EP1792690B1 - Verfahren zur beurteilung des schneidkantenprofils eines nachschärfenden schneidrads - Google Patents

Verfahren zur beurteilung des schneidkantenprofils eines nachschärfenden schneidrads Download PDF

Info

Publication number
EP1792690B1
EP1792690B1 EP05780973A EP05780973A EP1792690B1 EP 1792690 B1 EP1792690 B1 EP 1792690B1 EP 05780973 A EP05780973 A EP 05780973A EP 05780973 A EP05780973 A EP 05780973A EP 1792690 B1 EP1792690 B1 EP 1792690B1
Authority
EP
European Patent Office
Prior art keywords
resharpening
pinion cutter
cutting edge
sin
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05780973A
Other languages
English (en)
French (fr)
Japanese (ja)
Other versions
EP1792690A1 (de
EP1792690A4 (de
Inventor
Hiroshi c/o HARMONIC DRIVE SYSTEMS INC. YAMAZAKI
Yoshitaroh c/o HARMONIC DRIVE SYSTEMS INC YOSHIDA
Yoshihide c/o Harmonic Drive Systems Inc Kiyosawa
Satoshi Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harmonic Drive Systems Inc
Original Assignee
Harmonic Drive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harmonic Drive Systems Inc filed Critical Harmonic Drive Systems Inc
Publication of EP1792690A1 publication Critical patent/EP1792690A1/de
Publication of EP1792690A4 publication Critical patent/EP1792690A4/de
Application granted granted Critical
Publication of EP1792690B1 publication Critical patent/EP1792690B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/34Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of turning or planing tools or tool bits, e.g. gear cutters
    • B24B3/346Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of turning or planing tools or tool bits, e.g. gear cutters of gear shaper cutter

Definitions

  • the present invention relates to a method of evaluating the cutting edge error produced in a resharpened pinion cutter, and more particularly to a method of evaluating the error of the cutting edge profile of a resharpening pinion cutter provided by performing relief grinding by a screw motion along the outer diameter relief angle of the pinion cutter by using a relief grinding wheel.
  • the object of the measuring method stipulated by JIS is limited to pinion cutters for involute gears. It is stipulated that the error is to be measured in the cross section perpendicular to the axis about 1 mm away from the rake surface, but no consideration is given to the rake angle.
  • non-involute tooth profiles having a particular contour are currently widely used to improve performance in various ways.
  • a specific method for evaluating or measuring the tooth profile error caused by resharpening a pinion cutter for a non-involute gear has not been proposed.
  • a machining simulation system JP 9 212 222 A proposes a system, which is composed of a graphics output device as an output means, a floppy disk drive as an input means, an operating system which performs basic control over a CPU, a RAM which temporarily stores arithmetic results, a solver part as an analyzing means stored with programs for machining simulation, a data base, etc.
  • an object of the present invention is to provide a method for evaluating the error of a cutting edge profile that occurs when a pinion cutter having a non-involute tooth profile or another arbitrary tooth profile is resharpened.
  • an object of the present invention is to provide a method of evaluating the error of the cutting edge profile of a resharpening pinion cutter provided by performing relief grinding by a screw motion along the outer diameter relief angle of the pinion cutter by using a relief grinding wheel.
  • an object of the present invention is to provide a method of evaluating the error of the cutting edge profile of a resharpening pinion cutter provided by performing relief grinding by a linear motion along the outer diameter relief angle of the pinion cutter by using a relief grinding wheel.
  • the cutting edge of the pinion cutter after resharpening is first determined by transforming the coordinate system on the basis of a profile of the axial cross section of the relief grinding wheel.
  • a tooth profile of a pinion having the same outer diameter as that of the resharpening pinion cutter and correctly meshing with the tooth profile of an internal gear to be cut is obtained, and the obtained tooth profile is used as an ideal cutting edge of the resharpening pinion cutter.
  • a normal line is drawn from a point on the cutting edge of the obtained resharpening pinion cutter to the ideal cutting edge, and the length of the normal line is calculated and used as the resharpening error.
  • the method of evaluating the error of a cutting edge profile of a resharpening pinion cutter is characterized in that the step for determining the cutting edge profile of the resharpening pinion cutter comprises:
  • EQ. B the grinding wheel surface formed by turning the profile of an axial cross section of the relief grinding wheel given by EQ. A at an angle ⁇ about an axis ⁇
  • b is the design center distance between the relief grinding wheel axis and the pinion cutter axis
  • ⁇ G is the angle formed between the grinding wheel axis ⁇ of the fixed static coordinate system O 0 - ⁇ and the grinding wheel axis
  • a method of calculating a resharpening limit of a pinion cutter of the present invention is characterized in comprising calculating an error of a cutting edge profile for the resharpening amount using the method of evaluating errors described above; setting the allowable error of the cutting edge profile of a resharpening pinion cutter; and using as the resharpening limit the maximum value of the resharpening amount obtained from the cutting edge profile of the resharpening pinion cutter using an error that is within the allowable error.
  • the error of the cutting edge profile after resharpening the pinion cutter can be calculated regardless of whether the pinion cutter is for an involute gear or a non-involute gear when relief grinding is performed by a screw motion along the outer diameter relief surface of the pinion cutter by using a relief grinding wheel
  • the error can be correctly calculated with consideration given to the rake surface, which is different than measuring the error on the basis of the cutting edge profile on the axially perpendicular cross section currently defined by JIS.
  • the limit of the resharpening amount is determined by actually resharpening the pinion cutter and furthermore performing a gear-cutting test, but in accordance with the present invention, it is possible to set the cutting edge error and ascertain the resharpening limit.
  • the present invention is a method of calculating an error of the cutting edge profile of a resharpening pinion cutter provided by performing relief grinding by a linear motion along the outer diameter relief angle of the pinion cutter by using a relief grinding wheel.
  • the cutting edge of the pinion cutter after resharpening is determined by transforming the coordinate system on the basis of a profile of the axial cross section of the relief grinding wheel.
  • a tooth profile of a pinion having the same outer diameter as that of the resharpening pinion cutter and correctly meshing with the tooth profile of an internal gear to be cut is obtained, and the obtained tooth profile is used as an ideal cutting edge of the resharpening pinion cutter.
  • a normal line is drawn from a point on the cutting edge of the obtained resharpening pinion cutter to the ideal cutting edge, and the length of the normal line is calculated and used as the resharpening error.
  • the contour of the axial cross section profile of the relief grinding wheel is given by a point sequence representing discrete numerical values.
  • the given contour of the axial cross section profile of the relief grinding wheel is interpolated by the Akima method, and the coordinate points on the axial cross section profile are obtained by EQ. E, with t as the parameter expressing the profile in a fixed coordinate system O G - ⁇ that is fixed to the relief grinding wheel in which the axis ⁇ is the rotation axis.
  • b is the design center distance between the relief grinding wheel axis and the pinion cutter axis;
  • v is the outer diameter relief angle of the pinion cutter;
  • is the resharpening amount; and
  • c is the distance from the tip of the cutting edge surface after resharpening to the axially perpendicular plane positioned within the range of the cutting edge surface.
  • the calculated value[of c is substituted into EQ. F, and the cutting edge profile of the pinion cutter after resharpening can be obtained.
  • the present invention is a method of calculating a resharpening limit of a pinion cutter, characterized in comprising calculating an error of a cutting edge profile for the resharpening amount using the method of evaluating errors described above; setting the allowable error of the cutting edge profile of a resharpening pinion cutter; and using as the resharpening limit the maximum value of the resharpening amount obtained from the cutting edge profile of the resharpening pinion cutter using an error that is within the allowable error.
  • the error of the cutting edge profile after resharpening the pinion cutter can be calculated regardless of whether the pinion cutter is for an involute gear or a non-involute gear when relief grinding is performed by a linear motion along the outer diameter relief surface of the pinion cutter by using a relief grinding wheel. Also, since the cutting edge profile of the resharpening pinion cutter formed on the sloped rake surface is determined and the error in the points on the cutting edge profile is calculated, the error can be correctly calculated with consideration given to the rake surface, which is different than measuring the error on the basis of the cutting edge profile on the axially perpendicular cross section currently defined by JIS.
  • the limit of the resharpening amount is determined by actually resharpening the pinion cutter and furthermore performing a gear-cutting test, but in accordance with the present invention, it is possible to set the cutting edge error and ascertain the resharpening limit.
  • Described first is the method of evaluating the error of a cutting edge profile of a resharpening pinion cutter provided by performing relief grinding by a screw motion along the outer diameter relief angle of a pinion cutter by using a relief grinding wheel.
  • the analytical order is described for obtaining the contour of the relief surface of a pinion cutter that has been ground by a grinding wheel, where the axial cross section profile of the relief grinding wheel is given by a point sequence representing discrete numerical values.
  • FIG. 1 is a schematic diagram showing the coordinate system when relief grinding is performed by a screw motion along the outer diameter relief angle of the pinion cutter by using a relief grinding wheel.
  • the coordinate system O G - ⁇ is a fixed coordinate system that is fixed to the relief grinding wheel in which the axis ⁇ is the rotation axis.
  • the coordinate system O 0 - ⁇ 0 ⁇ 0 ⁇ 0 is a static coordinate system for the relief grinding wheel in which the grinding wheel axis ⁇ and the axis ⁇ 0 form a grinding wheel mounting angle ⁇ G .
  • the coordinate system O P - uvw is a fixed coordinate system that is fixed to the pinion cutter in which the axis w is used as the rotating axis and which rotates at an angle ⁇ P about the axis w.
  • the coordinate system O ⁇ - u ⁇ v ⁇ w ⁇ is a resharpening coordinate system of a pinion cutter set at a distance ⁇ in the direction of the axis w from the fixed coordinate system O P - uvw.
  • is the resharpening amount measured in the axial direction at the outer diameter of the pinion cutter
  • b is the design center distance between the relief grinding wheel and the pinion cutter axis
  • the angle ⁇ is the rake angle of the conically contoured cutting edge surface of the pinion cutter.
  • the grinding wheel moves a distance s in the positive direction of the axis ⁇ 0 along the outer diameter relief angle ⁇ while the pinion cutter rotates by an amount equal to the angle ⁇ P , and [the grinding wheel] obliquely moves at the same time by an amount equal to stan ⁇ in the positive direction of the axis ⁇ 0 .
  • the relief surface ground by a screw motion along the outer diameter relief angle of a pinion cutter is one in which the right-side of the cutting edge contour presents a right-handed tapered helical surface and the left-side of the cutting edge contour presents a left-handed tapered helical surface.
  • the outside contour of the cutting tips of the pinion cutter is defined to be a portion of a conical body
  • the generating lines in which the cutting tip points are linked in the axially perpendicular cross sections of the pinion cutter are straight lines along the vertices of cones.
  • these generating lines are considered from the geometrical relationship projected on the horizontal plane of the axis of the pinion cutter, as shown in FIG. 2 .
  • the helix angle ⁇ C of the tapered helical surface in the radius of the pitch circle of the pinion cutter can be approximated by EQ. 1-1, wherein r PC is the radius of the pitch circle of the pinion cutter, v C is the coordinate value of the cutting edge in the pitch circle, and ⁇ C is the converted value in the r PC of the outer diameter relief surface ⁇ .
  • the helix angle ⁇ of the tapered helical surface is determined in the following range with consideration given to the characteristics of the calculated helix angle ⁇ C and the tooth profile.
  • the axial cross section profile of the obtained relief grinding wheel is interpolated by the renowned Akima method, which smoothly interpolates series of points, and the intervals are obtained by EQ. 3 using the coordinate system O G - ⁇ .
  • the variable t is a parameter for expressing the profile.
  • EQ. 4 is obtained when the axial cross section profile of the grinding wheel is turned at angle ⁇ about the axis ⁇ and a grinding wheel surface is formed.
  • EQ. 5 is obtained by a procedure in which the operation of the grinding wheel in the relief grinding work described above is expressed in the static coordinate system O 0 - ⁇ 0 ⁇ 0 ⁇ 0 of the grinding wheel, is subsequently expressed in the fixed coordinate system O P - uvw of the pinion cutter, and is then expressed in the coordinate system O ⁇ - u ⁇ v ⁇ w ⁇ , which is based on the predicted pinion cutter resharpening.
  • EQ. 5 expresses the curves of the relief grinding wheel, and the enveloping surface of the curves expresses the relief surface of the pinion cutter.
  • EQ. 7 is obtained based on EQ. 6 and EQ. 2.
  • EQ. 6 is substituted into EQ. 5 to obtain EQ. 8 below.
  • the conditional expression of the envelope can be obtained by calculating the Jacobian of EQ. 9 below with respect to EQ. 8.
  • EQ. 11 is obtained for calculating c in EQ. 8 from the geometrical relationship in order to obtain the resharpened cutting edge of the pinion cutter having a rake angle.
  • the resharpened pinion cutter cutting edge can be calculated by repeating the following procedure.
  • the resharpening error of the cutting edge is defined in the following manner. First, a tooth profile of a pinion having the same outer diameter as that of the resharpening pinion cutter and correctly meshing with the tooth profile of an internal gear to be cut is obtained, and the obtained tooth profile is used as an ideal cutting edge of the pinion cutter. Next, a normal line is drawn from a point on the cutting edge of the obtained resharpening pinion cutter to the ideal cutting edge, and the length of the normal line is calculated and used as the resharpening error.
  • the analytical order is described for obtaining the contour of the relief surface of a pinion cutter that has been ground by a grinding wheel, where the axial cross section profile of the relief grinding wheel is given by a point sequence representing discrete numerical values.
  • FIG. 3 is a schematic diagram showing the coordinate system when relief grinding is performed by a linear motion along the outer diameter relief angle of the pinion cutter by using a relief grinding wheel.
  • the coordinate system O G - ⁇ is a coordinate system that is fixed to the relief grinding wheel in which the axis ⁇ is the rotation axis, and the coordinate system O 0 - ⁇ 0 ⁇ 0 ⁇ 0 is a static coordinate system for the relief grinding wheel.
  • the coordinate system O P - uvw is a coordinate system that is fixed to the pinion cutter wherein the axis w is used as the rotating axis.
  • the coordinate system O ⁇ - w ⁇ is a coordinate system set at a distance ⁇ in the positive direction of the axis w.
  • r is the resharpening amount measured in the axial direction at the outer diameter of the pinion cutter
  • b is the design center distance between the relief grinding wheel and the pinion cutter axis
  • the angle ⁇ is the rake angle of the conically contoured cutting edge surface of the pinion cutter.
  • the axial cross section profile of the obtained relief grinding wheel is interpolated by the renowned Akima method, which smoothly interpolates series of points, and the intervals are obtained by EQ. 21 using the coordinate system O G - ⁇ .
  • the variable t is a parameter for expressing the profile.
  • EQ. 22 is obtained when the axial cross section profile of the grinding wheel is turned at angle ⁇ about the axis ⁇ and a grinding wheel surface is formed.
  • the grinding wheel moves a distance s in the positive direction of the axis ⁇ along the outer diameter relief angle ⁇ of the pinion cutter and obliquely moves at the same time by an amount equal to stan ⁇ in the positive direction of the axis ⁇ .
  • EQ. 23 is obtained by a procedure in which this movement is expressed in the static coordinate system O 0 - ⁇ 0 ⁇ 0 of the grinding wheel, and is subsequently expressed in the fixed coordinate system O P - uvw of the pinion cutter
  • EQ. 24 is obtained when EQ. 23 is expressed in the coordinate system O ⁇ - u ⁇ v ⁇ w ⁇ , which is based on the predicted pinion cutter resharpening.
  • EQ. 24 expresses the curves of the relief grinding wheel, and the enveloping surface of the curves expresses the relief surface of the pinion cutter.
  • the conditional expression of the envelope can be obtained by calculating the Jacobian with respect to EQ. 26.
  • the profile on the cutting edge of the pinion cutter is expressed by a three-dimensional intersecting curve between the relief surface of the pinion cutter and the conical rake surface.
  • the curve in which the intersecting curve is projected from the w axis direction onto the cross section that includes the axially perpendicular cross section of the pinion cutter is the cutting edge of the pinion cutter. It is difficult to calculate the profile on the cutting edge of the pinion cutter by using an intersecting curve of two surfaces.
  • the distance c to the rake surface that corresponds to an arbitrary point (u ⁇ 0 , v ⁇ 0 ) on the axially perpendicular cross section of the pinion cutter of the resharpening coordinate system O ⁇ - w ⁇ is expressed by the following EQ. 30 on the basis of a geometrical relationship.
  • r PT is the outside radius of the resharpened pinion cutter.
  • the axially perpendicular cross section profile of the pinion cutter that passes through point c can be calculated using EQ. 29. Also, the point (u ⁇ , v ⁇ ) on the axially perpendicular cross section profile corresponding to the point (u ⁇ 0 , v ⁇ 0 ) is a point on the cutting edge.
  • the resharpened pinion cutter cutting edge can be calculated by repeating the following procedure.
  • the resharpening error of the cutting edge is defined in the following manner. First, a tooth profile of a pinion having the same outer diameter as that of the resharpening pinion cutter and correctly meshing with the tooth profile of an internal gear to be cut is obtained, and the obtained tooth profile is used as an ideal cutting edge of the pinion cutter. Next, a normal line is drawn from a point on the cutting edge of the obtained resharpening pinion cutter to the ideal cutting edge, and the length of the normal line is calculated and used as the resharpening error.
  • the limit of the resharpening amount is conventionally determined by actually resharpening the pinion cutter and furthermore performing a gear-cutting test. With the present invention, however, it is possible to set the cutting edge error and to ascertain the resharpening limit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Processing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Claims (8)

  1. Verfahren des Evaluierens eines Fehlers eines Schneidkantenprofils eines Nachschärfschneidrades, das unter Benutzung einer Hinterschleifscheibe durch Hinterschleifen eines Schneidrades in einer Schraubbewegung entlang des Hinterschleifwinkels des Außendurchmessers des Schneidrades bereit gestellt wird,
    wobei das Verfahren dadurch dadurch gekennzeichnet ist, dass
    das Schneidkantenprofil des Nachschärfschneidrades auf der Basis eines Profils eines axialen Querschnitts der Hinterschleifscheibe bestimmt wird,
    ein Zahnprofil eines Rades, das den gleichen Außendurchmesser wie das Nachschärfschneidrad hat und das ordnungsgemäß in das Zahnprofil des zu schneidenden Innenzahnrades eingreift, erhalten wird, und das erhaltene Zahnprofil als eine ideale Schneidkante des Nachschärfschneidrades benutzt wird; und
    die Länge einer Normallinine, die von einem Punkt auf dem Schneidkantenprofil des Nachschärfschneidrades zur idealen Schneidkante gezogen wird, als Fehler des Schneidkantenprofils benutzt wird.
  2. Verfahren des Evaluierens eines Fehlers eines Schneidkantenprofils eines Nachschärfschneidrades nach Anspruch 1, dadurch gekennzeichnet, dass der Schritt des Bestimmens des Schneidkantenprofils des Nachschärfschneidrades einschließt:
    Erhalten der Kontur des axialen Querschnittprofils der Hinterschleifscheibe durch eine Folge von Punkten, die diskrete nummerische Werte repräsentieren;
    Interpolieren der gegebenen Kontur des axialen Querschnittprofils der Hinterschleifscheibe durch die Akima-Methode und Erhalten der Koordinatenpunkte auf dem axialen Querschnittprofil durch Gleichung A,
    wobei t der Parameter ist, der das Profil in einem festen Koordinatensystem OG - ξηζ ausdrückt, das an der Hinterschleifscheibe fixiert ist, wobei die Achse ζ die Rotationsachse ist, ξ = g t = g η = 0 ζ = h t = h }
    Figure imgb0037
    Definieren der Fläche der Hinterschleifscheibe, die durch Drehen des durch Gleichung A gegebenen Profils eines axialen Querschnitts der Hinterschleifscheibe um einen Winkel φ um die Achse ζ gebildet wird, durch Gleichung B ξ = g cos ϕ η = g sin ϕ ζ = h }
    Figure imgb0038
    Ausdrücken der Bewegung der Hinterschleifarbeit, die von der Hinterschleifscheibe, die mit der Hinterschleifscheibenfläche versehen ist, ausgeführt wird, in einem statischen Koordinatensystem O0 - ξ0η0ζ0 der Schleifscheibe und danach in einem fixierten Kooridnatensystem OP - uvw, das an dem Schneidrad, das in einem Winkel θP um die Achse w rotiert, fixiert ist; und
    danach durch Gleichung C Definieren der Koordinatenpunkte (uτ,vτ) auf dem axialen, rechtwinkligen Querschnittprofil der Hinterschneidfläche des Schneidrades in einer beliebigen rechtwinkligen Ebene (wτ=c) innerhalb des Bereiches der Schneidkantenfläche des Nachschärfschneidrades mit einem Spanwinkel ε im Koordinatensystem Oτ - ξτητζτ das durch τ in positiver Richtung der Achse w vom [fixierten] Koordinatensystem getrennt ist. u τ = b - g cos ϕ - - g sin ϕ cos Γ G + h sin Γ G + τ + c tan γ cos θ P - g sin ϕ sin Γ G + h cos Γ G sin θ P v τ = b - g cos ϕ - - g sin ϕ cos Γ G + h sin Γ G + τ + c tan γ sin θ P + g sin ϕ sin Γ G + h cos Γ G cos θ P }
    Figure imgb0039
    wobei b der Aufbau-Zentralabstand zwischen der Achse der Hinterschleifscheibe und der Achse des Schneidrades ist; ΓG der Winkel ist, der zwischen der Achse ζ der Hinterschleifscheibe des festen, statischen Koordinatensystems O0 - ξηζ und der Achse ζ0 der Schleifscheibe der Hinterschneidseite des statischen Koordinatensystems O0 - ξ0η0ζ0 ausgebildet ist; γ der Hinterschneidwinkel des Außendurchmessers der Schneidrades ist; τ die Größe des Nachschärfens ist; und c der Abstand von der Spitze der Schneidkantenfläche nach dem Nachschärfen zur axialen, rechtwinkligen Ebene ist, die innerhalb des Bereiches der Schneidkantenfläche angeordnet ist.
  3. Verfahren des Bestimmens eines Fehlers eines Schneidkantenprofils eines Nachschärfschneidrades nach Anspruch 2, dadurch gekennzeichnet, dass der Wert von c aus Gleichung D berechnet wird, wobei rPT der äußere Radius des Schneidrades nach dem Nachschärfen ist, ε der Spanwinkel der konisch konturierten Schneidkantenfläche des Schneidrades ist, und der Koordinatenwert des Schneidkantenprofils im Querschnitt von wτ = 0 ist, c = r P τ - u τ 0 2 + v τ 0 2 sin ε cos γ cos ε + γ r = r Pc - τ tan γ u τ 0 = b - g cos ϕ - - g sin ϕ cos Γ G + h sin Γ G + τ tan γ cos θ P - g sin ϕ sin Γ G + h cos Γ G sin θ P v τ 0 = b - g cos ϕ - - g sin ϕ cos Γ G + h sin Γ G + τ tan γ sin θ P + g sin ϕ sin Γ G + h cos Γ G cos θ P }
    Figure imgb0040

    und wobei der berechnete Wert von c in Gleichung C eingesetzt wird, um die Koordinatenpunkte des Schneidkantenprofils des Schneidrades nach dem Nachschärfen zu erhalten.
  4. Verfahren des Berechnens einer Nachschärfgrenze eines Schneidrades, dadurch gekennzeichnet, dass es einschließt:
    Berechnen eines Fehlers eines Schneidkantenprofils für die Nachschärfgröße unter Benutzung des Verfahrens des Evaluierens von Fehlern nach Anspruch 1, 2 oder 3;
    Festlegen des erlaubten Fehlers des Schneidkantenprofils eine Nachschärfschneidrades; und
    unter Verwendung eines Fehlers, der innerhalb des erlaubten Fehlers liegt, Benutzen des maximalen Wertes der Nachschärfgröße, die vom Schneidkantenprofil des Nachschärfschneidrades erhalten wird, als Nachschärfgrenze.
  5. Verfahren des Evaluierens eines Fehlers eines Schneidkantenprofils eines Nachschärfschneidrades, das unter Benutzung einer Hinterschleifscheibe durch Hinterschleifen eines Schneidrades in einer linearen Bewegung entlang des Hinterschleifwinkels eines Außendurchmessers eines Schneidrades bereit gestellt wird, wobei das Verfahren dadurch gekennzeichnet ist, dass
    das Schneidkantenprofil des Nachschärfschneidrades auf der Basis eines Profils eines axialen Querschnitts der Hinterschleifscheibe bestimmt wird,
    ein Zahnprofil eines Rades, das den gleichen Außendurchmesser wie das Nachschärfschneidrad hat und das ordnungsgemäß in das Zahnprofil des zu schneidenden Innenzahnrades eingreift, erhalten wird, und das erhaltene Zahnprofil als ideale Schneidkante des Nachschärfschneidrades benutzt wird; und
    die Länge einer Normallinie, die von einem Punkt auf dem Schneidkantenprofil des Nachschärfschneidrades zur idealen Schneidkante gezogen wird, als Fehler des Schneidkantenprofils nach dem Nachschärfen benutzt wird.
  6. Verfahren des Evaluierens eines Fehlers eines Schneidkantenprofils eines Nachschärfschneidrades nach Anspruch 5, dadurch gekennzeichnet, dass der Schritt des Bestimmens des Schneidkantenprofils des Nachschärfschneidrades einschließt:
    Erhalten der Kontur des axialen Querschnittprofils der Hinterschleifscheibe durch eine Folge von Punkten, die diskrete nummerische Werte repräsentieren;
    Interpolieren der vorgegebenen Kontur des axialen Querschnittprofils der Hinterschleifscheibe durch die Akima-Methode und Erhalten der Koordinatenpunkte auf dem axialen Querschnittprofil durch Gleichung E, wobei t der Parameter ist, der das Profil in einem Koordinatensystem OG - ξηζ, das an der Hinterschleifscheibe fixiert ist, ausdrückt, wobei die Achse ζ die Rotationsachse ist ξ = g t = g η = 0 ζ = h t = h }
    Figure imgb0041
    Transformieren der Koordinaten in das durch Gleichung E vorgegebene axiale Querschnittprofil der Schleifscheibe und Definieren der Koordinatenpunkte auf dem axialen, rechtwinkligen Querschnittprofil der Hinterschneidfläche eines Schneidrades in einer beliebigen, axialen, rechtwinkligen Ebene (wτ = c) innerhalb des Bereiches der Fläche des Schneidkante des Nachschärfschneidrades mit einem Spanwinkel ε im Koordinatensystem Oτ - uτvτwτ, das durch τ in positiver Richtung der Achse w vom Koordinatensystem OP - uvw, das am Schneidrad fixiert ist und indem die Achse w eine Rotationsachse ist, getrennt ist, durch Gleichung F u τ = b - g cos ϕ + g sin ϕ - τ - c tan γ v τ = h }
    Figure imgb0042
    wobei b der Aufbau-Zentralabstand zwischen der Achse der Hinterschleifscheibe und der Achse des Schneidrades ist; v der Außendurchmesser-Hinterschneidwinkel des Schneidrades ist; τ die Nachschärfgröße ist; und c der Abstand von der Spitze der Schneidkantenfläche nach dem Nachschärfen zur axialen, rechtwinkligen Ebene ist, die im Bereich der Schneidkantenfläche angeordnet ist.
  7. Verfahren des Bestimmens eines Fehlers eines Schneidkantenprofils eines Nachschärfschneidrades nach Anspruch 6, dadurch gekennzeichnet, dass der Wert von c aus Gleichung G berechnet wird, wobei rPT der äußeren Radius des Schneidrades nach dem Nachschärfen ist, c = r P τ 2 - v τ 0 - u τ 0 sin ε 1 cos γ cos ε 1 + γ ε 1 = tan - 1 r P τ - u τ 0 2 + v τ 0 2 tan ε r P τ 2 - v τ 0 - u τ 0
    Figure imgb0043

    und der für c berechnete Wert in Gleichung F eingesetzt wird, um die Koordinatenpunkte des Schneidkantenprofils des Schneidrades nach dem Nachschärfen zu erhalten.
  8. Verfahren des Berechnens einer Nachschärfgrenze eines Schneidrades, dadurch gekennzeichnet, dass es einschließt:
    Berechnen eines Fehlers eines Schneidkantenprofils für die Nachschärfgröße unter Benutzung des Verfahrens des Evaluierens von Fehlern nach einem der Ansprüche 5 bis 7;
    Festlegen des erlaubten Fehlers des Schneidkantenprofils eines Nachschärfschneidrades; und
    unter Verwendung eines Fehlers, der innerhalb des erlaubten Fehlers liegt, Benutzen des maximalen Wertes der Nachschärfgröße, die vom Schneidkantenprofil des Nachschärfschneidrades erhalten wird, als Nachschärfgrenze.
EP05780973A 2004-08-27 2005-08-25 Verfahren zur beurteilung des schneidkantenprofils eines nachschärfenden schneidrads Active EP1792690B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004248623 2004-08-27
JP2004338045 2004-11-22
PCT/JP2005/015447 WO2006022336A1 (ja) 2004-08-27 2005-08-25 研ぎ直しピニオンカッタの刃形輪郭の評価方法

Publications (3)

Publication Number Publication Date
EP1792690A1 EP1792690A1 (de) 2007-06-06
EP1792690A4 EP1792690A4 (de) 2011-01-12
EP1792690B1 true EP1792690B1 (de) 2012-03-07

Family

ID=35967543

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05780973A Active EP1792690B1 (de) 2004-08-27 2005-08-25 Verfahren zur beurteilung des schneidkantenprofils eines nachschärfenden schneidrads

Country Status (3)

Country Link
EP (1) EP1792690B1 (de)
JP (1) JP4763611B2 (de)
WO (1) WO2006022336A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100562403C (zh) * 2008-09-13 2009-11-25 东方电气集团东方汽轮机有限公司 刀具整体铲磨砂轮型线误差的修正方法及装置
JP2018122425A (ja) 2017-02-03 2018-08-09 株式会社ジェイテクト 歯切り工具の加工装置、加工方法、工具形状シミュレーション装置及び工具形状シミュレーション方法
CN109834551B (zh) * 2019-01-28 2020-08-07 湖北工业大学 一种圆弧砂轮磨削圆弧直槽的方法
CN112123038B (zh) * 2020-08-03 2022-07-12 西安交通大学 一种插齿刀后刀面双参数单面成形磨削方法
CN113419488B (zh) * 2021-06-08 2022-07-08 湖北工业大学 一种非圆齿扇变变位修形过切消除方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103293A (de) * 1973-02-02 1974-09-30
US4139327A (en) * 1977-06-16 1979-02-13 Barber-Colman Company Roughing gear shaper cutter
CH647445A5 (de) * 1980-04-10 1985-01-31 Maag Zahnraeder & Maschinen Ag Schraegschneidrad mit treppenscharfschliff.
JPS61109654A (ja) * 1984-10-29 1986-05-28 Karatsu Tekkosho:Kk ピニオンカツタの再研磨装置
JPS6272024U (de) * 1985-10-25 1987-05-08
JPH0732215A (ja) * 1993-07-21 1995-02-03 Kobe Steel Ltd ピニオンカッタおよびその製造方法
JP3391058B2 (ja) * 1993-09-09 2003-03-31 株式会社ニコン 制約付き多次元形状の形状パラメータ測定方法および装置
JP3080824B2 (ja) * 1993-11-17 2000-08-28 エムエムシーコベルコツール株式会社 ピニオンカッタの研削方法
JPH09212222A (ja) 1996-02-02 1997-08-15 Honda Motor Co Ltd 歯車の加工シミュレーションシステムおよびシミュレーション方法

Also Published As

Publication number Publication date
EP1792690A1 (de) 2007-06-06
EP1792690A4 (de) 2011-01-12
JPWO2006022336A1 (ja) 2008-05-08
JP4763611B2 (ja) 2011-08-31
WO2006022336A1 (ja) 2006-03-02

Similar Documents

Publication Publication Date Title
EP2471621B1 (de) Zahnradbearbeitungsverfahren eines zahnrads mit innenverzahnung
EP1873420B1 (de) Zahnrad mit cornu-spiralen-zahnprofil
EP1688202A1 (de) Schleifscheibe zum Freischleifen eines nachschleifbaren Schneidrades
EP1792690B1 (de) Verfahren zur beurteilung des schneidkantenprofils eines nachschärfenden schneidrads
CN109063326B (zh) 一种考虑微观修形和实际加工误差的齿轮精确建模方法
EP3423781B1 (de) Messung von schneckengetrieben
Fuentes-Aznar et al. Numerical approach for determination of rough-cutting machine-tool settings for fixed-setting face-milled spiral bevel gears
CN106735612B (zh) 一种改善珩齿加工的方法
Boral et al. Machining of spur gears using a special milling cutter
Kimme et al. Simulation of error-prone continuous generating production processes of helical gears and the influence on the vibration excitation in gear mesh
JP2005066815A (ja) 研ぎ直し可能な任意歯形ピニオンカッタ
CN115758623A (zh) 无结构后角的圆柱型车齿刀具设计方法
Yan et al. The analysis of contact ratio of involute internal beveloid gears with small tooth difference
CN110045685B (zh) 检验齿轮机床工作精度的方法
Várkuli et al. Determination of tooth surface points on bevel gears for checking on a coordinate measuring machine
CN115026354B (zh) 一种复杂齿形的车齿刀具逆向包络设计方法
CN110802282A (zh) 一种螺旋锥齿齿顶倒圆加工方法
Lee et al. Toolpath generation method for four-axis NC machining of helical rotor
Liu et al. Design and manufacture of plunge shaving cutter for shaving gears with tooth modifications
Piazza et al. Experimental validation of a computerized tool for face hobbed gear contact and tensile stress analysis
JPH0569664B2 (de)
SZENTE DETERMINATION OF TOOTH SURFACE POINTS ON BEVEL GEARS FOR CHECKING ON A COORDINATE MEASURING MACHINE
Kamratowski et al. Validation of a Planar Penetration Calculation for Face Hobbing Generating of Bevel Gears
Egorov et al. Digital approach for the solution of gearing problems
Huang et al. Novel third-order correction for a helical gear shaping cutter made by a lengthwise-reciprocating grinding process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE LI

A4 Supplementary search report drawn up and despatched

Effective date: 20101213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005033062

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B24B0049000000

Ipc: B24B0001000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B24B 1/00 20060101AFI20110823BHEP

Ipc: B24B 49/00 20060101ALI20110823BHEP

Ipc: B24B 3/34 20060101ALI20110823BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005033062

Country of ref document: DE

Effective date: 20120503

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE SA

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005033062

Country of ref document: DE

Effective date: 20121210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005033062

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 19