EP1802864B1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
EP1802864B1
EP1802864B1 EP05797092A EP05797092A EP1802864B1 EP 1802864 B1 EP1802864 B1 EP 1802864B1 EP 05797092 A EP05797092 A EP 05797092A EP 05797092 A EP05797092 A EP 05797092A EP 1802864 B1 EP1802864 B1 EP 1802864B1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel injection
injection
region
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05797092A
Other languages
English (en)
French (fr)
Other versions
EP1802864A1 (de
Inventor
Patrick Mattes
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1802864A1 publication Critical patent/EP1802864A1/de
Application granted granted Critical
Publication of EP1802864B1 publication Critical patent/EP1802864B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines, as for example from the document DE 196 42 513 A1 is known.
  • a fuel injection valve for internal combustion engines, as for example from the document DE 196 42 513 A1 is known.
  • a bore is formed in a valve body, in which a valve needle is arranged to be longitudinally displaceable.
  • the valve needle cooperates with a valve seat and thereby controls the fuel flow from a pressure chamber surrounding the valve needle to at least one injection opening.
  • the valve seat has a conical design, and at least one injection opening is formed in this region of the fuel injection valve, which connects the valve seat to the combustion chamber of the internal combustion engine.
  • the conical valve seat is in turn followed by a blind hole, from which at least one further injection opening originates.
  • a blind-hole shape is known in which the inner wall of the blind hole is formed at least approximately hemispherical, while the outer wall of the valve body is conically shaped in this area continuously both in the region of the valve seat and in the region of the blind hole.
  • Fuel injection valves are often not mounted in the respective internal combustion engine in the longitudinal axis of the combustion chamber, but obliquely thereto. This makes it necessary to form the injection holes at different angles with respect to the longitudinal axis of the valve body of the valve needle, so that the fuel is still distributed evenly during the injection in the combustion chamber. This is not possible in the known fuel injection valve, since by the different Wall thicknesses in the individual areas of the bag hole and different injection hole lengths are generated. This considerably influences the jet formation and can only be compensated with difficulty by changing the spray hole diameter or by different rounding at the entry edges of the spray holes.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage that both in the seat hole and in the blind hole always a constant wall thickness is available, which makes a free interpretation of the injection openings possible.
  • the blind hole is shaped so that both the inner wall and the outer wall are hemispherical in shape and thus results in a constant wall thickness in the dome area of the blind hole.
  • this embodiment has the advantage that the wall thickness in the region of the conical valve seat and the blind hole can be set independently. This results in more degrees of freedom in the design of the fuel injection valve.
  • the injection openings may have different angles of inclination with respect to the longitudinal axis of the bore both in the region of the blind hole and in the region of the conical valve seat, and different wall thicknesses may be provided in the blind hole and the valve seat.
  • the fuel injection valve can be optimally adapted to the installation conditions in the internal combustion engine.
  • FIG. 1 a fuel injection valve according to the invention is shown in longitudinal section, with only the essential parts are shown.
  • the fuel injection valve has a valve body 1, in which a bore 3 is formed, which has a longitudinal axis 8 and which is delimited at its combustion chamber end by a conical valve seat 11.
  • a piston-shaped valve needle 5 is arranged longitudinally displaceably, which is sealingly guided with a guide portion 15 in a valve seat facing away from the region of the bore 3.
  • the valve needle 5 tapers from the guide portion 15 to the valve seat 11 to form a pressure shoulder 13 and is at its valve seat side end in a valve sealing surface 7, with which the valve needle 5 cooperates with the valve seat 11.
  • a pressure chamber 19 is formed which is radially expanded at the level of the pressure shoulder 13.
  • a blind hole 9 connects, in which the valve needle 5 protrudes when it rests against the valve seat 11. From the valve seat 11 go outside injection openings 17 and 9 from the blind hole inner injection openings 27, all of which open in the installed position of the fuel injection valve in the combustion chamber of the internal combustion engine.
  • the valve needle 5 is acted upon at its end remote from the valve seat by a closing force, which is generated for example by a spring element and which presses the valve needle 5 against the valve seat 11.
  • the closing force is counteracted by the hydraulic force on the pressure shoulder 13, which is generated by the high fuel pressure in the pressure chamber 19. If the hydraulic force on the valve needle 5 exceeds the closing force, the valve needle 5 lifts off from the valve seat 11, so that a flow cross-section is opened and fuel flows from the pressure space 19 between the valve sealing surface 7 and the valve seat 11 to the inner injection openings 27 and the outer injection openings 17.
  • the fuel exits through the outer injection openings 17 and additionally flows into the blind hole 9, from where the fuel is ejected via the inner injection openings 27.
  • the injection is terminated by either increasing the closing force or decreasing the hydraulic force on the pressure shoulder 13.
  • the valve needle 5 then slides back into contact with the valve seat 11 and interrupts the flow of fuel to the injection openings 17, 27th
  • FIG. 2 shows an enlarged view of FIG. 1 in the region of the valve seat 11.
  • the valve sealing surface 7 of the valve needle 5 has a first conical surface 14 and a second conical surface 16, wherein the first conical surface has a smaller opening angle than the conical valve seat 11, while the second conical surface has a larger opening angle.
  • a sealing edge 12 is formed at the boundary between the two conical surfaces 14, 16, with which the valve needle 5 touches the valve seat 11. Because of the high surface pressure in the region of the sealing edge 12 results in a good seal, so that the pressure chamber 19 is securely closed even at high pressure.
  • the outer injection openings 17 start from the conical valve seat 11, so that the fuel has to undergo a different directional change in direction when it enters the corresponding outer injection opening 17.
  • the conical valve seat 11 has a length d, in which the outer wall of the valve body 1 also has a conical shape which is parallel to the conical valve seat 11, whereby a cone portion 18 of the valve body 1 is formed with a constant wall thickness D S. Since any change in direction is accompanied by a pressure loss, the smaller the angle of inclination a 1 between the cylindrical outer injection port 17 and the longitudinal axis 8, the more effectively the effective injection pressure is reduced. On the other hand, the spray hole length is greater, the greater the inclination angle a 1 .
  • the valve needle 5 protrudes into the blind hole 9, which adjoins the conical valve seat 11.
  • the blind hole 9 in this case consists of an intermediate portion 21 and a tip portion 22.
  • the intermediate portion 21 is for example cylindrical or slightly conical and can vary greatly in length. It can also be provided that the intermediate portion 21 is completely eliminated as long as the blind hole 9 is sufficiently deep to accommodate the entire tip of the valve needle 5.
  • the dome portion 22 has a base line 23 and is formed inside in the form of a hemisphere with radius Ri, wherein the outer wall of the dome portion 22 also forms a hemisphere with a radius R a .
  • the blind hole 9 has a wall thickness D k in the region of the dome portion 22, so that all the inner injection openings 27 have the same injection hole length irrespective of their angle of inclination b with respect to the longitudinal axis 8.
  • the effective injection pressure ie the fuel pressure with which the fuel ultimately exits the inner injection openings 27 and the outer injection openings 17, depends on the combination of conical valve seat 11 with the constant wall thickness D S in the cone area 18 and the blind hole 9 with a spherical interior - And outer shape in the tip region 22 at least approximately not from the inclination angle of the respective injection openings 17, 27 with the longitudinal axis 8 of the bore 3 from.
  • the inner and outer injection openings 17, 27 can be arranged arbitrarily in a wide range, without affecting the quality of the injection.
  • the individual injection jets maintain their characteristics, that is, they have the same depth of penetration and atomize the fuel in the same way.
  • the outer injection openings 17 and the inner injection openings 27 may also be arranged so that the injection jets are convergent with each other as shown in FIG FIG. 2 shown embodiment is indicated.
  • the injection jets can then also be arranged so that they intersect either in the region of the combustion chamber wall or within the combustion chamber.
  • the wall thickness D s in the cone region of the valve body 1 and the wall thickness D k in the tip region of the blind hole 9 can be the same or different. Accordingly, the length of the injection openings is different and thus the penetration depth of the fuel jets in the combustion chamber.
  • the difference injection ports 27 in the dome area 22 the different pressure and inlet conditions in the valve seat 11 and blind hole 9 can be compensated, so that a uniform fuel distribution in the combustion chamber can be easily achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es beispielsweise aus der Schrift DE 196 42 513 A1 bekannt ist. Bei einem solchen Kraftstoffeinspritzventil ist in einem Ventilkörper eine Bohrung ausgebildet, in der eine Ventilnadel längsverschiebbar angeordnet ist. Die Ventilnadel wirkt mit einem Ventilsitz zusammen und steuert dadurch den Kraftstoffl-luss aus einem die Ventilnadel umgebenden Druckraum zu wenigstens einer Einspritzöffnung. Der Ventilsitz ist konisch ausgebildet, und es ist in diesem Bereich des Kraftstoffeinspritzventils wenigstens eine Einspritzöffnung ausgebildet, die den Ventilsitz mit dem Brennraum der Brennkraftmaschinen verbindet. An den konischen Ventilsitz schließt sich wiederum ein Sackloch an, von dem wenigstens eine weitere Einspritzöffnung ausgeht.
  • Aus der DE 196 42 513 A1 ist eine Sacklochform bekannt, bei der die Innenwand des Sacklochs zumindest näherungsweise halbkugelförmig ausgebildet ist, während die Außenwand des Ventilkörpers in diesem Bereich durchgängig sowohl im Bereich des Ventilsitzes als auch im Bereich des Sacklochs konisch geformt ist. Kraftstoffeinspritzventile werden in der jeweiligen Brennkraftmaschine häufig nicht in der Längsachse des Brennraums angebracht, sondern schräg dazu. Dies macht es notwendig, die Spritzlöcher in unterschiedlichen Winkeln bezüglich der Längsachse des Ventilkörpers der Ventilnadel auszubilden, damit der Kraftstoff nach wie vor bei der Einspritzung gleichmäßig im Brennraum verteilt wird. Dies ist bei dem bekannten Kraftstoffeinspritzventil nicht möglich, da durch die unterschiedlichen Wandstärken in den einzelnen Bereichen des Sackslochs auch unterschiedliche Spritzlochlängen erzeugt werden. Dies beeinflusst die Strahlbildung erheblich und kann nur schwer durch einen geänderten Spritzlochdurchmesser oder durch unterschiedliche Rundung an den Eintrittskanten der Spritzlöcher kompensiert werden.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass sowohl im Sitzloch als auch im Sackloch stets eine konstante Wandstärke vorhanden ist, die eine freie Auslegung der Einspritzöffnungen möglich macht. Hierzu ist das Sackloch so geformt, dass sowohl die Innenwand als auch die Außenwand halbkugelförmig ausgebildet sind und sich so im Kuppenbereich des Sacklochs eine konstante Wanddicke ergibt. Darüber hinaus bietet diese Ausgestaltung den Vorteil, dass die Wanddicke im Bereich des konischen Ventilsitzes und des Sacklochs unabhängig voneinander eingestellt werden kann. Dadurch ergeben sich mehr Freiheitsgrade bei der Auslegung des Kraftstofteinspritzvcntils.
  • Durch die abhängigen Ansprüche sind vorteilhafte Weiterbildungen des Gegenstandes der Erfindung möglich. Durch die Ausgestaltung mehrerer Einspritzöffnungen sowohl im Bereich des Ventilsitzes als auch im Bereich des Sacklochs lassen sich sehr viele Einspritzöffnungen im Kraftstoffeinspritzventil unterbringen, was einen kleineren Spritzquerschnitt der einzelnen Einspritzöffnungen ermöglicht und damit eine bessere Zerstäubung des Kraftstoff bei gleichem Gesamtquerschnitt der Einspritzöffnungen.
  • Die Einspritzöffnungen können sowohl im Bereich des Sacklochs als auch im Bereich des konischen Ventilsitzes unterschiedliche Neigungswinkel bezüglich der Längsachse der Bohrung aufweisen und es können unterschiedliche Wanddicken im Sackloch und am Ventilsitz vorgesehen sein. So kann das Kraftstoffeinspritzventil optimal an die Einbaubedingungen in der Brennkraftmaschinen angepasst werden.
  • Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt
  • Figur 1
    einen Längsschnitt durch ein Kraftstoffeinspritzventil und
    Figur 2
    einen vergrößert dargestellten Ausschnitt von Figur 1 im Bereich des Ventilsitzes.
    Beschreibung des Ausführungsbeispiels
  • In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt dargestellt, wobei nur die wesentlichen Teile gezeigt sind. Das Kraftstoffeinspritzventil weist einen Ventilkörper 1 auf, in dem eine Bohrung 3 ausgebildet ist, die eine Längsachse 8 aufweist und die an ihrem brennraumseitigen Ende von einem konischen Ventilsitz 11 begrenzt wird. In der Bohrung 3 ist eine kolbenförmige Ventilnadel 5 längsverschiebbar angeordnet, die mit einem Führungsabschnitt 15 in einem ventilsitzabgewandten Bereich der Bohrung 3 dichtend geführt ist. Die Ventilnadel 5 verjüngt sich ausgehend vom Führungsabschnitt 15 dem Ventilsitz 11 zu unter Bildung einer Druckschulter 13 und geht an ihrem ventilsitzseitigen Ende in eine Ventildichtfläche 7 über, mit der die Ventilnadel 5 mit dem Ventilsitz 11 zusammenwirkt. Zwischen der Ventilnadel 5 und der Wand der Bohrung 5 ist ein Druckraum 19 ausgebildet, der auf Höhe der Druckschulter 13 radial erweitert ist. In die radiale Erweiterung des Druckraums 19 mündet ein im Ventilkörper 1 verlaufender Zulaufkanal 25, über den der Druckraum 19 mit Kraftstoff unter hohem Druck befüllt werden kann. An den Ventilsitz 11 schließt sich ein Sackloch 9 an, in das die Ventilnadel 5 bei Anlage am Ventilsitz 11 hineinragt. Vom Ventilsitz 11 gehen äußere Einspritzöffnungen 17 und vom Sackloch 9 innere Einspritzöffnungen 27 ab, die sämtlich in Einbaulage des Kraftstoffeinspritzventil in den Brennraum der Brennkraftmaschine münden.
  • Die Ventilnadel 5 wird an ihrem ventilsitzabgewandten Ende von einer Schließkraft beaufschlagt, die beispielsweise durch ein Federelement erzeugt wird und die die Ventilnadel 5 gegen den Ventilsitz 11 drückt. Der Schließkraft entgegengerichtet ist die hydraulische Kraft auf die Druckschulter 13, die durch den hohen Kraftstoffdruck im Druckraum 19 erzeugt wird. Übersteigt die hydraulische Kraft auf die Ventilnadel 5 die Schließkraft, so hebt die Ventilnadel 5 vom Ventilsitz 11 ab, so dass ein Durchflussquerschnitt aufgesteuert wird und Kraftstoff aus dem Druckraum 19 zwischen der Ventildichtfläche 7 und dem Ventilsitz 11 hindurch zu den inneren Einspritzöffnungen 27 und den äußeren Einspritzöffnungen 17 fließt. Der Kraftstoff tritt durch die äußeren Einspritzöffnungen 17 aus und fließt zusätzlich in das Sackloch 9, von wo der Kraftstoff über die inneren Einspritzöffnungen 27 ausgespritzt wird. Die Einspritzung wird beendet, indem entweder die Schließkraft erhöht oder die hydraulische Kraft auf die Druckschulter 13 erniedrigt wird. Die Ventilnadel 5 gleitet dann zurück in Anlage an den Ventilsitz 11 und unterbricht den Kraftstoffstrom zu den Einspritzöffnungen 17, 27.
  • Figur 2 zeigt eine vergrößerte Darstellung von Figur 1 im Bereich des Ventilsitzes 11. Die Ventildichtfläche 7 der Ventilnadel 5 weist eine erste Konusfläche 14 und eine zweite Konusfläche 16 auf, wobei die erste Konusfläche einen kleiner Öffnungswinkel aufweist als der konische Ventilsitz 11, während die zweite Konusfläche einen größeren Öffnungswinkel aufweist. Dadurch wird an der Grenze zwischen den beiden Konusflächen 14, 16 eine Dichtkante 12 gebildet, mit der die Ventilnadel 5 auf dem Ventilsitz 11 aufsetzt. Wegen der hohen Flächenpressung im Bereich der Dichtkante 12 ergibt sich eine gute Dichtung, so dass der Druckraum 19 auch bei hohem Druck sicher verschlossen wird.
  • Die äußeren Einspritzöffnungen 17 gehen vom konischen Ventilsitz 11 aus, so dass der Kraftstoff eine unterschiedlich starke Richtungsänderung vollziehen muss, wenn er in die entsprechende äußere Einspritzöffnung 17 einläuft. Der konische Ventilsitz 11 weist eine Länge d auf, in dem die Außenwand des Ventilkörpers 1 ebenfalls eine konische Form aufweist, die parallel zum konischen Ventilsitz 11 ist, wodurch ein Konusbereich 18 des Ventilkörpers 1 mit einer konstanten Wanddicke DS gebildet wird. Da jede Richtungsänderung mit einem Druckverlust einhergeht, reduziert sich der effektive Einspritzdruck immer stärker, je kleiner der Neigungswinkel a1 zwischen der zylindrischen äußeren Einspritzöffnung 17 und der Längsachse 8 ist. Andererseits ist die Spritzlochlänge um so größer, je größer der Neigungswinkel a1 ist. Solange der Neigungswinkel a1 so klein ist, dass der Winkel a2 zwischen dem Ventilsitz 11 und der äußeren Einspritzöffnung 17 größer als 90° ist, kompensieren sich also Neigungswinkel a1 und Spritzlochlänge bis zu einem gewissen Grad, da eine größere Spritzlochlänge natürlich mit einem erhöhten Strömungswiderstand der äußeren Einspritzöffnungen 17 einhergeht.
  • Die Ventilnadel 5 ragt bis in das Sackloch 9, das sich an den konischen Ventilsitz 11 anschließt. Das Sackloch 9 besteht hierbei aus einem Zwischenabschnitt 21 und einem Kuppenabschnitt 22. Der Zwischenabschnitt 21 ist beispielsweise zylindrisch oder leicht konisch ausgebildet und kann in der Länge stark variieren. Es kann auch vorgesehen sein, dass der Zwischenabschnitt 21 ganz entfällt, solange das Sackloch 9 ausreichend tief ist, um die gesamte Spitze der Ventilnadel 5 aufzunehmen. Der Kuppenabschnitt 22 weist eine Grundlinie 23 auf und ist im Inneren in Form einer Halbkugel mit Radius Ri geformt, wobei die Außenwand des Kuppenabschnitts 22 ebenfalls eine Halbkugel mit einem Radius Ra bildet. Hierdurch weist das Sackloch 9 im Bereich des Kuppenabschnitts 22 eine Wanddicke Dk auf, so dass alle inneren Einspritzöffnungen 27 unabhängig von ihrem Neigungswinkel b bezüglich der Längsachse 8 die gleiche Spritzlochlänge haben.
  • Der effektive Einspritzdruck, also der Kraftstoffdruck, mit dem der Kraftstoff letztendlich aus den inneren Einspritzöffnungen 27 bzw. den äußeren Einspritzöffnungen 17 austritt, hängt durch die Kombination aus konischem Ventilsitz 11 mit der konstanten Wanddicke DS im Konusbereich 18 und dem Sackloch 9 mit kugeliger Innen- und Außenform im Kuppenbereich 22 zumindest annähernd nicht vom Neigungswinkel der jeweiligen Einspritzöffnungen 17, 27 mit der Längsachse 8 der Bohrung 3 ab. Die inneren und die äußeren Einspritzöffnungen 17, 27 können dadurch in einem großen Bereich beliebig angeordnet werden, ohne die Einspritzung qualitativ zu beeinträchtigen. Die einzelnen Einspritzstrahlen behalten ihre Charakteristik bei, das heißt, sie haben die gleiche Eindingtiefe und zerstäuben den Kraftstoff in der gleichen Weise.
  • Die äußeren Einspritzöffnungen 17 und die inneren Einspritzöffnungen 27 können auch so angeordnet werden, dass die Einspritzstrahlen zueinander konvergent sind, wie es in dem in Figur 2 gezeigten Ausführungsbeispiel angedeutet ist. Die Einspritzstrahlen können dann auch so angelegt werden, dass sie sich entweder im Bereich der Brennraumwand oder innerhalb des Brennraums kreuzen.
  • Die Wanddicke Ds im Konusbereich des Ventilkörpers 1 und die Wanddicke Dk im Kuppenbereich des Sacklochs 9 können gleich oder unterschiedlich stark sein. Entsprechend ist auch die Länge der Einspritzöffnungen verschieden und damit die Eindringtiefe der Kraftstoffstrahlen in den Brennraum. Durch die unterschied-Einspritzöffnungen 27 im Kuppenbereich 22 lassen sich die unterschiedlichen Druck- und Einlaufverhältnisse in Ventilsitz 11 und Sackloch 9 kompensieren, so dass eine gleichmäßige Kraftstoffverteilung im Brennraum gut erreicht werden kann.

Claims (9)

  1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1), in dem eine Bohrung (3) mit einer Längsachse (8) ausgebildet ist, die an einem Ende von einem Ventilsitz (11) begrenzt wird, und mit einer Ventilnadel (5), die längsverschiebbar in der Bohrung (3) angeordnet ist und die mit dem Ventilsitz (11) so zusammenwirkt, dass durch die Längsbewegung der Ventilnadel (5) ein Durchflussquerschnitt aus einem Druckraum (19) auf- und zugesteuert werden kann, wobei der Ventilsitz (11) und die Außenwand des Ventilkörpers (1) konisch ausgebildet und zueinander parallel sind, so dass ein Konusbereich (18) mit einer konstanten Wanddicke (Ds) gebildet wird, in welchem Konusbereich (18) wenigstens eine äußere Einspritzöffnung (17) ausgebildet ist, und mit einem Sackloch (9), das sich der Ventilnadel (5) abgewandt an den konischen Ventilsitz (11) anschließt, dadurch gekennzeichnet, dass das Sackloch (9) einen konischen Zwischenabschnitt (21) und an dem der Ventilnadel (5) abgewandten Ende einen halbkugelförmigen Kuppenabschnitt (22) aufweist und die Außenwand in diesem Bereich ebenfalls halbkugelförmig ausgebildet ist, so dass der Kuppenbereich (22) eine konstante Wanddicke (Dk) aufweist, wobei im Kuppenbereich (22) wenigstens eine innere Einspritzöffnung (27) ausgebildet ist.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass im konischen Ventilsitz (11) mehrere äußere Einspritzöffnungen (17) über den Umfang des Ventilkörpers (1) verteilt angeordnet sind.
  3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass die äußeren Einspritzöffnungen (17) im konischen Ventilsitz (11) bezüglich der Längsachse (8) der Bohrung (3) eine unterschiedliche Neigung aufweisen.
  4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass im Kuppenbereich (22) des Sacklochs (9) mehrere innere Einspritzöffnungen (27) ausgebildet sind, die über den Umfang des Ventilkörpers (1) verteilt angeordnet sind.
  5. Kraftstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, dass die inneren Einspritzöffnungen (27) im Kuppenbereich (22) bezüglich der Längsachse (8) der Bohrung (3) eine unterschiedliche Neigung aufweisen.
  6. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eine äußere Einspritzöffnung (17) des Konusbereichs (18) und eine innere Einspritzöffnung (27) des Kuppenbereichs (22) so zueinander ausgerichtet sind, dass sich deren Einspritzstrahlen kreuzen.
  7. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass an der Ventilnadel (5) eine Dichtkante (12) ausgebildet ist, mit der die Ventilnadel (5) in ihrer Schließstellung auf dem konischen Ventilsitz (11) aufliegt, wobei der Auflagebereich stromaufwärts aller Einspritröffnungen (17; 27) liegt.
  8. Kraftstoffeinspritzventil nach Anspruch 1 oder 7, dadurch gekennzeichnet, dass der Druckraum (19) zwischen der Ventilnadel (5) und der Wandung der Bohrung (5) ausgebildet ist.
  9. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Wanddicke (Ds) des Konusbereichs (18) verschieden von der Wanddicke (Dk) des Kuppenbereichs (22) ist.
EP05797092A 2004-10-14 2005-10-05 Kraftstoffeinspritzventil für brennkraftmaschinen Not-in-force EP1802864B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004050048A DE102004050048A1 (de) 2004-10-14 2004-10-14 Kraftstoffeinspritzventil für Brennkraftmaschinen
PCT/EP2005/055025 WO2006040283A1 (de) 2004-10-14 2005-10-05 Kraftstoffeinspritzventil für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP1802864A1 EP1802864A1 (de) 2007-07-04
EP1802864B1 true EP1802864B1 (de) 2010-05-05

Family

ID=35464028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05797092A Not-in-force EP1802864B1 (de) 2004-10-14 2005-10-05 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (4)

Country Link
EP (1) EP1802864B1 (de)
AT (1) ATE467047T1 (de)
DE (2) DE102004050048A1 (de)
WO (1) WO2006040283A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063355A1 (de) * 2010-12-17 2012-06-21 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
JP6254122B2 (ja) * 2015-06-24 2017-12-27 株式会社デンソー 燃料噴射ノズル
DE102016215637A1 (de) 2016-08-19 2018-02-22 Robert Bosch Gmbh Kraftstoffeinspritzdüse
DE102018209099A1 (de) 2018-06-08 2019-12-12 Robert Bosch Gmbh Brennkraftmaschine mit adaptivem Einspritzverhalten
DE102018209097A1 (de) 2018-06-08 2019-12-12 Robert Bosch Gmbh Injektor und Brennkraftmaschine mit adaptivem Einspritzverhalten
DE102018209101A1 (de) 2018-06-08 2019-12-12 Robert Bosch Gmbh Injektor und Brennkraftmaschine mit adaptivem Einspritzverhalten
DE102018209096A1 (de) 2018-06-08 2019-12-12 Robert Bosch Gmbh Injektor und Brennkraftmaschine mit adaptivem Einspritzverhalten

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994027042A1 (en) * 1993-05-07 1994-11-24 Lucas Industries Public Limited Company Fuel injection nozzles
DE19642513A1 (de) * 1996-10-15 1998-04-16 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
GB9913314D0 (en) * 1999-06-09 1999-08-11 Lucas Ind Plc Fuel injector
DE10207189A1 (de) * 2001-03-03 2002-09-12 Fev Motorentech Gmbh Schaltbare Einspritzeinrichtung zur Einspritzung unterschiedlicher Kraftstoffmengen

Also Published As

Publication number Publication date
WO2006040283A1 (de) 2006-04-20
EP1802864A1 (de) 2007-07-04
DE502005009539D1 (de) 2010-06-17
ATE467047T1 (de) 2010-05-15
DE102004050048A1 (de) 2006-04-27

Similar Documents

Publication Publication Date Title
EP1802864B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP0657642B1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP2100027B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19820513A1 (de) Kraftstoffeinspritzdüse für eine Brennkraftmaschine
EP0302068A1 (de) Rückschlagventil.
WO2005019637A1 (de) Pilotventil gesteuertes brennstoffeinspritzventil
WO2006053811A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1346143B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10315967A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10115216A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10259799A1 (de) Brennstoffeinspritzventil
DE10319980A1 (de) Registerdüse mit Spritzlöchern
EP1719904A1 (de) Kraftstoffeinspritzdüse
DE10116714A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen, vorzugsweise für hohe Strahlgeschwindigkeiten
EP1062423B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102004046191B3 (de) Servoventil und Einspritzventil
DE102005020360A1 (de) Ventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
DE102005046665A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19841192A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102006050033A1 (de) Injektor, insbesondere Common-Rail-Injektor
DE10002715A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen und ein Verfahren zur Herstellung desselben
DE102005023368B4 (de) Düsenbaugruppe für ein Einspritzventil und Einspritzventil
EP3622170A1 (de) Ventil zum zumessen eines fluids
EP1815129B1 (de) Kraftstoffeinspritzdüse
EP3784900B1 (de) Kraftstoffinjektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070824

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005009539

Country of ref document: DE

Date of ref document: 20100617

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100505

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100905

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100806

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100906

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

26N No opposition filed

Effective date: 20110208

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20101031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005009539

Country of ref document: DE

Effective date: 20110207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101005

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 467047

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101005

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131018

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131217

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005009539

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031