EP1791233A1 - Ionengeneratorvorrichtung - Google Patents
Ionengeneratorvorrichtung Download PDFInfo
- Publication number
- EP1791233A1 EP1791233A1 EP05025910A EP05025910A EP1791233A1 EP 1791233 A1 EP1791233 A1 EP 1791233A1 EP 05025910 A EP05025910 A EP 05025910A EP 05025910 A EP05025910 A EP 05025910A EP 1791233 A1 EP1791233 A1 EP 1791233A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- high voltage
- wave signal
- ion generation
- generator
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T23/00—Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
Definitions
- the present invention relates to an ion generation apparatus, and more particularly to an ion generation apparatus for changing a high voltage applied to an electrode of an ion generator including a component for generating positive/negative ions.
- a negative ion generator has been installed in electronic devices such as an air cleaner, such that the negative ions generated from the negative ion generator are provided to a room.
- electronic devices such as an air cleaner
- the negative ions generated from the negative ion generator are provided to a room.
- an ion generation device for generating positive and negative ions to sterilize such bacteria has recently been developed such that the sterilizing power of the ion generation device can be improved.
- the ion generation device applies a high voltage to an ion generator including a pair of positive and negative electrodes, such that it generates positive ions (e.g., hydrogen gas) and negative ions (e.g., 02-).
- the aforementioned ion generation device has been designed not to change the high voltage applied to the electrodes after deciding to apply a predetermined high voltage to the electrodes, such that it cannot change ion categories and a quantity of ions generated from the ion generation device. Therefore, although there is a need for the quantity of generated ions to be newly established due to installation environments of the ion generation device, the conventional ion generation device is unable to properly cope with the above problem, resulting in deterioration of use efficiency of the ion generation device.
- an ion generation apparatus comprising: an ion generator including at least one of a positive ion generation electrode and a negative ion generation electrode, for receiving a high voltage to generate ions; a high voltage generator for applying a high voltage to the ion generator; and a controller for changing the high voltage applied to the ion generator.
- the high voltage generator includes a sine wave generator for generating a sine wave signal
- the controller includes one of a frequency setup unit for establishing a frequency of the sine wave signal and a duty-cycle setup unit for establishing an on-time duty cycle of the sine wave signal.
- the ion generation apparatus further comprises an entry unit for allowing a user to establish the frequency or on-time duty cycle of the sine wave signal having the high voltage, in which the controller changes the sine wave signal having the high voltage according to information established by the entry unit.
- the ion generation apparatus further comprises a high voltage generator which includes a square wave generator for generating a square wave signal, and the controller includes at least one of a frequency setup unit for establishing a frequency of the square wave signal and a duty-cycle setup unit for establishing an on-time duty cycle of the square wave signal.
- a high voltage generator which includes a square wave generator for generating a square wave signal
- the controller includes at least one of a frequency setup unit for establishing a frequency of the square wave signal and a duty-cycle setup unit for establishing an on-time duty cycle of the square wave signal.
- the ion generation apparatus further comprises an entry unit for allowing a user to establish the frequency or on-time duty cycle of the square wave signal having the high voltage, in which the controller changes the sine wave signal having the high voltage according to information established by the entry unit.
- the ion generation apparatus further comprises a storage unit for storing information corresponding to the high-voltage sine wave signal or the high-voltage square wave signal and information corresponding to the quantity of generated ions.
- the ion generation device mounts an ion generator 10 for generating ions on a support 100.
- the ion generator 10 includes a positive ion generator 11 for generating positive ions, and a negative ion generator 12 spaced apart from the positive ion generator 11 by a predetermined distance for generating negative ions.
- An opening in which the positive ion generator 11 is installed is placed on the top of the support 100, such that the positive ion generator 11 is installed in the opening.
- the positive ion generator 11 is adapted to generate positive ions.
- a discharge electrode 13 is provided at the inner upper part of the positive ion generator 11, and an induction electrode 14 is provided at the center of the positive ion generator 11.
- the remaining parts other than the discharge electrode 13 and the induction electrode 14 are formed of ceramic material, such that they form a protective layer.
- the negative ion generator 12 If a negative(-) high voltage is applied to the negative ion generator 12, such as a negative ion generation electrode, the negative ion generator 12 emits electrons. These electrons are combined with oxygen molecules (O 2 ) contained in the air, such that a superoxide anion O 2 - is generated.
- O 2 oxygen molecules
- the positive(+) high voltage i.e., a sine or square wave
- the negative(-) high voltage is applied to the negative ion generator 12
- the positive ion generator 11 generates hydrogen ions, etc.
- the negative ion generator 12 generates electrons and a superoxide anion O 2 - .
- the hydrogen ions generated from the positive ion generator react with the electrons emitted from the negative ion generator, such that a hydrogen atom is formed.
- a hydroperoxy radical (O-O-H) is formed.
- the O 2 - electron is offset by static electricity of bacteria.
- the O-O-H radical takes a hydrogen atom away from a protein indicative of a structural component of a cell membrane of the bacteria, such that it makes water. A protein molecule of the cell membrane from which the hydrogen atom is taken away is destroyed, and the cell membrane is also destroyed in such a way that sterilization is carried out.
- the quantity of generated ions is regulated according to the variation in either the frequency or the on-time duty cycle of the positive(+) high voltage.
- a high voltage generator 20 is connected between a DC (Direct Current) power-supply unit 21 for generating a predetermined DC power-supply voltage (e.g., DC 12V) and the ion generator 10, as shown in FIG. 4.
- the high voltage generator 20 includes a sine wave generator 22 and an amplifier 23.
- the sine wave generator 22 converts the DC power-supply voltage into a sine wave voltage having a predetermined frequency, such that the sine wave generator 22 finally outputs the sine wave voltage having the predetermined frequency.
- the amplifier 23 amplifies the sine wave voltage using the same polarity as that of the sine wave voltage, such that the high voltage generator 20 applies the amplified sine wave signal having a predetermined high voltage (e.g., a voltage of several kV) to the positive ion generator 11.
- a predetermined high voltage e.g., a voltage of several kV
- the amplifier 23 amplifies a positive(+) DC power-supply voltage using a negative(-) high voltage (e.g., a voltage of several kV) opposite to the positive(+) DC power-supply voltage, such that the high voltage generator 20 applies the amplified voltage to the negative ion generator 12 of the ion generator 10.
- a negative(-) high voltage e.g., a voltage of several kV
- a controller 24 is connected to the sine wave generator 22 such that the controller 24 establishes a frequency or on-time duty cycle of the sine wave signal.
- the controller 24 includes a frequency setup unit 25 for establishing a frequency of the sine wave signal, and a duty-cycle setup unit 26 for establishing an on-time duty cycle of the sine wave signal.
- the controller 24 outputs a sine wave frequency setup signal and/or an on-time duty cycle setup signal to the high voltage generator 20 according to a user-entry command received from an entry unit 27.
- the controller 24 searches for information stored in a storage unit 28, which stores setup information associated with a frequency or an on-time duty cycle of the sine wave signal in response to the user-entry command.
- the controller 24 receives frequency setup information corresponding to the sine wave signal or on-time duty cycle setup information corresponding to the sine wave signal from the storage unit 28, and establishes a frequency and on-time duty cycle of the sine wave signal.
- the storage unit 28 stores information indicative of the quantity of generated hydrogen ions, and other information indicative of the frequency or on-time duty cycle of the sine wave signal.
- the controller 24 receives frequency setup information or on-time duty cycle information associated with the established ion generation quantity, and changes a sine wave voltage of the sine wave generator 22 using one of a frequency setup unit 25 and a duty-cycle setup unit 26. For example, if a frequency of the sine wave voltage is changed as shown in FIG. 5a, or if a frequency or on-time duty cycle of the sine wave voltage is changed as shown in FIG. 5b, the controller 24 changes the on-time duty cycle of the sine wave voltage as shown in FIG. 5c.
- a high voltage generator 30 is connected between a DC power-supply unit 31 for generating a predetermined DC power-supply voltage (e.g., DC 12V) and the ion generator 10, as shown in FIG. 6.
- the high voltage generator 30 includes a square wave generator 32 and an amplifier 33.
- the square wave generator 32 converts the DC power-supply voltage into a square wave voltage of a predetermined frequency, such that it finally outputs the square wave voltage of the predetermined frequency.
- the amplifier 33 amplifies the square wave voltage using the same polarity as that of the square wave voltage, such that it applies the amplified square wave signal having a predetermined high voltage (e.g., a voltage of several kV) to the positive ion generator 11.
- the amplifier 33 amplifies a positive(+) DC power-supply voltage using a negative(-) high voltage (e.g., a voltage of several kV) opposite to the positive(+) DC power-supply voltage, such that it applies the amplified voltage to the negative ion generator 12.
- a negative(-) high voltage e.g., a voltage of several kV
- a controller 34 is connected to the square wave generator 32 such that the controller 34 establishes a frequency or on-time duty cycle of the square wave signal.
- the controller 34 includes a frequency setup unit 35 for establishing a frequency of the square wave signal, and a duty-cycle setup unit 36 for establishing an on-time duty cycle of the square wave signal.
- the controller 34 outputs a square wave frequency setup signal and/or an on-time duty cycle setup signal to the high voltage generator 30 according to a user-entry command received from an entry unit 37.
- the controller 34 searches for information stored in a storage unit 38, which stores setup information associated with a frequency or on-time duty cycle of the square wave signal in response to the user-entry command.
- the controller 34 receives frequency setup information corresponding to the square wave signal or the on-time duty cycle setup information corresponding to the square wave signal from the storage unit 38, and establishes a frequency and on-time duty cycle of the square wave signal.
- the storage unit 38 stores information indicative of the quantity of generated hydrogen ions, and other information indicative of the frequency or the on-time duty cycle of the square wave signal.
- the controller 34 receives frequency setup information or on-time duty cycle information associated with the established ion generation quantity, and changes a square wave voltage of the square wave generator 32 using one of a frequency setup unit 35 and a duty-cycle setup unit 36. For example, if a frequency of the square wave voltage is changed as shown in FIG. 7a, the controller 34 changes the on-time duty cycle of the square wave voltage as shown in FIG. 7b.
- the quantity of generated ions can be adjusted by changing a frequency or on-time duty cycle of a sine or square wave high voltage applied to the positive ion generator.
- the ion generation device can easily change the quantity of ions generated from the positive ion generator by changing a high voltage applied to a ceramic plate electrode, such that a user can conveniently use the ion generation device irrespective of installation environments of the ion generation device.
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200560018939 DE602005018939D1 (de) | 2005-11-28 | 2005-11-28 | Ionengeneratorvorrichtung |
EP20050025910 EP1791233B1 (de) | 2005-11-28 | 2005-11-28 | Ionengeneratorvorrichtung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20050025910 EP1791233B1 (de) | 2005-11-28 | 2005-11-28 | Ionengeneratorvorrichtung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1791233A1 true EP1791233A1 (de) | 2007-05-30 |
EP1791233B1 EP1791233B1 (de) | 2010-01-13 |
Family
ID=36129881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20050025910 Revoked EP1791233B1 (de) | 2005-11-28 | 2005-11-28 | Ionengeneratorvorrichtung |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1791233B1 (de) |
DE (1) | DE602005018939D1 (de) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1291087A2 (de) * | 2001-09-04 | 2003-03-12 | Illinois Tool Works Inc. | Energieversorgungsstromregelung für einen Ionisator |
EP1401247A2 (de) * | 2002-09-20 | 2004-03-24 | Illinois Tool Works, Inc. | Verfahren und Vorrichtung zur Regelung der Offsetspannung in Bipolare Ionisationssystemen |
US6798637B1 (en) * | 2000-10-27 | 2004-09-28 | Ion Systems | Dynamic air ionizer and method |
-
2005
- 2005-11-28 EP EP20050025910 patent/EP1791233B1/de not_active Revoked
- 2005-11-28 DE DE200560018939 patent/DE602005018939D1/de active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6798637B1 (en) * | 2000-10-27 | 2004-09-28 | Ion Systems | Dynamic air ionizer and method |
EP1291087A2 (de) * | 2001-09-04 | 2003-03-12 | Illinois Tool Works Inc. | Energieversorgungsstromregelung für einen Ionisator |
EP1401247A2 (de) * | 2002-09-20 | 2004-03-24 | Illinois Tool Works, Inc. | Verfahren und Vorrichtung zur Regelung der Offsetspannung in Bipolare Ionisationssystemen |
Also Published As
Publication number | Publication date |
---|---|
EP1791233B1 (de) | 2010-01-13 |
DE602005018939D1 (de) | 2010-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060023392A1 (en) | Ion generation apparatus | |
US8049170B2 (en) | Induction electrode, ion generation element, ion generation apparatus, and electric equipment | |
EG23455A (en) | Ion generator and electric apparatus and their uses in an air condition. | |
US9149551B2 (en) | Plasma generating device, plasma generating method, and method for suppressing ozone generation | |
JP2007250755A5 (de) | ||
SE0102134D0 (sv) | Method and apparatus for plasma generation | |
JP2002263173A (ja) | 低周波プラズマを用いた消毒システムの電力システムおよび方法 | |
KR101787322B1 (ko) | 전자발생장치 | |
US7485265B2 (en) | Ceramic electrode structure for generating ions, and ion generating apparatus using the same | |
WO2013051730A1 (ja) | プラズマ発生装置 | |
CN1728483A (zh) | 离子发生器 | |
JP3624349B2 (ja) | マイナスイオン発生装置 | |
EP1791233B1 (de) | Ionengeneratorvorrichtung | |
JP2002090058A (ja) | 冷蔵庫 | |
Müller et al. | Extraction of ions from dielectric barrier discharge configurations | |
JP4127524B2 (ja) | イオン発生装置及びこれを備えた電気機器 | |
JP2003100419A (ja) | イオン発生装置及び空気調節装置 | |
JP4721804B2 (ja) | イオン発生装置及びこれを備えた電気機器 | |
CN219743423U (zh) | 消毒盒 | |
EP1790361A1 (de) | Ionengenerator | |
JP2007165266A (ja) | イオン発生方法及びその装置 | |
TWI612981B (zh) | 滅菌電漿系統 | |
JP3167207B2 (ja) | イオン加速装置 | |
JP2005327696A (ja) | イオン発生装置及びこれを備えた電気機器 | |
JP5198026B2 (ja) | 高電圧放電部の動作確認方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20071024 |
|
17Q | First examination report despatched |
Effective date: 20071127 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602005018939 Country of ref document: DE Date of ref document: 20100304 Kind code of ref document: P |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: ELTEX ELEKTROSTATIK GMBH Effective date: 20101012 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20101128 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005018939 Country of ref document: DE Effective date: 20110601 Ref country code: DE Ref legal event code: R119 Ref document number: 602005018939 Country of ref document: DE Effective date: 20110531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SAMSUNG ELECTRONICS CO., LTD. |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20121014 |