EP1817396B1 - Lubricating oil composition - Google Patents
Lubricating oil composition Download PDFInfo
- Publication number
- EP1817396B1 EP1817396B1 EP05826443.3A EP05826443A EP1817396B1 EP 1817396 B1 EP1817396 B1 EP 1817396B1 EP 05826443 A EP05826443 A EP 05826443A EP 1817396 B1 EP1817396 B1 EP 1817396B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lubricating oil
- oil composition
- compounds
- present
- friction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 102
- 239000010687 lubricating oil Substances 0.000 title claims description 65
- -1 nitrile compounds Chemical class 0.000 claims description 31
- 125000004432 carbon atom Chemical group C* 0.000 claims description 28
- 239000002199 base oil Substances 0.000 claims description 22
- 150000002170 ethers Chemical class 0.000 claims description 17
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 14
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 claims description 14
- 229940113162 oleylamide Drugs 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 235000011187 glycerol Nutrition 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 229930195735 unsaturated hydrocarbon Chemical group 0.000 claims description 10
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 7
- 229930195729 fatty acid Natural products 0.000 claims description 7
- 239000000194 fatty acid Substances 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 150000002825 nitriles Chemical class 0.000 claims description 6
- 230000001050 lubricating effect Effects 0.000 claims description 4
- 235000013162 Cocos nucifera Nutrition 0.000 claims description 3
- 244000060011 Cocos nucifera Species 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- HBZDPWBWBJMYRY-UHFFFAOYSA-N decanenitrile Chemical compound CCCCCCCCCC#N HBZDPWBWBJMYRY-UHFFFAOYSA-N 0.000 claims description 3
- UIAMCVSNZQYIQS-KTKRTIGZSA-N oleonitrile Chemical compound CCCCCCCC\C=C/CCCCCCCC#N UIAMCVSNZQYIQS-KTKRTIGZSA-N 0.000 claims description 3
- 239000003760 tallow Substances 0.000 claims description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 2
- 238000009472 formulation Methods 0.000 description 29
- 230000000052 comparative effect Effects 0.000 description 24
- 239000003607 modifier Substances 0.000 description 20
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- 239000000446 fuel Substances 0.000 description 15
- 239000000654 additive Substances 0.000 description 13
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 13
- 239000003921 oil Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 239000003599 detergent Substances 0.000 description 10
- 150000002430 hydrocarbons Chemical group 0.000 description 10
- 239000003963 antioxidant agent Substances 0.000 description 9
- 235000006708 antioxidants Nutrition 0.000 description 9
- 239000002270 dispersing agent Substances 0.000 description 8
- 150000002148 esters Chemical class 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 239000002530 phenolic antioxidant Substances 0.000 description 5
- 229920005862 polyol Polymers 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 239000005864 Sulphur Substances 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 239000005078 molybdenum compound Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- SXYOAESUCSYJNZ-UHFFFAOYSA-L zinc;bis(6-methylheptoxy)-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].CC(C)CCCCCOP([S-])(=S)OCCCCCC(C)C.CC(C)CCCCCOP([S-])(=S)OCCCCCC(C)C SXYOAESUCSYJNZ-UHFFFAOYSA-L 0.000 description 4
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 3
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical class C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000007866 anti-wear additive Substances 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000012990 dithiocarbamate Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 3
- 229960001860 salicylate Drugs 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 2
- ICKWICRCANNIBI-UHFFFAOYSA-N 2,4-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C(C(C)(C)C)=C1 ICKWICRCANNIBI-UHFFFAOYSA-N 0.000 description 2
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 2
- IKEHOXWJQXIQAG-UHFFFAOYSA-N 2-tert-butyl-4-methylphenol Chemical compound CC1=CC=C(O)C(C(C)(C)C)=C1 IKEHOXWJQXIQAG-UHFFFAOYSA-N 0.000 description 2
- XOUQAVYLRNOXDO-UHFFFAOYSA-N 2-tert-butyl-5-methylphenol Chemical compound CC1=CC=C(C(C)(C)C)C(O)=C1 XOUQAVYLRNOXDO-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- CGRTZESQZZGAAU-UHFFFAOYSA-N [2-[3-[1-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]-2-methylpropan-2-yl]-2,4,8,10-tetraoxaspiro[5.5]undecan-9-yl]-2-methylpropyl] 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCC(C)(C)C2OCC3(CO2)COC(OC3)C(C)(C)COC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 CGRTZESQZZGAAU-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 2
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000002752 molybdenum compounds Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- 229920013639 polyalphaolefin Polymers 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- PDEDQSAFHNADLV-UHFFFAOYSA-M potassium;disodium;dinitrate;nitrite Chemical compound [Na+].[Na+].[K+].[O-]N=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PDEDQSAFHNADLV-UHFFFAOYSA-M 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- PWNBRRGFUVBTQG-UHFFFAOYSA-N 1-n,4-n-di(propan-2-yl)benzene-1,4-diamine Chemical compound CC(C)NC1=CC=C(NC(C)C)C=C1 PWNBRRGFUVBTQG-UHFFFAOYSA-N 0.000 description 1
- OIWIYLWZIIJNHU-UHFFFAOYSA-N 1-sulfanylpyrazole Chemical compound SN1C=CC=N1 OIWIYLWZIIJNHU-UHFFFAOYSA-N 0.000 description 1
- ZBRNSXOKGALPHF-UHFFFAOYSA-N 10-[(3,5-ditert-butyl-4-hydroxyphenyl)methylsulfanyl]decanoic acid Chemical compound CC(C)(C)C1=CC(CSCCCCCCCCCC(O)=O)=CC(C(C)(C)C)=C1O ZBRNSXOKGALPHF-UHFFFAOYSA-N 0.000 description 1
- OPLCSTZDXXUYDU-UHFFFAOYSA-N 2,4-dimethyl-6-tert-butylphenol Chemical compound CC1=CC(C)=C(O)C(C(C)(C)C)=C1 OPLCSTZDXXUYDU-UHFFFAOYSA-N 0.000 description 1
- JZODKRWQWUWGCD-UHFFFAOYSA-N 2,5-di-tert-butylbenzene-1,4-diol Chemical compound CC(C)(C)C1=CC(O)=C(C(C)(C)C)C=C1O JZODKRWQWUWGCD-UHFFFAOYSA-N 0.000 description 1
- LKALLEFLBKHPTQ-UHFFFAOYSA-N 2,6-bis[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound OC=1C(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=CC(C)=CC=1CC1=CC(C)=CC(C(C)(C)C)=C1O LKALLEFLBKHPTQ-UHFFFAOYSA-N 0.000 description 1
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 1
- SLUKQUGVTITNSY-UHFFFAOYSA-N 2,6-di-tert-butyl-4-methoxyphenol Chemical compound COC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SLUKQUGVTITNSY-UHFFFAOYSA-N 0.000 description 1
- QHPKIUDQDCWRKO-UHFFFAOYSA-N 2,6-ditert-butyl-4-[2-(3,5-ditert-butyl-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C(C)(C)C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 QHPKIUDQDCWRKO-UHFFFAOYSA-N 0.000 description 1
- YQQQXXUABFURLN-UHFFFAOYSA-N 2,6-ditert-butyl-4-ethoxyphenol Chemical compound CCOC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 YQQQXXUABFURLN-UHFFFAOYSA-N 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- QSRJVOOOWGXUDY-UHFFFAOYSA-N 2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]ethoxy]ethoxy]ethyl 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCCOCCOCCOC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QSRJVOOOWGXUDY-UHFFFAOYSA-N 0.000 description 1
- XVEYHYHXRYVWJW-UHFFFAOYSA-N 2-ethyl-n-(2-ethyl-4-nonylphenyl)-4-nonylaniline Chemical compound CCC1=CC(CCCCCCCCC)=CC=C1NC1=CC=C(CCCCCCCCC)C=C1CC XVEYHYHXRYVWJW-UHFFFAOYSA-N 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- IMOYOUMVYICGCA-UHFFFAOYSA-N 2-tert-butyl-4-hydroxyanisole Chemical compound COC1=CC=C(O)C=C1C(C)(C)C IMOYOUMVYICGCA-UHFFFAOYSA-N 0.000 description 1
- GPNYZBKIGXGYNU-UHFFFAOYSA-N 2-tert-butyl-6-[(3-tert-butyl-5-ethyl-2-hydroxyphenyl)methyl]-4-ethylphenol Chemical compound CC(C)(C)C1=CC(CC)=CC(CC=2C(=C(C=C(CC)C=2)C(C)(C)C)O)=C1O GPNYZBKIGXGYNU-UHFFFAOYSA-N 0.000 description 1
- STGFANHLXUILNY-UHFFFAOYSA-N 3,7-dioctyl-10h-phenothiazine Chemical compound C1=C(CCCCCCCC)C=C2SC3=CC(CCCCCCCC)=CC=C3NC2=C1 STGFANHLXUILNY-UHFFFAOYSA-N 0.000 description 1
- WPMYUUITDBHVQZ-UHFFFAOYSA-N 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoic acid Chemical compound CC(C)(C)C1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-N 0.000 description 1
- MRBKEAMVRSLQPH-UHFFFAOYSA-N 3-tert-butyl-4-hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1 MRBKEAMVRSLQPH-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- JHCCIUPVUCVKIJ-UHFFFAOYSA-N 4,6-ditert-butyl-2-(3,5-ditert-butyl-2,6-dihydroxyphenyl)sulfanylbenzene-1,3-diol Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=C(O)C(SC=2C(=C(C=C(C=2O)C(C)(C)C)C(C)(C)C)O)=C1O JHCCIUPVUCVKIJ-UHFFFAOYSA-N 0.000 description 1
- PRWJPWSKLXYEPD-UHFFFAOYSA-N 4-[4,4-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butan-2-yl]-2-tert-butyl-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(C)CC(C=1C(=CC(O)=C(C=1)C(C)(C)C)C)C1=CC(C(C)(C)C)=C(O)C=C1C PRWJPWSKLXYEPD-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- LZDOYVMSNJBLIM-UHFFFAOYSA-N 4-tert-butylphenol;formaldehyde Chemical compound O=C.CC(C)(C)C1=CC=C(O)C=C1 LZDOYVMSNJBLIM-UHFFFAOYSA-N 0.000 description 1
- ZVVFVKJZNVSANF-UHFFFAOYSA-N 6-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]hexyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCCCCCCOC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 ZVVFVKJZNVSANF-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Natural products CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UTGQNNCQYDRXCH-UHFFFAOYSA-N N,N'-diphenyl-1,4-phenylenediamine Chemical compound C=1C=C(NC=2C=CC=CC=2)C=CC=1NC1=CC=CC=C1 UTGQNNCQYDRXCH-UHFFFAOYSA-N 0.000 description 1
- QAPVYZRWKDXNDK-UHFFFAOYSA-N P,P-Dioctyldiphenylamine Chemical compound C1=CC(CCCCCCCC)=CC=C1NC1=CC=C(CCCCCCCC)C=C1 QAPVYZRWKDXNDK-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- XYRMLECORMNZEY-UHFFFAOYSA-B [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S Chemical class [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S XYRMLECORMNZEY-UHFFFAOYSA-B 0.000 description 1
- 150000008431 aliphatic amides Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- DFMYXZSEXKBYDI-UHFFFAOYSA-N butyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 DFMYXZSEXKBYDI-UHFFFAOYSA-N 0.000 description 1
- AVVIDTZRJBSXML-UHFFFAOYSA-L calcium;2-carboxyphenolate;dihydrate Chemical compound O.O.[Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O AVVIDTZRJBSXML-UHFFFAOYSA-L 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000010688 mineral lubricating oil Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical class C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- LCHMEXFHRGKPAB-UHFFFAOYSA-N n-(2,4-diethylphenyl)-2,4-diethylaniline Chemical compound CCC1=CC(CC)=CC=C1NC1=CC=C(CC)C=C1CC LCHMEXFHRGKPAB-UHFFFAOYSA-N 0.000 description 1
- SRWPBFLLYKIZTL-UHFFFAOYSA-N n-hexyl-n-phenylnaphthalen-2-amine Chemical compound C=1C=C2C=CC=CC2=CC=1N(CCCCCC)C1=CC=CC=C1 SRWPBFLLYKIZTL-UHFFFAOYSA-N 0.000 description 1
- RQVGZVZFVNMBGS-UHFFFAOYSA-N n-octyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(CCCCCCCC)C1=CC=CC=C1 RQVGZVZFVNMBGS-UHFFFAOYSA-N 0.000 description 1
- XZAOWUQONUDABE-UHFFFAOYSA-N n-octyl-n-phenylnaphthalen-2-amine Chemical compound C=1C=C2C=CC=CC2=CC=1N(CCCCCCCC)C1=CC=CC=C1 XZAOWUQONUDABE-UHFFFAOYSA-N 0.000 description 1
- MHJCZOMOUCUAOI-UHFFFAOYSA-N n-tert-butyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(C(C)(C)C)C1=CC=CC=C1 MHJCZOMOUCUAOI-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002990 phenothiazines Chemical class 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/06—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/20—Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
- C10M107/30—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M107/32—Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
- C10M107/34—Polyoxyalkylenes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/04—Ethers; Acetals; Ortho-esters; Ortho-carbonates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/04—Ethers; Acetals; Ortho-esters; Ortho-carbonates
- C10M2207/046—Hydroxy ethers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/16—Nitriles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/54—Fuel economy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
Definitions
- the present invention relates to a lubricating oil composition, in particular to a lubricating oil composition which is suitable for lubricating internal combustion engines and which has improved friction reduction and fuel economy.
- Optimising lubricants through the use of high performance basestocks and novel additives represents a flexible solution to a growing challenge.
- Friction-reducing additives (which are also known as friction modifiers) are important lubricant components in reducing fuel consumption and various such additives are already known in the art.
- Friction modifiers can be conveniently divided into two categories, that is to say, metal-containing friction modifiers and ashless (organic) friction modifiers.
- Organo-molybdenum compounds are amongst the most common metal-containing friction modifiers.
- Typical organo-molybdenum compounds include molybdenum dithiocarbamates (MoDTC), molybdenum dithiophosphates (MoDTP), molybdenum amines, molybdenum alcoholates, and molybdenum alcohol-amides.
- WO-A-98/26030 WO-A-99/31113 , WO-A-99/47629 and WO-A-99/66013 describe tri-nuclear molybdenum compounds for use in lubricating oil compositions.
- Ashless (organic) friction modifiers typically comprise esters of fatty acids and polyhydric alcohols, fatty acid amides, amines derived from fatty acids and organic dithiocarbamate or dithiophosphate compounds.
- WO-A-99/50377 discloses a lubricating oil composition which is said to have a significant increase in fuel economy due to the use therein of tri-nuclear molybdenum compounds in conjunction with oil soluble dithiocarbamates.
- EP-A-1041135 discloses the use of succinimide dispersants in conjunction with molybdenum dialkyldithiocarbamates to give improved friction reduction in diesel engines.
- US-B1-6562765 discloses a lubricating oil composition which is said to have a synergy between an oxymolybdenum nitrogen dispersant complex and an oxymolybdenum dithiocarbamate which leads to unexpectedly low friction coefficients.
- EP-A-1367116 , EP-A-0799883 , EP-A-0747464 , US-A-3933659 and EP-A-335701 disclose lubricating oil compositions comprising various combinations of ashless friction modifiers.
- WO-A-92/02602 describes lubricating oil compositions for internal combustion engines which comprise a blend of ashless friction modifiers which are said to have a synergistic effect on fuel economy.
- the blend disclosed in WO-A-92/02602 is a combination of (a) an amine/amide friction modifier prepared by reacting one or more acids with one or more polyamines and (b) an ester/alcohol friction modifier prepared by reacting one or more acids with one or more polyols.
- US-A-5286394 discloses a friction-reducing lubricating oil composition and a method for reducing the fuel consumption of an internal combustion engine.
- the lubricating oil composition disclosed therein comprises a major amount of an oil having lubricating viscosity and a minor amount of a friction-modifying, polar and surface active organic compound selected from a long list of compounds including mono- and higher esters of polyols and aliphatic amides. Glycerol monooleate and oleamide (i.e. oleylamide) are mentioned as examples of such compounds.
- molybdenum friction modifiers typically outperform ashless friction modifiers in the boundary regime and there is a challenge to approach similar levels of friction modification using solely ashless friction modifiers.
- the present invention provides a lubricating oil composition
- a lubricating oil composition comprising base oil, oleylamide and one or more ether compounds, wherein the one or more ether compounds are compounds of formula I, wherein R 1 , and R 3 are each, independently, selected from hydrogen, alkyl groups having from 10 to 30 carbon atoms, and unsaturated hydrocarbon groups having from 10 to 30 carbon atoms.
- R 1 , and R 3 are each, independently, selected from hydrogen, alkyl groups having from 10 to 30 carbon atoms, and unsaturated hydrocarbon groups having from 10 to 30 carbon atoms.
- Preferred are alkyl groups having from 16 to 22 carbon atoms and unsaturated hydrocarbon groups having from 16 to 22 carbon atoms.
- ether compound is meant a saturated or unsaturated hydrocarbon compound comprising one or more ether linkages and optionally comprising one or more hydroxyl groups therein, which compound does not comprise any additional functional groups.
- ether compounds comprising non-cyclic ethers.
- Preferred ether compounds are those in which R 1 is an alkyl or unsaturated hydrocarbon group having from 10 30 carbon atoms, more preferably from 16 to 22 carbon atoms and R 2 and R 3 are hydrogen.
- R 1 and R 2 are, independently, an alkyl or unsaturated hydrocarbon group having from 10 to 30 carbon atoms, more preferably from 16 to 22 carbon atoms and R 3 is hydrogen.
- Preferred ether compounds also include those in which R 1 and R 3 are, an alkyl or unsaturated hydrocarbon group having from 10 to 30 carbon atoms, more preferably from 16 to 22 carbon atoms and R 2 is hydrogen.
- Preferred ether compounds also include those in which R 1 , R 2 and R 3 are, each independently selected from an alkyl or unsaturated hydrocarbon group having from 10 to 30 carbon atoms, more preferably from 16 to 22 carbon atoms.
- the lubricating oil composition of the present invention may comprise a mixture of one or more of the afore-mentioned preferred ether compounds.
- a preferred ether compound includes that available under the trade designation "ADEKA FM-618C” from Asahi Denka Kogyo Co. Ltd.
- the one or more ether compounds are present in an amount in the range of from 0.1 to 5 wt. %, more preferably in the range of from 0.5 to 4 wt. % and most preferably in the range of from 1 to 1.5 wt. % based on the total weight of the lubricating oil composition.
- oleylamide is present in an amount in the range of from 0.05 to 0.5 wt. %, more preferably in the range of from 0.1 to 0.4 wt. % and most preferably in the range of from 0.15 to 0.3 wt. %, based on the total weight of the lubricating oil composition.
- the lubricating oil composition of the present invention further comprises one or more nitrile compounds.
- Nitrile compounds preferably having from 8 to 24 carbon atoms, more preferably from 10 to 22 carbon atoms, and most preferably from 10 to 18 carbon atoms are preferred.
- Particularly preferred nitrile compounds are saturated or unsaturated linear aliphatic nitriles having from 8 to 24 carbon atoms, more preferably from 10 to 22 carbon atoms, and most preferably 10 to 18 carbon atoms.
- nitrile compounds that may be conveniently used in the present invention include coconut fatty acid nitriles, oleylnitrile, decanenitrile and tallow nitriles.
- ARNEEL 12 also known under the trade designation "ARNEEL C”
- ARNEEL O oleylnitrile
- ARNEEL 10D decanenitrile
- ARNEEL T tallow nitriles
- ARNEEL M C 16-22 nitriles
- the one or more nitrile compounds are present in an amount in the range of from 0.1 to 0.8 wt. %, more preferably in the range of from 0.2 to 0.6 wt. % and most preferably in the range of from 0.3 to 0.5 wt. % based on the total weight of the lubricating oil composition.
- the total amount of base oil incorporated in the lubricating oil composition of the present invention is preferably present in an amount in the range of from 60 to 92 wt. %, more preferably in an amount in the range of from 75 to 90 wt. % and most preferably in an amount in the range of from 75 to 88 wt. %, with respect to the total weight of the lubricating oil composition.
- base oil used in the present invention there are no particular limitations regarding the base oil used in the present invention, and various conventional known mineral oils and synthetic oils may be conveniently used.
- the base oil used in the present invention may conveniently comprise mixtures of one or more mineral oils and/or one or more synthetic oils.
- Mineral oils include liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oil of the paraffinic, naphthenic, or mixed paraffinic/naphthenic type which may be further refined by hydrofinishing processes and/or dewaxing.
- Naphthenic base oils have low viscosity index (VI) (generally 40-80) and a low pour point.
- Such base oils are produced from feedstocks rich in naphthenes and low in wax content and are used mainly for lubricants in which colour and colour stability are important, and VI and oxidation stability are of secondary importance.
- Paraffinic base oils have higher VI (generally >95) and a high pour point. Said base oils are produced from feedstocks rich in paraffins, and are used for lubricants in which VI and oxidation stability are important.
- Fischer-Tropsch derived base oils may be conveniently used as the base oil in the lubricating oil composition of the present invention, for example, the Fischer-Tropsch derived base oils disclosed in EP-A-776959 , EP-A-668342 , WO-A-97/21788 , WO-00/15736 , WO-00/14188 , WO-00/14187 , WO-00/14183 , WO-00/14179 , WO-00/08115 , WO-99/41332 , EP-1029029 , WO-01/18156 and WO-01/57166 .
- the Fischer-Tropsch derived base oils disclosed in EP-A-776959 , EP-A-668342 , WO-A-97/21788 , WO-00/15736 , WO-00/14188 , WO-00/14187 , WO-00/14183 , WO-00/14179 , WO-00/08115 ,
- Synthetic processes enable molecules to be built from simpler substances or to have their structures modified to give the precise properties required.
- Synthetic oils include hydrocarbon oils such as olefin oligomers (PAOs), dibasic acids esters, polyol esters, and dewaxed waxy raffinate. Synthetic hydrocarbon base oils sold by the Royal Dutch/Shell Group of Companies under the designation "XHVI” (trade mark) may be conveniently used.
- PAOs olefin oligomers
- XHVI XHVI
- the base oil constituted from mineral oils and/or synthetic oils which contain more than 80% wt of saturates, preferably more than 90 % wt., as measured according to ASTM D2007.
- the base oil contains less than 1.0 wt. %, preferably less than 0.1 wt. % of sulphur, calculated as elemental sulphur and measured according to ASTM D2622, ASTM D4294, ASTM D4927 or ASTM D3120.
- the viscosity index of base fluid is more than 80, more preferably more than 120, as measured according to ASTM D2270.
- the lubricating oil has a kinematic viscosity in the range of from 2 to 80 mm 2 /s at 100 °C, more preferably of from 3 to 70 mm 2 /s, most preferably of from 4 to 50 mm 2 /s.
- the total amount of phosphorus in the lubricating oil composition of the present invention is preferably in the range of from 0.04 to 0.1 wt. %, more preferably in the range of from 0.04 to 0.09 wt. % and most preferably in the range of from 0.045 to 0.09 wt. %, based on total weight of the lubricating oil composition.
- the lubricating oil composition of the present invention preferably has a sulphated ash content of not greater than 1.0 wt. %, more preferably not greater than 0.75 wt. % and most preferably not greater than 0.7 wt. %, based on the total weight of the lubricating oil composition.
- the lubricating oil composition of the present invention preferably has a sulphur content of not greater than 1.2 wt. %, more preferably not greater than 0.8 wt. % and most preferably not greater than 0.2 wt. %, based on the total weight of the lubricating oil composition.
- the lubricating oil composition of the present invention may further comprise additional additives such as anti-oxidants, anti-wear additives, detergents, dispersants, friction modifiers, viscosity index improvers, pour point depressants, corrosion inhibitors, defoaming agents and seal fix or seal compatibility agents.
- additional additives such as anti-oxidants, anti-wear additives, detergents, dispersants, friction modifiers, viscosity index improvers, pour point depressants, corrosion inhibitors, defoaming agents and seal fix or seal compatibility agents.
- Antioxidants that may be conveniently used include those selected from the group of aminic antioxidants and/or phenolic antioxidants.
- said antioxidants are present in an amount in the range of from 0.1 to 5.0 wt. %, more preferably in an amount in the range of from 0.3 to 3.0 wt. %, and most preferably in an amount of in the range of from 0.5 to 1.5 wt. %, based on the total weight of the lubricating oil composition.
- aminic antioxidants which may be conveniently used include alkylated diphenylamines, phenyl- ⁇ -naphthylamines, phenyl- ⁇ -naphthylamines and alkylated ⁇ -naphthylamines.
- Preferred aminic antioxidants include dialkyldiphenylamines such as p,p'-dioctyl-diphenylamine, p,p'-di- ⁇ -methylbenzyl-diphenylamine and N-p-butylphenyl-N-p'-octylphenylamine, monoalkyldiphenylamines such as mono-t-butyldiphenylamine and mono-octyldiphenylamine, bis(dialkylphenyl)amines such as di-(2,4-diethylphenyl)amine and di(2-ethyl-4-nonylphenyl)amine, alkylphenyl-1-naphthylamines such as octylphenyl-1-naphthylamine and n-t-dodecylphenyl-1-naphthylamine, 1-naphthylamine, arylnaph
- Preferred aminic antioxidants include those available under the following trade designations: "Sonoflex OD-3" (ex. Seiko Kagaku Co.), “Irganox L-57” (ex. Ciba Specialty Chemicals Co.) and phenothiazine (ex. Hodogaya Kagaku Co.).
- phenolic antioxidants which may be conveniently used include C7-C9 branched alkyl esters of 3,5-bis(1,1-dimethyl-ethyl)-4-hydroxy-benzenepropanoic acid, 2-t-butylphenol, 2-t-butyl-4-methylphenol, 2-t-butyl-5-methylphenol, 2,4-di-t-butylphenol, 2,4-dimethyl-6-t-butylphenol, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,5-di-t-butylhydroquinone, 2,6-di-t-butyl-4-alkylphenols such as 2,6-di-t-butylphenol, 2,6-di-t-butyl-4-methylphenol and 2,6-di-t-butyl-4-ethylphenol, 2,6-di-t-butyl-4-alkoxyphenols such as 2,6-di-t-butyl
- Preferred phenolic antioxidants include those available under the following trade designations: "Irganox L-135" (ex. Ciba Specialty Chemicals Co.), “Yoshinox SS” (ex. Yoshitomi Seiyaku Co.), “Antage W-400” (ex. Kawaguchi Kagaku Co.), “Antage W-500” (ex. Kawaguchi Kagaku Co.), “Antage W-300” (ex. Kawaguchi Kagaku Co.), “Irganox L109” (ex. Ciba Speciality Chemicals Co.), “Tominox 917” (ex. Yoshitomi Seiyaku Co.), “Irganox L115" (ex.
- Ciba Speciality Chemicals Co. Ciba Speciality Chemicals Co.
- Sudilizer GA80 Ex. Sumitomo Kagaku
- Antage RC ex. Kawaguchi Kagaku Co.
- Irganox L101 ex. Ciba Speciality Chemicals Co.
- Yoshinox 930 ex. Yoshitomi Seiyaku Co.
- the lubricating oil composition of the present invention may comprise mixtures of one or more phenolic antioxidants with one or more aminic antioxidants.
- the lubricating oil composition may comprise a single zinc dithiophosphate or a combination of two or more zinc dithiophosphates as anti-wear additives, the or each zinc dithiophosphate being selected from zinc dialkyl-, diaryl- or alkylaryl-dithiophosphates.
- Zinc dithiophosphate is a well known additive in the art and may be conveniently represented by general formula II; wherein R 2 to R 5 may be the same or different and are each a primary alkyl group containing from 1 to 20 carbon atoms preferably from 3 to 12 carbon atoms, a secondary alkyl group containing from 3 to 20 carbon atoms, preferably from 3 to 12 carbon atoms, an aryl group or an aryl group substituted with an alkyl group, said alkyl substituent containing from 1 to 20 carbon atoms preferably 3 to 18 carbon atoms.
- Zinc dithiophosphate compounds in which R 2 to R 5 are all different from each other can be used alone or in admixture with zinc dithiophosphate compounds in which R 2 to R 5 are all the same.
- the or each zinc dithiophosphate used in the present invention is a zinc dialkyl dithiophosphate.
- suitable zinc dithiophosphates which are commercially available include those available ex. Lubrizol Corporation under the trade designations “Lz 1097” and “Lz 1395", those available ex. Chevron Oronite under the trade designations "OLOA 267” and “OLOA 269R”, and that available ex. Afton Chemical under the trade designation "HITEC 7197"; zinc dithiophosphates such as those available ex. Lubrizol Corporation under the trade designations "Lz 677A”, “Lz 1095” and “Lz 1371", that available ex. Chevron Oronite under the trade designation "OLOA 262" and that available ex.
- the lubricating oil composition according to the present invention may generally comprise in the range of from 0.4 to 1.0 wt. % of zinc dithiophosphate, based on total weight of the lubricating oil composition.
- anti-wear additives may be conveniently used in the composition of the present invention.
- Typical detergents that may be used in the lubricating oil of the present invention include one or more salicylate and/or phenate and/or sulphonate detergents.
- metal organic and inorganic base salts which are used as detergents can contribute to the sulphated ash content of a lubricating oil composition, in a preferred embodiment of the present invention, the amounts of such additives are minimised.
- salicylate detergents are preferred.
- the lubricating oil composition of the present invention may comprise one or more salicylate detergents.
- said detergents are preferably used in amounts in the range of 0.05 to 12.5 wt. %, more preferably from 1.0 to 9.0 wt. % and most preferably in the range of from 2.0 to 5.0 wt. %, based on the total weight of the lubricating oil composition.
- said detergents independently, have a TBN (total base number) value in the range of from 10 to 500 mg.KOH/g, more preferably in the range of from 30 to 350 mg.KOH/g and most preferably in the range of from 50 to 300 mg.KOH/g, as measured by ISO 3771.
- TBN total base number
- the lubricating oil compositions of the present invention may additionally contain an ash-free dispersant which is preferably admixed in an amount in the range of from 5 to 15 wt. %, based on the total weight of the lubricating oil composition.
- ash-free dispersants examples include the polyalkenyl succinimides and polyalkenyl succininic acid esters disclosed in Japanese Patent Nos. 1367796 , 1667140 , 1302811 and 1743435 .
- Preferred dispersants include borated succinimides.
- viscosity index improvers which may be conveniently used in the lubricating oil composition of the present invention include the styrene-butadiene copolymers, styrene-isoprene stellate copolymers and the polymethacrylate copolymer and ethylene-propylene copolymers. Such viscosity index improvers may be conveniently employed in an amount in the range of from 1 to 20 wt. %, based on the total weight of the lubricating oil composition.
- Polymethacrylates may be conveniently employed in the lubricating oil compositions of the present invention as effective pour point depressants.
- compounds such as alkenyl succinic acid or ester moieties thereof, benzotriazole-based compounds and thiodiazole-based compounds may be conveniently used in the lubricating oil composition of the present invention as corrosion inhibitors.
- Compounds such as polysiloxanes, dimethyl polycyclohexane and polyacrylates may be conveniently used in the lubricating oil composition of the present invention as defoaming agents.
- seal fix or seal compatibility agents include, for example, commercially available aromatic esters.
- the lubricating oil compositions of the present invention may be conveniently prepared by admixing oleylamide, one or more ether compounds and, optionally, one or more nitrile compounds and/or further additives that are usually present in lubricating oil compositions, for example as herein before described, with a mineral and/or synthetic base oil.
- a method of lubricating an internal combustion engine comprising applying a lubricating oil composition as hereinbefore described thereto.
- the present invention further provides the use of a combination of oleylamide, one or more ether compounds and, optionally, one or more nitrile compounds in a lubricating oil composition in order to improve fuel economy and/or friction reduction.
- Table 1 indicates the formulations that were tested.
- the formulations in Table 1 comprised conventional detergents, dispersants, pour point depressants, viscosity modifier, antioxidants and zinc dithiophosphate additives, which were present as additive packages in diluent oil.
- the base oils used in said formulations were mixtures of polyalphaolefin base oils (PAO-4 available from BP Amoco under the trade designation “DURASYN 164" and PAO-5 available from Chevron Oronite under the trade designation “SYNFLUID 5") and ester base oil available under the trade designation "PRIOLUBE 1976" from Uniqema.
- PAO-4 polyalphaolefin base oils
- SYNFLUID 5 polyalphaolefin base oils
- ester base oil available under the trade designation "PRIOLUBE 1976" from Uniqema.
- the ether that was used was glycerin oleyl ether available under the trade designation "ADEKA FM-618C” from Asahi Denka Kogyo Co. Ltd.
- the oleylamide used was that available under the trade designation "UNISLIP 1757” from Uniqema.
- glycerol monooleate that was used was that available under the trade designation "RADIASURF 7149” from Oleon Chemicals.
- the C12 nitrile that was used was that available under the trade designation "ARNEEL 12" from Akzo Nobel.
- Friction measurements were carried out on a Mini-Traction Machine manufactured by PCS instruments.
- the MTM Test was described by R. I. Taylor, E. Nagatomi, N. R. Horswill, D. M. James in "A screener test for the fuel economy potential of engine lubricants", presented at the 13th International Colloquium on Tribology, January 2002 .
- Friction coefficients were measured with the Mini-Traction Machine using the 'ball-on-disc' configuration.
- the ball specimen was a polished steel ball bearing, 19.05 mm in diameter.
- the disc specimen was a polished bearing steel disc, 46 mm in diameter and 6 mm thick.
- the ball specimen was secured concentrically on a motor driven shaft.
- the disc specimen was secured concentrically on another motor driven shaft.
- the ball was loaded against the disc to create a point contact area with minimum spin and skew components. At the point of contact, a slide to roll ratio of 100% was maintained by adjusting the surface speed of the ball and disc.
- Examples 1 and 2 and Comparative Examples 1 to 3 were tested in the MTM test under high load (1.25 GPa) and high temperature conditions (105 °C and 125 °C) under a variety of speeds (1000, 500, 100 and 50 mm/s).
- Friction coefficients were measured and are described in Table 2. TABLE 2 MTM Test Conditions Comp. Ex. 1 Ex. 1 Ex. 2 Comp. Ex. 2 Comp. Ex. 3 Temp. (°C) Speed (mm/s) Friction Coefficient 125 1000 0.0386 0.0282 0.0272 0.0293 0.0722 125 500 0.0524 0.0365 0.0355 0.0395 0.0909 125 100 0.0811 0.0627 0.0620 0.0654 0.1106 125 50 0.0899 0.0706 0.0695 0.0726 0.1103 105 1000 0.0429 0.0295 0.0289 0.0305 0.0669 105 500 0.0552 0.0362 0.0352 0.0385 0.0842 105 100 0.0832 0.0624 0.0613 0.0648 0.1090 105 50 0.0920 0.0710 0.0700 0.0730 0.1119
- Table 3 details the mean % friction reduction for the formulations of Examples 1 and 2 and Comparative Examples 2 and 3, relative to the mean friction coefficients measured for the formulation of Comparative Example 1 at medium speeds (i.e. 1000, 500, 100, 50 mm/s) under the tested high load conditions.
- Table 4 details the mean % friction reduction for the formulations of Examples 1 and 2 and Comparative Examples 2 and 3, relative to the mean friction coefficients measured for the formulation of Comparative Example 1 at high temperatures (i.e. 125 °C and 105 °C) under the tested high load conditions.
- the improvement in friction reduction of the ether upon addition of oleylamide ranges from 3 to 7 % depending upon the conditions used.
- Examples 1 and 3 and Comparative Examples 1 and 4 were tested in the MTM test under low load (0.82 GPa) and low temperature conditions (105 °C, 70 °C and 45 °C) under a variety of low speeds (500, 100, 50 and 10 mm/s).
- Friction coefficients were measured and are described in Table 5. TABLE 5 MTM Test Conditions Comp. Ex. 1 Ex. 1 Ex. 3 Comp. Ex. 4 Temp. (°C) Speed (mm/s) Friction Coefficient 105 500 0.0475 0.0259 0.0264 0.1055 105 100 0.0833 0.0634 0.0622 0.1266 105 50 0.0939 0.0754 0.0734 0.1286 105 10 0.0990 0.0800 0.0777 0.1299 70 500 0.0383 0.0279 0.0272 0.0766 70 100 0.0693 0.0519 0.0492 0.1192 70 50 0.0816 0.0677 0.0645 0.1245 70 10 0.0979 0.0871 0.0824 0.1294 45 500 0.0383 0.0344 0.0333 0.0528 45 100 0.0598 0.0433 0.0415 0.1019 45 50 0.0721 0.0563 0.0533 0.1155 45 10 0.0944 0.0856 0.0806 0.1275
- Table 6 details the mean % friction reduction for the formulations of Examples 1 and 3 and Comparative Example 4, relative to the mean friction coefficients measured for the formulation of Comparative Example 1 at low speeds (i.e. 500, 100, 50, 10 mm/s) under the tested low load conditions.
- Table 7 details the mean % friction reduction for the formulations of Examples 1 and 3 and Comparative Example 4, relative to the mean friction coefficients measured for the formulation of Comparative Example 1 at low temperatures (i.e. 105 °C, 70 °C, 45 °C) under the tested low load conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Lubricants (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05826443.3A EP1817396B1 (en) | 2004-12-10 | 2005-12-12 | Lubricating oil composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04257692 | 2004-12-10 | ||
PCT/EP2005/056673 WO2006061437A1 (en) | 2004-12-10 | 2005-12-12 | Lubricating oil composition |
EP05826443.3A EP1817396B1 (en) | 2004-12-10 | 2005-12-12 | Lubricating oil composition |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1817396A1 EP1817396A1 (en) | 2007-08-15 |
EP1817396B1 true EP1817396B1 (en) | 2016-10-26 |
Family
ID=34930905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05826443.3A Active EP1817396B1 (en) | 2004-12-10 | 2005-12-12 | Lubricating oil composition |
Country Status (11)
Country | Link |
---|---|
US (1) | US20060183652A1 (ko) |
EP (1) | EP1817396B1 (ko) |
JP (1) | JP5065045B2 (ko) |
KR (1) | KR20070085954A (ko) |
CN (1) | CN101098951B (ko) |
BR (1) | BRPI0518863B1 (ko) |
CA (1) | CA2590038A1 (ko) |
MX (1) | MX2007006829A (ko) |
RU (1) | RU2394876C2 (ko) |
WO (1) | WO2006061437A1 (ko) |
ZA (1) | ZA200704695B (ko) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9623021B2 (en) | 2007-01-22 | 2017-04-18 | Gtx, Inc. | Nuclear receptor binding agents |
JP5237562B2 (ja) * | 2007-01-23 | 2013-07-17 | 昭和シェル石油株式会社 | セラミックス球転がり軸受用潤滑油組成物 |
US7989408B2 (en) * | 2007-04-10 | 2011-08-02 | Exxonmobil Research And Engineering Company | Fuel economy lubricant compositions |
WO2011075403A1 (en) | 2009-12-14 | 2011-06-23 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
US9976103B2 (en) | 2009-12-14 | 2018-05-22 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
CN102762705B (zh) | 2009-12-14 | 2015-11-25 | 路博润公司 | 含有腈化合物的润滑组合物 |
EP2687580B1 (fr) * | 2012-07-19 | 2018-04-11 | Breitling AG | Pièce d'horlogerie |
EP2692839B1 (en) * | 2012-07-31 | 2015-11-18 | Infineum International Limited | A lubricating oil compostion comprising a corrosion inhibitor |
KR101974660B1 (ko) * | 2013-04-26 | 2019-05-02 | 에스케이이노베이션 주식회사 | 산화 안정성 및 색상안정성이 우수한 윤활유 조성물 |
CN104651025A (zh) * | 2014-06-12 | 2015-05-27 | 徐饶春 | 润滑油组合物 |
RU2709211C2 (ru) * | 2014-09-22 | 2019-12-17 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Смазывающая композиция |
EP3263579B1 (en) * | 2015-01-21 | 2022-11-30 | Ajinomoto Co., Inc. | Precipitation promoter and precipitation method in which same is used |
FR3059677B1 (fr) * | 2016-12-07 | 2020-10-23 | Total Marketing Services | Composition lubrifiante comprenant des mono-ethers de glycerol |
CN107574003A (zh) * | 2017-09-30 | 2018-01-12 | 无锡厚发自动化设备有限公司 | 一种机床用润滑油组合物 |
RU2675632C1 (ru) * | 2017-11-22 | 2018-12-21 | Игорь Васильевич Мухортов | Противоизносная композиция к смазочным материалам |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2053045A (en) * | 1935-08-27 | 1936-09-01 | Armour & Co | Lubricating oils |
US2841479A (en) * | 1954-05-28 | 1958-07-01 | Dow Chemical Co | Glycerol triether lubricant compositions |
US3933659A (en) * | 1974-07-11 | 1976-01-20 | Chevron Research Company | Extended life functional fluid |
FR2440985A1 (fr) * | 1978-11-07 | 1980-06-06 | Nord Tech Rech Applic | Compositions additives pour huile pour moteurs a combustion interne |
US4285824A (en) * | 1979-01-22 | 1981-08-25 | The Lubrizol Corporation | Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
FR2467186A1 (fr) * | 1979-10-15 | 1981-04-17 | Elf France | Alkylethers de polyols, leur preparation et leurs emplois |
US5286394A (en) * | 1989-06-27 | 1994-02-15 | Ethyl Corporation | Fuel economy and oxidation inhibition in lubricant compositions for internal combustion engines |
JP2777750B2 (ja) * | 1990-07-31 | 1998-07-23 | エクソン・ケミカル・パテンツ・インク | 内燃機関の燃料の経済性を改善するための、アミン/アミド及びエステル/アルコール摩擦緩和剤の相乗性ブレンド |
TW340870B (en) * | 1995-04-07 | 1998-09-21 | Nippon Nogen Co Ltd | Lubricating oil additive, lubricating oil and working fluid for refrigerators |
US5858931A (en) * | 1995-08-09 | 1999-01-12 | Asahi Denka Kogyo K.K | Lubricating composition |
JP3935982B2 (ja) * | 1995-10-19 | 2007-06-27 | 出光興産株式会社 | 油圧作動油組成物 |
US5968880A (en) * | 1997-10-23 | 1999-10-19 | The Lubrizol Corporation | Lubricating compositions, functional fluids and greases containing thiophosphorus esters or their salts with a oxyalkylene group, and methods of using the same |
JP2001214186A (ja) * | 2000-01-31 | 2001-08-07 | Asahi Denka Kogyo Kk | 潤滑性組成物 |
US6803350B2 (en) * | 2002-05-22 | 2004-10-12 | Chevron Oronite Company Llc | Lubricating compositions for friction material interfaces |
US6562765B1 (en) * | 2002-07-11 | 2003-05-13 | Chevron Oronite Company Llc | Oil compositions having improved fuel economy employing synergistic organomolybdenum components and methods for their use |
-
2005
- 2005-12-09 US US11/299,000 patent/US20060183652A1/en not_active Abandoned
- 2005-12-12 KR KR1020077013006A patent/KR20070085954A/ko not_active Application Discontinuation
- 2005-12-12 CA CA002590038A patent/CA2590038A1/en not_active Abandoned
- 2005-12-12 EP EP05826443.3A patent/EP1817396B1/en active Active
- 2005-12-12 WO PCT/EP2005/056673 patent/WO2006061437A1/en active Application Filing
- 2005-12-12 RU RU2007125988/04A patent/RU2394876C2/ru active
- 2005-12-12 MX MX2007006829A patent/MX2007006829A/es unknown
- 2005-12-12 BR BRPI0518863-6A patent/BRPI0518863B1/pt active IP Right Grant
- 2005-12-12 CN CN2005800460748A patent/CN101098951B/zh active Active
- 2005-12-12 JP JP2007544929A patent/JP5065045B2/ja active Active
-
2007
- 2007-06-06 ZA ZA200704695A patent/ZA200704695B/xx unknown
Also Published As
Publication number | Publication date |
---|---|
BRPI0518863B1 (pt) | 2015-07-28 |
JP5065045B2 (ja) | 2012-10-31 |
US20060183652A1 (en) | 2006-08-17 |
CA2590038A1 (en) | 2006-06-15 |
JP2008523188A (ja) | 2008-07-03 |
CN101098951A (zh) | 2008-01-02 |
RU2007125988A (ru) | 2009-01-20 |
WO2006061437A1 (en) | 2006-06-15 |
RU2394876C2 (ru) | 2010-07-20 |
CN101098951B (zh) | 2010-04-14 |
MX2007006829A (es) | 2007-07-25 |
KR20070085954A (ko) | 2007-08-27 |
EP1817396A1 (en) | 2007-08-15 |
ZA200704695B (en) | 2008-09-25 |
BRPI0518863A2 (pt) | 2008-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1817396B1 (en) | Lubricating oil composition | |
EP1838821B1 (en) | Lubricating oil composition | |
EP1987117B1 (en) | Lubricating oil composition | |
RU2692794C2 (ru) | Смазывающая композиция | |
EP3197986B1 (en) | Use of an ashless friction modifier | |
EP3336162A1 (en) | Lubricating composition | |
WO2020007945A1 (en) | Lubricating composition | |
JP2018188549A (ja) | 潤滑油組成物 | |
WO2016032782A1 (en) | Methods for lubricating a diamond-like carbon coated surface, associated lubricating oil compositions and associated screening methods | |
US20140315770A1 (en) | Lubricating composition | |
US20180305633A1 (en) | Lubricating compositions comprising a volatility reducing additive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070531 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20110113 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160527 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 840044 Country of ref document: AT Kind code of ref document: T Effective date: 20161115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005050536 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161026 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 840044 Country of ref document: AT Kind code of ref document: T Effective date: 20161026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170127 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170226 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170227 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005050536 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170126 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
26N | No opposition filed |
Effective date: 20170727 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161212 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161212 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20051212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231019 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231009 Year of fee payment: 19 Ref country code: DE Payment date: 20231017 Year of fee payment: 19 |