity and in glycogen levels in muscle of type II diabetes patients (Shulman et al., 1990).
- Insulin resistance is characterized by hyperinsulemia and hyperglycemia. Although the precise molecular mechanism underlying insulin resistance is unknown, defects in downstream components of the insulin signaling pathway are considered to be the cause.
- Glycogen synthase kinase-3 (GSK-3) is one of the downstream components of insulin signaling. It was found that high activity of GSK-3 impairs insulin action in intact cells, by phosphorylating the insulin receptor substrate- 1 (IRS-I) serine residues (Eldar-Finkelman et al, 1997), and likewise, that increased GSK-3 activity expressed in cells results in suppression of glycogen synthase activity (Eldar- Finkelman et al, 1996). Further studies conducted in this respect uncovered that GSK-3 activity is significantly increased in epididymal fat tissue of diabetic mice (Eldar-Finkelman et al, 1999).
- GSK-3 activity was detected in skeletal muscle of type II diabetes patients (Nickoulina et al, 2000). Additional recent studies further established the role of GSK-3 in glycogen metabolism and insulin signaling (for review see, Eldar-Finkelman, 2002Woodgett, 2001), thereby suggesting that the inhibition of GSK-3 activity may represent a way to increase insulin activity in vivo.
- GSK-3 is also considered to be an important player in the pathogenesis of Alzheimer's disease.
- GSK-3 was identified as one of the kinases that phosphorylate tau, a microtubule-associated protein, which is responsible for the formation of paired helical filaments (PHF), an early characteristic of Alzheimer's disease.
- PHF paired helical filaments
- abnormal hyperphosphorylation of tau is the cause for destabilization of microtubules and PHF formation.
- GSK-3 phosphorylation directly affected tau ability to promote microtubule self-assembly (Mandelkow et al., 1992; Mulot et al., 1995).
- GSK-3 is further linked with Alzheimer's disease by its role in cell apoptosis.
- Glutamate-induced neuronal excitotoxicity is also believed to be a major cause of neurodegeneration associated with acute damage, such as in cerebral ischemia, traumatic brain injury and bacterial infection. Furthermore, it is believed that excessive glutamate signaling is a factor in the chronic neuronal damage seen in diseases such as Alzheimer's, Huntington's, Parkinson's, AIDS associated dementia, amyotrophic lateral sclerosis (AML) and multiple sclerosis (MS) (Thomas, 1995).
- AML amyotrophic lateral sclerosis
- MS multiple sclerosis
- GSK-3 inhibitors are believed to be a useful treatment in these and other neurodegenerative disorders. Indeed, dysregulation of GSK-3 activity has been recently implicated in several CNS disorders and neurodegenerative diseases, including schizophrenia (Beasley et al., 2001), stroke, and Alzheimer's disease (AD) (Bhat and Budd, 2002; Lucas et al., 2001; Mandelkow et al., 1992). In view of the wide implication of GSK-3 in various signaling pathways, development of specific inhibitors for GSK-3 is considered both promising and important regarding various therapeutic interventions as well as basic research:
- CREB cAMP response element binding protein
- GSK-3 inhibitors were recently reported. Two structurally related small molecules SB-216763 and SB-415286 (Glaxo SmithKline Pharmaceutical) that specifically inhibited GSK-3 were developed and were shown to modulate glycogen metabolism and gene transcription as well as to protect against neuronal death induced by reduction in PI3 kinase activity (Cross et al., 2001; Coghlan et al., 2000). Another study indicated that Induribin, the active ingredient of the traditional Chinese medicine for chronic myelocytic leukemia, is a GSK-3 inhibitor. However, Indirubin also inhibits cyclic-dependent protein kinase-2 (CDK-2) (Damiens et al., 2001). These GSK-3 inhibitors are ATP competitive and were identified by high throughput screening of chemical libraries. It is generally accepted that a major drawback of ATP-competitive inhibitors is their limited specificity (Davies et al., 2000).
- the present inventors have now surprisingly found that compounds which are designed according to the unique features of the recognition motif of a GSK-3 substrate exhibit substrate competitive inhibition activity toward GSK-3 and can therefore be efficiently used in various applications where reducing the activity of GSK-3 is beneficial.
- a compound comprising a negatively charged group and at least one amino moiety- containing group being covalently linked therebetween via a spacer, the spacer having a length, structure and flexibility selected for allowing at least one interaction between the negatively charged group and a first binding site in a catalytic domain of a GSK-3 and at least one interaction between the amino moiety-containing group and a second binding site in the catalytic domain of a GSK-3, such that the compound is capable of inhibiting a catalytic activity of a GSK-3.
- X, Y, Z and W are each independently a carbon atom or a nitrogen atom;
- A is the J;
- B is the negatively charged group;
- D is selected from the group consisting of hydrogen, alkyl, C 1 to C 6 substituted alkyl, trihaloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic, halo, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, sulfinyl, sulfonyl, cyano, nitro, azo, sulfonamide, carbonyl, ketoester, thiocarbonyl, ester, ether, thioether, thiocarbamate, urea, thiourea, 0-carbamyl, N-carbamyl, 0-thiocarbamyl, N- tliiocarbamyl, C-amido, N-amido, C-carboxy, O-carboxy, sulfonamido, trihalomethanesulfona
- R 1 , R 2 , R 3 and R 4 is the amino moiety-containing group.
- inhibiting the catalytic activity of a GSK-3 comprises diminishing a binding of a substrate to the catalytic domain.
- the first binding site comprises at least one amino acid residue selected from the group consisting of arginine 180, arginine 96, and lysine 205.
- the second binding site comprises at least one amino acid residue selected from the group consisting of aspartate 181, glutamate 97, aspartate 90, aspartate 181, glutamate 200, glutamine 89, tyrosine 215 and aspartate 95.
- the compound further comprises a hydrophobic moiety that is capable of interacting with a third binding site of a GSK-3.
- the third binding site is a part of the catalytic domain of the GSK-3.
- the third binding site comprises at least one amino acid residue selected from the group consisting of isoleucine 217, phenylalanine 67 and tyrosine 215.
- hydrophobic moiety forms a part of the spacer.
- the length of the spacer ranges from 2 angstroms and 50 angstroms.
- L is selected from the group consisting of a phosphor atom, a sulfur atom, a silicon atom, a boron atom and a carbon atom;
- Q, G and D are each independently selected from the group consisting of oxygen and sulfur;
- E is selected from the group consisting of hydroxy, alkoxy, aryloxy, carbonyl, tbiocarbonyl, 0-carboxy, thiohydroxy, thioalkoxy and thioaryloxy or absent.
- L is phosphor
- Q, D and G are each oxygen and E is hydroxy.
- the amino moiety-containing group comprises at least one positively charged group.
- the at least one positively charged group is selected from the group consisting of ammonium ion and guanidinium ion.
- the at least one positively charged group has a chemical structure derived from a side chain of a positively charged amino acid.
- the positively charged amino acid is selected from the group consisting of arginine, lysine, histidine, proline and any derivative thereof.
- the at least one amino moiety-containing group is selected from the group consisting of guanidino, guanidinoalkyl, amino, aminoalkyl, hydrazine, guanyl and guanyloalkyl.
- At least one of the at least one amino moiety-containing group forms a part of the spacer.
- the spacer comprises at least one cyclic moiety.
- the at least one cyclic moiety is selected from the group consisting of an alicyclic, an aryl, a heteroaryl and a heteroalicyclic.
- the spacer comprises at least two cyclic moieties.
- At least two of the cyclic moieties are fused to one another.
- the linker is selected from the group consisting of a bond, a heteroatom, a hydrocarbon chain and a hydrocarbon chain interrupted by at least one heteroatom.
- K is selected from the group consisting of aryl, heteroaryl, alicylic, or heteroalicyclic;
- J and S 1 -Sn are each independently selected from the group consisting of a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted alicylic, a substituted or unsubstituted heteroalicyclic, a bond, a heteroatom, a substituted or unsubstituted hydrocarbon chain, a substituted or unsubstituted hydrocarbon chain interrupted by at least one heteroatom, or absent.
- n is an integer from 1 to 2.
- n is an integer from 0 to 2.
- n is 2 and each of S 1 , S 2 and K is independently selected from the group consisting of aryl and heteroaryl.
- J is a hydrocarbon chain.
- J is alkyl.
- S 1 is aryl
- S 2 is heteroaryl
- K is aryl.
- S 1 is phenyl
- S 2 is triazole
- K is phenyl
- At least one of J and S 1 -Sn comprises at least one amino moiety-containing group.
- the at least one amino moiety-containing group forms a part of the K.
- At least one of J, (S) 1 -(S ⁇ and K comprises a hydrophobic moiety attached thereto.
- the hydrophobic moiety is selected from the group consisting of a fatty acid residue, a saturated alkylene chain having between 4 and 30 carbon atoms, an unsaturated alkylene chain having between 4 and 30 carbon atoms, an aryl, a cycloalkyl and a hydrophobic peptide sequence.
- the fatty acid is selected from the group consisting of myristic acid, lauric acid, palmitic acid, stearic acid, oleic acid, arachidonic acid, linoleic acid and linolenic acid.
- J is a hydrocarbon chain or absent and n is 0.
- a pharmaceutical composition that comprises, as an active ingredient, any of the compounds described hereinabove, which is capable of inhibiting an activity of GSK- 3, and a pharmaceutically acceptable carrier.
- the pharmaceutical composition is packaged in a packaging material and is identified in print, on or in the packaging material, for use in the treatment of a biological condition associated with GSK-3 activity, as is detailed hereinbelow.
- the pharmaceutical composition further comprises at least one additional active ingredient that is capable of altering an activity of GSK-3, as is detailed hereinbelow.
- a method of treating a biological condition associated with an activity of GSK-3 which is effected by administering to a subject in need thereof a therapeutically effective amount of a compound which comprises a negatively charged group and at least one amino moiety-containing group being linked therebetween via a spacer, wherein the spacer has a length, structure and flexibility suitable for enabling at least one interaction between the negatively charged group and a first binding site in the catalytic domain of a GSK-3 and at least one interaction between the amino moiety- containing group and a second binding site in the catalytic domain of a GSK-3, as is described hereinabove.
- the method according to this aspect of the present invention further comprises co-administering to the subject at least one additional active ingredient, which is capable of altering an activity of GSK-3.
- the additional active ingredient can be an active ingredient that is capable of inhibiting an activity of GSK-3 or an active ingredient that is capable of downregulating an expression of GSK-3.
- the biological condition according to the present invention is preferably selected from the group consisting of obesity, non-insulin dependent diabetes mellitus, an insulin-dependent condition, an affective disorder, a neurodegenerative disease or disorder and a psychotic disease or disorder.
- the affective disorder can be a unipolar disorder (e.g., depression) or a bipolar disorder (e.g., manic depression).
- a unipolar disorder e.g., depression
- a bipolar disorder e.g., manic depression
- the neurodegenerative disorder can results from an event selected from the group consisting of cerebral ischemia, stroke, traumatic brain injury and bacterial infection, or can be a chronic neurodegenerative disorder that results from a disease selected from the group consisting of Alzheimer's disease, Huntington's disease, Parkinson's disease, AIDS associated dementia, amyotrophic lateral sclerosis (AML) and multiple sclerosis.
- a disease selected from the group consisting of Alzheimer's disease, Huntington's disease, Parkinson's disease, AIDS associated dementia, amyotrophic lateral sclerosis (AML) and multiple sclerosis.
- a method of inhibiting an activity of GSK-3 which comprises contacting cells expressing GSK-3 with an inhibitory effective amount of a compound which comprises a negatively charged group and at least one amino moiety-containing group being linked therebetween via a spacer, wherein the spacer has a length, structure and flexibility suitable for enabling at least one interaction between the negatively charged group and a first binding site in the catalytic domain of a GSK-3 and at least one interaction between the amino moiety-containing group and a second binding site in the catalytic domain of a GSK-3.
- GSK-3 with an inhibitory effective amount of a compound as described herein.
- the activity can be a phosphorylation activity and/or an autophosphorylation activity.
- a method of potentiating insulin signaling which comprises contacting insulin responsive cells with an effective amount of which comprises a negatively charged group and at least one amino moiety-containing group being linked therebetween via a spacer, wherein the spacer has a length, structure and flexibility suitable for enabling at least one interaction between the negatively charged group and a first binding site in the catalytic domain of a GSK-3 and at least one interaction between the amino moiety-containing group and a second binding site in the catalytic domain of a GSK-3.
- potentiating the insulin signaling is effected by contacting insulin responsive cells with an effective amount of a compound as described herein.
- the contacting the cells can be effected in vitro or in vivo.
- each of the methods and/or uses according to these additional aspects of the present invention further comprises contacting the cells with at least one an additional active ingredient, as is described hereinabove.
- the present invention successfully addresses the shortcomings of the presently known configurations by providing newly designed, non-peptidic compounds for inhibiting GSK-3 activity, which can be efficiently used in the treatment of a variety of biological conditions.
- range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range. Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
- FIG. 2 is an image showing the electrostatic distribution of the p9CREB peptide, based on the 3D structure of the peptide obtained by 2D 1 H-NMR studies;
- FIGs. 3a-b present the chemical structures of phenyl phosphate, pyridoxal phosphate (P-5-P), GSC-I, GSC-2, GSC-3 and of the novel compounds GSC-4, GSC- 5 and GSC-21 ( Figure 3a) and of the novel compounds GSC-6, GSC-7, GSC-8 and GSC-9 ( Figure 3b);
- FIGs. 4a-b present the ESI-MS ( Figure 4a) and an HPLC chromatogram ( Figure 4) of 3,5-Bis(2-aminoethyl)benzyl phosphate (GSC-21);
- FIG. 5 presents comparative plots demonstrating the GSK-3 inhibition activity of phenyl phosphate, GSC-I 1 GSC-2, GSC-3 and pyridoxal phosphate (P-5-P) in in vitro inhibition assays with PGS-I peptide substrate;
- FIG. 6 presents comparative plots demonstrating the GSK-3 inhibition activity of GSC-I, GSC-2, GSC-3, GSC-4 and GS-21 in in vitro inhibition assays (Black circles denote GSC-2, red circles denote GSC-I, green circles denote GSC-3, blue circles denote GSC-4 and pink circles denote GSC-21); FIGs.
- FIG. 7a-b present comparative plots demonstrating the GSK-3 inhibition activity of GSC-I, GSC-2, GSC-3 and GSC-4 (Figure 7a, black circles denote GSC-2, blanc circles denote GSC-I, black triangles denote GSC-3 and black rectangles denote GSC-4) and GSC-5, GSC-6 and GSC-7 ( Figure 7b, rectangles denote GSC-5, triangles denote GSC-6 and circles denote GSC-7) in in vitro inhibition assays with p9CREB peptide substrate;
- FIG. 8 presents a Lineweaver-Burk plot showing the inhibition of GSK-3 by
- GSC-7 at indicated concentrations, represented by phosphate incorporation into the p9CREB peptide substrate (CPM) and demonstrating that GSC-7 is a competitive specific inhibitor (Results show one representative experiment out of 3; each point is a mean of duplicate samples);
- FIG. 9 is an image of a gel electrophoresis assay for CDK-2 kinase activity assayed in the presence of 32 P[y-ATP] and histone Hl as a substrate, and demonstrating the absence of inhibitory activity of GSC-4, GSC-5 and GSC-7;
- FIG. 10 presents plots demonstrating the effect of GSC-5 (hollowed circles) and GSC-7 (filled circles) on glycogen synthase activity in C2C12 cells, shown as fold stimulation over the cells treated with vehicle 0.1 % HCL;
- FIGs. lla-b are bar graphs demonstrating the effect of GSC-21 (Figure l ib) and GSC-4 (Figure Ha) on glucose uptake in mouse adipocytes, represented by the [ 3 H] 2-deoxy glucose incorporation in cells treated with GSC-4 and GSC-21 as fold activation over cells treated with a peptide control (normalized to 1 unit);
- FIG. 12 presents a computed simulation of the interaction of GSC-4 with GSK-3
- FIG. 13 presents a computed simulation of the interaction of GSC-5 with
- FIG. 14 presents a computed simulation of the interaction of GSC-7 with GSK-3
- FIG. 15 presents a computed simulation of the interaction of GSC-6 with GSK-3
- FIG. 16 presents a computed simulation of the interaction of GSC-8 with GSK-3
- FIG. 17 presents a computed simulation of the interaction of GSC-9 with GSK-3
- FIG. 18 presents the chemical structures of the newly designed GSK-3 inhibitors MP-I, MP-2, MP-3, MP-4, MP-5 and MP-6; and
- FIG. 19 presents comparative plots demonstrating the GSK-3 inhibition activity of MP-I, MP-2, MP-3, MP-4, MP-5 and MP-6 in in vitro inhibition assays with p9CREB peptide substrate.
- the present invention is of novel, non-peptidic compounds, which are capable of inhibiting GSK-3 activity and can therefore be used in the treatment of biological conditions mediated by GSK-3.
- the present invention is of (i) compounds that are designed according to the pharmacophoric coordinates of a GSK- 3 substrate, which may optionally have a hydrophobic moiety attached thereto; (ii) pharmaceutical compositions containing same; (iii) methods of using same for inhibiting GSK-3 activity and potentiating insulin signaling; and (iv) methods of using same in the treatment of biological conditions such as, but not limited to, obesity, non-insulin dependent diabetes mellitus, insulin-dependent conditions, affective disorders, neurodegenerative diseases and disorders and psychotic diseases or disorders.
- the principles and operation of the present invention may be better understood with reference to the drawings and accompanying descriptions.
- One of the parameters that are responsible for substrate-kinase recognition is an element located within the substrate, which is usually related to as a "recognition motif.
- GSK-3 unlike other kinases, has a unique recognition motif, which includes the amino acid sequence SX 1 X 2 X 3 S(P), set forth in SEQ ID NO:1, where S is serine or threonine, each of X 1 , X 2 and X 3 is any amino acid, and S(p) is phosphorylated serine or phosphorylated threonine.
- GSK-3 recognizes only pre-phosphorylated substrates, namely, substrates that have a phosphorylated serine or threonine residue. It was further hypothesized that determining this unique structure would enable the development of small molecules that could act as substrate competitive inhibitors of
- the short pre- phosphorylated peptide ⁇ 9CREB (ILSRRPS( ⁇ )YR, SEQ ID NO:2) was selected.
- the three-dimensional structures of p9CREB, as well as of the corresponding non- phosphorylated peptide CREB (ILSRRPSYR, SEQ ID NO:3) were determined by 2D NMR, as is detailed in the Examples section that follows (see, Example 1).
- the phosphorylated p9CREB substrate has a defined structure in solution ( Figure Ia), whereby the corresponding non- phosphorylated peptide CREB does not exhibit any unique structure ( Figure Ib).
- Figure 2 presents the electrostatic distribution on the 'surface' of the p9CREB peptide, based on these findings. While continuing to conceive the present invention, it was deduced from the findings described hereinabove that a small molecule that would mimic the structure of a GSK-3 substrate such that it would exerts substrate competitive inhibitory activity should be designed according to the following features:
- the molecule should include a negatively charged group, preferably a phosphate group;
- the negatively charged group should not be stearically hindered; and
- the negatively charged group should preferably be flanked at least at one side or at both sides thereof by one or two positively charged groups.
- Example 2 Based on the above, a general formula of potential compounds for inhibiting GSK-3 activity has been designed (see, Example 2). As is described in the Examples section that follows (see, Example 3), preliminary experiments that were conducted with a 'first generation' of these compounds, namely, compounds having the most simplified structure of this formula, demonstrated the capability of these compounds to inhibit GSK-3 activity, thus providing a preliminary indication of the inhibitory potential of compounds having such a formula.
- small molecules should be designed such that most, if not all, the various functionalities would be in a suitable proximity and orientation to the binding sites.
- design of small molecules in which the distance between the negatively charged group and the one or more positively charged group(s) is greater than that obtained with a single aromatic ring should be considered.
- Example 5 a second generation of compounds have been designed and successfully prepared (see, Example 5) and practiced (see, Example 6). These compounds were designed to include a spacer, linking the negatively charged group and one or more positively charged groups, which would have a suitable length, structure and flexibility, and hence would allow strong interactions with various binding sites in the catalytic core of GSK-3.
- Representative examples of such 'second generation' compounds are compounds in which the spacer is composed of three cyclic moieties, and further in which the negatively and positively charged groups are positioned in certain orientations to one another.
- experiments conducted with these compounds demonstrated their high capability to inhibit GSK-3 activity and further demonstrated the effect of the relative orientation between the functional groups (see, for example, Figure 19).
- a compound which comprises a negatively charged group and at least one amino moiety-containing group being covalently linked therebetween via a spacer.
- the spacer is designed to have a length, structure and flexibility selected for allowing at least one interaction between the negatively charged group and a first binding site in a catalytic domain of a GSK-3 and at least one interaction between the ammo moiety- containing group and a second binding site in the catalytic domain of a GSK-3, such that the compound is capable of inhibiting a catalytic activity of a GSK-3.
- Excluded from the scope of this aspect of the present invention are the compounds disclosed in WO 2005/000192, as described hereinabove.
- catalytic domain describes a region of an enzyme in which the catalytic reaction occurs. This phrase therefore describes this part of an enzyme in which the substrate and/or other components that participate in the catalytic reaction interacts with the enzyme. In the context of the present invention, this phrase is particularly used to describe this part of an enzyme (a GSK-3) to which the substrate binds during the catalytic activity (e.g., phosphorylation). This phrase is therefore also referred to herein and in the art, interchangeably, as “substrate binding pocket", “catalytic site” "active site” and the like.
- binding site describes a specific site in the catalytic domain that includes one or more reactive groups through which the interactions with the substrate and/or other components can be effected.
- the binding site is composed of one or two amino acid residues, whereby the interactions typically involve reactive groups at the side chains of these amino acids.
- conformational changes of the catalytic domain of the enzyme occur so as to bring the reactive groups in suitable proximity and orientation, and allow their interaction with the functional groups of the substrate.
- binding site encompasses those amino acid residues that are positioned in such proximity and orientation that allows such interaction.
- the interactions of the various functional groups of the compound with the various binding sites of the enzyme can be, for example, electrostatic interactions, hydrogen bonding interactions, hydrophobic interactions, aromatic interactions, ⁇ - stacking interactions, and the like, depending on the reactive groups that participate in the interactions and their proximity and orientation to one another.
- Exemplary electrostatic interactions include anion-cation interactions and acid-base interactions such as, for example, interactions between ammonium cation and carboxylate anion.
- Exemplary hydrogen bonding interactions include interactions between hydrogens of amine, hydroxel or thiol of one or more component(s) and e.g., oxygen, nitrogen and sulfur atoms of other component(s).
- Exemplary hydrophobic interactions include interactions between two or more hydrocarbon moieties such as alkyl, cycloalkyl and aryl.
- Exemplary aromatic interactions include interactions between two or more aromatic moieties such as aryls and heteroaryls, which are based on overlap in the aromatized molecular orbitals of the moieties.
- Exemplary ⁇ -stacking interactions include interactions between two or more moieties that contain ⁇ -electrons (e.g., unsaturated moieties), which are based on overlap in the ⁇ -orbitals of the moieties.
- substrate competitive enzyme inhibitors act by binding to the catalytic domain of an enzyme and thus reducing the proportion of enzyme molecules that are bound to the enzyme during the catalytic process.
- an enzyme interacts with a substrate or an inhibitor, the initial interaction rapidly induces conformational changes in the enzyme that strengthen binding and bring catalytic sites close to functional groups in the substrate or inhibitor.
- Enzyme-substrate/inhibitor interactions orient reactive groups present in both the enzyme and the substrate/inhibitor and bring them into proximity with one another.
- the binding of the substrate/inhibitor to the enzyme aligns the reactive groups so that the relevant molecular orbitals overlap.
- an efficient substrate competitive inhibitor should be designed such that the reactive groups of the inhibitor would be positioned in sufficient proximity to corresponding reactive groups (typically side chains of amino acid residues) in the enzyme catalytic domain, so as to allow the presence of an effective concentration of the inhibitor in the catalytic domain and, in addition, the reactive groups of the inhibitor should be positioned in a proper orientation, to allow overlap. Still in addition, an inhibitor should have a restriction of its conformational flexibility, so as to avoid conformational changes that would affect or weaken the interactions and should include structural elements that are known to be involved in the interactions.
- GSK-3 substrates have a negatively charged group and one or more positively charged groups, whereby the negatively charged group is positioned in a special spatial orientation.
- Substrate competitive GSK-3 inhibitors should therefore include both these groups and the relative orientation thereof.
- an inhibitor should be designed such that these functional groups would be in optimal proximity and orientation towards the enzyme's reactive groups.
- the proximity and orientation of these functional groups are determined, according to the present embodiments, by selecting a spacer that links these functional groups such that when interacting with reactive groups in the catalytic domain, each functional group would be in an optimal proximity and orientation towards one or more compatible reactive groups in the enzyme binding sites.
- a suitable spacer would therefore have suitable length, flexibility and structure that would allow efficient interaction, in terms of proximity and orientation, between each functional group and one or more compatible reactive group.
- the first binding site (with which the negatively charged group can interact, as described hereinabove) comprises one or more of these amino acid residues.
- the compounds are designed such that interactions between the negatively charged group and one or more of these amino acid residues are allowed. These interactions are preferably electrostatic interactions.
- any other chemically compatible binding sites in the catalytic domain of GSK-3 that are arranged in proximity and orientation that allows interactions with the negatively charged group of the inhibitor are also within the scope of the present invention.
- the amino moiety-containing group(s) interact with one or more of aspartate 181, glutamate 97, aspartate 90, aspartate 181, glutamate 200, glutamme 89, tyrosine 215 and aspartate 95.
- the second binding site comprises one or more of these amino acid residues.
- the compounds are designed such that interactions between the amino moiety-containing group(s) and one or more of these amino acid residues are allowed.
- interactions can be, for example electrostatic interactions and/or hydrogen binding interactions.
- any other chemically compatible binding sites in the catalytic domain of GSK-3 that are arranged in proximity and orientation that allows interactions with the amino moiety- containing group (s) of the inhibitor are also within the scope of the present invention.
- the compounds described herein preferably comprise one negatively charged group, they may comprise one or more (e.g., two, three) amino moiety- containing groups.
- the second binding site described herein includes all of those reactive groups that interact with ail of the amino moiety-containing groups.
- the compounds described herein can further include a hydrophobic moiety that may participate in the interactions of the compound with the enzyme.
- the hydrophobic moiety can be attached to the spacer such that the length, structure and flexibility of the spacer would allow its interactions with another (third) binding site of the enzyme.
- the hydrophobic moiety can form a part of the spacer itself, by selecting a hydrophobic spacer.
- the interactions of a hydrophobic moiety may be within the catalytic domain and/or within another region of the enzyme.
- these interactions can be within a hydrophobic patch that is present within the enzyme, as was previously reported by Dajani et al. (2001).
- these interactions can be with one or more of the amino acid residues isoleucine 217, phenylalanine 67 and tyrosine 215 in the catalytic domain of a GSK-3.
- any other hydrophobic binding sites in the catalytic domain of GSK-3 that are arranged in proximity and orientation that allows interactions with the hydrophobic moiety of the inhibitor are also within the scope of the present invention.
- These interactions can be hydrophobic interactions, aromatic interactions and/or ⁇ -stacking interactions, depending on the chemical structure of the moiety and the binding site. Additional description of hydrophobic moieties is set forth below.
- an optimal distance between the negatively charged group and the amino moiety-containing group ranges from about 2 angstroms and about 50 angstroms.
- the length of spacer ranges from about 2 angstroms and about 50 angstroms, more preferably from about 2 angstroms and about 20 angstroms, and more preferably from about 2 angstroms and about 10 angstroms.
- An exemplary spacer would thus have a length of about 7-8 angstroms.
- the spacer preferably comprises one or more cyclic moieties.
- the moieties can be either fused and/or non-fused.
- each two cyclic moieties can be linked to one another via linker such as, but not limited to, a bond, a heteroatom (e.g., oxygen, nitrogen, sulfur) or a hydrocarbon chain, as these terms are defined hereinbelow.
- the hydrocarbon chain can optionally be interrupted by one or more heteroatoms (e.g., oxygen, nitrogen, sulfur and the likes).
- the spacer comprises two or more, preferably three cyclic moieties, which are covalently linked to one another via a bond.
- each of the cyclic moieties can be, for example, a carbocylic moiety or a heterocyclic moiety.
- a “carbocylic moiety” describes an all-carbon, saturated or unsaturated cyclic moiety, whereby a “heterocyclic moiety” describes a saturated or unsaturated cyclic moiety that includes one or more heteroatoms such as nitrogen, oxygen, sulfur, phosphor, silicone and the like.
- Carbocylic moieties include cycloalkyls and aryls, as these terms are defined hereinbelow.
- Heterocyclic moieties include heteroalicyclics and heteroaryls, as these terms are defined hereinbelow.
- Aromatic cyclic moieties (aryls and heteroaryls), by being more rigid than non- aromatic cyclic moieties (cycloalkyls and heteroalicyclics), are preferred due to the restriction of conformational changes in their structures. However, a combination of aromatic and non-aromatic cyclic moieties can also allow the desired interactions.
- the spacer comprises a heterocyclic moiety that contains one or more nitrogen atoms
- this moiety can serve as an amino moiety-containing group that participates in the interactions with the binding sites.
- these moieties can serve as hydrophobic and/or aromatic moieties that participate in the interactions with the binding sites, as discussed hereinabove.
- the spacer can be further selected so as to have a structure that would allow or restrict interactions thereof with binding sites of the enzyme.
- Exemplary spacers that have a structure that allows interactions with binding sites include, without limitations, hydrophobic moiety-containing spacers, aromatic moiety- containing spacers and amino moiety-containing (e.g., heterocylic) spacers.
- the structure of the spacer can further affect its flexibility, stability and other features that may be implicated with the interactions of the compound with the binding sites in the catalytic domain of GSK-3.
- Preferred compounds according to the present embodiments therefore include a rigid or a semi-rigid spacer, to which a negatively charged group is attached.
- this structure mimics the unique structure of a GSK-3 substrate by providing a negatively charged group which is not stearically hindered and has a geometrical structure similar or identical to a phosphate group, and further by allowing interactions of the negatively charged group and an amino moiety-containing group with binding sites of GSK-3, these compounds are capable of inhibiting GSK-3 activity, preferably via inhibition of the substrate binding to the enzyme.
- negatively charged group and “positively charged group”, as used herein, refer to an ionizable group, which upon ionization, typically in an aqueous medium, has at least one negative or positive charge, respectively.
- the charged groups can be present in the compounds described herein either in their ionized form or as a pre-ionized form.
- the negatively charged group according to preferred embodiments of the
- L is selected from the group consisting of a phosphor atom, a sulfur atom, a silicon atom, a boron atom and a carbon atom
- Q, G and D are each independently selected from the group consisting of oxygen and sulfur
- E is selected from the group consisting of hydroxy, alkoxy, aryloxy, carbonyl, thiocarbonyl, O-carboxy, thiohydroxy, thioalkoxy and thioaryloxy, as these terms are defined hereinbelow, or absent.
- the negatively charged group is a phosphate group, such that in the formula above L is a phosphor atom, whereby each of Q, G and D is oxygen.
- E is hydroxy.
- the hydroxy group can also be ionized so as to have another negative electrostatic charge.
- the negatively charged group can be a thiophosphate group, sulfate or sulfonate group, a borate or boronate group and the like, according to the formula above.
- the negatively charged group is preferably attached to the spacer via an alkyl group, preferably an unsubstituted alkyl, and more preferably a methyl.
- the attachment of the negatively charged group to the ring via an alkyl group renders the negatively charged group a free rotatable group as opposed to its restricted roatatability when attached directly to the spacer.
- the free rotatability of the negatively charged group is advantageous since it allows the negatively charged group to readily interact with the binding site of the enzyme.
- the positively charged group is preferably derived from an amine moiety- containing group, which can be present in the compound in its ionized form (e.g., as an ammonium or guanidinium ion) or as a free amine (a pre-ionized form).
- amino moiety-containing group refers to a group which contains one or more amino moieties, as this term is defined herein or to an amine per se.
- amino moiety-containing groups include, without limitation, an amine, an aminoalkyl, hydrazine, urea, thiourea, guanyl, amido, carbamyl, guanidino, guanidinoalkyl and guanylinoalkyl, as these terms are defined herein.
- a free amine group is typically basic under neutral conditions and therefore, at a biological environment, it tends to be protonated so as to produce a positively charged -NH 3 + group, for example.
- a compound that has one or two of such positively charged groups flanking the negatively charged group in a suitable distance and orientation with respect to the binding sites of the enzyme is preferable.
- the amino moiety is preferably present in this group as a readily- protonated moiety, that is, a moiety in which the amino nitrogen has a substantial partially negative charge.
- amino moiety-containing groups therefore include, without limitation, an amine, an aminoalkyl, guanyl, guanylinoalkyl, guanidino, guanidinoalkyl and guanylinoalkyl, as these terms are defined herein.
- amino moiety-containing groups can be present in the compounds described herein either as is or as positively charged groups, in which at least one of the amino moieties is ionized.
- positively charged groups according to the present invention comprise an ammonium ion, such that representative examples of positively charged groups include, without limitation, an ammonium ion per se (a protonated amino group) and any group that bears an ammonium ion, as is defined hereinabove, such as an alkyl, cycloalkyl or aryl substituted by an ammonium ion, guanidino, guanyl, hydrazine and the like.
- positively charged groups that have a chemical structure derived from a side chain of a positively charged amino acid, e.g., lysine, arginine, histidine, proline and derivatives thereof, with the first two being the most preferred.
- a chemical structure derived from a side chain of a positively charged amino acid it is meant that the positively charged group has a similar or identical chemical structure as such a side chain.
- Representative examples include guanidine and guanidinoalkyl (derived from arginine), amine and aminoalkyl (derived from lysine) and imidazole (derived from histidine), with the first being the presently most preferred.
- B is a negatively charged group, as described hereinabove;
- Q is one of the amino moiety-containing group(s) described hereinabove;
- K is selected from the group consisting of aryl, heteroaryl, alicylic, or heteroalicyclic;
- J and S 1 -Sn are each independently selected from the group consisting of a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted alicylic, a substituted or unsubstituted heteroalicyclic, a bond, a heteroatom, a substituted or unsubstituted hydrocarbon chain, a substituted or unsubstituted hydrocarbon chain interrupted by at least one heteroatom, as these terms are defined herein, or absent.
- the substituents can be any of those described hereinbelow.
- the spacer in these compounds is comprised of at least one cyclic moiety (K in Formula I above) to which 1-6 amino moiety-containing groups are attached.
- K in Formula I above a cyclic moiety
- one or two amino moiety-containing groups are attached to the cyclic moiety K, such that m in Formula I above ranges from 1 to 2.
- one of the amino moiety-containing groups, denoted as Q in Formula I above forms a part of the cyclic moiety K, as is detailed hereinabove.
- K is a heteroalicyclic or a heteroaryl, preferably heteroaryl.
- Additional amino moiety-containing groups can also be present within the compound.
- at least one of the J and S 1 -Sn moieties can comprise one or more amino moiety-containing group(s).
- the amino moiety-containing group(s) can be attached to these moieties or form a part thereof, as described hereinabove.
- a longer spacer links the negatively charged group B and the amino moiety-containing group Q, such that at least one of J and S 1 -Sn is present within the spacer.
- the length, structure and flexibility of the spacer can be determined so as to allow the desired interactions described hereinabove.
- the number and size of the moieties composing the spacer determines the length of the spacer. In cases where a lengthy spacer is required in order to allow the desired interactions, n is greater than 5. In cases where a shorter spacer is required, n is lower than 5 and can also be 0.
- preferred compounds comprise a spacer that have a length that ranges from 2 angstroms and 50 angstroms, preferably from 2 angstroms and 20 angstroms and more preferably from 2 angstroms and 10 angstroms.
- n is an integer from
- n is 2 and each of S 1 , S 2 and K is independently selected from the group consisting of aryl and heteroaryl.
- the negatively charged group can be attached to the spacer either directly or indirectly, with the latter being preferred.
- J in Formula I above can be absent (when the negatively charged group is directly attached to the spacer) or a flexible group that would allow this group to readily interact with the first binding site described hereinabove.
- J is a hydrocarbon chain such as alkyl.
- J is a short alkyl (C 1 -C 6 alkyl) and more preferably it is methyl.
- J is alkyl and each of S 1 , Sn and K is aryl or heteroaryl.
- Exemplary compounds in this category are those having the general Formula above in which B is phosphate, J is alkyl (e.g., methyl), S 1 is aryl (e.g., phenyl), S 2 is heteroaryl (e.g., triazole) and K is aryl (e.g., phenyl).
- X, Y, Z and W are each independently a carbon atom or a nitrogen atom;
- A is a hydrocarbon chain or absent (corresponds to J above);
- B is a negatively charged group as described hereinabove;
- D is selected from the group consisting of hydrogen, alkyl, trihaloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic, halo, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, sulfinyl, sulfonyl, cyano, nitro, azo, sulfonamide, carbonyl, ketoester, thiocarbonyl, ester, ether, thioether, thiocarbamate, urea, thiourea, O-carbamyl, N-carbamyl, 0-thiocarbamyl, N-thiocarba
- R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of hydrogen, a lone pair of electrons, alkyl, trihaloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic, halo, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, sulfinyl, sulfonyl, cyano, nitro, azo, sulfonamide, carbonyl, ketoester, thiocarbonyl, ester, ether, thioether, thiocarbamate, urea, thiourea, O- carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, C- carboxy, O-carboxy, sulfonamido, trihal
- the spacer in these family of compounds comprises a cyclic moiety and preferably an aromatic ring (aryl) or a heteroaromatic ring (heteroaryl).
- the spacer is a heteroaryl, such that in Formula III above, at least one of X, Y, Z and W is a nitrogen atom.
- a positively charged amino moiety-containing group forms a part of the spacer. Since it was found that the amino moiety-containing group should preferably be in a certain distance from the negatively charged group, preferably, Z or W is a nitrogen atom.
- At least two of X, Y, Z and W are nitrogen atoms, more preferably either X and Y are nitrogen atoms or Z and W are nitrogen atoms, and even more preferably Z and W are nitrogen atoms.
- R 1 , R 2 , R 3 and R 4 are amino moiety-containing groups, as described hereinabove.
- R 1 and R 2 or R 3 and R 4 are amino moiety-containing groups
- preferred compounds according to the present invention are those having the following general Formulae IIA and HB:
- Formula IIA Formula IIA wherein m is an integer from 1 to 6; each of Q 1 and Q 2 is independently a carbon atom or a nitrogen atom; and G and/or K are each an amino moiety-containing group (e.g., a positively charged group).
- each of the compounds described herein has one or more hydrophobic moieties attached thereto.
- the hydrophobic moiety is attached to the spacer and further preferably, the hydrophobic moiety is attached to the spacer in such a position that would allow interaction between this moiety and a binding site of a GSK-3, as discussed hereinabove.
- At least one of J, (S)i-(S)n and K comprises a hydrophobic moiety attached thereto.
- K has a hydrophobic moiety attached thereto.
- Sn has a hydrophobic moiety attached thereto.
- D is a hydrophobic moiety.
- hydrophobic moiety refers to any substance or a residue thereof that is characterized by hydrophobicity.
- the term “residue” describes a major portion of a substance that is covalently linked to another substance, herein the compound described hereinabove.
- a hydrophobic moiety according to the present invention is preferably a residue of a hydrophobic substance, and is preferably covalently attached to the compound described hereinabove.
- hydrophobic substances from which the hydrophobic moiety of the present invention can be derived include, without limitation, a saturated alkylene chain, an unsaturated alkylene chain, an aryl, a cycloalkyl and a hydrophobic peptide sequence, as these terms are defined herein.
- alkylene chain refers to a hydrocarbon linear chain, which can be saturated or unsaturated.
- the alkylene chain can be substituted or unsubstituted, as is described herein with respect to an alkyl group, and can be further interrupted by one or more heteroatoms such as nitrogen, oxygen, sulfur, phosphor and the like.
- the alkylene chain preferably includes at least 4 carbon atoms, more preferably at least 8 carbon atoms, more preferably at least 10 carbon atoms and may have up to 20, 25 and even 30 carbon atoms.
- the hydrophobic moiety of the present invention can therefore comprise a residue of the hydrophobic substances described hereinabove.
- a preferred example of an alkylene chain according to this aspect of the present invention is an alkylene chain that comprises a carboxy group, namely, a fatty acid residue(s).
- Preferred fatty acids that are suitable for use in the context of the present invention include, without limitation, saturated or unsaturated fatty acids that have more than 10 carbon atoms, preferably between 12 and 24 carbon atoms, such as, but not limited to, myristic acid, lauric acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid and more.
- the hydrophobic moiety can be a hydrophobic peptide sequence.
- the hydrophobic peptide sequence preferably includes between 2 and 15 amino acid residues, more preferably between 2 and 10 amino acid residues, more preferably between 2 and 5 amino acid residues, in which at least one amino acid residue is a hydrophobic amino acid residue.
- hydrophobic amino acid residues include, without limitation, an alanine residue, a cysteine residue, a glycine residue, an isoleucine residue, a leucine residue, a valine residue, a phenylalanine residue, a tyrosine residue, a methionine residue, a proline residue and a tryptophan residue, or any modification thereof, as is described hereinabove.
- the hydrophobic amino acid residue can include any other amino acid residue, which has been modified by incorporation of a hydrophobic moiety thereto.
- the hydrophobic amino acid sequence comprises at least two and more preferably at least 5 hydrophobic amino acid residues, which, further preferably, are attached to one another, so as to provide a consecutive sequence thereof within the hydrophobic amino acid sequence.
- hydrophobic amino acid sequences which are also referred to in the art interchangeably as “membrane permeable sequences” or “MPS”, are found, for example, in Hagiwer (1999).
- amino acid residue which is also referred to herein, interchangeably, as “amino acid” describes an amino acid unit within a polypeptide chain.
- amino acid residues within the hydrophobic peptide sequence can be either natural or modified amino acid residues, as these phrases are defined hereinafter.
- natural amino acid residue describes an amino acid residue, as this term is defined hereinabove, which includes one of the twenty amino acids found in nature.
- modified amino acid residue describes an amino acid residue, as this term is defined hereinabove, which includes a natural amino acid that was subjected to a modification at its side chain.
- modifications are well known in the art and include, for example, incorporation of a functionality group such as, but not limited to, a hydroxy group, an amino group, a carboxy group and a phosphate group within the side chain.
- This phrase therefore includes, unless otherwise specifically indicated, chemically modified amino acids, including amino acid analogs (such as penicillamine, 3-mercapto-D-valine), naturally-occurring non- proteogenic amino acids (such as norleucine), and chemically-synthesized compounds that have properties known in the art to be characteristic of an amino acid.
- proteogenic indicates that the amino acid can be incorporated into a protein in a cell through well-known metabolic pathways.
- amino acid or “amino acids” is understood to include the 20 naturally occurring amino acids; those amino acids often modified post-translationally in vivo, including, for example, hydroxyproline, phosphoserine and phosphothreonine; and other unusual amino acids including, but not limited to, 2-aminoadipic acid, hydroxylysine, isodesmosine, nor-valine, nor ⁇ leucine and ornithine.
- amino acid includes both D- and L- amino acids which are linked via a peptide bond or a peptide bond analog to at least one addition amino acid as this term is defined herein.
- hydrophobic moiety provides for enhanced unpredictable activity
- known compounds such as phenyl phosphate and pyridoxal phosphate and other known compounds described hereinabove, which are substituted by a hydrophobic moiety, are also included within the scope of this aspect the present invention.
- bond describes a single bond, a double bond or a triple bond.
- hydrocarbon chain and the term “hydrocarbon” describes a moiety that is mainly composed of carbon and hydrogen atoms.
- a hydrocarbon chain can therefore include one or more of alkyl, alkenyl, alkynyl, cycloalkyl and aryl, as these terms are defined herein, whereby each can be unsubstituted or substituted, as described herein.
- the hydrocarbon chain can further be interrupted by one or more heteroatoms, as defined herein.
- heteroatom describes any atom which is not carbon but which can form a covalent bond with one or more carbon atoms.
- exemplary heteroatoms include, without limitation, nitrogen, oxygen, sulfur, phosphor, silicone, boron and the like.
- alkyl describes a saturated aliphatic hydrocarbon including straight chain and branched chain groups.
- the alkyl group has 1 to 20 carbon atoms. Whenever a numerical range; e.g., "1-20", is stated herein, it implies that the group, in this case the alkyl group, may contain 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 20 carbon atoms. More preferably, the alkyl is a medium size alkyl having 1 to 10 carbon atoms. Most preferably, unless otherwise indicated, the alkyl is a lower alkyl having 1 to 4 carbon atoms. The alkyl group may be substituted or unsubstituted.
- the substituent group can be, for example, hydroxyalkyl, trihaloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic, halo, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, sulfmyl, sulfonyl, cyano, nitro, azo, sulfonyl, sulfinyl, sulfonamide, ketoester, carbonyl, thiocarbonyl, ester, ether, thioether, thiocarbamate, urea, thiourea, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, C-carboxy, 0-carboxy, trihalomethanesulfonamido, gu
- cycloalkyl or "alicyclic” describes an all-carbon monocyclic or fused ring (i.e., rings which share an adjacent pair of carbon atoms) group wherein one of more of the rings does not have a completely conjugated pi-electron system.
- examples, without limitation, of cycloalkyl groups are cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclohexane, cyclohexadiene, cycloheptane, cycloheptatriene, and adamantane.
- a cycloalkyl group may be substituted or unsubstituted.
- the substituent group can be, for example, alkyl, hydroxyalkyl, trihaloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic, halo, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, sulfmyl, sulfonyl, cyano, nitro, azo, sulfonyl, sulfinyl, sulfonamide, ketoester, carbonyl, thiocarbonyl, ester, ether, carboxy, thiocarboxy, thioether, thiocarbamate, urea, thiourea, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, C-carboxy, O-carboxy,
- alkynyl describes an alkyl group, as defined hereinabove, which consists of at least two carbon atoms and at least one carbon-carbon triple bond.
- aryl describes an all-carbon monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of carbon atoms) groups having a completely conjugated pi-electron system.
- aryl groups are phenyl, naphthalenyl and anthracenyl.
- the aryl group may be substituted or unsubstituted.
- the substituent group can be, for example, alkyl, hydroxyalkyl, trihaloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic, halo, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, sulfinyl, sulfonyl, cyano, nitro, azo, sulfonyl, sulfinyl, sulfonamide, ketoester, carbonyl, thiocarbonyl, ester, ether, carboxy, thiocarboxy, thioether, thiocarbamate, urea, thiourea, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, C-carboxy, O-carboxy,
- heteroaryl describes a monocyclic or fused ring (i.e., rings which share an adjacent pair of atoms) group having in the ring(s) one or more atoms, such as, for example, nitrogen, oxygen and sulfur and, in addition, having a completely conjugated pi-electron system.
- heteroaryl groups include pyrrole, furane, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrimidine, quinoline, isoquinoline and purine.
- the heteroaryl group may be substituted or unsubstituted.
- the substituent group can be, for example, alkyl, hydroxyalkyl, trihaloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic, halo, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, sulfmyl, sulfonyl, cyano, nitro, azo, sulfonyl, sulfmyl, sulfonamide, ketoester, carbonyl, thiocarbonyl, ester, ether, carboxy, thiocarboxy, thioether, thiocarbamate, urea, thiourea, O-carbamyl, N-carbamyl, O-thiocarbamyl, N- thiocarbamyl, C-amido, N-amido, C-carboxy, O-carboxy,
- heteroalicyclic describes a monocyclic or fused ring group having in the ring(s) one or more atoms such as nitrogen, oxygen and sulfur.
- the rings may also have one or more double bonds. However, the rings do not have a completely conjugated pi-electron system.
- the heteroalicyclic may be substituted or unsubstituted.
- the substituted group can be, for example, lone pair electrons, alkyl, hydroxyalkyl, trihaloalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic, halo, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, sulfmyl, sulfonyl, cyano, nitro, azo, sulfonyl, sulfmyl, sulfonamide, ketoester, carbonyl, thiocarbonyl, ester, ether, carboxy, thiocarboxy, thioether, thiocarbamate, urea, thiourea, O-carbamyl, N-carbamyl, O-thiocarbamyl, N- thiocarbamyl, C-amido, N-amido, C-carboxy,
- lone pair of electrons describes a pair of electrons that are not participating in a bond. The lone pair of electrons is present only when X, Y, Z or W is an unsubstituted nitrogen atom.
- hydroxy describes an -OH group.
- alkoxy describes both an -O-alkyl and an -O-cycloalkyl group, as defined herein.
- aryloxy describes both an -O-aryl and an -O-heteroaryl group, as defined herein.
- thiohydroxy describes a -SH group.
- thioalkoxy describes both an -S-alkyl group, and an -S-cycloalkyl group, as defined herein.
- thioaryloxy describes both an -S-aryl and an -S-heteroaryl group, as defined herein.
- aldehyde describes a carbonyl group, where R' is hydrogen.
- carboxylic acid describes a C-carboxyl group in which R is hydrogen.
- halo describes fluorine, chlorine, bromine of iodine.
- trihalomethyl describes a -CX 3 group wherein X is a halo group as defined herein.
- trihalomethanesulfonamido describes an X 3 CS ⁇ O) 2 NR'- group, where R' and X are as defined herein.
- R are as defined herein.
- R are as defined herein.
- amino describes an -NR'R" group where R' and R" are as defined herein.
- aminoalkyl describes an alkyl, as defined hereinabove, substituted by an amino group. Preferably, the alkyl terminates by the amino group.
- C-amido describes a -C(O)-NR 5 R" group, where R' and R" are as defined herein.
- guanidinoalkyl describes an alkyl group substituted by a guanidino group, as these terms are defined herein.
- the alkyl group terminates by the guanidino group.
- guanyloalkyl describes an alkyl group substituted by a guanyl group, as these terms are defined herein.
- the alkyl group terminates by the guanyl group.
- nitro describes a -NO 2 group.
- cyano describes a -C ⁇ N group.
- hydrazine describes a NR' -NR" group, with R' and R" as defined hereinabove.
- ammonium ion describes a -(NR'R"R'") + , where R', R" and R'" as defined hereinabove.
- phrases "pharmaceutically acceptable salt” refers to a charged species of the parent compound and its counter ion.
- An example, without limitation, of a pharmaceutically acceptable salt would be a compound that comprises an ammonium or guanidinium cation and an anion of an acid such as, for example, HCl, trifluoroacetic acid (TFA) and the like.
- an acid such as, for example, HCl, trifluoroacetic acid (TFA) and the like.
- TFA trifluoroacetic acid
- each of the compounds described hereinabove is designed based on the three-dimensional structure of a GSK-3 substrate and is therefore potential substrate competitive inhibitor of GSK-3 activity.
- a method of inhibiting an activity of GSK-3 which is effected by contacting cells expressing GSK-3 with an inhibitory effective amount of any one of the compounds described hereinabove.
- the term "inhibitory effective amount” is the amount determined by such considerations as are known in the art, which is sufficient to inhibit the activity of GSK-3.
- the activity can be a phosphorylation and/or autophosphorylation activity of GSK-3.
- the method according to this aspect of the present invention can be effected by contacting the cells with the compounds in vitro and/or in vivo. This method can be further effected by further contacting the cells with an additional active ingredient that is capable of altering an activity of GSK-3, as is detailed hereinbelow.
- GSK-3 inhibition is a way to increase insulin activity in vivo.
- High activity of GSK-3 impairs insulin action in intact cells (Eldar-Finkelman et al, 1997). This impairment results from the phosphorylation of insulin receptor substrate- 1 (IRS-I) serine residues by GSK-3.
- IRS-I insulin receptor substrate- 1
- Studies performed in patients with type II diabetes show that glycogen synthase activity is markedly decreased in these patients, and that decreased activation of protein kinase B (PKB), an upstream regulator of GSK-3, by insulin is also detected (Shulman et al, (1990); Cross et al, (1995).
- PDB protein kinase B
- mice susceptible to high fat diet-induced diabetes and obesity have significantly increased GSK-3 activity in epididymal fat tissue (Eldar-Finkelman et al, 1999). Increased GSK-3 activity expressed in cells resulted in suppression of glycogen synthase activity (Eldar- Finkelman et al, 1996).
- Inhibition of GSK-3 activity therefore provides a useful method for increasing insulin activity in insulin-dependent conditions.
- a method of potentiating insulin signaling which is effected by contacting insulin responsive cells with an effective amount, as is defined hereinabove, of any one of the compounds described hereinabove.
- the phrase "potentiating insulin signaling" includes an increase in the phosphorylation of insulin receptor downstream components and an increase in the rate of glucose uptake as compared with glucose uptake in untreated subjects or cells.
- the method according to this aspect of the present invention can be effected by contacting the cells with the compound of the present embodiments, in vitro or in vivo, and can be also effected by further contacting the cells with insulin.
- Potentiation of insulin signaling, in vivo, resulting from administration of the compounds described herein, can be monitored as a clinical endpoint.
- the easiest way to look at insulin potentiation in a patient is to perform the glucose tolerance test. After fasting, glucose is given to a patient and the rate of the disappearance of glucose from blood circulation (namely glucose uptake by cells) is measured by assays well known in the art. Slow rate (as compared to healthy subject) of glucose clearance will indicate insulin resistance.
- the administration of an inhibitor to an insulin-resistant patient increases the rate of glucose uptake as compared with a non-treated patient.
- the inhibitor may be administered to an insulin resistant patient for a longer period of time, and the levels of insulin, glucose, and leptin in blood circulation (which are usually high) may be determined. Decrease in glucose levels will indicate that the inhibitor potentiated insulin action. A decrease in insulin and leptin levels alone may not necessarily indicate potentiation of insulin action, but rather will indicate improvement of the disease condition by other mechanisms.
- the compounds described hereinabove, can be effectively utilized for treating any biological condition that is associated with GSK-3.
- a method of treating a biological condition associated with GSK-3 activity is effected by administering to a subject in need thereof a therapeutically effective amount of the any of the compounds described hereinabove.
- biological condition associated with GSK-3 activity includes any biological or medical condition or disorder in which effective GSK-3 activity is identified, whether at normal or abnormal levels.
- the condition or disorder may be caused by the GSK-3 activity or may simply be characterized by GSK-3 activity. That the condition is associated with GSK-3 activity means that some aspect of the condition can be traced to the GSK-3 activity.
- treating includes abrogating, substantially inhibiting, slowing or reversing the progression of a condition or disorder, substantially ameliorating clinical symptoms of a condition or disorder or substantially preventing the appearance of clinical symptoms of a condition or disorder.
- These effects may be manifested, for example, by a decrease in the rate of glucose uptake with respect to type II diabetes or by halting neuronal cell death with respect to neurodegenerative disorders, as is detailed hereinbelow.
- administering describes a method for bringing the compound of the present invention and cells affected by the condition or disorder together in such a manner that the compound can affect the GSK-3 activity in these cells.
- the compounds of the present invention can be administered via any route that is medically acceptable.
- the route of administration can depend on the disease, condition or injury being treated. Possible administration routes include injections, by parenteral routes, such as intravascular, intravenous, intra-arterial, subcutaneous, intramuscular, intratumor, intraperitoneal, intraventricular, intraepidural, intracerebrovascular or others, as well as oral, nasal, ophthalmic, rectal, topical, or by inhalation.
- Sustained release administration is also specifically included in the invention, by such means as depot injections or erodible implants.
- Administration can also be intra-articularly, intrarectally, intraperitoneally, intramuscularly, subcutaneously, or by aerosol inhalant.
- the compound can be administered orally or parenterally, such as intravenously, intramuscularly, subcutaneously, intraorbitally, intracapsularly, intraperitoneally or intracisternally, as long as provided in a composition suitable for effecting the introduction of the compound into target cells, as is detailed hereinbelow.
- the phrase "therapeutically effective amount", as used herein, describes an amount administered to an individual, which is sufficient to abrogate, substantially inhibit, slow or reverse the progression of a condition associated with GSK-3 activity, to substantially ameliorate clinical symptoms of a such a condition or substantially prevent the appearance of clinical symptoms of such a condition.
- the GSK-3 activity can be a GSK-3 kinase activity.
- the inhibitory amount may be determined directly by measuring the inhibition of a GSK-3 activity, or, for example, where the desired effect is an effect on an activity downstream of GSK-3 activity in a pathway that includes GSK-3, the inhibition may be measured by measuring a downstream effect.
- the effects of the compound may include effects on an insulin-dependent or insulin-related pathway, and the compound may be administered to the point where glucose uptake is increased to optimal levels.
- the inhibition of GSK-3 results in the absence of phosphorylation of a protein that is required for further biological activity, for example, the tau protein
- the compound may be administered until polymerization of phosphorylated tau protein is substantially arrested. Therefore, the inhibition of GSK-3 activity will depend in part on the nature of the inhibited pathway or process that involves GSK-3 activity, and on the effects that inhibition of GSK-3 activity has in a given biological context.
- the amount of the compound that will constitute an inhibitory amount will vary depending on such parameters as the compound and its potency, the half-life of the compound in the body, the rate of progression of the disease or biological condition being treated, the responsiveness of the condition to the dose of treatment or pattern of administration, the formulation, the attending physician's assessment of the medical situation, and other relevant factors, and in general the health of the patient, and other considerations such as prior administration of other therapeutics, or co ⁇ administration of any therapeutic that will have an effect on the inhibitory activity of the compound or that will have an effect on GSK-3 activity, or a pathway mediated by GSK-3 activity. It is expected that the inhibitory amount will fall in a relatively broad range that can be determined through routine trials.
- GSK-3 is involved in various biological pathways and hence, the method according to this aspect of the present invention can be used in the treatment of a variety of biological conditions, as is detailed hereinunder.
- GSK-3 is involved in the insulin signaling pathway and therefore, in one example, the method according this aspect of the present invention can be used to treat any insulin-dependent condition.
- GSK-3 inhibitors are known to inhibit differentiation of pre-adipocytes into adipocytes, and therefore, in another example, the method of this aspect of the present invention can be used to treat obesity.
- the method according to this aspect of the present invention can be used to treat diabetes and particularly, non-insulin dependent diabetes mellitus.
- Diabetes mellitus is a heterogeneous primary disorder of carbohydrate metabolism with multiple etiologic factors that generally involve insulin deficiency or insulin resistance or both.
- Type I juvenile onset, insulin-dependent diabetes mellitus, is present in patients with little or no endogenous insulin secretory capacity. These patients develop extreme hyperglycemia and are entirely dependent on exogenous insulin therapy for immediate survival.
- Type II or adult onset, or non-insulin- dependent diabetes mellitus, occurs in patients who retain some endogenous insulin secretory capacity, but the great majority of them are both insulin deficient and insulin resistant.
- NIDDM non-insulin dependent, Type II diabetes mellitus
- Insulin resistance is an underlying characteristic feature of NIDDM and this metabolic defect leads to the diabetic syndrome. Insulin resistance can be due to insufficient insulin receptor expression, reduced insulin-binding affinity, or any abnormality at any step along the insulin signaling pathway (see U.S. Patent No. 5,861,266).
- the compounds of the present invention can be used to treat type II diabetes in a patient with type II diabetes as follows: a therapeutically effective amount of the compound is administered to the patient, and clinical markers, e.g., blood sugar level, are monitored.
- clinical markers e.g., blood sugar level
- the compounds of the present invention can further be used to prevent type II diabetes in a subject as follows: a prophylactically effective amount of the compound is administered to the patient, and a clinical marker, for example IRS-I phosphorylation, is monitored.
- Treatment of diabetes is determined by standard medical methods. A goal of diabetes treatment is to bring sugar levels down to as close to normal as is safely possible. Commonly set goals are 80-120 milligrams per deciliter (mg/dl) before meals and 100-140 mg/dl at bedtime.
- a particular physician may set different targets for the patent, depending on other factors, such as how often the patient has low blood sugar reactions.
- Useful medical tests include tests on the patient's blood and urine to determine blood sugar level, tests for glycated hemoglobin level (HbA lc ; a measure of average blood glucose levels over the past 2—3 months, normal range being 4-6 %), tests for cholesterol and fat levels, and tests for urine protein level. Such tests are standard tests known to those of skill in the art (see, for example, American Diabetes Association, 1998).
- a successful treatment program can also be determined by having fewer patients in the program with diabetic eye disease, kidney disease, or nerve disease.
- a method of treating non-insulin dependent diabetes mellitus a patient is diagnosed in the early stages of non-insulin dependent diabetes mellitus.
- a compound of the present invention is formulated in an enteric capsule.
- the patient is directed to take one tablet after each meal for the purpose of stimulating the insulin signaling pathway, and thereby controlling glucose metabolism to levels that obviate the need for administration of exogenous insulin.
- the method according to this aspect of the present invention can be used to treat affective disorders such as unipolar disorders (e.g., depression) and bipolar disorders (e.g., manic depression).
- affective disorders such as unipolar disorders (e.g., depression) and bipolar disorders (e.g., manic depression).
- GSK-3 is also considered to be an important player in the pathogenesis of neurodegenerative disorders and diseases
- the method according to this aspect of the present invention can be further used to treat a variety of such disorders and diseases.
- the method according to this aspect of the present invention can be used to treat a neurodegenerative disorder that results from an event that cause neuronal cell death.
- Such an event can be, for example, cerebral ischemia, stroke, traumatic brain injury or bacterial infection.
- the method according to this aspect of the present invention can be used to treat various chronic neurodegenerative diseases such as, but not limited to, Alzheimer's disease, Huntington's disease, Parkinson's disease, AIDS associated dementia, amyotrophic lateral sclerosis (AML) and multiple sclerosis.
- various chronic neurodegenerative diseases such as, but not limited to, Alzheimer's disease, Huntington's disease, Parkinson's disease, AIDS associated dementia, amyotrophic lateral sclerosis (AML) and multiple sclerosis.
- a method of treating a patient with Alzheimer's disease A patient diagnosed with Alzheimer's disease is administered with a compound of the present invention, which inhibits GSK-3-mediated tau hyperphosphorylation, prepared in a formulation that crosses the blood brain barrier (BBB).
- BBB blood brain barrier
- the patient is monitored for tau phosphorylated polymers by periodic analysis of proteins isolated from the patient's brain cells for the presence of phosphorylated forms of tau on an SDS-PAGE gel known to characterize the presence of and progression of the disease.
- the dosage of the compound is adjusted as necessary to reduce the presence of the phosphorylated forms of tau protein.
- GSK-3 has also been implicated with respect to psychotic disorders such as schizophrenia, and therefore the method according to this aspect of the present invention can be further used to treat psychotic diseases or disorders, such as schizophrenia.
- the method according to this aspect of the present invention can be further effected by co-administering to the subject one or more additional active ingredient(s) which is capable of modulating an activity of GSK-3.
- co-administering describes administration of a compound according to the present invention in combination with the additional active ingredient(s) (also referred to herein as active or therapeutic agent).
- the additional active agent can be any therapeutic agent useful for treatment of the patient's condition.
- the co-administration may be simultaneous, for example, by administering a mixture of the compound and the therapeutic agents, or may be accomplished by administration of the compound and the active agents separately, such as within a short time period.
- Co-administration also includes successive administration of the compound and one or more of another therapeutic agent.
- the additional therapeutic agent or agents may be administered before or after the compound. Dosage treatment may be a single dose schedule or a multiple dose schedule.
- the additional active ingredient can be insulin.
- the additional active ingredient is capable of inhibiting an activity of GSK-3, such that the additional active ingredient according to the present invention can be any GSK-3 inhibitor other than the compounds of the present invention, e.g., a short peptide GSK-3 inhibitor as described in WO 01/49709, WO 2004/052404 and U.S. Patent No. 6,780,625.
- the GSK-3 inhibitor can be, for example, lithium, valproic acid and/or lithium ion.
- the additional active ingredient can be an active ingredient that is capable of downregulating an expression of GSK-3.
- An agent that downregulates GSK-3 expression refers to any agent which affects GSK-3 synthesis (decelerates) or degradation (accelerates) either at the level of the HiRNA or at the level of the protein.
- a small interfering polynucleotide molecule which is designed to down regulate the expression of GSK-3 can be used as an additional active ingredient according to this embodiment of the present invention.
- An example for a small interfering polynucleotide molecule which can down- regulate the expression of GSK-3 is a small interfering RNA or siRNA, such as, for example, the morpholino antisense oligonucleotides described by in Munshi et al.
- RNAi RNA interference
- duplex oligonucleotide refers to an oligonucleotide structure or mimetics thereof, which is formed by either a single self- complementary nucleic acid strand or by at least two complementary nucleic acid strands.
- the "duplex oligonucleotide” of the present invention can be composed of double-stranded RNA (dsRNA), a DNA-RNA hybrid, single-stranded RNA (ssRNA), isolated RNA (i.e., partially purified RNA, essentially pure RNA), synthetic RNA and recombinantly produced RNA.
- the specific small interfering duplex oligonucleotide of the present invention is an oligoribonucleotide composed mainly of ribonucleic acids.
- the small interfering polynucleotide molecule according to the present invention can be an RNAi molecule (RNA interference molecule).
- a small interfering polynucleotide molecule can be an oligonucleotide such as a GSK-3-specific antisense molecule or a rybozyme molecule, further described hereinunder.
- Antisense molecules are oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one nucleotide. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target polynucleotide.
- An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNArDNA or RNA:RNA hybrids.
- An example for such includes RNase H, which is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxyoligonucleotides hybridizing to the same target region.
- RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.
- the antisense molecules of the present invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, as described above.
- Representative U.S. patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065;
- Rybozyme molecules are being increasingly used for the sequence-specific inhibition of gene expression by the cleavage of mRNAs.
- rybozyme sequences can be fused to the oligonucleotides of the present invention. These sequences include but are not limited ANGIOZYME specifically inhibiting formation of the VEGF-R (Vascular Endothelial Growth Factor receptor), a key component in the angiogenesis pathway, and HEPTAZYME, a rybozyme designed to selectively destroy Hepatitis C Virus (HCV) RNA, (Rybozyme Pharmaceuticals, Incorporated - WEB home page).
- VEGF-R Vascular Endothelial Growth Factor receptor
- HCV Hepatitis C Virus
- a small interfering polynucleotide molecule can be a DNAzyme.
- DNAzymes are single-stranded catalytic nucleic acid molecules.
- a general model (the "10-23” model) for the DNAzyme has been proposed.
- "10-23" DNAzymes have a catalytic domain of 15 deoxyribonucleotides, flanked by two substrate-recognition domains of seven to nine deoxyribonucleotides each.
- This type of DNAzyme can effectively cleave its substrate RNA at purine:pyrimidine junctions (Santoro, S. W. & Joyce, G.F. Proc. Natl, Acad. Sci. USA 199; for rev of DNAzymes see Khachigian, LM Curr Opin MoI Ther 2002;4: 119-21).
- DNAzymes recognizing single and double-stranded target cleavage sites have been disclosed in U.S. Pat. No. 6,326,174 to Joyce et al. DNAzymes of similar design directed against the human Urokinase receptor were recently observed to inhibit Urokinase receptor expression, and successfully inhibit colon cancer cell metastasis in vivo (Itoh et al., 20002, Abstract 409, Ann Meeting Am Soc Gen Ther www.asgt.org). In another application, DNAzymes complementary to bcr-abl oncogenes were successful in inhibiting the oncogenes expression in leukemia cells, and lessening relapse rates in autologous bone marrow transplant in cases of CML and ALL.
- Oligonucleotides designed according to the teachings of the present invention can be generated according to any oligonucleotide synthesis method known in the art such as enzymatic synthesis or solid phase synthesis.
- Equipment and reagents for executing solid-phase synthesis are commercially available from, for example,
- the compounds described herein are preferably included, as active ingredients, in a pharmaceutical composition which further comprises a pharmaceutically acceptable carrier for facilitating administration of a compound to the treated individual and possibly to facilitate entry of the active ingredient into the targeted tissues or cells.
- a pharmaceutical composition which comprises, as an active ingredient, any of the compounds described herein and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier any of the compounds described herein and a pharmaceutically acceptable carrier.
- physiologically acceptable carrier refers to a carrier or a diluent that does not cause significant irritation to a subject and does not abrogate the biological activity and properties of the administered compound.
- carriers are propylene glycol, saline, emulsions and mixtures of organic solvents with water.
- excipient refers to an inert substance added to a pharmaceutical composition to further facilitate administration of a compound.
- excipients include calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols.
- the pharmaceutical acceptable carrier can further include other agents such as, but not limited to, absorption delaying agents, antibacterial agents, antifungal agents, antioxidant agents, binding agents, buffering agents, bulking agents, cationic lipid agents, coloring agents, diluents, disintegrants, dispersion agents, emulsifying agents, excipients, flavoring agents, glidants, isotonic agents, liposomes, microcapsules, solvents, sweetening agents, viscosity modifying agents, wetting agents, and skin penetration enhancers.
- agents such as, but not limited to, absorption delaying agents, antibacterial agents, antifungal agents, antioxidant agents, binding agents, buffering agents, bulking agents, cationic lipid agents, coloring agents, diluents, disintegrants, dispersion agents, emulsifying agents, excipients, flavoring agents, glidants, isotonic agents, liposomes, microcapsules, solvents, sweetening agents, viscosity modifying agents
- Suitable routes of administration may, for example, include oral, rectal, transmucosal, transdermal, intestinal or parenteral delivery, including intramuscular, subcutaneous and intramedullary injections as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections.
- compositions of the present invention may be manufactured by processes well known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.
- Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more pharmaceutically acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the compound into preparations which can be used pharmaceutically.
- the composition can be formulated in a delivery form such as an aerosol delivery form, aqueous solution, bolus, capsule, colloid, delayed release, depot, dissolvable powder, drops, emulsion, erodible implant, gel, gel capsule, granules, injectable solution, ingestible solution, inhalable solution, lotion, oil solution, pill, suppository, salve, suspension, sustained release, syrup, tablet, tincture, topical cream, transdermal delivery form.
- a delivery form such as an aerosol delivery form, aqueous solution, bolus, capsule, colloid, delayed release, depot, dissolvable powder, drops, emulsion, erodible implant, gel, gel capsule, granules, injectable solution, ingestible solution, inhalable solution, lotion, oil solution, pill, suppository, salve, suspension, sustained release, syrup, tablet, tincture, topical cream, transdermal delivery form.
- Proper formulation is dependent upon the route of administration chosen.
- the compound of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological saline buffer with or without organic solvents such as propylene glycol, polyethylene glycol.
- physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological saline buffer with or without organic solvents such as propylene glycol, polyethylene glycol.
- organic solvents such as propylene glycol, polyethylene glycol.
- penetrants are used in the formulation. Such penetrants are generally known in the art.
- the compound can be formulated readily by combining the compound with pharmaceutically acceptable carriers well known in the art.
- Such carriers enable the compound of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for oral ingestion by a patient.
- Pharmacological preparations for oral use can be made using a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries if desired, to obtain tablets or dragee cores.
- Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carbomethylcellulose and/or physiologically acceptable polymers such as polyvinylpyrrolidone (PVP).
- PVP polyvinylpyrrolidone
- disintegrating agents may be added, such as cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
- Dragee cores are provided with suitable coatings.
- suitable coatings For this purpose, concentrated sugar solutions may be used which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures.
- Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active ingredient doses.
- compositions which can be used orally, include push-fit capsules made of gelatin as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
- the push-fit capsules may contain the active ingredients in admixture with filler such as lactose, binders such as starches, lubricants such as talc or magnesium stearate and, optionally, stabilizers.
- the active ingredients may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
- stabilizers may be added. All formulations for oral administration should be in dosages suitable for the chosen route of administration.
- compositions may take the form of tablets or lozenges formulated in conventional manner.
- the compound according to the present invention is conveniently delivered in the form of an aerosol spray presentation from a pressurized pack or a nebulizer with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichloro-tetrafluoroethane or carbon dioxide.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichloro-tetrafluoroethane or carbon dioxide.
- the dosage unit may be determined by providing a valve to deliver a metered amount.
- Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the ingredient and a suitable powder base such as lactose or starch.
- the compound described herein may be formulated for parenteral administration, e.g., by bolus injection or continuous infusion.
- Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multidose containers with optionally, an added preservative.
- the compositions may be suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- compositions for parenteral administration include aqueous solutions of the compound in water-soluble form. Additionally, suspensions of the compound may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acids esters such as ethyl oleate, triglycerides or liposomes. Aqueous injection suspensions may contain substances, which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the active ingredient to allow for the preparation of highly concentrated solutions.
- the compound may be in powder form for constitution with a suitable vehicle, e.g., sterile, pyrogen-free water, before use.
- a suitable vehicle e.g., sterile, pyrogen-free water
- the compound of the present invention may also be formulated in rectal compositions such as suppositories or retention enemas, using, e.g., conventional suppository bases such as cocoa butter or other glycerides.
- compositions herein described may also comprise suitable solid of gel phase carriers or excipients.
- suitable solid of gel phase carriers or excipients include, but are not limited to, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin and polymers such as polyethylene glycols.
- compositions suitable for use in context of the present invention include compositions wherein the compound is contained in an amount effective to achieve the intended purpose. More specifically, a therapeutically effective amount means an amount of a compound effective to affect symptoms of a condition or prolong the survival of the subject being treated.
- the therapeutically effective amount or dose can be estimated initially from activity assays in cell cultures and/or animals. Such information can be used to more accurately determine useful doses in humans.
- the dosage may vary depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g., Fingl, et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1
- P-I)- Compositions of the present invention may, if desired, be presented in a pack or dispenser device, such as a FDA approved kit, which may contain one or more unit dosage forms containing the compound.
- the pack may, for example, comprise metal or plastic foil, such as a blister pack.
- the pack or dispenser device may be accompanied by instructions for administration.
- the pack or dispenser may also be accompanied by a notice associated with the container in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the compositions or human or veterinary administration.
- Such notice for example, may be of labeling approved by the U.S. Food and Drug Administration for prescription drugs or of an approved product insert.
- compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.
- Suitable conditions indicated on the label may include, for example, any of the biological conditions associated with GSK-3 activity listed hereinabove.
- the pharmaceutical composition of the present invention can be packaged in a packaging material and identified in print, on or in the packaging material, for use in the treatment or prevention of a biological condition associated with GSK-3.
- the pharmaceutical composition of the present invention can further comprises an additional active ingredient that is capable of modulating an activity of GSK-3, as is described hereinabove. Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.
- Peptides were synthesized by Genemed Synthesis Inc. (San Francisco, CA). Radioactive materials were purchased from Amersham Ltd. Phenyl phosphate and pyridoxal phosphate (also referred to herein as P-5-P) were obtained from Sigma (Israel).
- GSC-I, GSC-2 and GSC-3 were synthesized according to procedures known in the art, as is detailed hereinunder.
- a solution of each peptide was prepared by dissolving lyophilized powder in water containing 10% D 2 O. 2D-NMR spectra were acquired at the 1 H proton frequency of 600.13 MHz on a Bruker Advance DMX spectrometer. The carrier frequency was set on the water signal and it was suppressed by applying either a WATERGATE method or by low-power irradiation during the relaxation period.
- the experimental temperature (280° K) was optimized in order to reduce population averaging due to the fast exchange at more ambient temperatures, while preserving the best possible spectral resolution.
- Resonance assignment was based on the TOCSY and NOESY spectra measured at the same experimental conditions, according to the sequential assignment methodology developed by W ⁇ thrich using the Bruker software program AURELIA (Bruker Analytic GmbH, version 2.7).
- the NOE distance restraints were derived from NOESY spectra recorded at 450 msec. This optimal mixing time was determined for the p9CREB peptide sample by comparing the NOE signal intensities in a series of experiments with mixing times varying from 100 msec to 750 msec. The chosen mixing time gave maximal NOE buildup with no significant contribution from spin diffusion. This value was used for the non-phosphorylated analog experiment in order to maintain identical experimental conditions. Integrated peak volumes were converted into distance restraints using a r '6 dependency and the known distance of 2.47 A between the two adjacent protons of the tyrosine aromatic ring was used for calibration.
- the restraints were classified into strong (1.8-2.5 A), medium (1.8-3.5 A) and weak (1.8-5.0 A). An empirical correction of 0.5 A was added to the upper bound for restraints involving methyl groups.
- the structures were calculated by hybrid distance geometry - dynamical simulated annealing using XPLOR (version 3.856). The NOE energy was introduced as a square- well potential with a constant force constant of 50 Kcal/mol-A 2 . Simulated annealing consisted of 1500 3 fsec steps at 1000 K and 3000 lfsec steps during cooling to 300 K. Finally, the structures were minimized using conjugate gradient energy minimization for 4000 iterations. INSIGHTII (Molecular Modeling System version 97.0, Molecular Simulations, Inc.) was used for visualization and analysis of the NMR-derived structures. Their quality was assessed using PROCHECK. Results:
- Tables 2 and 3 below present the structural coordinate data that was used for inputting into structure analysis software for visualization of the 3D structures.
- GSK-3 The design of small molecules that mimic the structure presented here thus provides a method for obtaining selective inhibitors for GSK-3.
- TMS Tetramethylsilane
- phosphoric acid was used as an internal standard for phosphorus spectra
- solvent peak was used as the reference peak for carbon and fluorine spectra.
- Thin-layer chromatography was performed using Analtech silica gel plates and visualized by ultraviolet (UV) light, or by staining the plates in 0.2 wt % ninhydrine in butanol.
- Elemental analysis was performed by Quantitative Technologies, Inc. (Whitehouse, NJ). HPLC analyses were obtained using a Hypersil BDS Cl 8 Column, 4.6 x 150 mm, 5 ⁇ m, at ambient column temperature and with a detector operating at 220 nm, using, as a mobile phase, a standard solvent gradient program, as follows:
- the mixture was cooled to -40 °C (by means of dry ice/acetonitrile), and a solution of 85 % m-chloroperbenzoic acid (mCPBA) (0.81 gram in 1 ml dichloromethane, 4 mmol, 1.3 equivalents) in dichloromethane (4 ml) was rapidly added while the reaction temperature was kept below 0 °C.
- mCPBA m-chloroperbenzoic acid
- the solution was allowed to warm up to room temperature and after stirring for 5 minutes at 20 °C, 10 % aqueous NaHSCb (10 ml) was added and the mixture was stirred for a further 10 minutes.
- the mixture was then extracted with ether (70 ml) and the aqueous phase discarded.
- the ethereal phase was washed with 10 % aqueous NaHSO 3 (2 x 20 ml), 5 % saturated aqueous NaHCO 3 (2 x 20 ml), dried on sodium sulfate and filtered.
- the organic filtrate was evaporated and the residue was purified by chromatography on a silica gel column, using a mixture of EtOAc/hexanes 1 : 15 as eluent, to give a mixture of the product (di-tert-butyl, p-methyl benzyl phosphate) and the starting material, which was used without further separation.
- the ethereal phase was washed with 10 % aqueous NaHSO 3 (2 x 20 ml), 5 % saturated aqueous NaHCO 3 (2 x 20 ml), dried over sodium sulfate and filtered.
- the organic layer was evaporated and the residue was purified by chromatography on a silica gel column using a mixture of EtOAc/hexanes 1:15 as eluent, to give a mixture of the product (di-tert-butyl, benzyl phosphate) and the starting material, which was used without further purification.
- the benzyl alcohol intermediate (see, Scheme 4) was identified as a key intermediate obtainable in four steps from the inexpensive starting material trimethyl 1,3,5-benzenetricarboxylate, as is detailed hereinbelow and is depicted in Scheme 5.
- Bis(cyanomethyl)benzyl alcohol (8.0 grams, 0.04 mol) was divided in three parts and each 2.5- to 3.0-grams portion was charged into separate 500-ml Parr bottles, followed by ethanol (100 ml), and aqueous NaOH (1.2 grams in 5 ml of water). To the resulting solution was added Raney Ni (50 % suspension in water, 1.2 grams). The mixture was hydrogenated at 30 psi on a Parr shaker. The reaction was monitored by 1 H NMR and judged complete after 3 hours. The catalyst was filtered on a pad of diatomaceous earth and the diatomaceous earth pads washed with ethanol (200 ml).
- Di-tert-butyl diisopropylphosphoramidite (49.8 ml, 157.9 mmol) in anhydrous acetonitrile (1 liter) was added via the pressure-equalizing addition funnel at such a rate that the reaction temperature was maintained ⁇ 6 °C.
- Tetrazole (351 ml of a 0.45 M solution in acetonitrile, 157.9 mmol) was diluted with anhydrous acetonitrile (150 ml) and anhydrous dichloromethane (500 ml) and added via the pressure-equalizing addition funnel at such a rate that the temperature was maintained below 6 °C.
- Trifluoroacetic acid (287 ml, 10 volumes) was added rapidly via the pressure-equalizing addition funnel. The resulting solution was stirred for 5 hours. After concentrating and drying overnight under high vacuum, a thick orange oil (37.88 grams) was obtained. The residue was dissolved in water (57 ml, 1.5 volumes) and added dropwise into stirred methanol (90 volumes) yielding a precipitate. After stirring for 30 minutes, the solids were allowed to settle for 1 hour and the liquid was decanted off. The remaining liquid was removed in vacuum giving 13.72 grams of solid. The material was dissolved in water (68 ml, 5 volumes) and loaded onto Dowex 50WX8-200 ion-exchange resin (137 grams).
- GSC-5 3-(guanidinomethy) benzyl phosphate
- the ethereal phase was washed with 10 % aqueous NaHSO 3 (2 x 20 ml) and saturated aqueous NaHCO 3 (2 x 20 ml), dried over sodium sulfate and filtered.
- the organic filtrate was evaporated and the residue was purified by chromatography on a silica gel column using a gradient eluent of ethyl acetate/hexanes 1:9 to 1:5), to give a mixture of the phosphate ester product and the benzyl alcohol starting material, which was further purified by chromatography on a silica gel column, using a gradient eluent of CHCl 3 :MeOH 30:1 to 20:1), to give pure di-tert-butyl, 3-(N,N'-bis-BOC- guanidinomethy) benzyl phosphate in 70 % yield.
- the trifluoroacetic acid can be removed or replace by, for example, HCl, using procedures well known in the art, to give the free guanidine or, for example, a hydrochloride salt of the compound.
- GSC-4 3-guanidinobenzyl phosphate
- the mixture was thereafter extracted with ether/water and the organic layer was washed with saturated aqueous NH 4 Cl and brine. The aqueous layer was extracted with ether. The combined ether solution was dried over MgSO 4 and evaporated under reduced pressure.
- the crude product was purified by flash chromatography on silica gel using a gradient eluent of hexanes to 40:60 ethyl acetaterhexanes), to give the intermediate in 60 % yield.
- the ethereal phase was washed with 10 % aqueous NaHSO 3 (2 x 20 ml) and saturated aqueous NaHCO 3 (2 x 20 ml), dried over MgSO 4 and filtered.
- the solvent was evaporated and the residue was purified by chromatography on a silica gel column using a gradient eluent of ethyl acetate/hexanes 10:90 to 30:70), to give the protected product in 60 % yield.
- the trifluoroacetic acid can be removed or replace by, for example, HCl, using procedures well known in the art, to give the free guanidine or, for example, a hydrochloride salt of the compound.
- GSC-7 was prepared as follows:
- the resulting mixture was stirred for 50-60 minutes at room temperature, then cooled to -40 0 C (by means of dry ice/acetonitrile) and a solution of 77 % m-CPBA (0.8 grams, 0.0045 mol, 1.5 molequivalent) in 5 ml dichloromethane was rapidly added while maintaining the reaction temperature below 0 0 C.
- the reaction mixture was thereafter allowed to warm to room temperature and was stirred for 30 minutes. 10 % aqueous NaHSO 3 (10 ml) was then added and the mixture stirred for additional 10-15 minutes.
- Activation of glycogen synthase by GSK-3 inhibitors Activation of glycogen synthase can serve as a good marker for inhibition of GSK-3.
- activation of glycogen synthase by GSC-5 and GSC-7 was tested in C2C12 myotubes. C2C12cells were treated with GSC-5 and GSC-7 for 2.5 hours at indicated concentrations and lysate supernatants were thereafter assayed for glycogen synthase activity.
- glycogen synthase in cells treated with vehicle DMSO (0.1 % DMSO) was normalized to 1 unit and the values for glycogen synthase activity observed in cells treated with GSK-3 inhibitors are presented as fold stimulation over the cells treated with vehicle 0.1 % HCL.
- bovine serum albumin Fraction V, Boehringer Mannheim, Germany
- GSK-3 inhibition activity of GSC-I, GSC-2, GSC-3, GSC-4, and GSC-21 was tested.
- the ability of GSK-3 to phosphorylate PGS-I peptide substrate was measured in the. presence of indicated concentrations of these compounds.
- the results, presented in Figure 6, represent the percentage of GSK-3 activity as compared with a control incubation without inhibitors and are mean of 2 independent experiments ⁇ SEM, where each point was assayed in triplicate.
- the selectivity of the novel compounds towards GSK-3 was measured by evaluating the inhibition of CDK-2, a kinase closely related to GSK-3.
- CDK-2 activity was assayed in the presence of 32 P[ ⁇ -ATP] and histone Hl as a substrate.
- GSC-4, GSC-5 and GSC-7 were added at a final concentration of 2 mM. The results are presented in Figure 9 and clearly show that no inhibition of histone Hl phosphorylation was observed, thus indicating high selectivity of the compounds towards GSK-3.
- Activation of glycogen synthase by GSK-3 inhibitors Activation of glycogen synthase activity in C2C12 cells treated with GSC-5 and GSC-7 was assayed as described hereinabove.
- the activity of glycogen synthase in cells treated with vehicle DMSO (0.1% DMSO) was normalized to 1 unit and the values for glycogen synthase activity observed in cells treated with GSK-3 (GS4 (hollow circles) GS6 (filled circles) are presented as fold stimulation over the cells treated with vehicle 0.1% HCL. The results are presented in Figure 10 and clearly show that both GSC-5
- GSC-7 filled circles activated glycogen synthase by 1.5 and 1.8 fold, respectively.
- Glucose Uptake The ability of the newly designed compounds GSC-4 and GSC-21 to promote glucose uptake was tested in mouse primary adipocytes as described hereinabove. The relative [ 3 H] 2-deoxy glucose incorporation observed in non-treated adipocytes was normalized to 1 unit and the values obtained for [ 3 H] 2- deoxy glucose in adipocytes treated with GSC-4 or GSC-21 are presented as fold activation over cells treated with the peptide control, and are the mean of 6 independent experiments ⁇ SEM, where each point was assayed in triplicate.
- Simulated annealing is a molecular modeling method that is used to find stable conformations of proteins. The study examined the interaction of the newly designed
- GSK-3 inhibitors described above also referred to herein as GSC molecules
- GSK-3 catalytic domain and was based on protein crystallography data of GSK-3, as taught by Ter Haar et al. (2001).
- Simulated annealing uses a repetitive heating and cooling of the system to find the best energetic minima of the system.
- an additional parameter, the "Protein - Ligand Binding Energy" was added to the consideration of electing a new starting point in each interval of heating.
- Stimulated annealing included the following steps:
- the hydrogen atoms, the substrate analogue and the side chains and water molecules that are in a 15 A radius from the phosphate atom were set free.
- Cut off 9.5 A distance dependent; each step was lfs.
- the combined approach produced many conformations. For each starting point, the conformation with lowest binding energy in the last (15th) simulation cycle was evaluated. The binding energy was compared and the best one was chosen. In some cases more then one conformation for each ligand was analyzed.
- FIGs 12-17 show the interactions between the best conformation of the analyzed compound (inhibitor) and the amino acids in the catalytic domain of GSK-3, as determined by the stimulated annealing described above.
- the predominant interactions between the analyzed compounds and the catalytic domain include electrostatic and/or hydrogen bonding interactions between the amine or guanidine moiety of the inhibitor and an acidic moiety at a side chain of an amino acid (e.g., of glutamic acid and aspartic acid) or the hydroxyl group of tyrosine, as well as aromatic and/or hydrophobic interactions between an aromatic moiety of the inhibitor and an aromatic or hydrocarbon side chain of an amino acid (e.g., phenylalanine, tyrosine and isoleucine).
- an amino acid e.g., of glutamic acid and aspartic acid
- aromatic and/or hydrophobic interactions between an aromatic moiety of the inhibitor and an aromatic or hydrocarbon side chain of an amino acid e.g., phenylalan
- Phe67 is an important binding moiety in the binding site of the enzyme and, moreover, it is like a door closing on the binding site.
- Table 4 hereinunder presents the distances between various atoms of the analyzed inhibitor and the various amino acid residues of the enzyme which interact with these atoms.
- the number (presented in A) is the shorter distance between the inhibitor and the residue.
- GSC-4 in which a guanidine group is attached directly to the aromatic ring
- the interaction of the guanidine group in GSC-6, in which the guanidine group is attached to the ring via an ethylene spacer, with the acid groups (e.g., Aspl81) is tight.
- Aromatic interactions with Phe67 and Tyr216 are also observed.
- Interaction of GSC-8 with GSK-3 As shown in Figure 16, GSC-8 perfectly fits the binding site. The best conformation includes one guanido arm that points to As ⁇ 90 (1.71 A) and the other to Glu97 (1.88 A), and additional interactions with Phe67 (3.6), Arg96 (2.06 A) and Argl ⁇ O (2.63 A).
- the complex interaction has a good binding energy.
- GSC-9 perfectly fits the binding site, with increased number of interactions.
- the best conformation includes one guanido arm that points to Asp90 (3.43 A) and the other to Glu97 (2.38 A).
- the guanido groups interact with additional residues such as Glu200, Gln89 and the backbone o Leu88, such that the binding is strengthened. Phe67, though not strongly interacting, seems to close on the binding site.
- the reaction mixture was thereafter poured into water (8 ml) and extracted three times with diethylether (3 x 8 ml). The combined organic layers were washed with water and brine (8 ml), the aqueous phase was re-extracted two times with diethylether (2 x 8 ml), and the combined organic layers were dried with MgSO 4 and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (using a gradient eluent of hexanes and a 20:80 ethyl acetaterhexanes mixture).
- a 50 ml round bottomed flask was charged with a stirring bar, 25 ml 2N HCl, and aminobenzylalcohol (2.15 grams, 17.5 mmol, 1 molequivalent). The solution was cooled to -5°C in a salt-ice bath. An ice-cold solution of sodium nitrite (1.45 gram, 21 mmol, 1.2 molequivalent) in 5 ml water was slowly added over five minutes such that the temperature of the reaction did not rise above -3 °C. After five minutes, 125 mg urea was added to destroy the excess nitrous acid.
- the solution of the resulting diazonium salt was then added during five minutes to a stirred ice-cold solution of sodium azide (2.28 grams , 35 mmol, 2 molequivalent) and sodium acetate (4.20 grams, 51 mmol, 3 molequivalent) in 25 ml water.
- the mixture was stirred for 2 hours at 0 °C, and the dark oily product was extracted with diethyl ether (2 x 50ml).
- the ethereal solution was washed with IN NaOH (2 x 50ml) and water (2 x 50ml), dried over MgSO 4 , and evaporated to dryness. The obtained compound was sufficiently pure and was used without further purification.
- CuSO 4 (0.02 gram, 0.125 mmol, 0.5 molequivalent) and Cu wires, were added to a solution of a N-(emynylphenyl),N',N'-bis(fert-butoxycarbonyl) guanidine (0.07 gram, 0.212 mmol, 1 molequivalent) and a di-fer/-butyl, azidobenzyl phosphate (0.07 gram, 0.205 mmol, 1 molequivalent) in DMF (5 ml) and the resulting mixture was stirred under nitrogen atmosphere overnight.
- This compound was obtained as described hereinabove, except that the mixing was continued for 22 hours.
- ATOM 62 CD ARG 4 2.627 -2.865 4.571 1.00 0.00
- ATOM 63 HDl ARG 4 1.720 -2.327 4.798 1.00 0.00
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Diabetes (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Obesity (AREA)
- Epidemiology (AREA)
- Hospice & Palliative Care (AREA)
- Child & Adolescent Psychology (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Pain & Pain Management (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
La présente invention a trait à de nouveaux composés destinés à permettre des interactions avec des sites de liaison de la GSK-3 et donc capables d'inhibition de l'activité de la GSK-3, grâce à l'inhibition de liaison de substrat. L'invention a également trait à des compositions pharmaceutiques comportant de tels composés et à des procédés d'utilisation de tels composés dans le traitement de conditions médiées par la GSK-3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US62854204P | 2004-11-18 | 2004-11-18 | |
PCT/IL2005/001218 WO2006054298A2 (fr) | 2004-11-18 | 2005-11-20 | Inhibiteurs de glycogene synthase kinase-3 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1824468A2 true EP1824468A2 (fr) | 2007-08-29 |
Family
ID=35655492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05809234A Withdrawn EP1824468A2 (fr) | 2004-11-18 | 2005-11-20 | Inhibiteurs de glycogene synthase kinase-3 |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1824468A2 (fr) |
JP (1) | JP4954888B2 (fr) |
KR (1) | KR20070086075A (fr) |
CN (1) | CN101098686B (fr) |
AU (1) | AU2005234687A1 (fr) |
CA (1) | CA2587732A1 (fr) |
WO (1) | WO2006054298A2 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001049709A1 (fr) | 2000-01-03 | 2001-07-12 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Inhibiteurs de glycogene synthase kinase-3 |
US7378432B2 (en) | 2001-09-14 | 2008-05-27 | Tel Aviv University Future Technology Development L.P. | Glycogen synthase kinase-3 inhibitors |
JP2006514104A (ja) | 2002-12-12 | 2006-04-27 | テル アヴィヴ ユニヴァーシティ フューチャー テクノロジー ディヴェロップメント エル.ピー. | グリコーゲンシンターゼキナーゼ−3阻害剤 |
GB0714941D0 (en) * | 2007-08-01 | 2007-09-12 | Imp Innovations Ltd | Inhibitors |
KR101592871B1 (ko) * | 2013-03-19 | 2016-02-11 | 부산대학교 산학협력단 | Akt에 의해 활성화되는 글리코겐 합성효소 키나아제 베타 억제용 펩타이드 |
CN105884827B (zh) * | 2015-02-13 | 2018-03-13 | 山东轩竹医药科技有限公司 | 嘧啶酰胺衍生物及其盐 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001049709A1 (fr) * | 2000-01-03 | 2001-07-12 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Inhibiteurs de glycogene synthase kinase-3 |
JP2006514104A (ja) * | 2002-12-12 | 2006-04-27 | テル アヴィヴ ユニヴァーシティ フューチャー テクノロジー ディヴェロップメント エル.ピー. | グリコーゲンシンターゼキナーゼ−3阻害剤 |
EP1638557A4 (fr) * | 2003-06-27 | 2007-11-07 | Univ Tel Aviv Future Tech Dev | Inhibiteurs de la glycogene synthase kinase-3 |
-
2005
- 2005-11-17 AU AU2005234687A patent/AU2005234687A1/en not_active Abandoned
- 2005-11-20 KR KR1020077013214A patent/KR20070086075A/ko not_active Application Discontinuation
- 2005-11-20 EP EP05809234A patent/EP1824468A2/fr not_active Withdrawn
- 2005-11-20 WO PCT/IL2005/001218 patent/WO2006054298A2/fr active Application Filing
- 2005-11-20 JP JP2007542503A patent/JP4954888B2/ja not_active Expired - Fee Related
- 2005-11-20 CN CN2005800452120A patent/CN101098686B/zh not_active Expired - Fee Related
- 2005-11-20 CA CA002587732A patent/CA2587732A1/fr not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2006054298A2 * |
Also Published As
Publication number | Publication date |
---|---|
CN101098686A (zh) | 2008-01-02 |
JP4954888B2 (ja) | 2012-06-20 |
WO2006054298A2 (fr) | 2006-05-26 |
CN101098686B (zh) | 2012-03-14 |
CA2587732A1 (fr) | 2006-05-26 |
AU2005234687A1 (en) | 2005-12-08 |
KR20070086075A (ko) | 2007-08-27 |
WO2006054298A3 (fr) | 2006-06-29 |
JP2008520649A (ja) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8088941B2 (en) | Glycogen synthase kinase-3 inhibitors | |
WO2005000192A2 (fr) | Inhibiteurs de la glycogene synthase kinase-3 | |
US7833974B2 (en) | Glycogen synthase kinase-3 inhibitors | |
US7348308B2 (en) | Glycogen synthase kinase-3 inhibitors | |
EP2668199B1 (fr) | Inhibiteurs de glycogène synthase kinase-3 | |
EP1824468A2 (fr) | Inhibiteurs de glycogene synthase kinase-3 | |
JP2000502097A (ja) | タンパク質合成の制御、および作用薬のスクリーニング法 | |
US9688719B2 (en) | Glycogen synthase kinase-3 inhibitors | |
JP4651617B2 (ja) | Lkb1リン酸化活性を検定する方法 | |
Cho et al. | Chemistry and biology of Ras farnesyltransferase | |
EP3013850B1 (fr) | Inhibiteurs de glycogène synthase kinase-3 | |
Sakaguchi et al. | Chemical synthesis and applications of phosphopeptides | |
US20020055463A1 (en) | Pseudopeptide compounds having an inhibiting activity with respect to paths activated by proteins with active tyrosine kinase activity and pharmaceutical compositions containing same | |
JP3407741B2 (ja) | タウ蛋白質のリン酸化方法 | |
JP2005239629A (ja) | インスリン受容体のリン酸化阻害剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070615 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20090227 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140128 |