EP1807873A1 - Photovoltaische zelle - Google Patents

Photovoltaische zelle

Info

Publication number
EP1807873A1
EP1807873A1 EP05798617A EP05798617A EP1807873A1 EP 1807873 A1 EP1807873 A1 EP 1807873A1 EP 05798617 A EP05798617 A EP 05798617A EP 05798617 A EP05798617 A EP 05798617A EP 1807873 A1 EP1807873 A1 EP 1807873A1
Authority
EP
European Patent Office
Prior art keywords
layer
semiconductor material
doped semiconductor
photovoltaic cell
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05798617A
Other languages
English (en)
French (fr)
Inventor
Hans-Josef Sterzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1807873A1 publication Critical patent/EP1807873A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to photovoltaic cells and the photovoltaically active semiconductor material contained therein.
  • Photovoltaically active materials are semiconductors that convert light into electrical energy.
  • the basics have been known for a long time and are used technically. Almost most of the technically used solar cells are based on crystalline silicon (monocrystalline or polycrystalline). In a boundary layer between p- and n-type silicon, incident photons excite electrons of the semiconductor, so that they are lifted from the valence band into the conduction band.
  • the height of the energy gap between the valence band and the conduction band limits the maximum possible efficiency of the solar cell. For silicon, this is about 30% when exposed to sunlight. In practice, on the other hand, an efficiency of about 15% is achieved because some of the charge carriers are re-combined by different processes or deactivated by further mechanisms and thus removed from use.
  • silicon With an energy gap around 1, 1 eV, silicon has a fairly good value for use. By reducing the energy gap, more charge carriers are transported into the conduction band, but the cell voltage becomes lower. Correspondingly, higher cell voltages are achieved with larger energy gaps, but since fewer photons are present for excitation, lower usable currents are available.
  • tandem cells Many arrangements, such as the series arrangement of semiconductors with different energy gaps, in so-called tandem cells have been proposed in order to achieve higher efficiencies. Due to their complex structure, however, these are hardly economically feasible.
  • a new concept is to generate an intermediate level within the energy gap (up-conversion). This concept is described, for example, in the Proceedings of the 14th Workshop on Quantum Solar Energy Conversion Quantasol 2002, March, 17-23, 2002, Rauris, Salzburg, Austria, "Improving Solar Cells Efficiencies by the Up-Conversion", T. Trupke, MA Green, P. Cube or "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Tranisitions at intermediate levels ", A. Luque and A. Marti, Phys. Rev. Letters, Vol. 78, No. 26, June 1997, 5014-5017. For a band gap of 1.995 eV and an energy of the intermediate level at 0.713 eV, a maximum efficiency of 63.17% is calculated.
  • the desired intermediate energy level in the bandgap is increased by replacing part of the telluran ions in the anion lattice with the substantially more electronegative oxygen ion.
  • Tellurium was replaced by ion implantation in thin films by oxygen.
  • a major disadvantage of this class of substances is that the solubility of the oxygen in the semiconductor is extremely low. It follows that, for example, the compounds Zn Vx Mn x Te Vy O y with y greater than 0.001 are not thermodynamically stable. Upon irradiation for a long time, they will lapse into the stable tellurides and oxides. Use of up to 10 at% tellurium by oxygen would be desirable, but such compounds are not stable.
  • Zinc telluride which has a direct band gap of 2.32 eV at room temperature, would be an ideal semiconductor for the intermediate level technology because of this large band gap.
  • Zinc can be replaced by manganese continuously in zinc telluride, whereby the band gap increases to about 2.8 eV with MnTe ("Optical Properties of epitaxial Zn Mn Te and ZnMgTe films for a wide range of alloy compostions", X. Liu et al., J. Appl. Phys., Vol. 91, No. 5, March 2002, 2859-2865; "Bandgap of Znv x Mn x Te: non linear dependence on compostion and temperature", HC Mertins et al., Semicond. Sci. Technol. 8 (1993) 1634-1638).
  • Zn 1 ⁇ Mn x Te can be p-type doped with up to 0.2 mol% phosphorus, with an electrical conductivity between 10 and 30 ⁇ '1 cm ' 1 is achieved ("Electrical and Magnetic Properties of Phosphorus Doped BuIk Znv x Mn x Te ", Le Van Khoi et al., Moudavian Journal of Physical Sciences, No. 1, 2002, 11-14.)
  • n-type species are obtained (" aluminum-doped n-type ZnTe layers grown by molecular beam epitaxy ", JH Chang et al., Appl. Phys. Letters, VoI 79, No.
  • the object of the present invention is to provide a photovoltaic cell with a high efficiency and a high electric power, which avoids the disadvantages of the prior art. Furthermore, it is the object of the present invention in particular to provide a photovoltaic cell with a thermodynamically stable photovoltaically active semiconductor material, wherein the semiconductor material contains an intermediate level in the energy gap.
  • a photovoltaic cell with a photovoltaically active semiconductor material characterized in that the photovoltaically active semiconductor material is a p- or an n-doped semiconductor material with mixed compounds of the formula (I):
  • x number from 0.01 to 0.99
  • y number from 0.001 to 0.2
  • a number from 1 to 2
  • b number from 1 to 3.
  • the task is surprisingly solved completely different than the literature mentioned could be expected.
  • the tellurium is not replaced by a much more electronegative element, but rather silicon is introduced into the semiconductor material with the formula Zn 1-11 Mn x Te. This is surprising insofar as the electronegativity of silicon differs only slightly from that of 2.1 with tellurium 2.1.
  • the variable x can assume values of 0.01 to 0.99
  • y can assume values of 0.001 to 0.2, preferably of 0.005 to 0.1.
  • the variable a can take values from 1 to 2
  • b can take values from 1 to 3.
  • the photovoltaic cell according to the invention has the advantage that the photovoltaically active semiconductor material used is thermodynamically stable even after introduction of silicon telluride. Furthermore, the photovoltaic cell according to the invention has a high degree of efficiency (up to 60%) since the silicon telluride Si a Te b generates intermediate levels in the energy gap of the photovoltaically active semiconductor material. Without intermediate level, only such photons can be electrons or Lift charge carriers from the valence band into the conduction band, which have at least the energy gap energy. Photons of higher energy also contribute to the efficiency, the excess of energy with respect to the band gap being lost as heat. With an intermediate level present in the semiconductor material used for the present invention, which can be partially occupied, more photons can contribute to the excitation.
  • the photovoltaic cell of the present invention is constructed to include a p-doped and an n-doped semiconductor material, these two semiconductor materials adjoining each other to form a p-n junction.
  • both the p- and the n-doped semiconductor material largely consists of mixed compounds of the formula (I), wherein the material is further doped with donor ions in the p-doped Halbleiterma ⁇ material and acceptor ions in the n-doped semiconductor material.
  • the p-doped semiconductor material contains at least one element from the group As and P with an atomic concentration of up to 0.1 at% and the n-doped semiconductor material at least one element from the group AI, In and Ga with an atomic concentration of up to to 0.5 at%.
  • Preferred dopants are aluminum and phosphorus.
  • this comprises a substrate, in particular an electrically conductive substrate, a p-layer of the p-doped semiconductor material having a thickness of 0.1 to 10 .mu.m, preferably 0.3 to 3 .mu.m, and an n Layer of the n-doped semiconductor material having a thickness of 0.1 to 10 .mu.m, preferably 0.3 to 3 microns.
  • the substrate is a flexible metal foil or a flexible metal sheet.
  • inflexible substrates such as glass or silicon
  • wind forces have to be absorbed by complex supporting constructions in order to avoid breakage of the solar module.
  • twisting is possible by means of flexibility, it is possible to use very simple and inexpensive supporting structures which do not have to be torsionally stiff.
  • a stainless steel sheet is particularly used in the present invention.
  • the invention further relates to a method for producing a photovoltaic cell according to the invention, comprising coating a substrate with at least one respective layer of the p-doped semiconductor material and a layer of the n-doped semiconductor material, the layers having a thickness of 0 , 1 to 10 microns, preferably from 0.3 to 3 microns.
  • the coating of the substrate with the p or n layer preferably comprises at least one deposition method selected from the group sputtering, laser ablation, electrochemical deposition or electroless deposition.
  • the already p- or n-doped semiconductor material with mixed compounds of the formula (I) can be applied to the substrate as a layer.
  • a layer of the semiconductor material may be first generated without p- or n-doping by the deposition process and this layer then p- or n-doped.
  • the introduction of silicon in the form of silicon telluride according to the invention is (if the respective layer produced by one of the abovementioned deposition methods has not yet been formed accordingly) preferably carried out subsequent to the performance of the deposition process (and optionally to the p- or n-doping).
  • Sputtering refers to the ejection of atoms from a sputtering target serving as an electrode by accelerated ions and the deposition of the ejected material on a substrate (eg stainless steel).
  • a substrate eg stainless steel
  • sputtering targets containing zinc, manganese, tellurium and silicon are produced by fusing together the constituents or individual constituents of the semiconductor material are sputtered onto the substrate one after the other and then to a temperature of 400 to 900 0 C heated.
  • zinc, manganese, tellurium and silicon in a purity of at least 99.5% are used to produce the sputtering target.
  • Zinc, manganese, tellurium and silicon telluride (Si a Te b ) are fused in a dehydrated quartz tube under vacuum at temperatures of 1200 to 1400 0 C, for example.
  • doping elements for a p-type or n-type doping are preferably introduced into the sputtering target.
  • the doping elements preferably aluminum for n-conduction and phosphorus for p-conduction, are accordingly added to the sputtering target from the outset.
  • the compounds AITe or Zn 3 P 2 are so temperature stable that they survive the sputtering process without significant change in stoichiometry.
  • a layer with a doping is then sputtered onto the substrate and immediately thereafter a further layer with the opposite doping.
  • Another preferred deposition method according to the invention is the electrochemical deposition of Zn 1 Mn x Te on the electrically conductive substrate.
  • the electrochemical deposition of ZnTe is described in "Thin Films of ZnTe Electrodeposited on Stainless Steel", AE Rakhsan and Pradup, Appl. Phys. A (2003), Pub., Online, Dec. 19, 2003, Springer-Verlag; "Electrodeposition of ZnTe for photovoltaic alls", B. Bozzini et al., Thin Solid Films, 361-362, (2000) 288-295; "Electrochemical Deposition of ZnTe Thins films ", T.
  • the substrate contains an aqueous solution containing Zn 2+, Mn 2+ and TeO 3 2 ions, at temperatures of 30 to 90 0 C is crosslinked with hypophosphorous acid (H 3 PO 2 ) as a reducing agent.
  • hypophosphorous acid H 3 PO 2
  • the hypophosphorous acid reduces TeO 3 2 " to Te 2" . This also depositions on electrically non-conductive substrates are possible.
  • the method according to the invention comprises the following method steps:
  • the electrically conductive substrate is coated, for example by sputtering, electrochemical deposition or electroless deposition, with a first layer of Zn 1 Mn x Te.
  • the substrate is preferably a metal sheet or a metal foil.
  • silicon is introduced into this first layer in step b) to produce mixed compounds of the formula (I).
  • the introduction of silicon takes place, for example, by applying Si 2 Te 3 to the first layer by sputtering and then by a thermal post-treatment at 600 to 1200 0 C, preferably 800 to 1000 0 C, a mixed crystallization and thus the desired composition er ⁇ is sufficient.
  • a p- or n-doping is then generated by doping with donor atoms or acceptor atoms.
  • the first layer is doped either with phosphorus (for example from PCI 3 ) to the p-type conductor or with aluminum (for example from AICI 3 ) to the n-type conductor.
  • step d) the second layer of Zn 1 -x Mn x Te is then deposited on the first layer. This can be done, for example, the same deposition method as in step a).
  • step e silicon is introduced into the second layer as described with reference to the first layer for step b).
  • step f) The doping generated in step f) is opposed to the doping generated in step c), so that one layer has a p-type doping and the other layer has an n-type doping.
  • an electrically conductive transparent layer and a protective layer are applied to the second layer.
  • the electrically conductive transparent layer may be, for example, a layer of indium tin oxide or aluminum zinc oxide. It also preferably carries printed conductors for the electrical contacting of the photovoltaic cell according to the invention.
  • the protective layer can be, for example, a layer of SiO x , which is preferably applied by CVD or PVD.
  • a layer of a material may serve as a protective layer which is produced in the prior art for aroma-tight films (eg coffee packaging).
  • Si 2 Te 3 were weighed into a quartz tube with an inner diameter of 11 mm and a length of about 15 cm.
  • the Si 2 Te 3 wur ⁇ de previously separately prepared by adding silicon and tellurium were taken at 1,000 0 C in an evacua- wholesome quartz tube to react.
  • the tube was heated under vacuum to 300 ° C. for 10 minutes to drain and then under a pressure lower than 0.1 mbar melted off.
  • the tube was heated in an oven at 300 ° C / h to 1300 0 C, the temperature for 10 h at 1300 0 C left and then allowed to cool the oven.
  • the furnace was tilted about a drive 30 times per hour about its longitudinal axis to see through the melt in the quartz tube.
  • this material is sputtered onto a substrate.
  • electrolyses were carried out in a 500 ml flat-bottomed reaction vessel with double jacket, internal thermometer and bottom outlet valve.
  • the cathode used was a stainless steel sheet (100 ⁇ 70 ⁇ 0.5).
  • the anode consisted of MKUSF04 (graphite).
  • the deposition was carried out at a cathode area of -50 cm 2 ( ⁇ 2 mA / cm z ). After completion of the electrolysis, the cathode was removed, rinsed with distilled water and dried. The weight gain is 26.9 mg. The deposit has a deep dark brown color.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

Die Erfindung bezieht sich auf eine photovoltaische Zelle mit einem photovoltaisch aktiven Halbleitermaterial, wobei das photovoltaisch aktive Halbleitermaterial ein p- oder n-dotiertes Halbleitermaterial mit Mischverbindungen der Formel (I) ist: (Zn1-xMnxTe)1-y(SiaTeb)y (I) mit x= Zahl von 0,01 bis 0,99, y = Zahl von 0,01 bis 0,2, a = Zahl von 1 bis 2 und b = Zahl von 1 bis 3.

Description

Photovoltaische Zelle
Beschreibung
Die Erfindung betrifft photovoltaische Zellen und das darin enthaltene photovoltaisch aktive Halbleitermaterial.
Photovoltaisch aktive Materialien sind Halbleiter, welche Licht in elektrische Energie umsetzen. Die Grundlagen hierzu sind lange bekannt und werden technisch genutzt. Nahezu die meisten der technisch genutzten Solarzellen basieren auf kristallinem Sili¬ zium (ein- oder polykristallin). In einer Grenzschicht zwischen p- und n-leitendem Silizi¬ um regen einfallende Photonen Elektronen des Halbleiters an, so dass sie vom Va- lenzband in das Leitungsband gehoben werden.
Die Höhe der Energielücke zwischen dem Valenzband und dem Leitungsband limitiert den maximal möglichen Wirkungsgrad der Solarzelle. Beim Silizium ist dies circa 30% bei Bestrahlung mit Sonnenlicht. In der Praxis erreicht man dagegen einen Wirkungs- grad von circa 15%, weil ein Teil der Ladungsträger durch verschiedene Prozesse re¬ kombiniert oder durch weitere Mechanismen deaktiviert und so der Nutzung entzogen wird.
Aus DE 102 23 744 A1 sind alternative photovoltaisch aktive Materialien und diese enthaltende Photovoltaikzellen bekannt, die den Wirkungsgrad herabsetzende Ver¬ lustmechanismen in einem verringerten Maße aufweisen.
Mit einer Energielücke um 1 ,1 eV weist Silizium einen für die Nutzung recht guten Wert auf. Durch ein Verkleinern der Energielücke werden zwar mehr Ladungsträger ins Lei- tungsband befördert, die Zellspannung wird jedoch niedriger. Entsprechend werden bei größeren Energielücken zwar höhere Zellspannungen erreicht, da aber weniger Photo¬ nen zur Anregung vorhanden sind, stehen niedrigere nutzbare Ströme zur Verfügung.
Viele Anordnungen wie die Serienanordnung von Halbleitern mit verschiedenen Ener- gielücken, in sogenannten Tandemzellen wurden vorgeschlagen, um höhere Wir¬ kungsgrade zu erreichen. Diese sind wegen ihres komplexen Aufbaus jedoch wirt¬ schaftlich kaum zu realisieren.
Ein neues Konzept besteht darin, innerhalb der Energielücke ein Zwischenniveau zu generieren (Up-Conversion). Dieses Konzept ist beispielsweise beschrieben in Pro- ceedings of the 14th Workshop on Quantum Solar Energy Conversion-Quantasol 2002, March, 17-23, 2002, Rauris, Salzburg, Österreich, "Improving solar cells efficiencies by the up-conversion", Tl. Trupke, M.A. Green, P. Würfel oder "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Tranisitions at intermediate Levels", A. Luque and A. Marti, Phys. Rev. Letters, Vol. 78, Nr. 26, June 1997, 5014-5017. Für eine Bandlü- cke von 1 ,995 eV und eine Energie des Zwischenniveaus bei 0,713 eV ergibt sich rechnerisch ein maximaler Wirkungsgrad von 63,17%.
Spektroskopisch wurden derartige Zwischenniveaus beispielsweise am System CdVyM^OxTe1-X oder an Zn1-XMnxOyTeVy nachgewiesen. Dies ist beschrieben in "Band anticrossing in group H-OxVI1-X highly mismatched alloys: CdvyMnyOχTevχ quaternaries synthesized by O ion Implantation", W. Walukiewicz et al., Appl. Phys. Letters, VoI 80, Nr. 9, March 2002, 1571-1573 und in "Synthesis and optical properties of H-O-Vl highly mismatched alloys", W. Walukiewicz et al., J. Appl. Phys. Vol. 95, Nr. 11 , June 2004, 6232-6238. Demnach wird das erwünschte energetische Zwischenniveau in der Band- lücke dadurch erhöht, dass im Anionengitter ein Teil der Telluranionen durch das we¬ sentlich elektronegativere Sauerstoffion ersetzt wird. Dabei wurde Tellur durch Ionen¬ implantation in dünnen Filmen durch Sauerstoff ersetzt. Ein wesentlicher Nachteil die¬ ser Stoffklasse besteht darin, dass die Löslichkeit des Sauerstoffs im Halbleiter äußerst gering ist. Daraus folgt, dass beispielsweise die Verbindungen ZnVxMnxTeVyOy mit y größer als 0,001 thermodynamisch nicht stabil sind. Bei Bestrahlung über längere Zeit verfallen sie in die stabilen Telluride und Oxide. Ein Einsatz von bis zu 10 At-% Tellur durch Sauerstoff wäre erwünscht, wobei solche Verbindungen jedoch nicht stabil sind.
Zinktellurid, das bei Raumtemperatur eine direkte Bandlücke von 2,32 eV aufweist, wäre wegen dieser großen Bandlücke ein idealer Halbleiter für die Zwischenniveau- technologie. Zink lässt sich gut in Zinktellurid kontinuierlich durch Mangan substituie¬ ren, wobei die Bandlücke auf circa 2,8 eV bei MnTe anwächst („Optical Properties of epitaxial Zn Mn Te and ZnMgTe films for a wide ränge of alloy compostions", X. Liu et al., J. Appl. Phys. Vol. 91 , Nr. 5, March 2002, 2859-2865; „Bandgap of ZnvxMnxTe: non linear dependence on compostion and temperature", H. C. Mertins et al., Semicond. Sei. Technol. 8 (1993) 1634-1638).
Zn1^MnxTe lässt sich mit bis zu 0,2 Mol-% Phosphor p-leitend dotieren, wobei eine elektrische Leitfähigkeit zwischen 10 und 30 Ω'1cm'1 erreicht wird („Electrical and Magnetic Properties of Phosphorus Doped BuIk ZnvxMnxTe", Le Van Khoi et al., MoI- davian Journal of Physical Sciences, Nr. 1 , 2002, 11-14). Durch partielles Ersetzen von Zink durch Aluminium werden n-leitende Spezies erhalten („Aluminium-doped n-type ZnTe layers grown by molecular-beam epitaxy", J. H. Chang et al., Appl. Phys. Letters, VoI 79, Nr. 6, august 2001 , 785-787; "Aluminium doping of ZnTe grown by MOPVE", S.l. Gheyas et al., Appl. Surface Science 100/101 (1996) 634-638; "Electrical Transport and Photoelectronic Properties of ZnTe: AI Crystals", T.L. Lavsen et al., J. Appl. Phys., VoI 43, Nr. 1 , Jan 1972, 172-182). Mit Dotierungsgraden um 4*1018 AI/cm3 können e- lektrische Leitfähigkeiten um 50 bis 60 Ω"1cm"1 erreicht werden.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine photovoltaische Zelle mit einem hohen Wirkungsgrad und einer hohen elektrischen Leistung bereitzustellen, die die Nachteile des Standes der Technik vermeidet. Weiterhin ist es Aufgabe der vorlie¬ genden Erfindung insbesondere eine photovoltaische Zelle mit einem thermodyna- misch stabilen photovoltaisch aktiven Halbleitermaterial bereitzustellen, wobei das Halbleitermaterial ein Zwischenniveau in der Energielücke enthält.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine photovoltaische Zelle mit ei¬ nem photovoltaisch aktiven Halbleitermaterial, dadurch gekennzeichnet, dass das pho¬ tovoltaisch aktive Halbleitermaterial ein p- oder ein n-dotiertes Halbleitermaterial mit Mischverbindungen der Formel (I) ist:
(Zn1.xMnxTe)i.y(SiaTeb)y (I)
mit x = Zahl von 0,01 bis 0,99, y = Zahl von 0,001 bis 0,2, a = Zahl von 1 bis 2 und b = Zahl von 1 bis 3.
Damit wird die Aufgabe überraschenderweise völlig anders gelöst als es die genannten Literaturstellen erwarten ließen. Zur Erzeugung von Zwischenniveaus in der Energielü¬ cke wird das Tellur nicht durch ein wesentlich elektronegativeres Element ersetzt, son¬ dern es wird Silizium in das Halbleitermaterial mit der Formel Zn1-11MnxTe eingebracht. Dies ist insofern überraschend, als sich die Elektronegativität von Silizium mit 1 ,9 nur geringfügig von der des Tellurs mit 2,1 unterscheidet.
Die Variable x kann Werte von 0,01 bis 0,99 annehmen, y kann Werte von 0,001 bis 0,2, vorzugsweise von 0,005 bis 0,1 annehmen. Die Variable a kann Werte von 1 bis 2 annehmen, b kann Werte von 1 bis 3 annehmen. Bevorzugt sind a = 2 und b = 3, was als Stöchiometrie Si2Te3 ergibt.
Die erfindungsgemäße photovoltaische Zelle hat den Vorteil, dass das verwendete photovoltaisch aktive Halbleitermaterial auch nach dem Einbringen von Siliziumtellurid thermodynamisch stabil ist. Ferner weist die erfindungsgemäße photovoltaische Zelle einen hohen Wirkungsgrad (bis zu 60%) auf, da durch das Siliziumtellurid SiaTeb Zwi- schenniveaus in der Energielücke des photovoltaisch aktiven Halbleitermaterials er¬ zeugt werden. Ohne Zwischenniveau können nur solche Photonen Elektronen oder Ladungsträger vom Valenzband in das Leitungsband heben, die mindestens die Ener¬ gie der Energielücke aufweisen. Photonen höherer Energie tragen auch zum Wir¬ kungsgrad bei, wobei der Überschuss an Energie bzgl. der Bandlücke als Wärme ver¬ loren geht. Mit einem Zwischenniveau, das bei dem für die vorliegende Erfindung ver- wendeten Halbleitermaterial vorhanden ist und das teilweise besetzt werden kann, können mehr Photonen zur Anregung beitragen.
Die erfindungsgemäße photovoltaische Zelle ist so aufgebaut, dass sie ein p-dotiertes und ein n-dotiertes Halbleitermaterial enthält, wobei diese beiden Halbleitermaterialien aneinander grenzen, um einen p-n-Übergang zu bilden. Dabei besteht sowohl das p- als auch das n-dotierte Halbleitermaterial weitgehend aus Mischverbindungen der Formel (I), wobei das Material ferner mit Donatorionen in dem p-dotierten Halbleiterma¬ terial und Akzeptorionen in dem n-dotierten Halbleitermaterial dotiert ist.
Vorzugsweise enthält das p-dotierte Halbleitermaterial mindestens ein Element aus der Gruppe As und P mit einem Atomkonzentrationsanteil von bis zu 0,1 At-% und das n-dotierte Halbleitermaterial mindestens ein Element aus der Gruppe AI, In und Ga mit einem Atomkonzentrationsanteil von bis zu 0,5 At-%. Bevorzugte Dotierelemente sind Aluminium und Phosphor.
Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen photovoltaischen Zelle umfasst diese ein Substrat, insbesondere ein elektrisch leitfähiges Substrat, eine p-Schicht aus dem p- dotierten Halbleitermaterial mit einer Dicke von 0,1 bis 10 μm, bevorzugt 0,3 bis 3 μm und eine n-Schicht aus dem n-dotierten Halbleitermaterial mit einer Dicke von 0,1 bis 10 μm, bevorzugt 0,3 bis 3 μm. Vorzugsweise ist das Substrat eine flexible Metallfolie oder ein flexibles Metallblech. Durch die Kombination aus ei¬ nem flexiblen Substrat mit dünnen photovoltaisch aktiven Schichten ergibt sich der Vorteil, dass keine aufwendigen und damit teuren Auflager zur Halterung der die erfin¬ dungsgemäßen photovoltaischen Zellen enthaltenden Solarmodule eingesetzt werden müssen. Bei unflexiblen Substraten wie Glas oder Silizium müssen Windkräfte durch aufwendige Tragekonstruktionen abgefangen werden, um ein Brechen der Solarmodu¬ le zu vermeiden. Ist dagegen eine Verwindung durch Flexibilität möglich, so können sehr einfache und preiswerte Tragkonstruktionen eingesetzt werden, die nicht verwin- dungssteif sein müssen. Als bevorzugtes flexibles Substrat wird bei der vorliegenden Erfindung insbesondere ein Edelstahlblech verwendet.
Die Erfindung bezieht sich weiterhin auf ein Verfahren zur Herstellung einer erfin¬ dungsgemäßen photovoltaischen Zelle, umfassend das Beschichten eines Substrats mit mindestens jeweils einer Schicht aus dem p-dotierten Halbleitermaterial und einer Schicht aus dem n-dotierten Halbleitermaterial, wobei die Schichten eine Dicke von 0,1 bis 10 μm, vorzugsweise von 0,3 bis 3 μm aufweisen. Das Beschichten des Substrats mit der p- oder n-Schicht umfasst dabei vorzugsweise mindestens ein Abscheidungsverfahren ausgewählt aus der Gruppe Sputtern, Laser- ablation, elektrochemisches Abscheiden oder stromloses Abscheiden. Durch das je- weilige Abscheidungsverfahren kann das bereits p- oder n-dotierte Halbleitermaterial mit Mischverbindungen der Formel (I) als Schicht auf das Substrat aufgebracht wer¬ den. Alternativ dazu kann eine Schicht aus dem Halbleitermaterial zunächst ohne p- oder n-Dotierung durch das Abscheidungsverfahren erzeugt werden und diese Schicht anschließend p- oder n-dotiert werden. Das erfindungsgemäße Einbringen von Silizium in Form von Siliziumtellurid wird (falls die jeweilige durch eines der oben genannten Abscheidungsverfahren hergestellte Schicht noch nicht entsprechend ausgebildet ist) vorzugsweise im Anschluss an die Durchführung des Abscheidungsverfahrens (und gegebenenfalls an die p- oder n-Dotierung) durchgeführt.
Ein mögliches Abscheidungsverfahren ist das Beschichten durch Sputtern. Sputtern bezeichnet das Herausschlagen von Atomen aus einem als Elektrode dienenden Sput- ter-Target durch beschleunigte Ionen und die Deposition des herausgeschlagenen Ma¬ terials auf einem Substrat (z.B. Edelstahl). Zum Beschichten eines Substrats bei der vorliegenden Erfindung werden zum Sputtern z.B. Sputter-Targets enthaltend Zink, Mangan, Tellur und Silizium durch Zusammenschmelzen der Bestandteile hergestellt oder einzelne Bestandteile des Halbleitermaterials werden nacheinander auf das Sub¬ strat gesputtert und anschließend auf eine Temperatur von 400 bis 9000C erwärmt.
Vorzugsweise werden zum Herstellen des Sputter-Targets Zink, Mangan, Tellur und Silizium in einer Reinheit von mindestens 99,5 % eingesetzt. Zink, Mangan, Tellur und Siliziumtellurid (SiaTeb) werden z.B. in einer entwässerten Quarzröhre unter Vakuum bei Temperaturen von 1.200 bis 1.4000C verschmolzen. Beim Herstellen des Sputter- Targets werden vorzugsweise Dotierelemente für eine p- oder n-Dotierung in das Sput- ter-Target eingebracht. Die Dotierelemente, bevorzugt Aluminium zur n-Leitung und Phosphor zur p-Leitung, werden demnach dem Sputter-Target von vornherein zuge¬ fügt. Die Verbindungen AITe bzw. Zn3P2 sind so temperaturstabil, dass sie den Sputter- Prozess ohne wesentliche Stöchiometrie-Änderung überstehen. Auf das Substrat wird dann zunächst eine Schicht mit einer Dotierung aufgesputtert und direkt darauf eine weitere Schicht mit der entgegengesetzten Dotierung.
Ein weiteres bevorzugtes erfindungsgemäßes Abscheidungsverfahren ist das elektro¬ chemische Abscheiden von Zn1^MnxTe auf dem elektrisch leitfähigen Substrat. Die elektrochemische Abscheidung von ZnTe ist beschrieben in „Thin films of ZnTe e- lectrodeposited on stainless steel", A.E. Rakhsan u. B. Pradup, Appl. Phys. A (2003), Pub online Dec. 19, 2003, Springer- Verlag; „Electrodeposition of ZnTe for photovoltaic alls", B. Bozzini et al., Thin Solid Films, 361-362, (2000) 288-295; „Electrochemical deposition of ZnTe Thins films", T. Mahalingam et al., Semicond. Sei. Technol. 17 (2002) 469-470; "Electrodeposition of Zn-Te Semiconductor Film from Acidic Aqueous Solution", R. Ichino et al., Second Internat. Conference on Processing Materials for Properties, The Minerals, Metals & Materials Society, 2000 und in US-PS 4,950,615, nicht hingegen die elektrochemische Abscheidung von gemischten Zn/Mn/Te- Schichten.
Gegenstand eines erfindungsgemäßen Verfahrens ist es ferner, Zn^M^Te-Schichten stromlos abzuscheiden, indem in Gegenwart des Substrats eine wässrige Lösung, die Zn2+, Mn2+ sowie TeO3 2 -lonen enthält, bei Temperaturen von 30 bis 900C mit hy- pophosphoriger Säure (H3PO2) als Reduktionsmittel vernetzt wird. Durch die hy- pophosphorige Säure wird TeO3 2" zu Te2" reduziert. Damit sind auch Abscheidungen auf elektrisch nicht leitenden Substraten möglich.
Je nach Abscheidungsverfahren sind noch Nachbehandlungen notwendig, um Silizium- tellurid in die Schichten einzubauen, teilweise auch um die Dotierstoffe einzubringen.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung weist das er¬ findungsgemäße Verfahren folgende Verfahrensschritte auf:
a) Beschichten des Substrats mit einer ersten Schicht aus Zn1^MnxTe, b) Einbringen von Silizium in die erste Schicht zum Herstellen von Mischverbin¬ dungen der Formel (I), c) Erzeugen einer p- oder einer n-Dotierung mit Donatoratomen oder Akzeptor- atomen, d) Beschichten der ersten Schicht mit einer zweiten Schicht aus Zn1-xMnxTe, e) Einbringen von Silizium in die zweite Schicht zum Herstellen von Mischver¬ bindungen in der Formel (I), f) Erzeugen einer n- oder p-Dotierung mit Akzeptoratomen oder Donatoratomen und g) Aufbringen einer elektrisch leitfähigen transparenten Schicht und einer Schutzschicht auf die zweite Schicht.
In Schritt a) wird das elektrisch leitfähige Substrat z.B. durch Sputtem, elektrochemi- sehe Abscheidung oder stromlose Abscheidung mit einer ersten Schicht aus Zn1^MnxTe beschichtet. Bei dem Substrat handelt es sich vorzugsweise um ein Metall¬ blech oder eine Metallfolie.
Danach wird in Schritt b) in diese erste Schicht Silizium eingebracht, um Mischverbin- düngen der Formel (I) herzustellen. Das Einbringen von Silizium erfolgt z.B. dadurch, dass Si2Te3 durch Sputtem auf die erste Schicht aufgebracht wird und anschließend durch eine thermische Nachbehandlung bei 600 bis 12000C, vorzugsweise 800 bis 10000C, eine Mischkristallisation und damit die gewünschte Zusammensetzung er¬ reicht wird.
In Schritt c) erfolgt anschließend das Erzeugen einer p- oder n-Dotierung durch Dotie¬ ren mit Donatoratomen oder Akzeptoratomen. Beispielsweise wird die erste Schicht entweder mit Phosphor (beispielsweise aus PCI3) zum p-Leiter oder mit Aluminium (beispielsweise aus AICI3) zum n-Leiter dotiert.
In Schritt d) wird sodann die zweite Schicht aus Zn1-xMnxTe auf der ersten Schicht ab¬ geschieden. Dazu kann beispielsweise das gleiche Abscheidungsverfahren wie in Schritt a) dienen.
In Schritt e) wird wie anhand der ersten Schicht für Schritt b) beschrieben Silizium in die zweite Schicht eingebracht.
Die in Schritt f) erzeugte Dotierung ist der in Schritt c) erzeugten Dotierung entgegen¬ gesetzt, so dass eine Schicht eine p-Dotierung und die andere Schicht eine n- Dotierung aufweist.
Schließlich werden in Schritt g) eine elektrisch leitfähige transparente Schicht und eine Schutzschicht auf die zweite Schicht aufgebracht. Die elektrisch leitfähige transparente Schicht kann beispielsweise eine Schicht aus Indium-Zinn-Oxid oder Aluminium-Zink- Oxid sein. Sie trägt ferner vorzugsweise Leiterbahnen für die elektrische Kontaktierung der erfindungsgemäßen photovoltaischen Zelle. Die Schutzschicht kann beispielsweise eine Schicht aus SiOx sein, die vorzugsweise durch CVD oder PVD aufgebracht wird. Es kann z.B. eine Schicht aus einem Material als Schutzschicht dienen, das im Stand der Technik für aromadichte Folien (z.B. Kaffeeverpackungen) hergestellt wird.
Beispiel 1
Entsprechend der Stöchiometrie
(Zno,5 Mno,5Te)o,95 (Si2Te3)o,o5
wurden 1 ,0350 g Zn; 0,8669 g Mn; 4,0407 g Tellur sowie 0,7316 g Si2Te3 in ein Quarz¬ rohr mit 11 mm Innendurchmesser und ca. 15 cm Länge eingewogen. Das Si2Te3 wur¬ de vorher gesondert hergestellt, indem Silizium und Tellur bei 1.0000C in einem evaku- ierten Quarzrohr zur Reaktion gebracht wurden. Das Rohr wurde unter Vakuum zum Entwässern 10 min lang auf 3000C erhitzt und sodann unter einem Druck kleiner als 0,1 mbar abgeschmolzen. Das Rohr wurde in einem Ofen mit 300°C/h auf 1.3000C aufgeheizt, die Temperatur 10 h bei 1.3000C belassen und der Ofen dann abkühlen gelassen. Während der 10 h bei 1.3000C wurde der Ofen über einen Antrieb 30 mal pro Stunde um seine Längsachse gekippt, um die Schmelze im Quarzrohr zu durchmi- sehen.
Nach dem Abkühlen wurde das Quarzrohr geöffnet und der Schmelzregulus entfernt. Mittels Reflexionsspektroskopie wurden die Anregungsniveaus des Materials bestimmt. Neben der Bandlücke um 2,3 eV wurden noch Energieniveaus bei 0,66 eV; 0,76 eV sowie 0,9 eV gefunden.
Zur Herstellung einer erfindungsgemäßen photovoltaischen Zelle wird dieses Material auf ein Substrat gesputtert.
Beispiel 2
Zum elektrochemischen Abscheiden wurden Elektrolysen in einem 500 ml Planschliff- Reaktionsgefäß mit Doppelmantel, Innenthermometer und Bodenablassventil durchge- führt. Als Kathode wurde ein Edelstahlblech (100 x 70 x 0.5) verwendet. Die Anode bestand aus MKUSF04 (Graphit).
a) Darstellung von ZnTe
Es wurden 21 ,35 g ZnSO4 • 7H2O und 55,4 mg Na2TeO3 in destilliertem Wasser gelöst. Diese Lösung wurde mit H2SO4 (2 mol/l) auf pH 2 eingestellt und mit destilliertem Was¬ ser auf 500 ml aufgefüllt (Zn = 0.15 mol/l; Te = 0,5 mmol/l; Zn/Te = 300 / 1). Anschlie¬ ßend wurde die Elektrolyt-Lösung in die Elektrolysezelle gefüllt und auf 800C geheizt. Die Elektrolyse wurde über einen Zeitraum von 30 min. bei einem Strom von 100,0 mA ohne Rühren durchgeführt. Die Abscheidung erfolgte bei einer Kathodenfläche von -50 cm2 (2 mA/cm2). Nach beendeter Elektrolyse wurde die Kathode ausgebaut, mit destil¬ liertem Wasser gespült und getrocknet. Es wurde ein kupferfarbener Film abgeschie¬ den (18,6 mg).
b) Darstellung von Zn1^MnxTe
Es wurden 21 ,55 g ZnSO4 • 7H2O (0,15 mol/l), 47,68 g MnSO4 • H2O (0,6 mol/l), 33 g (NH4J2SO4 (0,5 mol/l), 1 g Weinsäure und 55,4 mg Na2TeO3 (0,5 mmol/l) in destilliertem Wasser gelöst. Diese Lösung wurde mit H2SO4 (2 mol/l) auf pH 2 eingestellt und mit destilliertem Wasser auf 500 ml aufgefüllt (Zn / Mn / Te = 300 / 1200 / 1 ). Anschließend wurde die Elektrolyt-Lösung in die Elektrolysezelle gefüllt und auf 80°C geheizt. Die Elektrolyse wurde über einen Zeitraum von 60 min. bei einem Strom von 101 ,3 mA ohne Rühren durchgeführt. Die Abscheidung erfolgte bei einer Kathodenfläche von -50 cm2 ( ~2 mA/cmz). Nach beendeter Elektrolyse wurde die Kathode ausgebaut, mit des¬ tilliertem Wasser gespült und getrocknet. Die Gewichtszunahme beträgt 26,9 mg. Die Abscheidung hat eine tief dunkelbraune Farbe.

Claims

Patentansprüche
1. Photovoltaische Zelle mit einem photovoltaisch aktiven Halbleitermaterial, da¬ durch gekennzeichnet, dass das photovoltaisch aktive Halbleitermaterial ein p- oder n-dotiertes Halbleitermaterial mit Mischverbindungen der Formel (I) ist:
(Zn1-xMnxTe)1.y(SiaTeb)y (I)
mit x = Zahl von 0,01 bis 0,99, y = Zahl von 0,01 bis 0,2, a = Zahl von 1 bis 2 und b = Zahl von 1 bis 3.
2. Photovoltaische Zelle gemäß Anspruch 1 , dadurch gekennzeichnet, dass das p- dotierte Halbleitermaterial mindestens ein Element aus der Gruppe As und P mit einem Atomkonzentrationsanteil von bis zu 0,1 At-% enthält und dass das n- dotierte Halbleitermaterial mindestens ein Element aus der Gruppe AI, In und Ga mit einem Atomkonzentrationsanteil von bis zu 0,5 At-% enthält.
3. Photovoltaische Zelle gemäß einem der Ansprüche 1 oder 2, umfassend ein Substrat, eine p-Schicht aus dem p-dotierten Halbleitermaterial mit einer Dicke von 0,1 bis 10 μm und eine n-Schicht aus dem n-dotierten Halbleitermaterial mit einer Dicke von 0,1 bis 10 μm.
4. Photovoltaische Zelle gemäß Anspruch 3, dadurch gekennzeichnet, dass das Substrat eine flexible Metallfolie oder ein flexibles Metallblech ist.
5. Verfahren zur Herstellung einer photovoltaischen Zelle gemäß einem der An¬ sprüche 1 bis 4, gekennzeichnet durch das Beschichten eines Substrats mit min¬ destens jeweils einer Schicht aus dem p-dotierten Halbleitermaterial und einer Schicht aus dem n-dotierten Halbleitermaterial, wobei die Schichten eine Dicke von 0,1 bis 10 μm aufweisen.
6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, dass das Beschichten mindestens ein Abscheidungsverfahren aus der Gruppe Sputtern, Laserablation, elektrochemisches Abscheiden oder stromloses Abscheiden umfasst.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass zum Sputtern ein Sputter-Target enthaltend Zink, Mangan, Tellur und Silizium durch Zusammen¬ schmelzen von Bestandteilen hergestellt wird.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass zum Herstellen des Sputter-Targets Zn, Mn, Te und Si in einer Reinheit von mindestens 99,5 % eingesetzt werden und dass Zn, Mn, Te und SiaTeb in einer entwässerten Quarz¬ röhre unter Vakuum bei Temperaturen von 1.200 bis 1.4000C verschmolzen wer¬ den.
9. Verfahren gemäß einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass beim Herstellen des Sputter-Targets Dotierelemente für eine p- oder n-Dotierung in das Sputter-Target eingebracht werden.
10. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass zum stromlosen Abscheiden eine wässrige Lösung, die Zn2+-, Mn2+- und TeO3 2"-lonen enthält, bei einer Temperatur von 30 bis 90°C mit hypophosphoriger Säure H3PO2 als Reduk¬ tionsmittel in Gegenwart des Substrats vernetzt wird.
11. Verfahren gemäß einem der Ansprüche 6 bis 10, gekennzeichnet durch die Ver¬ fahrensschritte:
a) Beschichten des Substrats mit einer ersten Schicht aus Zni-xMnxTe, b) Einbringen von Si in die erste Schicht zum Herstellen von Mischverbindun- gen der Formel (I), c) Erzeugen einer p- oder n-Dotierung mit Donatoratomen oder Akzeptorato¬ men, d) Beschichten der ersten Schicht mit einer zweiten Schicht aus Zn1^MnxTe, e) Einbringen von Silizium in die zweite Schicht zum Herstellen von Mischver- bindungen der Formel (I), f) Erzeugen einer n- oder p-Dotierung mit Akzeptoratomen oder Donatorat¬ omen und g) Aufbringen einer elektrisch leitfähigen transparenten Schicht und einer Schutzschicht auf die zweite Schicht.
EP05798617A 2004-10-26 2005-10-25 Photovoltaische zelle Withdrawn EP1807873A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004052014A DE102004052014A1 (de) 2004-10-26 2004-10-26 Photovoltaische Zelle
PCT/EP2005/011433 WO2006045588A1 (de) 2004-10-26 2005-10-25 Photovoltaische zelle

Publications (1)

Publication Number Publication Date
EP1807873A1 true EP1807873A1 (de) 2007-07-18

Family

ID=35505001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05798617A Withdrawn EP1807873A1 (de) 2004-10-26 2005-10-25 Photovoltaische zelle

Country Status (11)

Country Link
US (1) US20090133744A1 (de)
EP (1) EP1807873A1 (de)
JP (1) JP2008518448A (de)
KR (1) KR20070084519A (de)
CN (1) CN101048876A (de)
AU (1) AU2005298825A1 (de)
CA (1) CA2582253A1 (de)
DE (1) DE102004052014A1 (de)
NZ (1) NZ553938A (de)
TW (1) TW200631189A (de)
WO (1) WO2006045588A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131801A1 (es) * 2010-04-22 2011-10-27 Bermudez Benito Veronica Material semiconductor para utilizar como capa activa/absorbedor de dispositivos fotovoltaicos, metodo para formar dicha capa activa, asi como celula fotovoltaica que incorpora dicha capa

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372997A (en) * 1966-12-22 1968-03-12 Du Pont Ternary copper, zinc, cadmium and manganese dichalcogenides having the pyrite-type crystal structure
WO2002081789A1 (fr) * 2001-04-04 2002-10-17 Nikko Materials Co., Ltd. Procede de fabrication de monocristal semi-conducteur a compose znte et dispositif semi-conducteur mettant en oeuvre un tel monocristal
JP2003179243A (ja) * 2001-08-31 2003-06-27 Basf Ag 光電池活性材料およびこれを含む電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006045588A1 *

Also Published As

Publication number Publication date
TW200631189A (en) 2006-09-01
JP2008518448A (ja) 2008-05-29
AU2005298825A1 (en) 2006-05-04
CN101048876A (zh) 2007-10-03
KR20070084519A (ko) 2007-08-24
DE102004052014A1 (de) 2006-05-04
WO2006045588A1 (de) 2006-05-04
CA2582253A1 (en) 2006-05-04
US20090133744A1 (en) 2009-05-28
NZ553938A (en) 2009-08-28

Similar Documents

Publication Publication Date Title
WO2006094980A2 (de) Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial
DE112012003297B4 (de) Deckschichten für verbesserte Kristallisation
EP1706519B1 (de) Verfahren zur herstellung einer transparenten und leitfähigen oxidschicht
WO2007077114A1 (de) Photovoltaisch aktives halbleitermaterial und photovoltaische zelle
DE102011018268A1 (de) Single Junction CIGS/CIC Solar Module
DE102011054716A1 (de) Gemischtes Sputtertarget aus Cadmiumsulfid und Cadmiumtellurid und Verfahren zu ihrer Verwendung
DE202008009492U1 (de) Halbleitermaterial und dessen Verwendung als Absorptionsmaterial für Solarzellen
DE69734529T2 (de) P-typ-halbleiter, verfahren zu dessen herstellung, halbleiteranordnung, photovoltaisches bauelement, und verfahren zur herstellung einer halbleiteranordnung
EP1935031A2 (de) Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial
EP1807872B1 (de) Photovoltaische zelle mit einem photovoltaisch aktiven halbleitermaterial
DE102012104616B4 (de) Verfahren zum Bilden einer Fensterschicht in einer Dünnschicht-Photovoltaikvorrichtung auf Cadmiumtelluridbasis
DE102012100259A1 (de) Verfahren zum Erzeugen eines halbleitenden Films und Photovoltaikvorrichtung
EP2865001B1 (de) Schichtsystem für dünnschichtsolarzellen
WO2006045588A1 (de) Photovoltaische zelle
DE3049226A1 (de) "solarzelle"
WO2013189971A1 (de) Schichtsystem für dünnschichtsolarzellen
DE19743692A1 (de) Multifunktionsschicht zur Verbesserung des Wirkungsgrades von kristallinen Dünnschicht Silizium Solarzellen
EP0173641A2 (de) Halbleiterschicht auf einem Übergangsmetalldichalcogenid, Verfahren zu deren Herstellung und Verwendung derartiger Halbleiterschichten für Solarzellen
DD158444A1 (de) Verfahren zur herstellung einer glasartigamorphen halbleiterschicht auf einem substrat
DE3526908A1 (de) Halbleiterschicht aus einem uebergangsmetalldichalcogenid, verfahren zu deren herstellung und verwendung derartiger halbleiterschichten fuer solarzellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090825