EP1817487B1 - Procede et dispositif pour commander un actionneur - Google Patents

Procede et dispositif pour commander un actionneur Download PDF

Info

Publication number
EP1817487B1
EP1817487B1 EP05826784A EP05826784A EP1817487B1 EP 1817487 B1 EP1817487 B1 EP 1817487B1 EP 05826784 A EP05826784 A EP 05826784A EP 05826784 A EP05826784 A EP 05826784A EP 1817487 B1 EP1817487 B1 EP 1817487B1
Authority
EP
European Patent Office
Prior art keywords
setpoint value
setpoint
change
actuator
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05826784A
Other languages
German (de)
English (en)
Other versions
EP1817487A1 (fr
Inventor
Alex Grossmann
Mattias Hallor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1817487A1 publication Critical patent/EP1817487A1/fr
Application granted granted Critical
Publication of EP1817487B1 publication Critical patent/EP1817487B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque

Definitions

  • the invention is based on a method and a device for driving an actuator according to the preamble of the independent claims.
  • a minimum opening degree of the throttle valve is set to a value larger than an amount that results in the overshoot of the throttle valve when the opening degree of the throttle valve is changed from a maximum opening degree to the minimum opening degree.
  • an electronic throttle control device is known.
  • a microcomputer calculates a deviation between a target opening degree and an actual opening degree. Depending on this, an engine control amount and a control gain are calculated.
  • the control gain is chosen to be smaller with increasing control deviation.
  • the control gain is limited by the previous control gain if the control gain is greater than the previous control gain. The restriction on the control gain is canceled when the calculated current opening degree change is reduced from a predetermined value.
  • a throttle for electrically controlled actuators in a motor vehicle, such as a throttle, a charge movement flap, an exhaust gas recirculation valve, a bypass valve for a compressor, etc.
  • a digital control in an engine control unit In order to avoid damage to the corresponding actuator, it must be prevented that a mechanical stop of the corresponding actuator is approached too fast. To ensure this, an offset is often introduced to the stop so that the actuator can be driven quickly up to this offset. However, this offset causes an increased leakage mass flow.
  • An alternative solution uses a setpoint change limitation, for example, using a filter. In this case, a change in the setpoint value for the position of the actuator is limited to a predetermined desired value according to the setpoint change limit.
  • the setpoint change is limited to such a low value that it can be ensured that the stop is not approached too quickly by the actuator. If this setpoint change limit is active over the entire range of predefinable setpoint values for the position of the actuator, this leads to the fact that the control of the position of the actuator to the corresponding predetermined setpoint is unnecessarily slow. An improved solution is to turn on this slow setpoint limit only when the preset setpoint between the stop and a predetermined threshold associated with the stop.
  • the method and the device according to the invention the task is based on optimizing the control of an actuator.
  • the inventive method and the inventive apparatus for driving an actuator with the features of the independent claims have the advantage over that to achieve the first setpoint by the setpoint initially a second setpoint is specified, that a change in the setpoint for the position of the actuator the second setpoint value is limited according to a second setpoint change limit, and that if the change in the setpoint value to the first setpoint limit with the first setpoint change limit is greater than the change of the setpoint value to the second setpoint limit with the second setpoint change limit, the first setpoint value is predetermined for the setpoint value is and the change of the setpoint for the position of the actuator is limited to the first set value according to the first setpoint change limit.
  • a two-stage setpoint change limitation can be carried out especially for a first set value in the vicinity of a stop of the actuator.
  • the setpoint value is first moved with the second setpoint change limitation in the direction of the second predetermined setpoint value and then with the first setpoint change limitation in the direction of the first predetermined setpoint value.
  • the approach of the setpoint in the direction of the second predetermined setpoint value with a larger setpoint change and thus faster can be allowed, as the subsequent approach of the setpoint in the direction of the first predetermined setpoint.
  • the second setpoint change limit is then lower or lower than the first setpoint change limit.
  • the setpoint could be changed comparatively quickly towards the first predetermined desired value within a certain range limited by the second predetermined setpoint value.
  • the comparatively slow setpoint change limitation is then only required on the last stretch of the setpoint to the first predetermined setpoint.
  • the control for adjusting the actuator is not unnecessarily slowed down.
  • the first and the second setpoint change limitation are only performed when the first setpoint lies between a stop of the actuator and a predetermined threshold value associated with the stop.
  • a first predetermined setpoint which is not close to the attack, that is not between the stop and the stop associated with the predetermined threshold value, approach with the highest possible speed of the actuator, without damaging the actuator by the attack would be feared.
  • the first desired value lies between the stop and the predetermined threshold value associated with the stop, it is further ensured that the first desired value is approached as quickly as possible and then slowly enough due to the two-step setpoint change limitation in order to prevent the actuator from being damaged by a stop prevent.
  • the two-stage setpoint limit limitation is particularly advantageous for preventing damage to the actuator by the stop when, as described, the second setpoint change limit is selected to be weaker than the first setpoint change limit.
  • a simple realization for the setpoint change limiting results when the setpoint for the first setpoint change limiting is filtered with a first time constant and when the setpoint for the second setpoint change limiting is filtered with a second time constant.
  • the first time constant greater than the second time constant can be selected to achieve that the second setpoint change limit is weaker than the first setpoint change limit.
  • one of the two Soléesungsbegenzonne is performed by means of a ramp function and the other of the two Soléesungsbegenzonne by filtering. This is particularly beneficial in systems where an asymptotic Approaching the stop position is too slow. Another advantage is that with this method, the speed at which the target value of the actuator may approach the stop, can be specified directly.
  • the second desired value is selected further apart from a stop of the actuator than the first desired value.
  • the described advantage can be realized, according to which the desired value can first be guided as fast as possible towards the second setpoint by the two-stage setpoint change limit, in order then to guide the setpoint as slowly as possible to the first predetermined setpoint, which is closer to the setpoint Damage to the actuator by the stop to avoid.
  • FIG. 1 a roughly schematic section of an internal combustion engine
  • FIG. 2 a functional diagram for explaining the method and apparatus of the invention
  • FIG. 3 a diagram with different setpoint curves for the position of an actuator over time.
  • FIG. 1 110 indicates a section of an internal combustion engine that drives, for example, a vehicle.
  • the internal combustion engine can be designed, for example, as a gasoline engine or as a diesel engine.
  • About an intake passage 40 of the engine fresh air is supplied.
  • an actuator 1 is arranged in the intake passage 40.
  • the actuator 1 is formed for example as a throttle valve.
  • a different air mass flow in the intake passage 40 is set.
  • a lower stop of the throttle valve 1 in the intake passage 40 is in FIG. 1 designated by the reference numeral 45.
  • FIG. 1 designated by the reference numeral 45.
  • a first setpoint value 5 for the position of the throttle flap 1 and a second setpoint value 10 for the position of the throttle flap 1 are shown by dashed lines, wherein the first setpoint value 5 is closer to the lower stop 45 than the second setpoint value 10.
  • the throttle flap 1 is known in the art Way controlled by a drive signal AS by a controller 50, for example, to implement a driver's request.
  • the drive signal AS may be, for example, a pulse-width-modulated signal, wherein different positions of the actuator 1 in the intake passage 40 result for different duty cycles of the pulse-width-modulated drive signal AS.
  • FIG. 3 Now the position of the throttle valve 1 is plotted against the time t in seconds.
  • the position of the throttle valve 1 is given in percent of the opening degree.
  • the value 0% corresponds to the state of the fully closed throttle valve 1, that is, the throttle valve 1 is located directly on the lower stop 45.
  • the value 100% for the position of the throttle valve 1 corresponds to the fully open throttle 1.
  • target 1 is a first setpoint for the position of the throttle valve 1 in FIG. 3 shown.
  • This first desired value Soll1 for the position of the throttle valve 1 is initially at the value 100% for the fully open throttle 1. Approximately at the time of one second, the first target value 1 jumps from 100% down to about 1.01 seconds to reach the value 0%. There remains the first setpoint Soll 1 to at least 1.35 seconds.
  • the first target value Soll 1 corresponds approximately to the lower stop 45 from the time 1.01 seconds FIG. 1 does not directly correspond to the first setpoint indicated there 5 the lower stop 45, but is given close to the fence.
  • the first set point 5 indicates a position of the throttle flap 1 in the vicinity of the lower stop 45, wherein as in FIG. 3 the special case may occur that the first setpoint 5, in FIG. 3 denoted by 1, after the in FIG. 3 shown jump directly to the lower stop 45 and thus the fully closed throttle valve 1 corresponds.
  • all those first setpoint values 5 are designated as being close to the stop, which are located closer to the lower stop 45 after the jump than a predefined threshold value SW.
  • the predetermined threshold SW can be suitably applied, for example, on a test bench.
  • the predetermined threshold value SW can be applied, for example, in such a way that all the first setpoint values 5 are so close to the lower limit stop 45 below the predetermined threshold value SW that they may not be preset abruptly but with a sufficient setpoint change limitation in order to damage the throttle flap 1 to safely avoid the bottom stop 45.
  • the predetermined threshold SW becomes a value between 9 and 10 Percentage of the position of the throttle valve 1 applied. Since the first target value Soll 1 after the jump is below the predetermined threshold SW, it must not be as in FIG. 3 represented jump-shaped but only with the consideration of a first setpoint change limit be specified.
  • Such a setpoint change limitation is achieved, for example, with the aid of low-pass filtering.
  • the change of the setpoint value for the position of the throttle valve 1 from the value 100% to the value 0% is limited by low-pass filtering with a predetermined time constant.
  • the reference numeral 115 shows a first course of the setpoint value for the position of the throttle flap 1, which is achieved by low-pass filtering the profile of the first setpoint value 1 with a second time constant of 35 ms.
  • a second possible course of the setpoint is shown, which is formed by low-pass filtering the course of the first predetermined setpoint value 1 with a first time constant of 70 ms.
  • the setpoint curve formed thereby is in particular below the predetermined threshold SW until reaching the first predetermined setpoint value 1 sufficiently slow to safely avoid damaging the throttle valve 1 when hitting the lower stop 45, but starting from the position 100% to to reach the predetermined threshold SW too slow.
  • the invention provides a two-stage setpoint change limitation.
  • a second predetermined target value 2 is selected as the target value to be set for the position of the throttle valve 1 after the setpoint jump, which may, for example, correspond to the predefined threshold value SW or greater than this.
  • the predetermined threshold SW for example, can be applied to a test stand so suitable that only for jumps of the first predetermined setpoint value 1 below the predetermined threshold SW a corresponding setpoint change limit for a damage-free adjustment of the position of the throttle valve 1 to the first predetermined setpoint desired 1 sure is set, it is particularly advantageous to select the second predetermined target value 2 equal to the predetermined threshold SW.
  • the selection of the second predetermined setpoint Soll2, the in FIG. 1 is also characterized by the reference numeral 10, that this is further spaced from the lower stop 45 of the actuator 1 is selected as the first predetermined target value Soll1.
  • FIG. 2 a functional diagram is shown, which explains the inventive method and the device according to the invention in more detail.
  • the functional diagram is denoted by the reference numeral 15 in FIG. 2 and can be implemented as a device according to the invention software and / or hardware in the controller 50.
  • the sequence of the method according to the invention will be clarified on the basis of the functional diagram 15.
  • First presetting means 20 indicate, in a manner known to the person skilled in the art, the first setpoint value 1 or the time profile of the first setpoint value 1, for example according to FIG FIG. 3 and, for example, depending on a driver's request.
  • a low-pass filter 30 is provided, which emits a filtered nominal value Sollfil at regular sampling instants.
  • the filtered desired value Sollfil present at this sampling time is subtracted from the first predetermined desired value Soll 1 present at this sampling instant in a first subtraction element 55.
  • the formed difference Soll1 - Sollfil at the output of the first subtraction element 55 is divided in a subsequent first division member 65 by a first predetermined time constant Z1, which may be stored permanently in a memory 50 associated memory.
  • a first predetermined time constant Z1 which may be stored permanently in a memory 50 associated memory.
  • the value of 70 ms can be selected for the first predetermined time constant Z1.
  • the output of the first division element 65 thus corresponds to the quotient Should ⁇ 1 - Sollfil Z ⁇ 1 , This quotient is in FIG. 2 labeled Q1.
  • first comparison element 75 It is supplied to a first input of a first comparison element 75, whose second input is supplied with the value zero. If the first quotient Q1 is less than zero, the output of the first comparison element 75 is set, otherwise it is reset.
  • the output of the first comparator 75 is fed to an inverse 85 whose output is set when its input is reset and its output is reset when its input is set.
  • the output of the inversion member 85 is supplied to a first input of an OR gate 90.
  • the output of the first comparison element 75 is also supplied to a first input of an AND gate 80.
  • the first quotient Q1 as the output of the first division element 65 is also fed to a first input of a second comparison element 35.
  • Second presetting means 25 predetermine the second desired value Soll2 in this example as a predetermined threshold value SW.
  • the second Default means 25 may be formed, for example, by a memory 50 associated memory in which the value applied to the predetermined threshold SW, for example, applied to the test bench value.
  • the filtered desired value Sollfil present for this sampling instant is subtracted from the predetermined second nominal value Soll2 present for this sampling instant for each sampling instant, so that the difference Soll2-Sollfil forms at the output of the second subtraction element 60.
  • the second quotient Q2 is supplied to a second input of the second comparison element 35.
  • the output of the second comparator 35 is set when Q1 ⁇ Q2.
  • the output of the second comparator 35 is supplied to a second input of the AND gate 80.
  • the output of the AND gate 80 is set only when its two inputs are set, otherwise it is reset.
  • the output of the AND gate 80 is on the one hand to a second input of the OR gate 90 and on the other hand fed as a control signal to a first controlled switch 100.
  • the output of the OR gate 90 is set when one of its two inputs is set, and otherwise reset.
  • the output of the OR gate 90 is guided as a control signal to a second controlled switch 105.
  • the first desired value Soll 1 is supplied on the one hand to a first input of a maximum selector element 95 and on the other hand to a first input of the second controlled switch 105.
  • the second desired value Soll2 is supplied to a second input of the Maoimalaushoffgliedes 95.
  • the maximum selector element 95 selects the maximum of its two inputs, that is to say the maximum from the first preset desired value Soll 1 and the second predetermined nominal value Soll 2, and outputs this maximum to a second input of the controlled switch 105.
  • the second controlled switch 105 connects the output of the maximum selector 95 to an input of the low pass 30 when the output of the OR gate 90 is reset.
  • the second controlled switch 105 connects the input of the low-pass filter 30 with the first default means 20 and thus with the first predetermined desired value Soll1.
  • the output of the first controlled switch 100 predefines the time constant for the low pass 30.
  • the first controlled switch 100 connects the memory with the first predetermined Time constant Z1 with the input for the time constant of the low-pass filter 30 when the output of the AND gate 80 is set, otherwise the first controlled switch connects the memory with the second predetermined time constant Z2 with the time constant input of the low pass 30th
  • the low-pass filter 30 then filters the output of the second controlled switch 105 with the respectively set time constant in order to form the filtered nominal value Sollfil.
  • the first comparison member 75 ensures that the two-stage setpoint change limit is only performed when the first setpoint desired 1 is smaller than the filtered setpoint Sollfil, and thus the filtered setpoint Sollfil a time-decreasing course and thus toward the lower stop 45th having. Otherwise, only the first setpoint Soll1 is filtered by the low-pass filter 30 with the second predetermined time constant Z2. With the first comparison element 75 is thus checked whether the throttle valve 1 moves in the closing direction, ie in the direction of the lower stop 45, that is, the filtered target value Sollfil changed in the direction of the lower stop 45.
  • the setpoint change determination is always selected which allows the larger step in the direction of the lower limit stop 45 and configures the low-pass filter 30 accordingly in the manner described.
  • the low-pass filter 30 with the first setpoint setpoint 1 as the input value and the slower first time constant Z1 makes a larger step toward the bottomstop 45 than the low-pass filter 30 with the second setpoint setpoint Soll2 as the input value and the faster first filter time constant Z2, then the former Configuration with the first predetermined setpoint Soll 1 and the first filter time constant Z1 selected, otherwise the filter configuration with the second predetermined setpoint Soll2 is greater than the first predetermined setpoint Soll1, and the second predetermined time constant Z2.
  • the method according to the invention takes effect according to FIG. 2 , so that's the second one predetermined setpoint Sol12 with the faster second time constant Z2 is approached by the low-pass filter 30 until the filtered setpoint curve is slowed down so much that the filtering with the slower first time constant Z1 and the first predetermined setpoint Soll11 is faster than the input value. Then, as described, the switching between the two different input values and the two different time constants takes place, and the first predetermined desired value Soll1 is then approached with the slower first filter time constant Z1.
  • a setpoint change limit can be smoothly switched over from a high-speed tracking to a slower tracking-near tracking of the setpoint to the corresponding predetermined setpoint if the first predetermined setpoint Soll1 is below the predetermined threshold SW.
  • the first predetermined setpoint Soll1 is in the range above the predetermined threshold SW or if it moves in the direction of the range above the predetermined threshold SW, slight overshoot or undershoot in the setpoint are allowed because they reach a faster reaching the first predetermined setpoint value 1 lead.
  • the function diagram according to FIG. 2 finally represents a controller for tracking the setpoint value for the position of the throttle valve 1 to the first predetermined desired value Soll1.
  • the by the function diagram FIG. 2 In comparison with systems which only work with the first filter time constant Z1, as soon as the first predetermined desired value Soll1 is below the predetermined threshold value SW, the controller realized has the advantage that the controller according to the functional diagram FIG. 2 can be designed with a higher loop gain.
  • the third setpoint course 125 shows the fastest possible approach of the setpoint value to the predetermined threshold value SW at which occurring undershoots in the setpoint course can still be controlled.
  • the ideal setpoint course 130 uses this fast third setpoint course 125 until it decelerates too much. Subsequently, the ideal setpoint course 130 continues slowly in the direction of the first preset setpoint Soll1. If the first setpoint course 115 had been used until reaching the predetermined threshold value SW and then switched directly to the second time course 120 with the slower time constant, then the rate of change of the setpoint value in the range of the predefined threshold value SW would have been too high.
  • the embodiment has been described above with reference to an actuator 1 designed as a throttle valve.
  • the invention can be applied in a corresponding manner to any electrically controlled actuators, for example, to a charge movement flap, an exhaust gas recirculation valve, a bypass valve for a compressor, etc.
  • the application of the actuator 1 to an internal combustion engine or a motor vehicle is not limited, but can be provided for any applications in which a mass flow can be influenced by changing the position of an actuator.
  • a setpoint change limit can also be calculated by calculating a gradient the temporal setpoint course and its comparison with a predetermined limit occur. If the preset limit value is less than the specified limit value, no setpoint change limitation takes place, otherwise the setpoint change is limited to the specified limit value. Different setpoint change limitation can then be realized by different limit values in a corresponding manner. Other methods known to those skilled in the setpoint limit limiting can be used to implement the invention in a corresponding manner.
  • Two different preset limit values can be used to realize two different setpoint change limits, one weaker than the other.
  • a weaker setpoint change limitation results from the larger preset limit value for the setpoint change limitation. In this case, a larger setpoint change amount is possible. The limitation of the setpoint change is thus lower.
  • the low-pass filtering with the first and the second predetermined filter time constant is performed only if the first predetermined setpoint Soll 1 between the lower stop 45 of the actuator 1 and the predetermined limit SW associated with the lower stop 45 is located.
  • the first predetermined target value 1 can also be the lower stop 45 as in FIG. 3 represented correspond.
  • the first predetermined desired value Soll 1 is above the predetermined threshold value SW, it is also possible to dispense with a setpoint change limitation or filtering.
  • the first predetermined desired value Soll1 corresponds to the predetermined threshold value SW.
  • the low-pass filtering with a single filter time constant according to the third setpoint curve 125 are performed.
  • the second filter time constant Z2 35 ms has been selected.
  • the lower stop 45 of the control member 1 was considered.
  • the described method according to the invention and the described device according to the invention can also be applied to the upper stop of the actuator 1, in which case the output of the first comparison element 75 is set when Q1 is greater than zero and the output of the first comparator 75 is otherwise reset.
  • the output of the second comparator 35 is set when Q1> Q2 and otherwise the output of the second comparator 35 is reset. From the maximum selector 95 in FIG FIG. 2 becomes a minimum selector in this case.
  • the functional diagram can be after FIG. 2 also use for this case of the upper stop.
  • the predetermined threshold SW for the upper stop for example, between 90 and 91 percent of the position of the actuator 1 according FIG. 3 and the upper stop corresponds to the position 100 percent of the actuator 1.
  • the second predetermined setpoint Soll2 can be selected equal to the predetermined threshold.

Claims (9)

  1. Procédé de commande d'un organe de réglage (1) qui présente une évolution de la valeur de consigne pour régler l'organe de réglage (1) à une première valeur de consigne (5),
    l'évolution de la valeur de consigne étant limitée par une première limitation de la variation de la valeur de consigne pour le réglage de l'organe de réglage (1) à la première valeur de consigne (5),
    caractérisé en ce que
    pour atteindre la première valeur de consigne (5) par l'évolution de la valeur de consigne, une deuxième valeur de consigne (10) est d'abord prédéterminée,
    en ce que l'évolution de la valeur de consigne pour le réglage de l'organe de réglage (1) à la deuxième valeur de consigne (10) est limitée par une deuxième limitation de variation de la valeur de consigne et
    en ce que lorsque la modification de l'évolution de la valeur de consigne vers la première valeur de consigne (5) avec la première limitation de variation de la valeur de consigne a une valeur plus grande que la modification de l'évolution de la valeur de consigne vers la deuxième valeur de consigne (10) avec la deuxième limitation de variation de la valeur de consigne, c'est la première valeur de consigne (5) qui est prédéterminée pour l'évolution de la valeur de consigne et l'évolution de la valeur de consigne pour le réglage de l'organe de réglage (1) à la première valeur de consigne (5) est limitée par la première limitation de variation de la valeur de consigne.
  2. Procédé selon la revendication 1, caractérisé en ce que la première et la deuxième limitation de la variation de la valeur de consigne ne sont exécutées que si la première valeur de consigne (5) est située entre une butée (45) de l'organe de réglage (1) et une valeur de seuil prédéterminée associée à la butée (45).
  3. Procédé selon la revendication 2, caractérisé en ce que la deuxième valeur de consigne prédéterminée (10) est égale à la valeur de consigne prédéterminée.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que la deuxième limitation de la variation de la valeur de consigne est moins stricte que la première limitation de la variation de la valeur de consigne.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la modification de l'évolution de la valeur de consigne avec la première limitation de la variation de la valeur de consigne est filtrée par une première constante de temps et en ce que la variation de l'évolution de la valeur de consigne avec la deuxième limitation de la variation de la valeur de consigne est filtrée par une deuxième constante de temps.
  6. Procédé selon la revendication 5, caractérisé en ce que la première constante de temps est plus grande que la deuxième constante de temps.
  7. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'une des deux limitations de la variation de la valeur de consigne est réalisée au moyen d'une fonction en pente et en ce que l'autre des deux limitations de la variation de la valeur de consigne est réalisée par filtrage.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la deuxième valeur de consigne (10) est plus éloignée d'une butée (45) de l'organe de réglage (1) que la première valeur de consigne (5).
  9. Dispositif (15) de commande d'un organe de réglage (1) avec une évolution de la valeur de consigne pour le réglage de l'organe de réglage (1), dans lequel
    des premiers moyens de définition (20) qui définissent une première valeur de consigne (5) de l'évolution de la valeur de consigne sont prévus pour le réglage de l'organe de réglage (1),
    des premiers moyens de limitation (30) qui limitent la modification de l'évolution de la valeur de consigne pour le réglage de l'organe de réglage (1) à la première valeur de consigne (5) avec une première limitation de la variation de la valeur de consigne sont prévus,
    caractérisé en ce que
    le dispositif présente des deuxièmes moyens de définition (25) qui définissent d'abord une deuxième valeur de consigne (10) pour atteindre la première valeur de consigne (5) par l'évolution de la valeur de consigne,
    en ce que des deuxièmes moyens de limitation (30) qui limitent la modification de l'évolution de la valeur de consigne pour le réglage de l'organe de réglage (1) à la deuxième valeur de consigne (10) avec une deuxième limitation de la variation de la valeur de consigne sont prévus,
    en ce que des moyens de vérification (35) qui vérifient si la modification de l'évolution de la valeur de consigne vers la première valeur de consigne (5) avec la première limitation de la variation de la valeur de consigne a une valeur supérieure à la modification de l'évolution de la valeur de consigne vers la deuxième valeur de consigne (10) avec la deuxième limitation de la variation de la valeur de consigne et
    en ce que dans ce cas, les premiers moyens de définition (20) définissent la première valeur de consigne (5) pour l'évolution de la valeur de consigne et en ce que les premiers moyens de limitation (30) limitent la modification de l'évolution de la valeur de consigne pour le réglage de l'organe de réglage (1) à la première valeur de consigne (5) avec la première limitation de la variation de la valeur de consigne.
EP05826784A 2004-11-05 2005-11-03 Procede et dispositif pour commander un actionneur Expired - Fee Related EP1817487B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004053391A DE102004053391A1 (de) 2004-11-05 2004-11-05 Verfahren und Vorrichtung zum Ansteuern eines Stellgliedes
PCT/EP2005/055720 WO2006048432A1 (fr) 2004-11-05 2005-11-03 Procede et dispositif pour commander un actionneur

Publications (2)

Publication Number Publication Date
EP1817487A1 EP1817487A1 (fr) 2007-08-15
EP1817487B1 true EP1817487B1 (fr) 2010-01-13

Family

ID=35583511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05826784A Expired - Fee Related EP1817487B1 (fr) 2004-11-05 2005-11-03 Procede et dispositif pour commander un actionneur

Country Status (4)

Country Link
US (1) US8214070B2 (fr)
EP (1) EP1817487B1 (fr)
DE (2) DE102004053391A1 (fr)
WO (1) WO2006048432A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042513B4 (de) * 2008-09-30 2021-04-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überprüfung der Justierung mehrerer mittels eines gemeinsamen Antriebs angetriebener Stellglieder in verschiedenen Massenstromkanälen
US20130201316A1 (en) 2012-01-09 2013-08-08 May Patents Ltd. System and method for server based control
FR3012930B1 (fr) * 2013-11-05 2015-12-25 Snecma Procede d'essai technique
DE102020200908A1 (de) * 2020-01-27 2021-07-29 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Regeln einer kinematischen Größe eines Kraftfahrzeugs

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369356A (en) * 1991-08-30 1994-11-29 Siemens Energy & Automation, Inc. Distributed current and voltage sampling function for an electric power monitoring unit
US5205132A (en) * 1992-06-12 1993-04-27 Thermonics Incorporated Computer-implemented method and system for precise temperature control of a device under test
US5521824A (en) * 1992-12-07 1996-05-28 Caterpillar Inc. Method and apparatus for controlling an engine test apparatus using lead-lag control
DE4303560B4 (de) * 1993-02-08 2006-09-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Verstelleinrichtung
US6137187A (en) * 1997-08-08 2000-10-24 Zond Energy Systems, Inc. Variable speed wind turbine generator
US6600240B2 (en) * 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator
US7539549B1 (en) * 1999-09-28 2009-05-26 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US7308322B1 (en) * 1998-09-29 2007-12-11 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
JP3511577B2 (ja) 1998-10-06 2004-03-29 株式会社日立製作所 内燃機関のスロットル装置
DE19906871A1 (de) * 1999-02-18 2000-08-24 Siemens Ag Verfahren zum Ansteuern eines Antriebsaggregats in einem Antriebssystem
US6697685B1 (en) * 1999-11-06 2004-02-24 David J. Caldwell Flexible closed-loop controller
CN1250416C (zh) * 1999-12-18 2006-04-12 罗伯特·博施有限公司 控制机动车驱动单元的方法及装置
DE10034873B4 (de) * 2000-07-18 2005-10-13 Pacifica Group Technologies Pty Ltd Verfahren und Bremsanlage zum Regeln des Bremsvorgangs bei einem Kraftfahrzeug
US6481635B2 (en) * 2000-07-21 2002-11-19 Gun Valley Temperature Controls Llc Environmental control method
JP3826014B2 (ja) 2001-11-02 2006-09-27 愛三工業株式会社 電子スロットル制御装置
US6880332B2 (en) * 2002-09-25 2005-04-19 Husco International, Inc. Method of selecting a hydraulic metering mode for a function of a velocity based control system
US7142931B2 (en) * 2002-09-27 2006-11-28 Siemens Building Technologies, Inc. Control system with controlled dead zone
DE10352467A1 (de) * 2003-11-07 2005-06-02 Robert Bosch Gmbh Verfahren zur Steuerung mindestens eines Stellgliedes in einer Massenstromleitung
JP4908759B2 (ja) * 2004-01-14 2012-04-04 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 排気ガス温度調節のための方法及び制御装置
DE102005016300A1 (de) * 2005-04-08 2006-10-12 Proton Motor Fuel Cell Gmbh Antriebssystem und Verfahren zum Betrieb eines Antriebssystems für ein elektrisch betriebenes Fahrzeug

Also Published As

Publication number Publication date
US20110133106A1 (en) 2011-06-09
DE502005008883D1 (de) 2010-03-04
EP1817487A1 (fr) 2007-08-15
DE102004053391A1 (de) 2006-05-11
WO2006048432A1 (fr) 2006-05-11
US8214070B2 (en) 2012-07-03

Similar Documents

Publication Publication Date Title
EP2422067B1 (fr) Procédé et unité de commande permettant de faire fonctionner une soupape commandée par un actionneur
DE3810174C2 (de) Einrichtung zur Regelung der Kühlmitteltemperatur einer Brennkraftmaschine, insbesondere in Kraftfahrzeugen
EP2449238B1 (fr) Appareil et procédé de commande d'un moteur à combustion interne
EP0261134A1 (fr) Procede de commande du temps d'excitation de systemes electromagnetiques, en particulier de soupapes electromagnetiques dans des moteurs a combustion interne.
WO2010108923A2 (fr) Procédé et dispositif de pilotage d'un élément de commande d'un mécanisme d'entraînement présentant une réponse retardée
WO2010124927A2 (fr) Procédé et dispositif permettant de détecter une situation de pincement
DE19941475A1 (de) Verfahren zum Begrenzen der Schließkraft von beweglichen Teilen
EP1817487B1 (fr) Procede et dispositif pour commander un actionneur
DE102013206600A1 (de) Einspritzsystem zum Einspritzen von Kraftstoff in eine Brennkraftmaschine und Regelverfahren für ein solches Einspritzsystem
EP0424831B1 (fr) Procédé et dispositif pour réguler la température intérieure d'un habitacle de véhicule automobile
DE10315282B4 (de) Schaltungsanordnung und Verfahren zur Ansteuerung eines bistabilen Magnetventils
DE4308541A1 (de) Verfahren und Vorrichtung zur Steuerung und/oder Regelung eines Stellgliedes
EP1311751B1 (fr) Procede et dispositif pour la commande d'un moteur a combustion interne
EP1540431B1 (fr) Procede de regulation du courant traversant un element d'ajustement electromagnetique
DE102012216611A1 (de) Verfahren zum Betreiben eines Magnetventils
WO2005038827A2 (fr) Procede de regulation d'une electrovanne
EP1551065B1 (fr) Procédé et appareil de détermination de la tension de commande d'un actionneur piézoélectrique d'une soupape d'injection
EP2852748B1 (fr) Procédé de fonctionnement d'un système de carburant de moteur à combustion interne
DE4420122B4 (de) Verfahren und Vorrichtung zur Bestimmung einer Endstellung einer Verstelleinrichtung in Fahrzeugen
DE4303560B4 (de) Verfahren und Vorrichtung zur Steuerung einer Verstelleinrichtung
DE102004053265A1 (de) Verfahren und Vorrichtung zur Adaption eines Anschlags eines elektrisch angesteuerten Stellgliedes
DE4209474A1 (de) Einrichtung zur Steuerung wenigstens eines elektrischen Verbrauchers in einem Fahrzeug
DE10326785B4 (de) Verfahren und Steuerschaltung zum Einstellen einer Blockiererkennung für einen Lüftermotor
DE4221768C2 (de) Verfahren und Vorrichtung zur Steuerung einer Verstelleinrichtung in einem Fahrzeug
EP1146405B1 (fr) Méthode de régulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE GB

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080415

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005008883

Country of ref document: DE

Date of ref document: 20100304

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131122

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502005008883

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220125

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005008883

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601