EP1816965A2 - Integrated multi-mode mammography/tomosynthesis x-ray system and method - Google Patents
Integrated multi-mode mammography/tomosynthesis x-ray system and methodInfo
- Publication number
- EP1816965A2 EP1816965A2 EP05852126A EP05852126A EP1816965A2 EP 1816965 A2 EP1816965 A2 EP 1816965A2 EP 05852126 A EP05852126 A EP 05852126A EP 05852126 A EP05852126 A EP 05852126A EP 1816965 A2 EP1816965 A2 EP 1816965A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- ray
- arm assembly
- compression
- breast
- tomosynthesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009607 mammography Methods 0.000 title claims description 25
- 238000000034 method Methods 0.000 title description 17
- 230000006835 compression Effects 0.000 claims abstract description 68
- 238000007906 compression Methods 0.000 claims abstract description 68
- 210000000481 breast Anatomy 0.000 claims abstract description 45
- 238000003384 imaging method Methods 0.000 claims abstract description 44
- 230000003100 immobilizing effect Effects 0.000 claims abstract description 3
- 230000033001 locomotion Effects 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 description 16
- 238000001574 biopsy Methods 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 238000013188 needle biopsy Methods 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007687 exposure technique Methods 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 210000000779 thoracic wall Anatomy 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 208000004434 Calcinosis Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000013152 interventional procedure Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/10—Safety means specially adapted therefor
- A61B6/107—Protection against radiation, e.g. shielding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/025—Tomosynthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4417—Constructional features of apparatus for radiation diagnosis related to combined acquisition of different diagnostic modalities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4452—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/502—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4291—Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/482—Diagnostic techniques involving multiple energy imaging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30068—Mammography; Breast
Definitions
- This patent specification pertains to x-ray mammography and, more specifically, to an integrated system for selectively carrying out x-ray mammography and/or tomosynthesis imaging and a method of using such a system.
- X-ray mammography has long been a screening modality for breast cancer and other lesions, and also has been relied on for diagnostic and other purposes.
- the breast image was recorded on x-ray film but more recently digital x-ray image receptors have come into use, as in the SeleniaTM mammography system available from Hologic Inc. of Bedford, MA and its division Lorad Corporation of Danbury, CT.
- a cone-shaped or pyramid-shaped x-ray beam passes through the compressed breast and forms a two-dimensional projection image. Any one of a number of orientations can be used, such as cranial-caudal (CC) or MLO (mediolateral-oblique) orientation. More recently, breast x-ray tomosynthesis has been proposed.
- CC cranial-caudal
- MLO mediumolateral-oblique
- the technology typically involves taking two-dimensional (2D) projection images of the immobilized breast at each of a number of angles of the x-ray beam relative to the breast and processing the resulting x-ray measurements to reconstruct images of breast slices that typically are in planes transverse to the x-ray beam axis, such as parallel to the image plane of a mammogram of the same breast.
- the range of angles is substantially less than in computerized tomography, i.e. substantially less than 180°, e.g. ⁇ 15°.
- Tomosynthesis technology is described in U.S. Patent Application Ser. No. 10/723,486 filed November 26, 2003; a prototype of a unit with at least some of the described features was shown at the 2003 Radiological Society of North America meeting in Chicago, 111.
- Mammography systems can also be used in interventional procedures, such as biopsy, by adding a biopsy station (for example, the StereoLoc IITM Upright Stereotactic Breast Biopsy System, which is available from Hologic, Inc.).
- a biopsy station for example, the StereoLoc IITM Upright Stereotactic Breast Biopsy System, which is available from Hologic, Inc.
- Mammograms may offer good visualization of microcalcifications, and can offer higher spatial resolution compared with tomosynthesis.
- Tomosynthesis images may have different desirable characteristics - e.g., they may offer better visualization of structures that can be obscured by overlying or underlying tissue in a conventional mammogram.
- a single system carries out breast imaging in modes that include standard mammography, diagnostic mammography, dynamic imaging such as with a contrast agent and at different x-ray energies, tomosynthesis imaging, combined standard and tomosynthesis imaging during a single breast compression, needle localization, and stereotactic imaging with a biopsy station mounted to the system.
- a compression arm assembly for compressing and immobilizing the breast for x-ray imaging, an x-ray tube assembly, and an x-ray image receptor can be angled relative to each other for different imaging protocols and modes. They can be independently rotated and synchronized as needed, or can be mechanically linked for appropriate synchronized rotation.
- a patient shield can be mounted to the compression arm assembly to provide a mechanical interlock against patient contact with the rotating x- ray tube assembly.
- a fully retractable anti-scatter grid can be used that can cover the imaging area of the x-ray receptor in some modes but be retracted completely outside the imaging area for other modes.
- the exemplary system further includes a breast compression paddle that is laterally movable, under manual control or when motorized and operating under software control.
- the compression paddle can shift automatically depending on the view to be acquired.
- the paddle can be centered on the x-ray receptor for a CC view, shifted to one lateral side of the receptor for an MLO view of one breast and to the other lateral side of the receptor for an MLO view of the other breast.
- the paddle can be automatically recognized by the system when mounted so that the shifts can be adjusted to the type of paddle.
- the compression paddle can be easily removable from a support that has a mechanism for laterally moving the paddle and for allowing the paddle to tilt for better conformance with the breast for selected image modes but locking the paddle against tilt for other modes.
- the paddle With the movement mechanism in the support and not integral with the paddle, the paddle can be simple and inexpensive, and easy to mount to and remove from the support.
- a number of relatively inexpensive paddles of different sizes and shapes can be provided and conveniently interchanged to suit different procedures and patients.
- Fig. 1 is a perspective view of a gantry and an acquisition workstation in accordance with an example of the disclosed system.
- Fig. 2 is an enlarged view of a portion of the system of Fig. 1, with a tube arm assembly in a rotated position.
- Fig. 3 is a front elevation of the apparatus of Fig. 2.
- Fig. 4 is a side view of a gantry with a biopsy station and a spacer, with schematic illustration of other mechanisms.
- Fig. 5 is an enlarged view of a portion of Fig. 1.
- Fig. 6 is a block diagram of the disclosed system when connected to other systems.
- Fig. 7 is a flow chart illustrating a general work flow for the disclosed system.
- Fig. 8 is a flow chart illustrating one of several examples of work flow for a standard mammography mode.
- Fig 9 is a flow chart illustrating one of several examples of work flow for an image detector subsystem in the standard mammography mode.
- Fig. 10 is a perspective view of the structure of Fig. 4.
- Fig. 11 is similar to Fig. 2 but shows a tube arm assembly angled differently.
- Fig. 12 is a front elevation of the structure of Fig. 11.
- Fig. 13 is a flow chart illustrating one of several examples of work flow for a tomosynthesis mode.
- Fig. 14 is a flow chart illustrating one of several examples of work flow for an image detector subsystem in the tomosynthesis mode.
- Fig. 15 is a flow chart illustrating one of several examples of work flow for a combination mode.
- Fig. 16 is a flow chart illustrating one of several examples of work flow for an image detector subsystem in the combination mode.
- Fig. 17 is an enlarged side view of a structure for removably mounting a breast compression paddle.
- Figs. 1-6 illustrate a non-limiting example of a multi-mode mammography/ tomosynthesis system comprising a gantry 100 and a data acquisition work-station 102.
- Gantry 100 includes a housing 104 supporting a tube arm assembly 106 rotatably mounted thereon to pivot about a horizontal axis 402 (Fig. 4) and carrying an x-ray tube assembly 108.
- X-ray tube assembly 108 includes (1) an x-ray tube generating x-ray energy in a selected range, such as 20-50 kV, at mAs such as in the range 3-400 mAs, with focal spots such as a nominal size 0.3 mm large spot and nominal size 0.1 mm small spot (2) supports for multiple filters such as molybdenum, rhodium, aluminum, copper, and tin filters, and (3) an adjustable collimation assembly selectively collimating the x-ray beam from the focal spot in a range such as from 7x8 cm to 24x29 when measured at the image plane of an x-ray image receptor included in the system, at a maximum source-image distance such as 75 cm.
- a selected range such as 20-50 kV
- focal spots such as a nominal size 0.3 mm large spot and nominal size 0.1 mm small spot
- supports for multiple filters such as molybdenum, rhodium, aluminum, copper, and tin filters
- an adjustable collimation assembly selectively
- a compression arm assembly 110 that comprises a compression plate 122 and a receptor housing 114 having an upper surface 116 serving as a breast plate and enclosing a detector subsystem system 1 17 comprising a flat panel x-ray receptor 502 (Fig. 5), a retractable anti-scatter grid 504 and a mechanism 506 for driving and retracting anti- scatter grid 504.
- Housing 104 also encloses the following components schematically illustrated in Fig.
- a vertical travel assembly 404 for moving tube arm assembly 106 and compression arm assembly 110 up and down to accommodate a particular patient or imaging position
- a tube arm assembly rotation mechanism 406 to rotate tube arm assembly 106 about axis 402 for different imaging positions
- a detector subsystem rotation mechanism 408 for rotating components of detector subsystem 117 (such as x-ray receptor 502) about axis 402 to accommodate different operations modes
- couple/uncouple mechanism 410 to selectively couple or uncouple tube arm assembly 106 and compression arm assembly 110 to and from each other, and tube arm assembly 106 and detector subsystem 117 to and from each other.
- Housing 104 also encloses suitable motors and electrical and mechanical components and connections to implement the functions discussed here.
- a patient shield 200 schematically illustrated in Fig.
- Work-station 102 comprises components similar to those in the SeleniaTM mammography system, including a display screen (typically a flat panel display that may include touch-screen functionality), user interface devices such as a keyboard, possibly a touch-screen, and a mouse or trackball, and various switches and indicator lights and/or displays. Work-station 102 also includes computer facilities similar to those of the SeleniaTM system (but adapted through hardware, firmware and software differences) for controlling gantry 100 and for processing, storing and displaying data received from gantry 100.
- a power generation facility for x-ray tube assembly 108 may be included in housing 104 or in work-station 102.
- a power source 118 powers work-station 102.
- Gantry 100 and work -station 102 exchange data and controls over a schematically illustrated connection 120.
- additional storage facilities 602 can be connected to work ⁇ station 102, such as one or more optical disc drives for storing information such as images and/or for providing information to work-station 102 such as previously obtained images and software, or a local printer (not shown).
- the disclosed system can be connected to a hospital or local area or other network 604, and through the network to other systems such as a soft copy workstation 606, a CAD (Computer Aided Detection) station 608 for computer- processing mammography and/or tomosynthesis images to identify likely abnormalities, an image printer 610 for printing images, a technologist workstation 612, other imaging systems 614 such as other mammography systems or systems for other modalities for exchange of images and/or other information, and to a PACS (Picture Archiving) systems 616 for archiving images and other information and/or retrieving images and other information.
- CAD Computer Aided Detection
- PACS Picture Archiving
- the illustrated system has several modes of operation.
- An example of typical workflow generally applicable for each mode is illustrated in Fig. 7, and several examples of operational modes are discussed below.
- this is only one example and workflow steps may be arranged differently.
- the operator can perform x-ray exposure using manual setting of technic factors such as mA and mSec, or can use an automatic exposure control as known in the art to set the exposure time, kV and filter modes for an image, for example by using a short, low-x- ray dose pre-exposure.
- Work-station 102 is set up to record the exposure technic information and associate it with the breast image for later review.
- tube arm assembly 106 and compression arm assembly 110 are coupled and locked together by 410 in a relative position such as seen in Fig. 1, such that an x-ray beam from x-ray tube assembly 108 illuminates x-ray receptor 502 when the patient's breast is compressed by compression device 112.
- the system operates in a manner similar to said SeleniaTM system to take a mammogram.
- Vertical travel assembly 404 and tube arm rotation mechanism 406 can make vertical adjustments to accommodate a patient, and can rotate tube arm assembly 106 and compression arm assembly 110 together as a unit about axis 402 for different image orientations such as for CC and for MLO images.
- tube arm assembly 106 and compression arm assembly 110 can rotate between (-195°) and (+150°) about axis 402.
- compression device 112 includes a compression paddle 122 that can move laterally, in a direction along the chest wall of a patient, to adjust for different imaging orientations.
- the mechanism for supporting and moving compression paddle 122 is different.
- anti- scatter grid 504 is over x-ray receptor 502 in the standard mammography mode to reduce the effect of x-ray scatter.
- Fig. 8 illustrates a typical workflow for an exposure in standard mammography mode
- Fig. 10 illustrates an example of the operation of detector subsystem 117 in standard mammography. Of course, these are only examples; other workflow steps or orders of steps can be used instead.
- the patient's breast can be spaced from upper surface 116, for example by an x-ray translucent spacer gantry 1002 (Fig. 10), with the system otherwise similar to Fig. 1, for a magnification of up to 1.8, for example.
- tube arm assembly 106 and compression arm assembly 110 are locked to each other and can move up or down and rotate about axis
- a different spacer 1002 can be used for a different degree of magnification.
- differently shaped or dimensioned compression paddles 122 can be used for different breast compression effects.
- the x- ray tube in x-ray tube assembly 108 can be set to a smaller focal spot size to improve a diagnostic image.
- anti-scatter grid 504 typically is retracted when magnification is used such that grid 504 is completely out of the image.
- the user can elect not to use a spacer 1002 in diagnostic imaging, in which case anti-scatter grid
- a number of breast images are taken while the patient's breast remains compressed.
- an agent such as iodine is injected into the patient and after a suitable waiting time such as about one minute for a maximum uptake, two images breast are taken in rapid succession, for example one at an x-ray energy just above the K-edge of iodine and one at an energy just below the K-edge.
- a succession of breast images can be taken at a single x-ray energy band or bands just above and below the K-edge, or at another x-ray energy range, to track the uptake of agent over time.
- Still another dynamic imaging mode technique comprises injecting a contrast agent and taking a succession of images over a period such as 5-7 minutes, for example one image every minute, and processing the image data to generate for each pixel, or at least for each pixel of interest, a histogram of the change in the pixel value, to thereby use the manner in which pixel values change to differential abnormal tissue.
- work-station 102 can store preset data that commands gantry 100 and work-station 102 to take a desired sequence of images for the dynamic mode technique selected by the operator, such that the command data sets the appropriate parameters such as x-ray energy, dose, timing of images, etc.
- processing to assess changes in pixel values can be done for a region of interest rather than over individual pixels, to produce information such as a measure of changes in the average pixel values in the region of interest.
- tube arm assembly 106 and compression arm assembly 110 are decoupled by unit 410 such that compression arm assembly 110 stays in one position, compressing the patient's breast, while tube arm assembly 106 rotates about axis 402, for example between the position illustrated in Fig. 2 to that illustrated in Fig. 11, or ⁇ 15° relative to compression arm assembly 110.
- Tomosynthesis can be carried out for different image orientations, so that compression arm assembly 110 can be rotated about axis 402 (alone or together with assembly 106) for a desired image orientation and locked in place, and then tube arm assembly 106 can be rotated relative to that position of compression arm assembly 110 for tomosynthesis imaging over ⁇ 15° or some other desired angular range.
- 11 images are taken during an angular sweep of tube arm assembly 106, one every approximately 3°.
- a different number of images can be taken, for example up to 21 during a single sweep.
- the x-ray tube in x-ray tube assembly 108 continuously rotates and the x-ray tube is pulsed for each image, for example, for x- ray energy pulses each lasting approximately 100 mSec, although pulses of different duration can be selected.
- the rotational motion can stop for taking each image, or continuous motion without pulsing can be used (and the timing of data measurements relied to define pixel values). As seen in Figs.
- the rotation of tube arm assembly 106 and rocking of x- ray receptor 502 can be through different angles; for example, tube arm assembly 106 can rotate through 15° while x-ray receptor 502 rocks through 5°, i.e. the rocking angle can be an amount one-third that of assembly 108.
- Synchronous rotation of tube arm assembly 106 and rocking of x-ray receptor 502 can be achieved by controlling separate motors for each or, alternatively, through using a motor to drive tube arm assembly 106 and a mechanical coupling between the rotation of tube arm assembly 106 and rocking of x-ray receptor 502.
- Image data can be obtained and processed into tomosynthesis images for display and/or storage as described in the material incorporated by reference, for example in co-pending patent application Ser. No.
- Fig. 13 illustrates a typical workflow for tomosynthesis mode operation
- Fig. 14 illustrates an example of the operation of detector subsystem 117 in that mode. Again, these are only examples, and other steps or orders of steps can be used instead.
- a combination mode during a single compression of the patient's breast the system takes a conventional mammogram and tomosynthesis images.
- tube arm assembly 106 sweeps and x-ray receptor 502 rocks, each through an appropriate angle, and exposures are taken for tomosynthesis images, and (2) a standard mammogram is taken.
- the standard mammogram can be taken at a 0° relative angle between tube arm assembly 106 and a normal to the imaging plane of x-ray receptor 502, and can be taken before or after the tomosynthesis images are taken or between the taking of two successive tomosynthesis images.
- each tomosynthesis image utilizes substantially lower x-ray dose than the standard mammogram.
- the total x-ray dosage for tomosynthesis imaging in one sweep of tube arm assembly 106 can be approximately the same as that for a single standard mammogram, or up to approximately three times that dosage.
- the relationship between the two dosages can be user-selected.
- Figure 15 illustrates an example of workflow for the combination mode
- Fig. 16 illustrates an example of the operation of detector subsystem 117 in that mode. Again, these are examples, and different steps or orders of steps can be used instead.
- a preferred approach may be to take the standard mammogram first, then move arm 106 to one end of its rotational range for tomosynthesis and take the tomosynthesis images.
- the order in which the two types of images are taken may be optimized such that the overall imaging time is minimized, and an order that achieves such minimization can be the preferred order.
- the exposure (tube current mA, tube voltage kVp, and exposure length msec) techniques for the standard mammogram and the tomosynthesis exposures can be set manually, or by using automatic methods. If the standard mammogram is taken first, its exposure techniques can be used to set an optimal technique for the subsequent tomosynthesis images, and vice versa.
- the exposure technique can be modified dynamically, if the software senses that the signal reaching the image receptor is either too low or too high and adjust subsequent exposures as needed.
- X-ray receptor 502 can remain in place for this procedure, or can be rocked through a selected angle, for example through an angle sufficient to maintain the same orientation of the imaging surface of receptor 502 relative to tube arm assembly 106.
- a spacer 1002 can be used for magnification.
- the two or more images can be used to identify the location of a lesion, so that needle biopsy can be used, for example with an upright needle biopsy station 412 (Fig. 4) in a manner similar to that used with the commercially available SeleniaTM system and StereoLoc IITM.
- a compression paddle 122 appropriate for needle biopsy typically is used when taking the stereotactic images.
- some or all of the images taken in the tomosynthesis mode and/or in the combined mode can be used to identify the location of a lesion for biopsy, in which case a compression paddle 122 appropriate for the purpose typically is used when taking the images.
- x-ray images can be taken after a biopsy or other needle is inserted into the compressed breast.
- imaging such as in the stereotactic mode, the tomosynthesis mode, or the combined mode can be used.
- compression paddle 122 is movable laterally, as generally described in U.S. Patent Application Publication No. 2005/0063509 Al, hereby incorporated by reference herein.
- compression paddle 122 can pivot about an axis along the patient's chest wall to conform the breast shape in certain procedures, as discussed in said U.S. Patent 5,706,327.
- compression paddle 122 is mounted differently and moves in a different manner.
- compression paddle 122 is removably mounted to a support 510 that moves up and down compression arm assembly 110 as needed for breast compression.
- a projection compression paddle 122a of the paddle engages a projection 510a of the support, and a projection 122b of the paddle latches onto projection 510b of the support.
- Projection 510a is spring-loaded, such as by a spring schematically illustrates at 510c to allow for pivoting compression paddle 122 about an axis where it latches onto 510, as illustrated by arrow A, for better conformance with the compressed breast in some imaging protocols.
- Imaging protocols may require compression paddle 122 not to pivot, in which case projection 510a is locked in place by a locking mechanism in 510 (not shown) to keep compression paddle 122 in place relative to support 510.
- the locking mechanism can be manually set to a lock position, and manually unlocked by the operator. Alternatively, the locking mechanism can be controlled through an operator input at gantry 100 or work-station 102.
- a sensing mechanism can be included to sense whether compression paddle 122 is locked against pivoting, to provide information that work-station 102 can use for setting imaging protocols such as for automated breast compression and automated exposure methods.
- Two knobs 510d can be manually rotated to move projection 510b and thus compression paddle 122 laterally such that it compress a breast that is not centered laterally on upper surface 116, for example for MLO imaging.
- Each knob 51Od can operate a mechanism such as an endless screw rotating in a nut secured to projection 510b.
- projection 510b and thus compression paddle 122 can be driven laterally by a motor, under control of operator switches or other interface at gantry 100 or at work-station 102, or automatically positioned laterally under computer control.
- compression paddle 122 is driven for lateral movement by components that are a part of support 510.
- compression paddle 122 can be simple structure, and can even be disposable, with a new one used for each patient or for only a few patients. This can simplify and reduce the cost of using the system, because an imaging facility usually stocks a number of different paddles for different purposes. If the lateral movement mechanism is integral with a compression paddle, the paddle assembly is considerably larger, heavier and more expensive.
- Compression paddle 122 can include a bar code that is automatically read by a bar code reader in support 510, to keep work-station 102 informed of the paddle currently mounted to support 510, for use in automating imaging protocols.
- the bar code information can be checked to ensure through computer processing that the type of paddle that is currently mounted on support 510 matches the imaging that will be commanded, and the information from the sensor for whether compression paddle 122 is locked in non-tilting mode can be used to automatically make adjustments for compression height to ensure accurate automatic x-ray exposure operation. Further, the bar code information identifying the paddle can be used to automatically set collimation in x-ray tube assembly 108 so that the x-ray beam matches the size and shape of the currently installed compression paddle 122.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16176648.0A EP3106094B1 (en) | 2004-11-26 | 2005-11-23 | Integrated multi-mode mammography/tomosynthesis x-ray system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63129604P | 2004-11-26 | 2004-11-26 | |
PCT/US2005/042613 WO2006058160A2 (en) | 2004-11-26 | 2005-11-23 | Integrated multi-mode mammography/tomosynthesis x-ray system and method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16176648.0A Division EP3106094B1 (en) | 2004-11-26 | 2005-11-23 | Integrated multi-mode mammography/tomosynthesis x-ray system |
EP11161946 Division-Into | 2011-04-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1816965A2 true EP1816965A2 (en) | 2007-08-15 |
EP1816965A4 EP1816965A4 (en) | 2008-12-31 |
EP1816965B1 EP1816965B1 (en) | 2016-06-29 |
Family
ID=36498527
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05852126.1A Active EP1816965B1 (en) | 2004-11-26 | 2005-11-23 | Integrated multi-mode mammography/tomosynthesis x-ray system |
EP16176648.0A Active EP3106094B1 (en) | 2004-11-26 | 2005-11-23 | Integrated multi-mode mammography/tomosynthesis x-ray system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16176648.0A Active EP3106094B1 (en) | 2004-11-26 | 2005-11-23 | Integrated multi-mode mammography/tomosynthesis x-ray system |
Country Status (3)
Country | Link |
---|---|
US (8) | US7869563B2 (en) |
EP (2) | EP1816965B1 (en) |
WO (1) | WO2006058160A2 (en) |
Families Citing this family (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8571289B2 (en) | 2002-11-27 | 2013-10-29 | Hologic, Inc. | System and method for generating a 2D image from a tomosynthesis data set |
US7577282B2 (en) | 2002-11-27 | 2009-08-18 | Hologic, Inc. | Image handling and display in X-ray mammography and tomosynthesis |
US8565372B2 (en) * | 2003-11-26 | 2013-10-22 | Hologic, Inc | System and method for low dose tomosynthesis |
US7123684B2 (en) | 2002-11-27 | 2006-10-17 | Hologic, Inc. | Full field mammography with tissue exposure control, tomosynthesis, and dynamic field of view processing |
US7616801B2 (en) | 2002-11-27 | 2009-11-10 | Hologic, Inc. | Image handling and display in x-ray mammography and tomosynthesis |
US10638994B2 (en) | 2002-11-27 | 2020-05-05 | Hologic, Inc. | X-ray mammography with tomosynthesis |
US8768026B2 (en) | 2003-11-26 | 2014-07-01 | Hologic, Inc. | X-ray imaging with x-ray markers that provide adjunct information but preserve image quality |
US7662082B2 (en) | 2004-11-05 | 2010-02-16 | Theragenics Corporation | Expandable brachytherapy device |
WO2006055830A2 (en) | 2004-11-15 | 2006-05-26 | Hologic, Inc. | Matching geometry generation and display of mammograms and tomosynthesis images |
EP1816965B1 (en) | 2004-11-26 | 2016-06-29 | Hologic, Inc. | Integrated multi-mode mammography/tomosynthesis x-ray system |
US7465268B2 (en) | 2005-11-18 | 2008-12-16 | Senorx, Inc. | Methods for asymmetrical irradiation of a body cavity |
JP5554927B2 (en) | 2006-02-15 | 2014-07-23 | ホロジック, インコーポレイテッド | Breast biopsy and needle localization using tomosynthesis system |
US10682107B2 (en) * | 2007-01-31 | 2020-06-16 | Philips Digital Mammography Sweden Ab | Method and arrangement relating to x-ray imaging |
US7630533B2 (en) | 2007-09-20 | 2009-12-08 | Hologic, Inc. | Breast tomosynthesis with display of highlighted suspected calcifications |
DE102008004473A1 (en) * | 2008-01-15 | 2009-07-23 | Siemens Aktiengesellschaft | Method and device for generating a tomosynthetic 3D X-ray image |
US7792245B2 (en) * | 2008-06-24 | 2010-09-07 | Hologic, Inc. | Breast tomosynthesis system with shifting face shield |
US7991106B2 (en) | 2008-08-29 | 2011-08-02 | Hologic, Inc. | Multi-mode tomosynthesis/mammography gain calibration and image correction using gain map information from selected projection angles |
KR20110063659A (en) * | 2008-09-04 | 2011-06-13 | 홀로직, 인크. | Integrated multi-mode mammography/tomosynthesis x-ray system and method |
AU2015224382B2 (en) * | 2008-09-04 | 2017-03-30 | Hologic, Inc. | Integrated multi-mode mammography/tomosynthesis x-ray system and method |
US7801267B2 (en) * | 2008-10-23 | 2010-09-21 | General Electric Co. | Method and system for auto positioning compression mechanism in a mammography system |
EP2352431B1 (en) | 2008-11-24 | 2018-08-15 | Hologic, Inc. | Method and system for controlling x-ray focal spot characteristics for tomosynthesis and mammography imaging |
FI123261B (en) | 2008-11-28 | 2013-01-15 | Planmed Oy | 3D mammography |
US9248311B2 (en) | 2009-02-11 | 2016-02-02 | Hologic, Inc. | System and method for modifying a flexibility of a brachythereapy catheter |
US9579524B2 (en) | 2009-02-11 | 2017-02-28 | Hologic, Inc. | Flexible multi-lumen brachytherapy device |
US8170320B2 (en) | 2009-03-03 | 2012-05-01 | Hologic, Inc. | Mammography/tomosynthesis systems and methods automatically deriving breast characteristics from breast x-ray images and automatically adjusting image processing parameters accordingly |
EP2408375B1 (en) | 2009-03-20 | 2017-12-06 | Orthoscan Incorporated | Moveable imaging apparatus |
JP5373450B2 (en) * | 2009-03-31 | 2013-12-18 | 富士フイルム株式会社 | Biopsy device and method of operating biopsy device |
US10207126B2 (en) | 2009-05-11 | 2019-02-19 | Cytyc Corporation | Lumen visualization and identification system for multi-lumen balloon catheter |
JP5355271B2 (en) * | 2009-07-24 | 2013-11-27 | 富士フイルム株式会社 | Radiation imaging equipment |
JP5572040B2 (en) * | 2009-09-28 | 2014-08-13 | 富士フイルム株式会社 | Radiography equipment |
ES2862525T3 (en) | 2009-10-08 | 2021-10-07 | Hologic Inc | Needle Breast Biopsy System and Method of Use |
DE202011110476U1 (en) | 2010-09-09 | 2014-03-27 | Hologic Inc. | System for dynamic modification of recording parameters during image acquisition |
US9352172B2 (en) | 2010-09-30 | 2016-05-31 | Hologic, Inc. | Using a guide member to facilitate brachytherapy device swap |
KR101836549B1 (en) | 2010-10-05 | 2018-03-08 | 홀로직, 인크. | Upright x-ray breast imaging with a ct mode, multiple tomosynthesis modes, and a mammography mode |
US9075903B2 (en) | 2010-11-26 | 2015-07-07 | Hologic, Inc. | User interface for medical image review workstation |
WO2012082799A1 (en) | 2010-12-13 | 2012-06-21 | Orthoscan, Inc. | Mobile fluoroscopic imaging system |
CN103281961A (en) * | 2010-12-14 | 2013-09-04 | 豪洛捷公司 | System and method for fusing three dimensional image data from a plurality of different imaging systems for use in diagnostic imaging |
FR2969918B1 (en) * | 2010-12-29 | 2013-12-13 | Gen Electric | METHOD AND DEVICE FOR IMPLEMENTING AN ANTI-DIFFUSING GRID |
US10342992B2 (en) | 2011-01-06 | 2019-07-09 | Hologic, Inc. | Orienting a brachytherapy applicator |
ITBO20110086A1 (en) * | 2011-02-25 | 2012-08-26 | I M S Internaz Medicoscienti Fica S R L | EQUIPMENT FOR MAMMOGRAPHY AND / OR TOMOSYNTHESIS WITH DIFFUSED RADIATION REMOVAL DEVICE. |
WO2012122399A1 (en) | 2011-03-08 | 2012-09-13 | Hologic, Inc. | System and method for dual energy and/or contrast enhanced breast imaging for screening, diagnosis and biopsy |
JP5355619B2 (en) * | 2011-04-27 | 2013-11-27 | 富士フイルム株式会社 | Radiation imaging equipment |
US9420982B2 (en) * | 2011-07-01 | 2016-08-23 | Rayence Co., Ltd. | Mammography detector having multiple sensors, and mammography device capable of acquiring 3D image acquisition |
JP6353361B2 (en) * | 2011-07-04 | 2018-07-04 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Phase contrast imaging device |
USD739534S1 (en) * | 2011-10-05 | 2015-09-22 | General Electric Company | Tomosynthesis device |
US11259759B2 (en) * | 2011-11-18 | 2022-03-01 | Hologic Inc. | X-ray mammography and/or breast tomosynthesis using a compression paddle |
US9782135B2 (en) | 2011-11-18 | 2017-10-10 | Hologic, Inc. | X-ray mammography and/or breast tomosynthesis using a compression paddle |
US9332947B2 (en) * | 2011-11-18 | 2016-05-10 | Hologic, Inc. | X-ray mammography and/or breast tomosynthesis using a compression paddle with an inflatable jacket with dual bottom layer joined at a seam enhancing imaging and improving patient comfort |
EP2782505B1 (en) | 2011-11-27 | 2020-04-22 | Hologic, Inc. | System and method for generating a 2d image using mammography and/or tomosynthesis image data |
CN104135935A (en) | 2012-02-13 | 2014-11-05 | 霍罗吉克公司 | System and method for navigating a tomosynthesis stack using synthesized image data |
JP6016403B2 (en) * | 2012-03-27 | 2016-10-26 | キヤノン株式会社 | Image processing apparatus and image processing method |
DE102012217301B4 (en) * | 2012-09-25 | 2021-10-14 | Bayer Pharma Aktiengesellschaft | Combination of contrast agent and mammography CT system with a specified energy range and method for generating tomographic mammography CT images using this combination |
WO2014059366A1 (en) * | 2012-10-12 | 2014-04-17 | Klanian Kelly L | Apparatus and method for breast immobilization |
KR101437273B1 (en) * | 2013-03-12 | 2014-09-03 | 제너럴 일렉트릭 캄파니 | Digital mammography apparatus |
WO2014138995A1 (en) * | 2013-03-14 | 2014-09-18 | Sunnybrook Research Institute | System and method for low x-ray dose breast density evaluation |
JP6559115B2 (en) * | 2013-03-15 | 2019-08-14 | ホロジック, インコーポレイテッドHologic, Inc. | X-ray scattering reduction device for use with 2D and 3D mammography |
EP2967479B1 (en) | 2013-03-15 | 2018-01-31 | Hologic Inc. | Tomosynthesis-guided biopsy in prone |
ES2750678T3 (en) | 2013-04-26 | 2020-03-26 | Hologic Inc | X-ray mammography and / or breast tomosynthesis with a compression paddle |
US9417194B2 (en) * | 2013-08-16 | 2016-08-16 | General Electric Company | Assessment of focal spot characteristics |
DE102013217961A1 (en) * | 2013-09-09 | 2015-03-12 | Siemens Aktiengesellschaft | Method and device for examining a tissue sample |
JP6523265B2 (en) | 2013-10-09 | 2019-05-29 | ホロジック, インコーポレイテッドHologic, Inc. | X-ray chest tomosynthesis to improve spatial resolution including flattened chest thickness direction |
EP3060132B1 (en) * | 2013-10-24 | 2019-12-04 | Hologic, Inc. | System and method for navigating x-ray guided breast biopsy |
FI130432B (en) | 2013-11-29 | 2023-08-28 | Planmed Oy | Tomosynthesis calibration in connection with mammography |
US20170172530A1 (en) * | 2014-02-14 | 2017-06-22 | Panacea Medical Technologies Pvt Ltd | An integrated device for conducting mammography, tomosynthesis and stereotactic biopsy in multiposition |
CN106062331A (en) * | 2014-02-28 | 2016-10-26 | 斯堪尼亚商用车有限公司 | Exhaust treatment system and method for treatment of an exhaust stream |
EP3868301B1 (en) | 2014-02-28 | 2023-04-05 | Hologic, Inc. | System and method for generating and displaying tomosynthesis image slabs |
JP6749322B2 (en) * | 2014-11-07 | 2020-09-02 | ホロジック, インコーポレイテッドHologic, Inc. | Pivoting paddle device for mammography/tomosynthesis X-ray system |
KR20160057626A (en) * | 2014-11-14 | 2016-05-24 | 삼성전자주식회사 | Mammography apparatus |
JP6611428B2 (en) * | 2014-12-09 | 2019-11-27 | キヤノン株式会社 | Mammography system |
JP6491471B2 (en) * | 2014-12-24 | 2019-03-27 | キヤノン株式会社 | Image processing apparatus, image processing method, and program |
WO2017040977A1 (en) | 2015-09-04 | 2017-03-09 | Faxitron Bioptics, Llc | Multi-axis specimen imaging device with embedded orientation markers |
US11076820B2 (en) | 2016-04-22 | 2021-08-03 | Hologic, Inc. | Tomosynthesis with shifting focal spot x-ray system using an addressable array |
US10157460B2 (en) | 2016-10-25 | 2018-12-18 | General Electric Company | Interpolated tomosynthesis projection images |
EP3534795B1 (en) | 2016-11-04 | 2021-01-13 | Hologic, Inc. | Medical imaging device |
CA3040862A1 (en) | 2016-11-08 | 2018-05-17 | Hologic, Inc. | Imaging with curved compression elements |
US10096106B2 (en) | 2016-11-10 | 2018-10-09 | General Electric Company | Combined medical imaging |
CA3040736A1 (en) * | 2016-11-25 | 2018-05-31 | Hologic, Inc. | Controller for imaging apparatus |
USD831216S1 (en) * | 2016-11-25 | 2018-10-16 | Hologic, Inc. | Imaging system |
US10463333B2 (en) | 2016-12-13 | 2019-11-05 | General Electric Company | Synthetic images for biopsy control |
US10646180B2 (en) | 2017-01-03 | 2020-05-12 | General Electric Company | System and method for breast imaging |
EP3600051B1 (en) | 2017-03-30 | 2024-05-01 | Hologic, Inc. | Method for synthesizing low-dimensional image data from high-dimensional image data using an object grid enhancement |
WO2018183550A1 (en) | 2017-03-30 | 2018-10-04 | Hologic, Inc. | System and method for targeted object enhancement to generate synthetic breast tissue images |
CN110621231B (en) | 2017-03-30 | 2024-02-23 | 豪洛捷公司 | System and method for hierarchical multi-level feature image synthesis and representation |
EP3641635A4 (en) | 2017-06-20 | 2021-04-07 | Hologic, Inc. | Dynamic self-learning medical image method and system |
WO2019033029A1 (en) | 2017-08-11 | 2019-02-14 | Hologic, Inc. | Breast compression paddle with access corners |
CN111031920B (en) | 2017-08-11 | 2024-05-07 | 豪洛捷公司 | Breast compression paddle with expandable sheath |
US11707244B2 (en) | 2017-08-16 | 2023-07-25 | Hologic, Inc. | Techniques for breast imaging patient motion artifact compensation |
EP3449835B1 (en) | 2017-08-22 | 2023-01-11 | Hologic, Inc. | Computed tomography system and method for imaging multiple anatomical targets |
DE102018200108A1 (en) * | 2018-01-05 | 2019-07-11 | Siemens Healthcare Gmbh | Positioning of an examination object with respect to an X-ray device |
JP6945491B2 (en) * | 2018-04-27 | 2021-10-06 | 富士フイルム株式会社 | Mammography equipment |
CA3091593A1 (en) | 2018-05-04 | 2019-11-07 | Hologic, Inc. | Biopsy needle visualization |
US11684323B2 (en) | 2018-05-25 | 2023-06-27 | Hologic, Inc. | Membrane-based breast compression systems |
CN112367919B (en) * | 2018-06-22 | 2024-07-26 | 豪洛捷公司 | Multi-position ultrasound system |
US11090017B2 (en) | 2018-09-13 | 2021-08-17 | Hologic, Inc. | Generating synthesized projection images for 3D breast tomosynthesis or multi-mode x-ray breast imaging |
WO2020060947A1 (en) | 2018-09-17 | 2020-03-26 | Hologic, Inc. | Medical imaging system with contoured detector |
US11883206B2 (en) | 2019-07-29 | 2024-01-30 | Hologic, Inc. | Personalized breast imaging system |
EP4035176A1 (en) | 2019-09-27 | 2022-08-03 | Hologic, Inc. | Ai system for predicting reading time and reading complexity for reviewing 2d/3d breast images |
WO2021081483A1 (en) | 2019-10-25 | 2021-04-29 | DeepHealth, Inc. | System and method for analyzing three-dimensional image data |
EP3832689A3 (en) | 2019-12-05 | 2021-08-11 | Hologic, Inc. | Systems and methods for improved x-ray tube life |
EP4093290A1 (en) | 2020-01-24 | 2022-11-30 | Hologic, Inc. | Horizontally-displaceable foam breast compression paddle |
US11481038B2 (en) | 2020-03-27 | 2022-10-25 | Hologic, Inc. | Gesture recognition in controlling medical hardware or software |
US11471118B2 (en) | 2020-03-27 | 2022-10-18 | Hologic, Inc. | System and method for tracking x-ray tube focal spot position |
US11054534B1 (en) | 2020-04-24 | 2021-07-06 | Ronald Nutt | Time-resolved positron emission tomography encoder system for producing real-time, high resolution, three dimensional positron emission tomographic image without the necessity of performing image reconstruction |
US11300695B2 (en) | 2020-04-24 | 2022-04-12 | Ronald Nutt | Time-resolved positron emission tomography encoder system for producing event-by-event, real-time, high resolution, three-dimensional positron emission tomographic image without the necessity of performing image reconstruction |
US11786191B2 (en) | 2021-05-17 | 2023-10-17 | Hologic, Inc. | Contrast-enhanced tomosynthesis with a copper filter |
KR102611174B1 (en) * | 2021-06-29 | 2023-12-07 | 주식회사 디알텍 | Radiographic apparatus and radiographic method |
CN114121334A (en) * | 2021-11-16 | 2022-03-01 | 湖州霍里思特智能科技有限公司 | Ray collimation adjusting device |
IT202200009080A1 (en) * | 2022-05-04 | 2023-11-04 | Ims Giotto S P A | MEDICAL ANALYSIS EQUIPMENT |
DE102023132451B3 (en) | 2023-08-03 | 2024-09-19 | GM Global Technology Operations LLC | SYSTEM FOR DETERMINING WHETHER A SEATBELT BUCKLE EXTENSION IS USED IN CONJUNCTION WITH A SEATBELT |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3971950A (en) * | 1975-04-14 | 1976-07-27 | Xerox Corporation | Independent compression and positioning device for use in mammography |
WO1990005485A1 (en) * | 1988-11-23 | 1990-05-31 | Nrt-Nordisk Roentgen Teknik A/S | X-ray apparatus |
US5018176A (en) * | 1989-03-29 | 1991-05-21 | General Electric Cgr S.A. | Mammograph equipped with an integrated device for taking stereotaxic photographs and a method of utilization of said mammograph |
US5029193A (en) * | 1989-07-03 | 1991-07-02 | Siemens Aktiengesellschaft | X-ray diagnostic installation for mammography exposures |
US5539797A (en) * | 1993-03-29 | 1996-07-23 | Ge Medical Systems Sa | Method and apparatus for digital stereotaxic mammography |
EP0775467A1 (en) * | 1995-11-23 | 1997-05-28 | Planmed Oy | Method and system for controlling the functions of a mammography apparatus |
US5872828A (en) * | 1996-07-23 | 1999-02-16 | The General Hospital Corporation | Tomosynthesis system for breast imaging |
US6611575B1 (en) * | 2001-07-27 | 2003-08-26 | General Electric Company | Method and system for high resolution 3D visualization of mammography images |
US20040101095A1 (en) * | 2002-11-27 | 2004-05-27 | Hologic Inc. | Full field mammography with tissue exposure control, tomosynthesis, and dynamic field of view processing |
EP1428473A2 (en) * | 2002-12-10 | 2004-06-16 | General Electric Company | Full field digital tomosynthesis method and apparatus |
Family Cites Families (312)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1019487A (en) | 1910-11-29 | 1912-03-05 | Daniel Kops | Apparel-corset. |
JP4054402B2 (en) * | 1997-04-25 | 2008-02-27 | 株式会社東芝 | X-ray tomography equipment |
US3365575A (en) * | 1964-12-10 | 1968-01-23 | Charles & Stella Guttman Breas | Breast x-ray apparatus with means to accurately position the body of a patient |
US3502878A (en) * | 1967-09-22 | 1970-03-24 | Us Health Education & Welfare | Automatic x-ray apparatus for limiting the field size of a projected x-ray beam in response to film size and to source-to-film distance |
US3863073A (en) * | 1973-04-26 | 1975-01-28 | Machlett Lab Inc | Automatic system for precise collimation of radiation |
JPS5753531Y2 (en) | 1977-05-04 | 1982-11-19 | ||
US4160906A (en) * | 1977-06-23 | 1979-07-10 | General Electric Company | Anatomically coordinated user dominated programmer for diagnostic x-ray apparatus |
US4212306A (en) * | 1978-05-18 | 1980-07-15 | Khalid Mahmud | Breast examination device and method |
DE2838901C2 (en) | 1978-09-06 | 1986-11-06 | Siemens AG, 1000 Berlin und 8000 München | Catapult drawer |
DE3037621A1 (en) | 1980-10-04 | 1982-05-27 | Philips Patentverwaltung Gmbh, 2000 Hamburg | TRANSLUCTION ARRANGEMENT FOR TAKING LAYER IMAGES OF A THREE-DIMENSIONAL OBJECT |
US4380086A (en) | 1980-11-24 | 1983-04-12 | Picker Corporation | Radiation imaging system with cyclically shiftable grid assembly |
FR2512024A1 (en) * | 1981-08-27 | 1983-03-04 | Adir | TRICYCLIC ETHERS, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
DE3236081A1 (en) | 1982-09-29 | 1984-03-29 | Siemens AG, 1000 Berlin und 8000 München | RECORDING DEVICE |
FR2549248B1 (en) | 1983-06-24 | 1986-01-31 | Thomson Csf | RETRACTABLE CASSETTE HOLDER FOR RADIOLOGICAL AND RADIOGRAPHIC EXAMINATION APPARATUS |
DE3339775A1 (en) * | 1983-11-03 | 1985-05-15 | Siemens AG, 1000 Berlin und 8000 München | X-RAY DIAGNOSTIC DEVICE WITH RADIATION FILTERS |
DE3340019A1 (en) * | 1983-11-04 | 1985-05-15 | Siemens AG, 1000 Berlin und 8000 München | COMPRESSION DEVICE FOR A X-RAY DIAGNOSTIC DEVICE |
JPS60129034A (en) * | 1983-12-16 | 1985-07-10 | 横河メディカルシステム株式会社 | Operation table of x-ray tomographic apparatus |
JPH074354B2 (en) * | 1984-10-29 | 1995-01-25 | 富士写真フイルム株式会社 | Radiation image information recording / reading device |
US4662379A (en) | 1984-12-20 | 1987-05-05 | Stanford University | Coronary artery imaging system using gated tomosynthesis |
US4706269A (en) | 1985-03-11 | 1987-11-10 | Reina Leo J | Anti-scatter grid structure |
US4773087A (en) | 1986-04-14 | 1988-09-20 | University Of Rochester | Quality of shadowgraphic x-ray images |
US4760589A (en) | 1986-04-21 | 1988-07-26 | Siczek Aldona A | Grid cabinet and cassette tray for an X-ray examination apparatus |
US4763343A (en) | 1986-09-23 | 1988-08-09 | Yanaki Nicola E | Method and structure for optimizing radiographic quality by controlling X-ray tube voltage, current, focal spot size and exposure time |
USRE33634E (en) * | 1986-09-23 | 1991-07-09 | Method and structure for optimizing radiographic quality by controlling X-ray tube voltage, current focal spot size and exposure time | |
US4821727A (en) * | 1986-10-30 | 1989-04-18 | Elscint Ltd. | Mammographic biopsy needle holder system |
US4819258A (en) | 1986-11-28 | 1989-04-04 | Bennett X-Ray Corp. | Auto-setting of KV in an x-ray machine after selection of technic factors |
US4752948A (en) | 1986-12-01 | 1988-06-21 | University Of Chicago | Mobile radiography alignment device |
FR2628311A1 (en) * | 1988-03-08 | 1989-09-15 | Thomson Cgr | MAMMOGRAPHER |
US5051904A (en) | 1988-03-24 | 1991-09-24 | Olganix Corporation | Computerized dynamic tomography system |
US4994021A (en) | 1988-11-15 | 1991-02-19 | Baxter International Inc. | Apparatus and method for collecting and freezing blood plasma |
FR2646340A1 (en) * | 1989-04-28 | 1990-11-02 | Gen Electric Cgr | ADJUSTABLE CASSETTE HOLDER IN DIMENSION AND POSITION FOR MAMMOGRAPHY |
CA2014918A1 (en) | 1989-09-06 | 1991-03-06 | James A. Mcfaul | Scanning mammography system with improved skin line viewing |
US4969174A (en) | 1989-09-06 | 1990-11-06 | General Electric Company | Scanning mammography system with reduced scatter radiation |
US5078142A (en) * | 1989-11-21 | 1992-01-07 | Fischer Imaging Corporation | Precision mammographic needle biopsy system |
US5415169A (en) * | 1989-11-21 | 1995-05-16 | Fischer Imaging Corporation | Motorized mammographic biopsy apparatus |
US5240011A (en) * | 1991-11-27 | 1993-08-31 | Fischer Imaging Corporation | Motorized biopsy needle positioner |
US5212637A (en) | 1989-11-22 | 1993-05-18 | Stereometrix Corporation | Method of investigating mammograms for masses and calcifications, and apparatus for practicing such method |
US5844965A (en) | 1989-11-24 | 1998-12-01 | Thomas Jefferson University | Method and apparatus for using film density measurements of a radiograph to monitor the reproducibility of X-ray exposure parameters of a mammography unit |
US5199056A (en) * | 1989-11-28 | 1993-03-30 | Darrah Carol J | Mammography compression paddle |
US5864146A (en) | 1996-11-13 | 1999-01-26 | University Of Massachusetts Medical Center | System for quantitative radiographic imaging |
US5481623A (en) * | 1990-04-19 | 1996-01-02 | Fuji Photo Film Co., Ltd. | Apparatus for determining an image position on imaging media |
FR2668359B1 (en) | 1990-10-24 | 1998-02-20 | Gen Electric Cgr | MAMMOGRAPH PROVIDED WITH A PERFECTED NEEDLE HOLDER. |
US5129911A (en) | 1991-03-11 | 1992-07-14 | Siczek Bernard W | Orbital aiming device |
US5409497A (en) | 1991-03-11 | 1995-04-25 | Fischer Imaging Corporation | Orbital aiming device for mammo biopsy |
DE4124294C2 (en) | 1991-07-22 | 1997-03-20 | Siemens Ag | Method for operating an X-ray tube and use of the method |
US5163075A (en) | 1991-08-08 | 1992-11-10 | Eastman Kodak Company | Contrast enhancement of electrographic imaging |
US5941832A (en) | 1991-09-27 | 1999-08-24 | Tumey; David M. | Method and apparatus for detection of cancerous and precancerous conditions in a breast |
US5289520A (en) * | 1991-11-27 | 1994-02-22 | Lorad Corporation | Stereotactic mammography imaging system with prone position examination table and CCD camera |
US5594769A (en) * | 1991-11-27 | 1997-01-14 | Thermotrex Corporation | Method and apparatus for obtaining stereotactic mammographic guided needle breast biopsies |
US5274690A (en) | 1992-01-06 | 1993-12-28 | Picker International, Inc. | Rotating housing and anode/stationary cathode x-ray tube with magnetic susceptor for holding the cathode stationary |
US5359637A (en) * | 1992-04-28 | 1994-10-25 | Wake Forest University | Self-calibrated tomosynthetic, radiographic-imaging system, method, and device |
US5256370B1 (en) | 1992-05-04 | 1996-09-03 | Indium Corp America | Lead-free alloy containing tin silver and indium |
US5386447A (en) * | 1992-09-23 | 1995-01-31 | Fischer Imaging Corporation | Mammographic screening and biopsy apparatus |
US5596200A (en) * | 1992-10-14 | 1997-01-21 | Primex | Low dose mammography system |
US5291539A (en) | 1992-10-19 | 1994-03-01 | General Electric Company | Variable focussed X-ray grid |
WO1994017533A1 (en) | 1993-01-27 | 1994-08-04 | Oleg Sokolov | Cellular x-ray grid |
US5365562A (en) | 1993-09-20 | 1994-11-15 | Fischer Imaging Corporation | Digital imaging apparatus |
US6075879A (en) * | 1993-09-29 | 2000-06-13 | R2 Technology, Inc. | Method and system for computer-aided lesion detection using information from multiple images |
US5526394A (en) * | 1993-11-26 | 1996-06-11 | Fischer Imaging Corporation | Digital scan mammography apparatus |
US5452367A (en) | 1993-11-29 | 1995-09-19 | Arch Development Corporation | Automated method and system for the segmentation of medical images |
CA2113752C (en) * | 1994-01-19 | 1999-03-02 | Stephen Michael Rooks | Inspection system for cross-sectional imaging |
DE4414689C2 (en) * | 1994-04-26 | 1996-08-29 | Siemens Ag | X-ray diagnostic device |
US5529797A (en) * | 1994-09-06 | 1996-06-25 | Mckee Foods Corporation | Method for continuously producing discrete wrapped baked dough products |
DE4434704C1 (en) | 1994-09-28 | 1995-06-29 | Siemens Ag | X=ray tube with annular vacuum housing |
US5553111A (en) * | 1994-10-26 | 1996-09-03 | The General Hospital Corporation | Apparatus and method for improved tissue imaging |
US5506877A (en) * | 1994-11-23 | 1996-04-09 | The General Hospital Corporation | Mammography breast compression device and method |
US5657362A (en) * | 1995-02-24 | 1997-08-12 | Arch Development Corporation | Automated method and system for computerized detection of masses and parenchymal distortions in medical images |
US6216540B1 (en) * | 1995-06-06 | 2001-04-17 | Robert S. Nelson | High resolution device and method for imaging concealed objects within an obscuring medium |
US5999836A (en) | 1995-06-06 | 1999-12-07 | Nelson; Robert S. | Enhanced high resolution breast imaging device and method utilizing non-ionizing radiation of narrow spectral bandwidth |
US6345194B1 (en) | 1995-06-06 | 2002-02-05 | Robert S. Nelson | Enhanced high resolution breast imaging device and method utilizing non-ionizing radiation of narrow spectral bandwidth |
WO1997000649A1 (en) | 1995-06-20 | 1997-01-09 | Wan Sing Ng | Articulated arm for medical procedures |
US5818898A (en) * | 1995-11-07 | 1998-10-06 | Kabushiki Kaisha Toshiba | X-ray imaging apparatus using X-ray planar detector |
US5693948A (en) | 1995-11-21 | 1997-12-02 | Loral Fairchild Corporation | Advanced CCD-based x-ray image sensor system |
US5627869A (en) * | 1995-11-22 | 1997-05-06 | Thermotrex Corporation | Mammography apparatus with proportional collimation |
US5769086A (en) * | 1995-12-06 | 1998-06-23 | Biopsys Medical, Inc. | Control system and method for automated biopsy device |
US5706327A (en) | 1996-02-09 | 1998-01-06 | Trex Medical Corporation | Method and apparatus for mammographic compression |
CA2245862A1 (en) | 1996-02-12 | 1997-08-14 | George C. Giakos | Multimedia detectors for medical imaging |
DE19619925C2 (en) * | 1996-05-17 | 1999-09-09 | Sirona Dental Systems Gmbh | X-ray diagnostic device for tomosynthesis |
DE19619913C2 (en) * | 1996-05-17 | 2001-03-15 | Sirona Dental Systems Gmbh | X-ray diagnostic device for tomosynthesis |
DE19619924A1 (en) * | 1996-05-17 | 1997-11-20 | Siemens Ag | Tomosynthetic image generating method |
DE19619915A1 (en) | 1996-05-17 | 1997-11-20 | Siemens Ag | Process for creating tomosynthesis images |
US5776062A (en) | 1996-10-15 | 1998-07-07 | Fischer Imaging Corporation | Enhanced breast imaging/biopsy system employing targeted ultrasound |
US6459925B1 (en) * | 1998-11-25 | 2002-10-01 | Fischer Imaging Corporation | User interface system for mammographic imager |
US5986662A (en) | 1996-10-16 | 1999-11-16 | Vital Images, Inc. | Advanced diagnostic viewer employing automated protocol selection for volume-rendered imaging |
US6293282B1 (en) | 1996-11-05 | 2001-09-25 | Jerome Lemelson | System and method for treating select tissue in living being |
US6137527A (en) * | 1996-12-23 | 2000-10-24 | General Electric Company | System and method for prompt-radiology image screening service via satellite |
US5841829A (en) | 1997-05-13 | 1998-11-24 | Analogic Corporation | Optimal channel filter for CT system with wobbling focal spot |
US5999639A (en) * | 1997-09-04 | 1999-12-07 | Qualia Computing, Inc. | Method and system for automated detection of clustered microcalcifications from digital mammograms |
US6442288B1 (en) * | 1997-12-17 | 2002-08-27 | Siemens Aktiengesellschaft | Method for reconstructing a three-dimensional image of an object scanned in the context of a tomosynthesis, and apparatus for tomosynthesis |
JP3554172B2 (en) | 1998-01-09 | 2004-08-18 | キヤノン株式会社 | Radiography equipment |
US6175117B1 (en) | 1998-01-23 | 2001-01-16 | Quanta Vision, Inc. | Tissue analysis apparatus |
US6289235B1 (en) | 1998-03-05 | 2001-09-11 | Wake Forest University | Method and system for creating three-dimensional images using tomosynthetic computed tomography |
JP3288969B2 (en) * | 1998-04-07 | 2002-06-04 | 光洋精工株式会社 | Fastening structure |
US6081577A (en) | 1998-07-24 | 2000-06-27 | Wake Forest University | Method and system for creating task-dependent three-dimensional images |
US6375352B1 (en) * | 1999-10-01 | 2002-04-23 | General Electric Company | Apparatus and method for obtaining x-ray tomosynthesis data for mammography |
US6141398A (en) * | 1998-08-25 | 2000-10-31 | General Electric Company | Protocol driven image reconstruction, display, and processing in a multislice imaging system |
US6101236A (en) | 1998-10-02 | 2000-08-08 | University Of Iowa Research Foundation | Iterative method and apparatus for x-ray computed tomographic fluoroscopy |
US6125167A (en) | 1998-11-25 | 2000-09-26 | Picker International, Inc. | Rotating anode x-ray tube with multiple simultaneously emitting focal spots |
FR2786388B1 (en) * | 1998-11-27 | 2001-02-16 | Ge Medical Syst Sa | METHOD FOR DETECTING FABRIC OF A SPECIFIC NATURE IN DIGITAL RADIOLOGY AND ITS USE FOR ADJUSTING THE EXPOSURE PARAMETERS |
US6574629B1 (en) | 1998-12-23 | 2003-06-03 | Agfa Corporation | Picture archiving and communication system |
US6149301A (en) | 1998-12-30 | 2000-11-21 | General Electric Company | X-ray target centering apparatus for radiographic imaging system |
US6233473B1 (en) * | 1999-02-16 | 2001-05-15 | Hologic, Inc. | Determining body composition using fan beam dual-energy x-ray absorptiometry |
US6272207B1 (en) * | 1999-02-18 | 2001-08-07 | Creatv Microtech, Inc. | Method and apparatus for obtaining high-resolution digital X-ray and gamma ray images |
EP1155294A1 (en) | 1999-02-23 | 2001-11-21 | Teraprobe Limited | Method and apparatus for terahertz imaging |
US6256369B1 (en) | 1999-03-31 | 2001-07-03 | Analogic Corporation | Computerized tomography scanner with longitudinal flying focal spot |
US6256370B1 (en) * | 2000-01-24 | 2001-07-03 | General Electric Company | Method and apparatus for performing tomosynthesis |
US6689142B1 (en) | 1999-04-26 | 2004-02-10 | Scimed Life Systems, Inc. | Apparatus and methods for guiding a needle |
US6292530B1 (en) * | 1999-04-29 | 2001-09-18 | General Electric Company | Method and apparatus for reconstructing image data acquired by a tomosynthesis x-ray imaging system |
DE19922346C2 (en) * | 1999-05-14 | 2003-06-18 | Siemens Ag | X-ray diagnostic device for tomosynthesis or layering |
US6244507B1 (en) | 1999-06-25 | 2001-06-12 | Canon Kabushiki Kaisha | Automatic grid parameter logging for digital radiography |
US6243441B1 (en) * | 1999-07-13 | 2001-06-05 | Edge Medical Devices | Active matrix detector for X-ray imaging |
US6542575B1 (en) | 1999-08-31 | 2003-04-01 | General Electric Company | Correction methods and apparatus for digital x-ray imaging |
US6490476B1 (en) | 1999-10-14 | 2002-12-03 | Cti Pet Systems, Inc. | Combined PET and X-ray CT tomograph and method for using same |
US6480565B1 (en) | 1999-11-18 | 2002-11-12 | University Of Rochester | Apparatus and method for cone beam volume computed tomography breast imaging |
US6987831B2 (en) | 1999-11-18 | 2006-01-17 | University Of Rochester | Apparatus and method for cone beam volume computed tomography breast imaging |
US6633674B1 (en) * | 1999-11-24 | 2003-10-14 | General Electric Company | Picture archiving and communication system employing improved data compression |
US6645520B2 (en) | 1999-12-16 | 2003-11-11 | Dermatrends, Inc. | Transdermal administration of nonsteroidal anti-inflammatory drugs using hydroxide-releasing agents as permeation enhancers |
FR2803069B1 (en) * | 1999-12-28 | 2002-12-13 | Ge Medical Syst Sa | METHOD AND SYSTEM FOR COMPENSATING THE THICKNESS OF AN ORGAN |
US6411836B1 (en) * | 1999-12-30 | 2002-06-25 | General Electric Company | Method and apparatus for user preferences configuring in an image handling system |
US6418189B1 (en) | 2000-01-24 | 2002-07-09 | Analogic Corporation | Explosive material detection apparatus and method using dual energy information of a scan |
US6744848B2 (en) * | 2000-02-11 | 2004-06-01 | Brandeis University | Method and system for low-dose three-dimensional imaging of a scene |
GB0006598D0 (en) | 2000-03-17 | 2000-05-10 | Isis Innovation | Three-dimensional reconstructions from images |
US7206462B1 (en) | 2000-03-17 | 2007-04-17 | The General Hospital Corporation | Method and system for the detection, comparison and volumetric quantification of pulmonary nodules on medical computed tomography scans |
US6327336B1 (en) | 2000-06-05 | 2001-12-04 | Direct Radiography Corp. | Radiogram showing location of automatic exposure control sensor |
JP4163370B2 (en) | 2000-06-08 | 2008-10-08 | 富士フイルム株式会社 | Abnormal shadow candidate detection system |
US6909792B1 (en) | 2000-06-23 | 2005-06-21 | Litton Systems, Inc. | Historical comparison of breast tissue by image processing |
US7196519B2 (en) | 2000-07-28 | 2007-03-27 | Fonar Corporation | Stand-up vertical field MRI apparatus |
JP2002052018A (en) | 2000-08-11 | 2002-02-19 | Canon Inc | Image display device, image display method and storage medium |
US8565860B2 (en) | 2000-08-21 | 2013-10-22 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system |
FR2813973B1 (en) | 2000-09-08 | 2003-06-20 | Ge Med Sys Global Tech Co Llc | METHOD AND DEVICE FOR GENERATING THREE-DIMENSIONAL IMAGES AND APPARATUS FOR RADIOLOGY THEREOF |
US6678350B2 (en) | 2000-09-29 | 2004-01-13 | Analogic Corporation | Method of and system for improving the signal to noise characteristics of images from a digital X-ray detector receiving bi-chromatic X-ray energy |
US6553096B1 (en) | 2000-10-06 | 2003-04-22 | The University Of North Carolina Chapel Hill | X-ray generating mechanism using electron field emission cathode |
US20040213378A1 (en) | 2003-04-24 | 2004-10-28 | The University Of North Carolina At Chapel Hill | Computed tomography system for imaging of human and small animal |
JP2004512081A (en) | 2000-10-20 | 2004-04-22 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Tomographic synthesis in a limited angle range |
US6758824B1 (en) * | 2000-11-06 | 2004-07-06 | Suros Surgical Systems, Inc. | Biopsy apparatus |
GB2376633B (en) | 2000-11-06 | 2004-11-10 | Suros Surgical Systems Inc | Biopsy apparatus |
US6925200B2 (en) | 2000-11-22 | 2005-08-02 | R2 Technology, Inc. | Graphical user interface for display of anatomical information |
SE0004298D0 (en) | 2000-11-23 | 2000-11-23 | Siemens Elema Ab | Radiology Unit |
US7556602B2 (en) | 2000-11-24 | 2009-07-07 | U-Systems, Inc. | Breast cancer screening with adjunctive ultrasound mammography |
US7103205B2 (en) | 2000-11-24 | 2006-09-05 | U-Systems, Inc. | Breast cancer screening with ultrasound image overlays |
US7597663B2 (en) | 2000-11-24 | 2009-10-06 | U-Systems, Inc. | Adjunctive ultrasound processing and display for breast cancer screening |
US20020090055A1 (en) | 2000-11-27 | 2002-07-11 | Edge Medical Devices Ltd. | Digital X-ray bucky including grid storage |
US6501819B2 (en) | 2000-12-18 | 2002-12-31 | Ge Medical Systems Global Technology Company, Llc | Medical diagnostic method and apparatus to control dual energy exposure techniques based on image information |
FR2818116B1 (en) | 2000-12-19 | 2004-08-27 | Ge Med Sys Global Tech Co Llc | MAMMOGRAPHY APPARATUS |
WO2002052507A1 (en) | 2000-12-22 | 2002-07-04 | Koninklijke Philips Electronics N.V. | Stereoscopic viewing of a region between clipping planes |
WO2002065480A1 (en) | 2001-02-01 | 2002-08-22 | Creatv Microtech, Inc. | tNTI-SCATTER GRIDS AND COLLIMATOR DESIGNS, AND THEIR MOTION, FABRICATION AND ASSEMBLY |
US6486764B2 (en) | 2001-02-16 | 2002-11-26 | Delphi Technologies, Inc. | Rotary position sensor |
US6480572B2 (en) | 2001-03-09 | 2002-11-12 | Koninklijke Philips Electronics N.V. | Dual filament, electrostatically controlled focal spot for x-ray tubes |
US6620111B2 (en) * | 2001-04-20 | 2003-09-16 | Ethicon Endo-Surgery, Inc. | Surgical biopsy device having automatic rotation of the probe for taking multiple samples |
US6965793B2 (en) | 2001-06-28 | 2005-11-15 | Chemimage Corporation | Method for Raman chemical imaging of endogenous chemicals to reveal tissue lesion boundaries in tissue |
EP1408835A2 (en) | 2001-07-25 | 2004-04-21 | Dentsply International, Inc. | Real-time digital x-ray imaging apparatus |
WO2003020114A2 (en) | 2001-08-31 | 2003-03-13 | Analogic Corporation | Image positioning method and system for tomosynthesis in a digital x-ray radiography system |
US6674835B2 (en) | 2001-10-12 | 2004-01-06 | General Electric Co. | Methods and apparatus for estimating a material composition of an imaged object |
US6632020B2 (en) | 2001-10-12 | 2003-10-14 | General Electric Company | Method and apparatus for calibrating an imaging system |
US7609806B2 (en) | 2004-10-18 | 2009-10-27 | Hologic Inc. | Mammography system and method employing offset compression paddles, automatic collimations, and retractable anti-scatter grid |
EP1444873A2 (en) * | 2001-10-19 | 2004-08-11 | Hologic, Inc. | Mammography system and method employing offset compression paddles, automatic collimation, and retractable anti-scatter grid |
US6626849B2 (en) * | 2001-11-01 | 2003-09-30 | Ethicon Endo-Surgery, Inc. | MRI compatible surgical biopsy device |
US20030097055A1 (en) | 2001-11-21 | 2003-05-22 | Philips Medical Systems(Cleveland), Inc. | Method of reviewing tomographic scans with a large number of images |
US6895077B2 (en) | 2001-11-21 | 2005-05-17 | University Of Massachusetts Medical Center | System and method for x-ray fluoroscopic imaging |
US6751285B2 (en) * | 2001-11-21 | 2004-06-15 | General Electric Company | Dose management system for mammographic tomosynthesis |
US6978040B2 (en) | 2001-12-19 | 2005-12-20 | Canon Kabushiki Kaisha | Optical recovery of radiographic geometry |
EP1472140A1 (en) | 2001-12-21 | 2004-11-03 | Nektar Therapeutics | Apparatus and method for sealing cavities |
US6647092B2 (en) * | 2002-01-18 | 2003-11-11 | General Electric Company | Radiation imaging system and method of collimation |
US6909790B2 (en) | 2002-02-15 | 2005-06-21 | Inventec Corporation | System and method of monitoring moving objects |
SE524458C2 (en) | 2002-03-01 | 2004-08-10 | Mamea Imaging Ab | Protective device by an X-ray apparatus |
US7218766B2 (en) | 2002-04-15 | 2007-05-15 | General Electric Company | Computer aided detection (CAD) for 3D digital mammography |
US20030194050A1 (en) * | 2002-04-15 | 2003-10-16 | General Electric Company | Multi modality X-ray and nuclear medicine mammography imaging system and method |
US6882700B2 (en) * | 2002-04-15 | 2005-04-19 | General Electric Company | Tomosynthesis X-ray mammogram system and method with automatic drive system |
US7139000B2 (en) | 2002-05-13 | 2006-11-21 | Ge Medical Systems Global Technology Company, Llc | Method, system and computer product for displaying axial images |
US7295691B2 (en) | 2002-05-15 | 2007-11-13 | Ge Medical Systems Global Technology Company, Llc | Computer aided diagnosis of an image set |
US6748044B2 (en) * | 2002-09-13 | 2004-06-08 | Ge Medical Systems Global Technology Company, Llc | Computer assisted analysis of tomographic mammography data |
US6574304B1 (en) | 2002-09-13 | 2003-06-03 | Ge Medical Systems Global Technology Company, Llc | Computer aided acquisition of medical images |
US6970531B2 (en) | 2002-10-07 | 2005-11-29 | General Electric Company | Continuous scan RAD tomosynthesis system and method |
US6940943B2 (en) * | 2002-10-07 | 2005-09-06 | General Electric Company | Continuous scan tomosynthesis system and method |
US6825838B2 (en) | 2002-10-11 | 2004-11-30 | Sonocine, Inc. | 3D modeling system |
JP2004154409A (en) * | 2002-11-07 | 2004-06-03 | Fuji Photo Film Co Ltd | Picture imaging unit for breast |
US7577282B2 (en) | 2002-11-27 | 2009-08-18 | Hologic, Inc. | Image handling and display in X-ray mammography and tomosynthesis |
US7831296B2 (en) * | 2002-11-27 | 2010-11-09 | Hologic, Inc. | X-ray mammography with tomosynthesis |
US7760924B2 (en) | 2002-11-27 | 2010-07-20 | Hologic, Inc. | System and method for generating a 2D image from a tomosynthesis data set |
US8571289B2 (en) | 2002-11-27 | 2013-10-29 | Hologic, Inc. | System and method for generating a 2D image from a tomosynthesis data set |
US10638994B2 (en) | 2002-11-27 | 2020-05-05 | Hologic, Inc. | X-ray mammography with tomosynthesis |
US7616801B2 (en) | 2002-11-27 | 2009-11-10 | Hologic, Inc. | Image handling and display in x-ray mammography and tomosynthesis |
US6597762B1 (en) * | 2002-11-27 | 2003-07-22 | Ge Medical Systems Global Technology Co., Llc | Method and apparatus of lesion detection and validation based on multiple reviews of a CT image |
US8565372B2 (en) | 2003-11-26 | 2013-10-22 | Hologic, Inc | System and method for low dose tomosynthesis |
DE10301071A1 (en) | 2003-01-14 | 2004-07-22 | Siemens Ag | Adjusting x-ray tube focal spot position involves measuring spot position signal, generating deflection signal depending on position signal, applying deflection signal to electron beam deflector |
US20040146221A1 (en) | 2003-01-23 | 2004-07-29 | Siegel Scott H. | Radiography Image Management System |
US7356113B2 (en) | 2003-02-12 | 2008-04-08 | Brandeis University | Tomosynthesis imaging system and method |
JP4497837B2 (en) | 2003-05-12 | 2010-07-07 | キヤノン株式会社 | Radiation imaging equipment |
US6895076B2 (en) | 2003-06-03 | 2005-05-17 | Ge Medical Systems Global Technology Company, Llc | Methods and apparatus for multiple image acquisition on a digital detector |
WO2005009206A2 (en) | 2003-06-25 | 2005-02-03 | Besson Guy M | Dynamic multi-spectral imaging system |
US7433507B2 (en) | 2003-07-03 | 2008-10-07 | Ge Medical Systems Global Technology Co. | Imaging chain for digital tomosynthesis on a flat panel detector |
JP3942178B2 (en) | 2003-07-29 | 2007-07-11 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | X-ray CT system |
WO2005011501A1 (en) | 2003-08-01 | 2005-02-10 | Hitachi Medical Corporation | Medical image diagnosis support device and method |
US6885724B2 (en) * | 2003-08-22 | 2005-04-26 | Ge Medical Systems Global Technology Company, Llc | Radiographic tomosynthesis image acquisition utilizing asymmetric geometry |
US20050089205A1 (en) | 2003-10-23 | 2005-04-28 | Ajay Kapur | Systems and methods for viewing an abnormality in different kinds of images |
DE10353611B4 (en) * | 2003-11-17 | 2013-01-17 | Siemens Aktiengesellschaft | X-ray diagnostic device for mammography examinations |
US8768026B2 (en) | 2003-11-26 | 2014-07-01 | Hologic, Inc. | X-ray imaging with x-ray markers that provide adjunct information but preserve image quality |
EP1694210B1 (en) | 2003-11-26 | 2012-03-28 | Koninklijke Philips Electronics N.V. | Workflow optimization for high throughput imaging environment |
SE526371C2 (en) | 2003-12-01 | 2005-08-30 | Xcounter Ab | Device and method for obtaining tomography, tomosynthesis and still image data for an object |
US7244063B2 (en) | 2003-12-18 | 2007-07-17 | General Electric Company | Method and system for three dimensional tomosynthesis imaging |
US20050135555A1 (en) | 2003-12-23 | 2005-06-23 | Claus Bernhard Erich H. | Method and system for simultaneously viewing rendered volumes |
US7653229B2 (en) | 2003-12-23 | 2010-01-26 | General Electric Company | Methods and apparatus for reconstruction of volume data from projection data |
SE528366C2 (en) | 2004-02-13 | 2006-10-31 | Sectra Mamea Ab | Method and apparatus for X-ray imaging |
US7142633B2 (en) | 2004-03-31 | 2006-11-28 | General Electric Company | Enhanced X-ray imaging system and method |
US20060009693A1 (en) | 2004-04-08 | 2006-01-12 | Techniscan, Inc. | Apparatus for imaging and treating a breast |
US7835556B2 (en) | 2004-05-14 | 2010-11-16 | Koninklijke Philips Electronics N.V. | System and method for diagnosing breast cancer |
GB0411402D0 (en) | 2004-05-21 | 2004-06-23 | Tissuomics Ltd | Penetrating radiation measurements |
JP4743472B2 (en) * | 2004-06-30 | 2011-08-10 | 日立工機株式会社 | Tabletop cutting machine |
EP1623672A1 (en) | 2004-08-04 | 2006-02-08 | Siemens Aktiengesellschaft | X-ray apparatus, in particular for a device for x-ray mammography |
WO2006020874A2 (en) * | 2004-08-10 | 2006-02-23 | The Research Foundation | Flat-panel detector with avalanche gain |
US7725153B2 (en) | 2004-10-04 | 2010-05-25 | Hologic, Inc. | Estimating visceral fat by dual-energy x-ray absorptiometry |
DE102004051401A1 (en) | 2004-10-21 | 2006-05-24 | Siemens Ag | Method for diagnosis in three-dimensional imaging, in particular in mammography |
DE102004063995A1 (en) | 2004-10-25 | 2006-08-17 | Siemens Ag | Tomography apparatus and method for a tomography apparatus for generating multiple energy images |
WO2006055830A2 (en) | 2004-11-15 | 2006-05-26 | Hologic, Inc. | Matching geometry generation and display of mammograms and tomosynthesis images |
EP1816965B1 (en) * | 2004-11-26 | 2016-06-29 | Hologic, Inc. | Integrated multi-mode mammography/tomosynthesis x-ray system |
US7539284B2 (en) | 2005-02-11 | 2009-05-26 | Besson Guy M | Method and system for dynamic low dose X-ray imaging |
FR2882246B1 (en) | 2005-02-21 | 2007-05-18 | Gen Electric | MAMMOGRAPHIC APPARATUS PROVIDED WITH A SCREEN FOR PROTECTING THE HEAD OF A PATIENT |
KR100907248B1 (en) | 2005-04-21 | 2009-07-10 | (주)안트로젠 | Transplantation of differentiated immature adipocytes and biodegradable scaffold for tissue augmentation |
WO2006116700A2 (en) | 2005-04-28 | 2006-11-02 | Bruce Reiner | Method and apparatus for automated quality assurance in medical imaging |
DE102005022899A1 (en) | 2005-05-18 | 2006-11-23 | Siemens Ag | Method and device for generating a digital tomosynthetic 3D X-ray image of an examination object |
US7492858B2 (en) | 2005-05-20 | 2009-02-17 | Varian Medical Systems, Inc. | System and method for imaging and treatment of tumorous tissue in breasts using computed tomography and radiotherapy |
WO2007012996A2 (en) | 2005-07-26 | 2007-02-01 | Koninklijke Philips Electronics, N.V. | Revolutionary series control for medical imaging archive manager |
US7245694B2 (en) | 2005-08-15 | 2007-07-17 | Hologic, Inc. | X-ray mammography/tomosynthesis of patient's breast |
DE202005013910U1 (en) * | 2005-09-02 | 2005-11-24 | Siemens Ag | Mammography unit has face shield moving within X-ray source head to provide withdrawn, protruding and transport positions |
FR2890553B1 (en) | 2005-09-13 | 2007-11-23 | Gen Electric | MIXED X-RAY DEVICE |
US8423123B2 (en) | 2005-09-30 | 2013-04-16 | Given Imaging Ltd. | System and method for in-vivo feature detection |
WO2007047114A1 (en) | 2005-10-19 | 2007-04-26 | The General Hospital Corporation | Imaging system and related techniques |
US7180977B2 (en) | 2005-10-24 | 2007-02-20 | Xcounter Ab | Scanning-based detection of ionizing radiaion for tomosynthesis |
US7302031B2 (en) | 2005-10-27 | 2007-11-27 | Sectra Mamea Ab | Method and arrangement relating to X-ray imaging |
US7581399B2 (en) | 2006-01-05 | 2009-09-01 | United Technologies Corporation | Damped coil pin for attachment hanger hinge |
US7630531B2 (en) | 2006-01-31 | 2009-12-08 | Mevis Medical Solutions, Inc. | Enhanced navigational tools for comparing medical images |
JP5554927B2 (en) | 2006-02-15 | 2014-07-23 | ホロジック, インコーポレイテッド | Breast biopsy and needle localization using tomosynthesis system |
JP4769097B2 (en) | 2006-03-01 | 2011-09-07 | 富士フイルム株式会社 | Mammography device and breast compression plate used in the mammography device |
US20070223651A1 (en) * | 2006-03-21 | 2007-09-27 | Wagenaar Douglas J | Dual modality mammography device |
US7489761B2 (en) | 2006-03-27 | 2009-02-10 | Hologic, Inc. | Breast compression for digital mammography, tomosynthesis and other modalities |
JP2009536432A (en) | 2006-05-05 | 2009-10-08 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | X-ray tube with oscillating anode |
CN100444800C (en) | 2006-07-25 | 2008-12-24 | 倪湘申 | X-ray puncture positioning device and method for microtrauma operation |
US20090080602A1 (en) | 2006-08-03 | 2009-03-26 | Kenneth Brooks | Dedicated breast radiation imaging/therapy system |
US7616731B2 (en) | 2006-08-30 | 2009-11-10 | General Electric Company | Acquisition and reconstruction of projection data using a stationary CT geometry |
JP2008067933A (en) | 2006-09-14 | 2008-03-27 | Toshiba Corp | Digital mammography apparatus |
JP4874755B2 (en) | 2006-09-29 | 2012-02-15 | 富士フイルム株式会社 | Radiation imaging equipment |
DE602007012126D1 (en) | 2006-10-13 | 2011-03-03 | Philips Intellectual Property | X-RAY MISSION DEVICE AND METHOD OF TORQUE X-RAY IN AN X-RAY MISSION DEVICE |
US20080095259A1 (en) | 2006-10-23 | 2008-04-24 | Dyer Justin S | Pre-coding for multiple-input-multiple-output communications |
JP4851296B2 (en) * | 2006-10-26 | 2012-01-11 | 富士フイルム株式会社 | Radiation tomographic image acquisition apparatus and radiation tomographic image acquisition method |
EP2102884A1 (en) | 2006-12-12 | 2009-09-23 | Philips Intellectual Property & Standards GmbH | Device and method for x-ray tube focal spot size and position control |
US10682107B2 (en) | 2007-01-31 | 2020-06-16 | Philips Digital Mammography Sweden Ab | Method and arrangement relating to x-ray imaging |
JP5248031B2 (en) | 2007-04-23 | 2013-07-31 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | X-ray CT system |
EP2219525B1 (en) | 2007-08-23 | 2017-01-04 | Bearf, Llc | Improved computed tomography breast imaging and biopsy system |
US7630533B2 (en) | 2007-09-20 | 2009-12-08 | Hologic, Inc. | Breast tomosynthesis with display of highlighted suspected calcifications |
US20090175408A1 (en) * | 2007-12-04 | 2009-07-09 | Goodsitt Mitchell M | Compression paddle and methods for using the same in various medical procedures |
JP2009158303A (en) | 2007-12-26 | 2009-07-16 | Panasonic Electric Works Co Ltd | Outlet and outlet plug |
DE102008004473A1 (en) | 2008-01-15 | 2009-07-23 | Siemens Aktiengesellschaft | Method and device for generating a tomosynthetic 3D X-ray image |
JP5558672B2 (en) | 2008-03-19 | 2014-07-23 | 株式会社東芝 | Image processing apparatus and X-ray computed tomography apparatus |
US7832901B2 (en) * | 2008-03-24 | 2010-11-16 | Cooper Technologies Company | Beam adjustment mechanism for an LED light fixture |
JP5384612B2 (en) | 2008-03-31 | 2014-01-08 | コーニンクレッカ フィリップス エヌ ヴェ | Fast tomosynthesis scanner apparatus and CT-based method for use in cone beam volume CT mammography imaging based on rotating step-and-shoot image acquisition without moving the focus while the tube is moving continuously |
FR2930132B1 (en) | 2008-04-17 | 2011-12-16 | Gen Electric | MAMMOGRAPHY SYSTEM AND METHOD FOR OPERATING IT. |
US20110178389A1 (en) | 2008-05-02 | 2011-07-21 | Eigen, Inc. | Fused image moldalities guidance |
EP2285286A2 (en) | 2008-05-09 | 2011-02-23 | Philips Intellectual Property & Standards GmbH | X-Ray Examination System with Integrated Actuator Means for Performing Translational and/or Rotational Disuplacement Movements of at Least One X-Radiation Emitting Anode's Focal Spot Relative to a Stationary Reference Position and Means for Compensating Resulting Parallel and/or Angular Shifts of the Emitted X-Ray Beams |
US7792245B2 (en) | 2008-06-24 | 2010-09-07 | Hologic, Inc. | Breast tomosynthesis system with shifting face shield |
US7991106B2 (en) | 2008-08-29 | 2011-08-02 | Hologic, Inc. | Multi-mode tomosynthesis/mammography gain calibration and image correction using gain map information from selected projection angles |
DE102008050571A1 (en) | 2008-10-06 | 2010-04-15 | Siemens Aktiengesellschaft | Tomosynthesis apparatus and method for operating a tomosynthesis apparatus |
EP2352431B1 (en) | 2008-11-24 | 2018-08-15 | Hologic, Inc. | Method and system for controlling x-ray focal spot characteristics for tomosynthesis and mammography imaging |
US8515005B2 (en) | 2009-11-23 | 2013-08-20 | Hologic Inc. | Tomosynthesis with shifting focal spot and oscillating collimator blades |
JP2012510672A (en) | 2008-11-28 | 2012-05-10 | フジフイルム メディカル システムズ ユーエスエイ インコーポレイテッド | Active overlay system and method for accessing and manipulating an image display |
WO2010070554A1 (en) | 2008-12-17 | 2010-06-24 | Koninklijke Philips Electronics N.V. | X-ray examination apparatus and method |
US7885384B2 (en) | 2009-01-26 | 2011-02-08 | General Electric Company | System and method to manage maintenance of a radiological imaging system |
US8170320B2 (en) | 2009-03-03 | 2012-05-01 | Hologic, Inc. | Mammography/tomosynthesis systems and methods automatically deriving breast characteristics from breast x-ray images and automatically adjusting image processing parameters accordingly |
JP5373450B2 (en) | 2009-03-31 | 2013-12-18 | 富士フイルム株式会社 | Biopsy device and method of operating biopsy device |
DE102009021023A1 (en) * | 2009-05-13 | 2010-11-18 | Siemens Aktiengesellschaft | Mammography procedure and mammography device |
US8484728B2 (en) | 2009-06-03 | 2013-07-09 | Apple Inc. | Managing securely installed applications |
JP2011072667A (en) | 2009-09-30 | 2011-04-14 | Fujifilm Corp | X-ray image photographing apparatus, x-ray image processing method, and program |
ES2862525T3 (en) | 2009-10-08 | 2021-10-07 | Hologic Inc | Needle Breast Biopsy System and Method of Use |
US8451972B2 (en) | 2009-10-23 | 2013-05-28 | Arineta Ltd. | Methods, circuits, devices, apparatus, assemblies and systems for computer tomography |
JP2013017491A (en) | 2009-11-10 | 2013-01-31 | Honda Hadronix Co Ltd | Signal generator for respiratory gating, tomography device, radiation simulator, and radiation therapy device |
DE102010027871B4 (en) | 2010-04-16 | 2013-11-21 | Siemens Aktiengesellschaft | Ring cathode segment with nanostructure as electron emitter |
JP5976636B2 (en) | 2010-05-07 | 2016-08-23 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Motion compensation and patient feedback in medical imaging systems |
JP2011250842A (en) | 2010-05-31 | 2011-12-15 | Toshiba Corp | Mammography apparatus |
US8853635B2 (en) | 2010-06-02 | 2014-10-07 | Mayo Foundation For Medical Education And Research | Method and apparatus for dual-modality ultrasonic and nuclear emission mammography |
US9498180B2 (en) | 2010-08-05 | 2016-11-22 | Hologic, Inc. | Detecting and quantifying patient motion during tomosynthesis scans |
JP2012050519A (en) * | 2010-08-31 | 2012-03-15 | Fujifilm Corp | Mammographic apparatus |
KR101836549B1 (en) | 2010-10-05 | 2018-03-08 | 홀로직, 인크. | Upright x-ray breast imaging with a ct mode, multiple tomosynthesis modes, and a mammography mode |
WO2012122399A1 (en) | 2011-03-08 | 2012-09-13 | Hologic, Inc. | System and method for dual energy and/or contrast enhanced breast imaging for screening, diagnosis and biopsy |
US20120236987A1 (en) | 2011-03-18 | 2012-09-20 | David Ruimi | Multiple energy ct scanner |
JP6247221B2 (en) | 2011-11-21 | 2017-12-13 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Individual monitoring of compressive force for mammography inspection |
JP2013233415A (en) | 2012-04-11 | 2013-11-21 | Fujifilm Corp | Radiation image photographing apparatus, radiation image photographing program, and radiation image photographing method |
US10068740B2 (en) | 2012-05-14 | 2018-09-04 | The General Hospital Corporation | Distributed, field emission-based X-ray source for phase contrast imaging |
US9922793B2 (en) | 2012-08-16 | 2018-03-20 | Nanox Imaging Plc | Image capture device |
US8798230B2 (en) | 2012-11-19 | 2014-08-05 | Samsung Electronics Co., Ltd. | Radiation imaging apparatus, computed tomography apparatus, and radiation imaging method |
US8824752B1 (en) | 2013-03-15 | 2014-09-02 | Heartflow, Inc. | Methods and systems for assessing image quality in modeling of patient anatomic or blood flow characteristics |
ES2750678T3 (en) | 2013-04-26 | 2020-03-26 | Hologic Inc | X-ray mammography and / or breast tomosynthesis with a compression paddle |
KR20150001181A (en) | 2013-06-26 | 2015-01-06 | 삼성전자주식회사 | The X-ray generator and X-ray photographing apparatus including the same |
JP6523265B2 (en) | 2013-10-09 | 2019-05-29 | ホロジック, インコーポレイテッドHologic, Inc. | X-ray chest tomosynthesis to improve spatial resolution including flattened chest thickness direction |
EP3062706A1 (en) | 2013-10-30 | 2016-09-07 | Koninklijke Philips N.V. | Method and device for displaying medical images |
US10610182B2 (en) | 2014-01-15 | 2020-04-07 | Alara Systems, Inc | Converting low-dose to higher dose 3D tomosynthesis images through machine-learning processes |
US9526468B2 (en) | 2014-09-09 | 2016-12-27 | General Electric Company | Multiple frame acquisition for exposure control in X-ray medical imagers |
EP3221847B1 (en) | 2014-11-20 | 2021-01-06 | Koninklijke Philips N.V. | Method for generation of synthetic mammograms from tomosynthesis data |
GB2533632B (en) | 2014-12-24 | 2018-01-03 | Gen Electric | Method and system for obtaining low dose tomosynthesis and material decomposition images |
KR102372214B1 (en) | 2015-01-19 | 2022-03-14 | 삼성전자주식회사 | Image processing apparatus, medical image apparatus and image processing method |
US10405813B2 (en) | 2015-02-04 | 2019-09-10 | Dental Imaging Technologies Corporation | Panoramic imaging using multi-spectral X-ray source |
US20160331339A1 (en) | 2015-05-15 | 2016-11-17 | The Trustees Of Columbia University In The City Of New York | Systems And Methods For Early Detection And Monitoring Of Osteoarthritis |
US9984478B2 (en) | 2015-07-28 | 2018-05-29 | PME IP Pty Ltd | Apparatus and method for visualizing digital breast tomosynthesis and other volumetric images |
KR101728046B1 (en) | 2015-08-27 | 2017-04-18 | 삼성전자주식회사 | Tomography apparatus and method for reconstructing a tomography image thereof |
CN105286904B (en) | 2015-09-21 | 2020-06-23 | 上海惠影医疗科技有限公司 | Mammary machine compression device |
US10470733B2 (en) | 2016-05-09 | 2019-11-12 | Canon Medical Systems Corporation | X-ray CT device and medical information management device |
CN109310877B (en) | 2016-06-23 | 2020-10-02 | 深圳市奥沃医学新技术发展有限公司 | Method for imaging by using ray source, shielding body, treatment head and treatment equipment |
US10096106B2 (en) | 2016-11-10 | 2018-10-09 | General Electric Company | Combined medical imaging |
EP3595529A1 (en) | 2017-03-15 | 2020-01-22 | Hologic, Inc. | Techniques for patient positioning quality assurance prior to mammographic image acquisition |
DK3600005T3 (en) | 2017-03-31 | 2024-09-30 | Hologic Inc | MULTIMODALITY ANALYSIS OF BODY COMPOSITION |
US11707244B2 (en) | 2017-08-16 | 2023-07-25 | Hologic, Inc. | Techniques for breast imaging patient motion artifact compensation |
EP3449835B1 (en) | 2017-08-22 | 2023-01-11 | Hologic, Inc. | Computed tomography system and method for imaging multiple anatomical targets |
JP7122886B2 (en) | 2018-06-25 | 2022-08-22 | 富士フイルム株式会社 | Imaging control device, method and program |
US11786191B2 (en) | 2021-05-17 | 2023-10-17 | Hologic, Inc. | Contrast-enhanced tomosynthesis with a copper filter |
-
2005
- 2005-11-23 EP EP05852126.1A patent/EP1816965B1/en active Active
- 2005-11-23 EP EP16176648.0A patent/EP3106094B1/en active Active
- 2005-11-23 US US11/791,601 patent/US7869563B2/en active Active
- 2005-11-23 WO PCT/US2005/042613 patent/WO2006058160A2/en active Application Filing
-
2010
- 2010-11-29 US US12/954,971 patent/US8175219B2/en active Active
-
2012
- 2012-05-02 US US13/462,342 patent/US8565374B2/en active Active
-
2013
- 2013-10-21 US US14/058,385 patent/US9066706B2/en active Active
-
2014
- 2014-09-26 US US14/498,476 patent/US9549709B2/en active Active
-
2017
- 2017-01-20 US US15/411,502 patent/US10194875B2/en active Active
-
2019
- 2019-02-04 US US16/266,823 patent/US10905385B2/en active Active
-
2020
- 2020-12-29 US US17/137,032 patent/US11617548B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3971950A (en) * | 1975-04-14 | 1976-07-27 | Xerox Corporation | Independent compression and positioning device for use in mammography |
WO1990005485A1 (en) * | 1988-11-23 | 1990-05-31 | Nrt-Nordisk Roentgen Teknik A/S | X-ray apparatus |
US5018176A (en) * | 1989-03-29 | 1991-05-21 | General Electric Cgr S.A. | Mammograph equipped with an integrated device for taking stereotaxic photographs and a method of utilization of said mammograph |
US5029193A (en) * | 1989-07-03 | 1991-07-02 | Siemens Aktiengesellschaft | X-ray diagnostic installation for mammography exposures |
US5539797A (en) * | 1993-03-29 | 1996-07-23 | Ge Medical Systems Sa | Method and apparatus for digital stereotaxic mammography |
EP0775467A1 (en) * | 1995-11-23 | 1997-05-28 | Planmed Oy | Method and system for controlling the functions of a mammography apparatus |
US5872828A (en) * | 1996-07-23 | 1999-02-16 | The General Hospital Corporation | Tomosynthesis system for breast imaging |
US6611575B1 (en) * | 2001-07-27 | 2003-08-26 | General Electric Company | Method and system for high resolution 3D visualization of mammography images |
US20040101095A1 (en) * | 2002-11-27 | 2004-05-27 | Hologic Inc. | Full field mammography with tissue exposure control, tomosynthesis, and dynamic field of view processing |
EP1428473A2 (en) * | 2002-12-10 | 2004-06-16 | General Electric Company | Full field digital tomosynthesis method and apparatus |
Non-Patent Citations (1)
Title |
---|
See also references of WO2006058160A2 * |
Also Published As
Publication number | Publication date |
---|---|
US8565374B2 (en) | 2013-10-22 |
US9066706B2 (en) | 2015-06-30 |
US11617548B2 (en) | 2023-04-04 |
US20110069809A1 (en) | 2011-03-24 |
EP3106094A2 (en) | 2016-12-21 |
US20120219111A1 (en) | 2012-08-30 |
US20140044231A1 (en) | 2014-02-13 |
US10905385B2 (en) | 2021-02-02 |
EP1816965B1 (en) | 2016-06-29 |
US20210128087A1 (en) | 2021-05-06 |
US20150049859A1 (en) | 2015-02-19 |
US20190200942A1 (en) | 2019-07-04 |
US9549709B2 (en) | 2017-01-24 |
US10194875B2 (en) | 2019-02-05 |
EP3106094B1 (en) | 2021-09-08 |
WO2006058160A3 (en) | 2006-10-12 |
WO2006058160A2 (en) | 2006-06-01 |
EP3106094A3 (en) | 2017-01-04 |
US7869563B2 (en) | 2011-01-11 |
EP1816965A4 (en) | 2008-12-31 |
US20170128028A1 (en) | 2017-05-11 |
US8175219B2 (en) | 2012-05-08 |
US20090003519A1 (en) | 2009-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11617548B2 (en) | Integrated multi-mode mammography/tomosynthesis x-ray system and method | |
JP6360923B2 (en) | Integrated multi-mode mammography / tomosynthesis x-ray system and method | |
US9498175B2 (en) | System and method for low dose tomosynthesis | |
AU2017204458B2 (en) | Integrated multi-mode mammography/tomosynthesis x-ray system and method | |
AU2013101288A4 (en) | Integrated multi-mode mammography/tomosynthesis x-ray system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070621 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20081203 |
|
17Q | First examination report despatched |
Effective date: 20090331 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151215 |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
INTG | Intention to grant announced |
Effective date: 20160523 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005049654 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: HOLOGIC INC. |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005049654 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170330 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231127 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231127 Year of fee payment: 19 Ref country code: DE Payment date: 20231129 Year of fee payment: 19 |