EP1805344B1 - Method for producing a component covered with a wear-resistant coating - Google Patents
Method for producing a component covered with a wear-resistant coating Download PDFInfo
- Publication number
- EP1805344B1 EP1805344B1 EP05799632A EP05799632A EP1805344B1 EP 1805344 B1 EP1805344 B1 EP 1805344B1 EP 05799632 A EP05799632 A EP 05799632A EP 05799632 A EP05799632 A EP 05799632A EP 1805344 B1 EP1805344 B1 EP 1805344B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- coated
- resistant coating
- wear
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 62
- 239000011248 coating agent Substances 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 19
- 230000007797 corrosion Effects 0.000 claims abstract description 5
- 238000005260 corrosion Methods 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 8
- 238000005480 shot peening Methods 0.000 claims description 8
- 230000003628 erosive effect Effects 0.000 claims description 4
- 238000009499 grossing Methods 0.000 claims description 3
- 238000007596 consolidation process Methods 0.000 claims 2
- 238000009826 distribution Methods 0.000 claims 1
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000005422 blasting Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
Definitions
- the invention relates to a method for producing a component coated with a wear protection coating, in particular a corrosion protection coating or erosion protection coating, in particular a gas turbine component.
- Gas turbine components are exposed during their operation to high wear, in particular by oxidation, corrosion or erosion. It is therefore known from the prior art to provide gas turbine components with corresponding wear protection coatings. By applying a wear protection coating, however, the so-called HCF service life of the base material of the coated gas turbine component is reduced. In order to compensate for this reduction in the HCF service life caused by the coating, it is already known from the prior art to subject the gas turbine component to be coated to a surface hardening by means of shot blasting in particular before the coating. By the subsequent coating of the gas turbine component, which usually takes place at elevated coating temperatures, however, a part of the solidification achieved by the shot peening is degraded again. The surface hardening of the component to be coated before coating it with the wear protection coating is therefore only partially effective.
- EP 1 338 670 A2 discloses a method of making an abradable coating on a gas turbine component by first depositing an MCrAlY layer on the surface of the device, then secondarily treating a second MCrO index 2-Y index 2 O index 3 layer and subsequent coating by shot peening ,
- JP-11343565-A It is already known to apply to a component made of a titanium-based alloy, a coating of an intermetallic material. According to this prior art, the coating of the intermetallic material is subjected to a diffusion heat treatment and, if appropriate, surface hardening by shot peening. However, the problem arises that the brittle, intermetallic diffusion coating is damaged during surface hardening.
- the present invention is based on the problem to provide a novel method for producing a coated with a wear-resistant coating component.
- This problem is solved by a method according to claim 1.
- the method comprises at least the following steps: a) provision of a component to be coated on a component surface, wherein the component to be coated is subjected to surface hardening before the coating; b) at least partially coating the component on its component surface with an at least two-layer or at least two-layer wear protection coating, wherein the wear protection coating comprises at least one relatively soft, metallic and porous layer and at least one relatively hard, ceramic layer; c) surface solidification of the at least partially coated component on its coated component surface by shot peening, such that the compressive stress profile of the base material of the coated component is maintained and a smoothing on the surface of the coated component is achieved.
- the energy applied to the wear protection coating during surface hardening can be elastically broken down, without the risk of damage to the wear protection coating.
- FIGS Fig. 1 to 4 described in greater detail.
- Fig. 1 shows by way of example as a component to be coated with the method according to the invention a gas turbine blade 10, which has an airfoil 11 and a blade root 12.
- the provided gas turbine blade 10 is now to be coated in the region of the surface 13 of the blade 11 with a wear protection coating, preferably with a corrosion protection coating or erosion protection coating.
- the procedure is such that an at least two-layer or at least two-layer wear protection coating is applied to the surface 13.
- a two-layer or two-layer wear protection coating 14 made of a relatively soft, metallic layer 15 and a relatively hard, ceramic layer 16 is applied to the surface 13 of the blade 11.
- the relatively hard, metallic layer 15 is applied directly to the surface 13 and has a material composition which is adapted to the material composition of the blade 11.
- Fig. 3 shows a wear protection coating 17, which is composed of a plurality of relatively soft, metallic layers 15 and a plurality of relatively hard, ceramic layers 16.
- the specific number of relatively hard, ceramic layers and the specific number of relatively soft, metallic layers is for the present invention of minor importance and is responsible for the selection of the person skilled in the art.
- the component coated with the wear protection coating 14, 17 is subsequently subjected to surface hardening by, in particular, shot peening.
- the energy applied to the anti-wear coating 14 or 17 during shot peening can be elastically broken down in the relatively soft, metallic layers 15 as a result of the above-described multilayer structure of the wear protection coating. There is then no risk of damage to the relatively hard, ceramic layers 16.
- Fig. 4 a diagram in which on the horizontally extending axis 18, starting from the surface of the coated component, the depth thereof and on the vertical axis 19 which is applied by means of the method according to the invention in the component induced compressive stress.
- the line 20 the surface of the uncoated component is shown; the area to the left of the line 20 thus relates to the anti-wear coating, the area to the right of the line 20 relates to the component as such.
- the compressive stress profile indicated by the reference numeral 21 can be realized over the depth of the coated component.
- the fatigue strength of the base material of the coated component remains fully intact.
- a smoothing effect on the surface of the coated component is furthermore achieved.
- the method according to the invention is preferably used for coating gas turbine blades which are formed from a titanium-based alloy or nickel-based alloy.
- blades of a turbine or a compressor of an aircraft engine can be coated with the method according to the invention.
- the relatively soft, metallic layers are designed as porous layers Furthermore, it is possible to arrange a graded material layer between a relatively soft, metallic layer and a relatively hard, ceramic layer.
- the layers are preferably applied to the surface of the component to be coated by a PVD (Physical Vapor Deposition) process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines mit einer Verschleißschutzbeschichtung, insbesondere einer Korrosionsschutzbeschichtung oder Erosionsschutzbeschichtung, beschichteten Bauteils, insbesondere Gasturbinenbauteils.The invention relates to a method for producing a component coated with a wear protection coating, in particular a corrosion protection coating or erosion protection coating, in particular a gas turbine component.
Gasturbinenbauteile sind während ihres Betriebs einem hohen Verschleiß, insbesondere durch Oxidation, Korrosion oder auch Erosion, ausgesetzt. Es ist daher aus dem Stand der Technik bekannt, Gasturbinenbauteile mit entsprechenden Verschleißschutzbeschichtungen zu versehen. Durch das Aufbringen einer Verschleißschutzbeschichtung wird jedoch die sogenannte HCF-Lebensdauer des Grundwerkstoffs des beschichteten Gasturbinenbauteils reduziert. Um diese durch die Beschichtung bedingte Reduktion der HCF-Lebensdauer auszugleichen, ist es aus dem Stand der Technik bereits bekannt, das zu beschichtende Gasturbinenbauteil vor der Beschichtung einer Oberflächenverfestigung durch insbesondere Kugelstrahlen zu unterziehen. Durch die nachfolgende Beschichtung des Gasturbinenbauteils, die üblicherweise bei erhöhten Beschichtungstemperaturen abläuft, wird jedoch ein Teil der durch das Kugelstrahlen erzielten Verfestigung wieder abgebaut. Das Oberflächenverfestigen des zu beschichtenden Bauteils vor dem Beschichten desselben mit der Verschleißschutzbeschichtung ist demnach nur bedingt wirksam.Gas turbine components are exposed during their operation to high wear, in particular by oxidation, corrosion or erosion. It is therefore known from the prior art to provide gas turbine components with corresponding wear protection coatings. By applying a wear protection coating, however, the so-called HCF service life of the base material of the coated gas turbine component is reduced. In order to compensate for this reduction in the HCF service life caused by the coating, it is already known from the prior art to subject the gas turbine component to be coated to a surface hardening by means of shot blasting in particular before the coating. By the subsequent coating of the gas turbine component, which usually takes place at elevated coating temperatures, however, a part of the solidification achieved by the shot peening is degraded again. The surface hardening of the component to be coated before coating it with the wear protection coating is therefore only partially effective.
Die Druckschrift
Aus der
Aus dem Stand der Technik gemäß
Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zur Herstellung eines mit einer Verschleißschutzbeschichtung beschichteten Bauteils zu schaffen. Dieses Problem wird durch ein Verfahren gemäß Patentanspruch 1 gelöst. Erfindungsgemäß umfasst das Verfahren zumindest die folgenden Schritte: a) Bereitstellen eines an einer Bauteiloberfläche zu beschichtenden Bauteils, wobei das zu beschichtende Bauteil vor der Beschichtung einer Oberflächenverfestigung zu unterziehen ist; b) zumindest teilweises Beschichten des Bauteils an seiner Bauteiloberfläche mit einer mindestens zweischichtigen bzw. mindestens zweilagigen Verschleißschutzbeschichtung, wobei die Verschleißschutzbeschichtung mindestens eine relativ weiche, metallische sowie poröse Schicht und mindestens eine relativ harte, keramische Schicht umfasst; c) Oberflächenverfestigen des zumindest teilweise beschichteten Bauteils an seiner beschichteten Bauteiloberfläche durch Kugelstrahlen, derart, dass der Druckspannungsverlauf des Grundwerkstoffs des beschichteten Bauteils erhalten bleibt und eine Glättung an der Oberfläche des beschichteten Bauteils erzielt wird.On this basis, the present invention is based on the problem to provide a novel method for producing a coated with a wear-resistant coating component. This problem is solved by a method according to claim 1. According to the invention, the method comprises at least the following steps: a) provision of a component to be coated on a component surface, wherein the component to be coated is subjected to surface hardening before the coating; b) at least partially coating the component on its component surface with an at least two-layer or at least two-layer wear protection coating, wherein the wear protection coating comprises at least one relatively soft, metallic and porous layer and at least one relatively hard, ceramic layer; c) surface solidification of the at least partially coated component on its coated component surface by shot peening, such that the compressive stress profile of the base material of the coated component is maintained and a smoothing on the surface of the coated component is achieved.
Durch die erfindungsgemäße Kombination des Beschichtens des Bauteils mit einer Multilayer-Verschleißschutzbeschichtung mit nachfolgendem Oberflächenverfestigen, kann die beim Oberflächenverfestigen auf die Verschleißschutzbeschichtung aufgebrachte Energie elastisch abgebaut werden, ohne dass die Gefahr von Beschädigungen der Verschleißschutzbeschichtung besteht.The inventive combination of coating the component with a multilayer wear protection coating with subsequent surface hardening, the energy applied to the wear protection coating during surface hardening can be elastically broken down, without the risk of damage to the wear protection coating.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
- Fig. 1
- eine zu beschichtende Gasturbinenschaufel in schematisierter Seitenansicht;
- Fig. 2
- einen schematisierten Querschnitt durch eine Verschleißschutzbeschichtung;
- Fig. 3
- einen schematisierten Querschnitt durch eine alternative Verschleißschutzbeschichtung; und
- Fig. 4
- ein Diagramm zur Verdeutlichung des sich bei Durchführung des erfindungsgemäßen Verfahrens im beschichteten Bauteil einstellenden Druckspannungsverlaufs.
- Fig. 1
- a gas turbine blade to be coated in a schematic side view;
- Fig. 2
- a schematic cross section through a wear protection coating;
- Fig. 3
- a schematic cross section through an alternative wear protection coating; and
- Fig. 4
- a diagram illustrating the setting in carrying out the method according to the invention in the coated component compressive stress profile.
Nachfolgend wird die hier vorliegende Erfindung unter Bezugnahme auf die
Hierzu wird im Sinne des erfindungsgemäßen Verfahrens so vorgegangen, dass auf die Oberfläche 13 eine mindestens zweischichtige bzw. mindestens zweilagige Verschleißschutzbeschichtung aufgebracht wird. So zeigt zum Beispiel
Im Sinne der hier vorliegenden Erfindung wird das mit der Verschleißschutzbeschichtung 14, 17 beschichtete Bauteil nachfolgend einem Oberflächenverfestigen durch insbesondere Kugelstrahlen unterzogen. Die beim Kugelstrahlen auf die Verschleißschutzbeschichtung 14 bzw. 17 aufgebrachte Energie kann infolge des oben beschriebenen Multilayer-Aufbaus der Verschleißschutzbeschichtung in den relativ weichen, metallischen Schichten 15 elastisch abgebaut werden. Es besteht dann keine Gefahr von Beschädigungen der relativ harten, keramischen Schichten 16.For the purposes of the present invention, the component coated with the
Mit dem erfindungsgemäßen Verfahren ist es möglich, nach dem Beschichten eines Bauteils mit einer als Multilayer-Schichtsystem ausgebildeten Verschleißschutzbeschichtung durch nachfolgendes Oberflächenverfestigen einen optimalen Spannungsverlauf über die Verschleißschutzbeschichtung sowie das Bauteil einzustellen, ohne dass die Gefahr von Beschädigungen der Verschleißschutzbeschichtung besteht.With the method according to the invention, it is possible, after the coating of a component with a wear protection coating designed as a multilayer coating system, to set an optimum stress curve over the wear protection coating and the component by subsequent surface hardening, without the risk of damaging the wear protection coating.
So zeigt
Bei Verwendung des erfindungsgemäßen Verfahrens zur Herstellung eines mit einer verschleißschutzbeschichtung beschichteten Bauteils bleibt die Schwingfestigkeit des Grundwerkstoffs des beschichteten Bauteils voll erhalten. Bei entsprechender Wahl der Parameter für das Kugelstrahlen bzw. Oberflächenverfestigen wird weiterhin ein Glättungseffekt an der Oberfläche des beschichteten Bauteils erzielt.When using the method according to the invention for producing a component coated with a wear-resistant coating, the fatigue strength of the base material of the coated component remains fully intact. With a suitable choice of the parameters for shot peening or surface hardening, a smoothing effect on the surface of the coated component is furthermore achieved.
Wie bereits erwähnt, wird das erfindungsgemäße Verfahren vorzugsweise zur Beschichtung von Gasturbinenschaufeln eingesetzt, die aus einer Titanbasislegierung oder Nickelbasislegierung gebildet sind. So können mit dem erfindungsgemäßen Verfahren zum Beispiel Schaufeln einer Turbine oder eines Verdichters eines Flugtriebwerks beschichtet werden.As already mentioned, the method according to the invention is preferably used for coating gas turbine blades which are formed from a titanium-based alloy or nickel-based alloy. Thus, for example, blades of a turbine or a compressor of an aircraft engine can be coated with the method according to the invention.
Abschließend sei darauf hingewiesen, dass die relativ weichen, metallischen Schichten als poröse Schichten ausgeführt sind weiterhin ist es möglich, zwischen einer relativ weichen, metallischen Schicht und einer relativ harten, keramischen Schicht eine gradierte Werkstoffschicht anzuordnen. Die Schichten werden vorzugsweise durch einen PVD (Physical Vapor Deposition)-Prozess auf die Oberfläche des zu beschichtenden Bauteils aufgetragen.Finally, it should be noted that the relatively soft, metallic layers are designed as porous layers Furthermore, it is possible to arrange a graded material layer between a relatively soft, metallic layer and a relatively hard, ceramic layer. The layers are preferably applied to the surface of the component to be coated by a PVD (Physical Vapor Deposition) process.
Claims (4)
- Method for producing a component that is coated with a wear-resistant coating, in particular a corrosion-resistant coating or an erosion-resistant coating, in particular a gas-turbine component, having the following steps:a) provision of a component (10) that is to be coated on a component surface (13), wherein the component that is to be coated is to be subjected to surface-consolidation prior to the coating;b) at least partial coating of the component (11) on its component surface with an at least double-layer or an at least double-ply wear-resistant coating (14; 17), wherein the wear-resistant coating (14; 17) comprises at least one relatively soft, metallic and also porous layer (15) and at least one relatively hard, ceramic layer (16);c) surface-consolidation of the at least partially coated component on its coated component surface by shot-peening in such a way that the compressive-stress distribution of the base material and of the wear-resistant coating (14, 17) is optimal over the depth of the coated component and smoothing is attained on the surface of the coated component.
- Method according to claim 1,
characterised in that
the wear-resistant coating (17) comprises a plurality of relatively soft, metallic layers (15) and a plurality of relatively hard, ceramic layers (16). - Method according to claim 1 or 2,
characterised in that
a gas-turbine component is provided and at least partially coated as the component (10). - Method according to claim 3,
characterised in that
a gas-turbine vane is provided that is coated on its vane-blade surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004050474A DE102004050474A1 (en) | 2004-10-16 | 2004-10-16 | Process for producing a component coated with a wear protection coating |
PCT/DE2005/001795 WO2006042506A1 (en) | 2004-10-16 | 2005-10-07 | Method for producing a component covered with a wear-resistant coating |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1805344A1 EP1805344A1 (en) | 2007-07-11 |
EP1805344B1 true EP1805344B1 (en) | 2011-03-16 |
Family
ID=35502594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05799632A Ceased EP1805344B1 (en) | 2004-10-16 | 2005-10-07 | Method for producing a component covered with a wear-resistant coating |
Country Status (5)
Country | Link |
---|---|
US (1) | US8920881B2 (en) |
EP (1) | EP1805344B1 (en) |
CA (1) | CA2584350A1 (en) |
DE (2) | DE102004050474A1 (en) |
WO (1) | WO2006042506A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005030266A1 (en) * | 2005-06-29 | 2007-01-18 | Mtu Aero Engines Gmbh | Blade of a turbomachine with a blade tip armor |
DE102007050141A1 (en) * | 2007-10-19 | 2009-04-23 | Mtu Aero Engines Gmbh | Wear-resistant coating |
DE102010048147B4 (en) | 2010-10-11 | 2016-04-21 | MTU Aero Engines AG | Layer system for rotor / stator seal of a turbomachine and method for producing such a layer system |
EP2570674A1 (en) * | 2011-09-15 | 2013-03-20 | Sandvik Intellectual Property AB | Erosion resistant impeller vane made of metallic laminate |
EP2767616A1 (en) * | 2013-02-15 | 2014-08-20 | Alstom Technology Ltd | Turbomachine component with an erosion and corrosion resistant coating system and method for manufacturing such a component |
US10578014B2 (en) * | 2015-11-20 | 2020-03-03 | Tenneco Inc. | Combustion engine components with dynamic thermal insulation coating and method of making and using such a coating |
US11002701B2 (en) * | 2018-11-07 | 2021-05-11 | Cameron International Corporation | Electrically smart multi-layered coating for condition-base monitoring |
FR3102694B1 (en) * | 2019-10-30 | 2022-06-03 | Safran Aircraft Engines | PROCESS FOR COMPACTING AN ANTI-CORROSION COATING |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0188057A1 (en) * | 1984-11-19 | 1986-07-23 | Avco Corporation | Erosion resistant coatings |
EP0386618A1 (en) * | 1989-03-09 | 1990-09-12 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Element with wear-resisting layer comprising nickel or cobalt |
EP0492323A2 (en) * | 1990-12-21 | 1992-07-01 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Method for the surface-treatment of parts |
WO1993008315A1 (en) * | 1991-10-18 | 1993-04-29 | Harold Leroy Harford | A method of producing a wear-resistant coating |
WO1996012049A1 (en) * | 1994-10-14 | 1996-04-25 | Siemens Aktiengesellschaft | Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same |
DE19652872A1 (en) * | 1996-12-18 | 1998-07-02 | Fraunhofer Ges Forschung | Process for increasing the surface layer strength on surfaces of workpieces made of brittle hard materials |
US20020079602A1 (en) * | 1997-12-18 | 2002-06-27 | Hans-Wulf Pfeiffer | Method of increasing the boundary layer strength on surfaces of workpieces made of brittle hard materials |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB826057A (en) | 1957-03-15 | 1959-12-23 | Glacier Co Ltd | Bearings |
US4414249A (en) * | 1980-01-07 | 1983-11-08 | United Technologies Corporation | Method for producing metallic articles having durable ceramic thermal barrier coatings |
US4428213A (en) * | 1981-09-10 | 1984-01-31 | United Technologies Corporation | Duplex peening and smoothing process |
US4481237A (en) | 1981-12-14 | 1984-11-06 | United Technologies Corporation | Method of applying ceramic coatings on a metallic substrate |
US4528079A (en) | 1983-05-25 | 1985-07-09 | Miracle Metals, Inc. | Method of mitigating boundary friction and wear in metal surfaces in sliding contacts |
US4562090A (en) | 1983-11-30 | 1985-12-31 | Gray Tool Company | Method for improving the density, strength and bonding of coatings |
US4761346A (en) | 1984-11-19 | 1988-08-02 | Avco Corporation | Erosion-resistant coating system |
EP0186266A1 (en) | 1984-11-19 | 1986-07-02 | Avco Corporation | Erosion-resistant coating system |
USRE34173E (en) * | 1988-10-11 | 1993-02-02 | Midwest Research Technologies, Inc. | Multi-layer wear resistant coatings |
NO180737C (en) | 1988-10-12 | 1997-06-04 | Detector Electronics | Apparatus and method for discriminating between electromagnetic radiation from a fire source and from a non-fire source |
US5232789A (en) | 1989-03-09 | 1993-08-03 | Mtu Motoren- Und Turbinen-Union Muenchen Gmbh | Structural component with a protective coating having a nickel or cobalt basis and method for making such a coating |
US5059095A (en) | 1989-10-30 | 1991-10-22 | The Perkin-Elmer Corporation | Turbine rotor blade tip coated with alumina-zirconia ceramic |
EP0471505B1 (en) | 1990-08-11 | 1996-10-02 | Johnson Matthey Public Limited Company | Coated article, its use and method of making the same |
US5169674A (en) * | 1990-10-23 | 1992-12-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method of applying a thermal barrier coating system to a substrate |
GB9112499D0 (en) | 1991-06-11 | 1991-07-31 | Sprayforming Dev Ltd | Improved corrosion protection of marine structures |
DE69216218T2 (en) | 1991-10-14 | 1997-06-19 | Commissariat Energie Atomique | Erosion-resistant and abrasion-resistant multi-layer material |
GB9203394D0 (en) | 1992-02-18 | 1992-04-01 | Johnson Matthey Plc | Coated article |
DE4229600C1 (en) | 1992-07-07 | 1993-11-25 | Mtu Muenchen Gmbh | Protective layer for titanium components and process for their manufacture |
US5864745A (en) | 1994-03-16 | 1999-01-26 | Taiho Kogyo Co., Ltd. | Swash plate of a swash-plate type compressor |
GB9405934D0 (en) | 1994-03-25 | 1994-05-11 | Johnson Matthey Plc | Coated article |
DE59406283D1 (en) | 1994-08-17 | 1998-07-23 | Asea Brown Boveri | Process for producing a turbine blade made of an (alpha-beta) titanium-based alloy |
DE19743579C2 (en) | 1997-10-02 | 2001-08-16 | Mtu Aero Engines Gmbh | Thermal barrier coating and process for its manufacture |
US6190124B1 (en) | 1997-11-26 | 2001-02-20 | United Technologies Corporation | Columnar zirconium oxide abrasive coating for a gas turbine engine seal system |
JPH11343565A (en) | 1998-05-29 | 1999-12-14 | Daido Steel Co Ltd | Titanium base alloy material having hardened layer on surface and its production |
WO2001032799A1 (en) | 1999-11-04 | 2001-05-10 | Nanogram Corporation | Particle dispersions |
CA2327031C (en) | 1999-11-29 | 2007-07-03 | Vladimir Gorokhovsky | Composite vapour deposited coatings and process therefor |
FR2816636B1 (en) | 2000-11-16 | 2003-07-18 | Snecma Moteurs | SHOT BLASTING OF COOLED DAWN TOP |
US20020076573A1 (en) * | 2000-12-19 | 2002-06-20 | Neal James Wesley | Vapor deposition repair of superalloy articles |
US6465040B2 (en) * | 2001-02-06 | 2002-10-15 | General Electric Company | Method for refurbishing a coating including a thermally grown oxide |
US6780458B2 (en) * | 2001-08-01 | 2004-08-24 | Siemens Westinghouse Power Corporation | Wear and erosion resistant alloys applied by cold spray technique |
JP3876168B2 (en) | 2002-02-14 | 2007-01-31 | 三菱重工業株式会社 | Abradable coating and manufacturing method thereof |
JP3996809B2 (en) | 2002-07-11 | 2007-10-24 | 住友電工ハードメタル株式会社 | Coated cutting tool |
US6858333B2 (en) | 2002-10-09 | 2005-02-22 | Kennametal Inc. | Tool with wear resistant low friction coating and method of making the same |
US7226668B2 (en) | 2002-12-12 | 2007-06-05 | General Electric Company | Thermal barrier coating containing reactive protective materials and method for preparing same |
GB2397307A (en) * | 2003-01-20 | 2004-07-21 | Rolls Royce Plc | Abradable Coatings |
DE102004001392A1 (en) | 2004-01-09 | 2005-08-04 | Mtu Aero Engines Gmbh | Wear protection coating and component with a wear protection coating |
US7186092B2 (en) | 2004-07-26 | 2007-03-06 | General Electric Company | Airfoil having improved impact and erosion resistance and method for preparing same |
US20060040129A1 (en) | 2004-08-20 | 2006-02-23 | General Electric Company | Article protected by a strong local coating |
US7160635B2 (en) | 2004-11-09 | 2007-01-09 | Sheffield Hallam University | Protective Ti-Al-Cr-based nitrided coatings |
-
2004
- 2004-10-16 DE DE102004050474A patent/DE102004050474A1/en not_active Ceased
-
2005
- 2005-10-07 DE DE502005011139T patent/DE502005011139D1/en active Active
- 2005-10-07 US US11/665,415 patent/US8920881B2/en not_active Expired - Fee Related
- 2005-10-07 CA CA002584350A patent/CA2584350A1/en not_active Abandoned
- 2005-10-07 EP EP05799632A patent/EP1805344B1/en not_active Ceased
- 2005-10-07 WO PCT/DE2005/001795 patent/WO2006042506A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0188057A1 (en) * | 1984-11-19 | 1986-07-23 | Avco Corporation | Erosion resistant coatings |
EP0386618A1 (en) * | 1989-03-09 | 1990-09-12 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Element with wear-resisting layer comprising nickel or cobalt |
EP0492323A2 (en) * | 1990-12-21 | 1992-07-01 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Method for the surface-treatment of parts |
WO1993008315A1 (en) * | 1991-10-18 | 1993-04-29 | Harold Leroy Harford | A method of producing a wear-resistant coating |
WO1996012049A1 (en) * | 1994-10-14 | 1996-04-25 | Siemens Aktiengesellschaft | Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same |
DE19652872A1 (en) * | 1996-12-18 | 1998-07-02 | Fraunhofer Ges Forschung | Process for increasing the surface layer strength on surfaces of workpieces made of brittle hard materials |
US20020079602A1 (en) * | 1997-12-18 | 2002-06-27 | Hans-Wulf Pfeiffer | Method of increasing the boundary layer strength on surfaces of workpieces made of brittle hard materials |
Also Published As
Publication number | Publication date |
---|---|
WO2006042506A1 (en) | 2006-04-27 |
DE102004050474A1 (en) | 2006-04-20 |
US20080124469A1 (en) | 2008-05-29 |
US8920881B2 (en) | 2014-12-30 |
CA2584350A1 (en) | 2006-04-27 |
DE502005011139D1 (en) | 2011-04-28 |
EP1805344A1 (en) | 2007-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1805344B1 (en) | Method for producing a component covered with a wear-resistant coating | |
EP2317078B1 (en) | Abrasive single-crystal turbine blade | |
DE10337866B4 (en) | Process for the production of components for gas turbines | |
EP2245274B1 (en) | Device and method for the partial coating of components | |
DE102009049707A1 (en) | Method for producing a rotor or stator blade and such a blade | |
EP1819905A1 (en) | Coating system, use and method of manufacturing such a coating system | |
EP2038083B1 (en) | Method for repairing and/or replacing individual elements of a gas turbine component | |
EP1707301B1 (en) | Process for applying fibre mats on the surface or a recess of a component | |
WO2007003160A1 (en) | Method for the production of an armor plating for a blade tip | |
WO2005031038A1 (en) | Wear-resistant layer, component comprising such a wear-resistant layer, and production method | |
EP3093372A2 (en) | Coating method for producing a combination of armor plating for a blade tip and erosion resistant coating | |
DE102005044991A1 (en) | Process for producing a protective layer, protective layer and component with a protective layer | |
WO2010078994A1 (en) | Method for coating a component with film cooling holes, and component | |
EP1654441B1 (en) | Run-in coating of a gas turbine and method for fabricating such a coating | |
EP3093371A2 (en) | Combination of armor plating for a blade tip and erosion resistant coating and method for producing the same | |
EP2719494A1 (en) | Adaptive method for the opening of closed outlets of a component | |
WO2007144374A1 (en) | Method of coating a component in whose surface holes are provided | |
WO2003085163A1 (en) | Component comprising a masking layer | |
DE102004049825B4 (en) | Method for stripping coated components | |
DE60225569T2 (en) | Method for local deposition of an MCrAlY coating | |
EP1591549B1 (en) | Method for repairing local damage to a thermal barrier coating of a component | |
DE102014224865A1 (en) | Method for coating a turbine blade | |
DE102004028672A1 (en) | Coating inner surfaces of hollow gas turbine blades used in an aircraft engine comprises preparing the blade with a hollow chamber, arranging a metal foil in the chamber and welding the metal foil to the inner surface | |
WO2007144217A1 (en) | Method of applying material to a component | |
DE10355756A1 (en) | Component e.g. compressor blade, for gas turbine of aircraft, has blade sheet and blade base whose titanium aluminum alloy coated surfaces are thermo-mechanically treated so that surfaces have optimized inherent compressive stress |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070419 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20070905 |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502005011139 Country of ref document: DE Date of ref document: 20110428 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005011139 Country of ref document: DE Effective date: 20110428 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20111219 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005011139 Country of ref document: DE Effective date: 20111219 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181024 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20181025 Year of fee payment: 14 Ref country code: FR Payment date: 20181023 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005011139 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191007 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |