EP1789191A1 - Procede de revetement d'un filtre a ecoulement par paroi ayant des matieres solides fines, filtre ainsi obtenu et son utilisation - Google Patents

Procede de revetement d'un filtre a ecoulement par paroi ayant des matieres solides fines, filtre ainsi obtenu et son utilisation

Info

Publication number
EP1789191A1
EP1789191A1 EP05776563A EP05776563A EP1789191A1 EP 1789191 A1 EP1789191 A1 EP 1789191A1 EP 05776563 A EP05776563 A EP 05776563A EP 05776563 A EP05776563 A EP 05776563A EP 1789191 A1 EP1789191 A1 EP 1789191A1
Authority
EP
European Patent Office
Prior art keywords
filter
coating
solids
suspension
chnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05776563A
Other languages
German (de)
English (en)
Inventor
Marcus Pfeifer
Markus Koegel
Christian Kuehn
Roger Staab
Paul Spurk
Egbert Lox
Thomas Kreuzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Publication of EP1789191A1 publication Critical patent/EP1789191A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a method for coating an open-pored Wandflußfilters with finely divided solids, in particular a soot filter for diesel engines with a catalytically active coating.
  • Diesel engines also emit soot in addition to unburned hydrocarbons, carbon monoxide and nitrogen oxides.
  • soot filters are used. Due to the soot deposits on the filter, the exhaust back pressure increases continuously, thus reducing the performance of the engine. The filter must therefore be regenerated from time to time by burning off the soot.
  • Typical depth filters consist, for example, of blocks of open-pore ceramic foams or of wire mesh or nonwoven fabrics.
  • the gases or liquids are passed through the filters.
  • the deposition of the particles takes place in the volume of the filter body.
  • surface filters the deposition of the particles to be removed from the gases or liquids takes place essentially on the surfaces of thin-walled bodies, which consist of materials with likewise open pore structure.
  • the gases or liquids are passed substantially vertically through the walls of these bodies. They are therefore also referred to as Wandflußfilter.
  • the particles deposit mainly on the entrance surface of the wall surfaces.
  • Wall-flow filters are preferably made of ceramic materials such as cordierite, silicon carbide, aluminum titanate and mullite. They are used in increasingly large quantities for the removal of soot from the exhaust gas of internal combustion engines, in particular from the exhaust gas of diesel engines. These wall-flow filters preferably have the shape of a honeycomb body which is traversed from an inlet end face to an outlet end face of exhaust parallel flow channels which are mutually closed at the end faces so that the exhaust gas is forced on its way from the inlet face to the outlet face to traverse the porous partitions between the flow channels.
  • the flow channels in the inlet channels and outlet channels are underschie ⁇ the.
  • soot With increasing loading of the filter with soot caused by him exhaust back pressure, so that from time to time a regeneration of the filter by burning the deposited soot is necessary.
  • the spontaneous combustion of soot starts at an exhaust gas temperature of about 600 ° C.
  • soot ignition temperature by appropriate catalytic equipment of the filter.
  • Suitable for lowering the soot ignition temperature by about 50 0 C for example, silver vanadate (US 4,455,393), an alkali metal perrhenates and silver perrhenate or an admixture of these substances with lithium oxide, copper (I) chloride, vanadium pentoxide having from 1 to 30 wt. -% of an alkali metal oxide or a vanadate of lithium, sodium, potassium or cerium (US 4,515,758).
  • the soot ignition temperature can be reduced by a mixture of a platinum group metal with an alkaline earth metal oxide (US Pat. No. 5,100,632).
  • Particularly suitable are mixtures of platinum with cerium oxide, manganese oxide and calcium oxide (WO 02/26379 Al), with which a reduction of the Rußzündtemperatur can be achieved by over 100 0 C.
  • the filter can be equipped with other catalytically active components for the oxidation of carbon monoxide and hydrocarbons and for the storage of nitrogen oxides.
  • US Pat. No. 6,367,246 B1 describes a wall-flow filter on whose channel walls of the inlet and outlet channels a hydrocarbon-absorbing coating and a nitrogen oxide-storing coating are applied.
  • finely divided solids means powdery materials having average particle diameters of less than 100, preferably less than 50 ⁇ m
  • the support materials generally have specific surface areas between 10 and 400 m 2 / g.
  • these support materials are suspended, for example, in water and before the coating of the intended support body milled to a mean particle size of 2 to 6 microns.
  • a mean particle size of 2 to 6 microns.
  • the entrance end face with the suspension is poured. Thereafter, excess material is removed by, for example, bleeding. Subsequently, the filter is dried and calcined to solidify the coating. It remains a coating of several micrometers thickness on the wall surfaces of the inlet channels back. Due to the average particle size of the suspension of 2 to 6 ⁇ m, the coating penetrates only insignificantly into the pores of the filter body.
  • the exit channels can be provided in a similar manner with such a coating.
  • a solution of soluble precursors of the desired metal oxides is prepared.
  • the filter body is immersed in this solution.
  • the solution penetrates into the pores of the filter body.
  • the precursors of the metal oxides are converted into the desired oxides. They are then predominantly on the inner surfaces of the filter body, which form the pores before.
  • loading concentrations of up to 70 g of metal oxide per liter of filter body volume can be achieved with the aid of a suspension of solids.
  • the maximum loading is even only about 30 g / l of metal oxide.
  • the disadvantage is that the exhaust gas back pressure of the filter is significantly increased by the coating, so that concentrations above 70 g / l are not appropriate.
  • US Pat. No. 4,455,393 describes the coating of a silver vanadate Wandfluß sodaters. In the case of a coating having a concentration of about 21 g / l, a reduction in the soot ignition temperature of about 50 ° C. is achieved, with the exhaust gas gage pressure increasing by about 50% through the coating.
  • US Pat. No. 5,100,632 describes the impregnation of a wall flow filter with aqueous solutions of platinum group metal salts and alkaline earth metal salts. This achieves, for example, a loading concentration of 7 g of magnesium oxide per liter of filter body. With the impregnation method, in principle, similar loading concentrations can be realized as with a suspension.
  • the advantage here is that at the same Bela ⁇ tion concentration, the increase in the exhaust back pressure during impregnation significantly lower than in the case of coating with a suspension.
  • the impregnation technique is very limited in terms of the material properties that are accessible with it.
  • the substances produced by calcination of the precursor compounds in the pores are far from having the variability and quality of the substances that are taken for granted by preformed powder materials.
  • the specific (BET) surfaces of impregnated compounds after calcination are usually ten times smaller than in suspension coatings.
  • This object is achieved by a method for coating an open-pore Wandflußfilters with powdery solids, wherein for coating a suspension of the solids in water and / or an organic liquid is used.
  • the method is characterized in that the suspension is finely ground so that almost the entire mass of the solids is introduced into the pores of the filter by the coating and deposited on the inner surfaces of the pores.
  • the degree of grinding depends on the porosity, pore size and pore structure of the particulate filter.
  • Common wall-flow filters have porosities of between 30 and 95% and average pore diameters between 10 and 50 ⁇ m. Preferably, the porosity is between 45 and 90%. However, it is not the mean pore diameters which are decisive for the introduction of the coating material into the pores, but rather the passageways between the pores and, in particular, the pore openings on the surface of the particle filter.
  • pore openings and connecting passages are usually much smaller than the average diameter of the pores themselves. It has been found that, if possible, all solid particles of the suspension must be smaller in diameter than about 10 microns, to ensure that the majority of the solid particles can penetrate into the pores of the filter. This is sufficiently fulfilled if the d 90 diameter of the solid particles is less than 10 ⁇ m.
  • the designation d 90 means that the volume of particles with particle sizes below d 90 adds up to 90% of the volume of all particles. Depending on the actual pore structure of the filter, it may be necessary to finely mill the suspension so that the d 90 diameter is less than 5 ⁇ m.
  • the filter exerts only a slight filter effect on the suspension.
  • the coating of the filter can therefore be made with the known conventional honeycomb coating methods. This includes, for example, dipping the filter in the suspension, pouring the filter over the suspension, or sucking or pumping the suspension into the filter. Excess suspension is removed after the coating process by ejecting, blowing or sucking out of the filter. Finally, the filter is then dried and optionally calcined. The drying is usually carried out at elevated temperature between 50 and 150 0 C and the calcination at temperatures between 250 and 600 ° C for a period of 1 to 5 hours.
  • the process according to the invention is preferably suitable for the coating of wall-flow filters made of ceramic material, in particular of silicon carbide, cordierite, aluminum titanate or mullite.
  • Preferred coating materials are those which are suitable for the preparation of oxidation catalysts, nitrogen oxide storage catalysts, the soot ignition temperature lowering catalysts or SCR catalysts, in particular these are pulverulent solids selected from the group consisting of
  • the particulate filter according to the invention is coated with active alumina, which is thermally stabilized by doping with barium oxide, lanthanum oxide or silicon dioxide, wherein the doping elements in a concentration of 1 to 40 wt .-%, calculated as oxide and based on the total weight of the stabilized alumina.
  • active alumina which is thermally stabilized by doping with barium oxide, lanthanum oxide or silicon dioxide, wherein the doping elements in a concentration of 1 to 40 wt .-%, calculated as oxide and based on the total weight of the stabilized alumina.
  • barium oxide, lanthanum oxide or silicon dioxide wherein the doping elements in a concentration of 1 to 40 wt .-%, calculated as oxide and based on the total weight of the stabilized alumina.
  • This material may be thermally stabilized, for example, by doping with praseodymium oxide.
  • the powdered solids may have been activated prior to coating the filter with at least one catalytically active metal component, preferably using the platinum group metals platinum, palladium, rhodium and iridium for this purpose. After coating the filter, it can react with other catalytically active metal component, preferably using the platinum group metals platinum, palladium, rhodium and iridium for this purpose. After coating the filter, it can react with other catalytically active metal component
  • Metal components or promoters are impregnated by impregnation with soluble precursors of these components. After impregnation, the filter is dried again and to transfer the catalytically active metal components and
  • Promoters are calcined to their final form.
  • catalytic activation of the solids in the pores of the filter can also be carried out fully only after the coating of the filter by impregnation with soluble precursors of the corresponding catalytically active metal components.
  • Figure 1 longitudinal section through a Wandflußfilter
  • FIG. 2 Grain size distribution of a conventionally ground catalyst suspension
  • FIG. 3 Grain size distribution of a catalyst suspension ground in accordance with the invention
  • Figure 1 shows schematically a longitudinal section through a Wandflußfilter (1).
  • the filter has a cylindrical shape with a lateral surface (2), an inlet end face (3) and an outlet end face (4).
  • the filter has over its cross-section Strömungs ⁇ channels (5) and (6) for the exhaust gas, which are separated by the channel walls (7).
  • the flow channels are clogged by gas-tight plugs (8) and (9) alternately at the inlet and outlet end faces.
  • the flow channels (5) which are open at the inlet side form the inlet channels and the flow channels (6) which are open at the outlet side form the outlet channels for the exhaust gas.
  • the exhaust gas to be cleaned enters the inlet channels of the filter and has to pass through the filter of the Pass entry channels through the porous channel walls (7) through into the outlet channels.
  • silicon carbide wall-flow filters having a porosity of 42% and average pore sizes of 11 ⁇ m were used.
  • Test specimens with a diameter of 143.8 mm and a length of 150 mm were conventionally and according to the invention coated with a platinum catalyst supported on alumina.
  • Aluminum oxide with an average particle size of 10 ⁇ m was activated by impregnation, drying and calcining with 5% by weight of platinum. Subsequently, the activated material was suspended in water and ground with a ball mill to a conventional particle diameter d 50 of 3 to 4 microns. The resulting Crystalchen bodinvertei ⁇ ment of the suspension is shown in Figure 2.
  • the d 90 diameter was 9.1 ⁇ m.
  • the solids content of the suspension was 30% by weight.
  • the suspension was introduced by pumping from below into the inlet channels of the filter, dried and calcined.
  • the coating concentration was 26 g / L of Wandflußfilters.
  • the coating was located essentially on the walls of the inlet channels of the filter.
  • the dynamic pressure measurement on the coated filter showed a back pressure of 24.3 mbar at a volume flow of 300 NmVh.
  • the uncoated substrate was 15.0 mbar in comparison.
  • the dynamic pressure of 24.3 mbar is unacceptable for practical applications on the engine.
  • Aluminum oxide with an average particle size of 10 ⁇ m was activated by impregnation, drying and calcining with 5% by weight of platinum. Subsequently, the activated material was suspended in water and ground with a ball mill according to the invention to a particle diameter d 90 of 3.8 microns. The associated mean particle diameter d 50 was 1.4 to 1.6 microns. The obtained particle size distribution of the suspension is shown in FIG. The solids content of the suspension was 30% by weight.
  • the suspension was introduced by pumping from below into the inlet channels of the filter, dried and calcined.
  • the coating concentration was as in Comparative Example 26 g / l of Wandflußfilters.
  • the coating was essentially in the pores of the channel walls.
  • the dynamic pressure measurement on the coated filter resulted in a back pressure of 18.5 mbar at a volume flow of 300 Nm 3 / h.
  • the uncoated substrate was compared to 15.1 mbar.
  • the filter according to the invention coated at the same loading concentration has a significantly lower exhaust back pressure than the conventionally coated filter.
  • the filter coated according to the invention can be provided with the same exhaust back pressure as in a conventionally coated filter with a higher loading concentration and thus with a stronger catalytic activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)

Abstract

Le revêtement d'un filtre à écoulement par paroi d'une couche catalytiquement active permet d'augmenter de manière générale la contre-pression des gaz d'échappement du filtre. L'augmentation de la contre-pression des gaz d'échappement est particulièrement évidente lorsque l'on utilise pour le revêtement une suspension de fines matières catalyseurs. L'augmentation de la contre-pression des gaz d'échappement peut être limitée à une mesure supportable lorsque la suspension avant le revêment est moulée finement de telle façon que la masse quasiment totale des matières catalyseur soit introduite dans les pores du filtre et déposée sur les surfaces internes de ces pores, ce qui est le cas lorsque le diamètre d90 des particules de la suspension est réduit par broyage à une valeur inférieure à 5 µm.
EP05776563A 2004-08-21 2005-08-13 Procede de revetement d'un filtre a ecoulement par paroi ayant des matieres solides fines, filtre ainsi obtenu et son utilisation Withdrawn EP1789191A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004040548A DE102004040548A1 (de) 2004-08-21 2004-08-21 Verfahren zum Beschichten eines Wandflußfilters mit feinteiligen Feststoffen und damit erhaltenes Partikelfilter und seine Verwendung
PCT/EP2005/008823 WO2006021336A1 (fr) 2004-08-21 2005-08-13 Procede de revetement d'un filtre a ecoulement par paroi ayant des matieres solides fines, filtre ainsi obtenu et son utilisation

Publications (1)

Publication Number Publication Date
EP1789191A1 true EP1789191A1 (fr) 2007-05-30

Family

ID=35721545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05776563A Withdrawn EP1789191A1 (fr) 2004-08-21 2005-08-13 Procede de revetement d'un filtre a ecoulement par paroi ayant des matieres solides fines, filtre ainsi obtenu et son utilisation

Country Status (7)

Country Link
US (1) US20090129995A1 (fr)
EP (1) EP1789191A1 (fr)
JP (1) JP2008510604A (fr)
KR (1) KR20070067098A (fr)
CN (1) CN101039749A (fr)
DE (1) DE102004040548A1 (fr)
WO (1) WO2006021336A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650042A1 (fr) 2012-04-13 2013-10-16 Umicore AG & Co. KG Système de réduction de polluants des véhicules à essence

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229597B2 (en) 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
WO2009100097A2 (fr) 2008-02-05 2009-08-13 Basf Catalysts Llc Systèmes de traitement des émissions de moteur à essence comportant des pièges à particules
US7722829B2 (en) * 2004-09-14 2010-05-25 Basf Catalysts Llc Pressure-balanced, catalyzed soot filter
JP4844029B2 (ja) * 2005-07-14 2011-12-21 トヨタ自動車株式会社 排気浄化装置
US8119075B2 (en) 2005-11-10 2012-02-21 Basf Corporation Diesel particulate filters having ultra-thin catalyzed oxidation coatings
DE102005062317B4 (de) * 2005-12-24 2008-08-21 Umicore Ag & Co. Kg Verfahren zur katalytischen Beschichtung von keramischen Wabenkörpern
JP4857831B2 (ja) * 2006-03-14 2012-01-18 パナソニック株式会社 ディーゼルパティキュレートフィルタの製造方法
FR2904939B1 (fr) * 2006-08-18 2009-10-02 Inst Francais Du Petrole Procede d'impregnation d'un corps poreux par une suspension et installation pour mettre en oeuvre un tel procede.
US7922987B2 (en) 2006-08-19 2011-04-12 Umicore Ag & Co. Kg Catalytically coated diesel particle filter, process for producing it and its use
US20080096751A1 (en) * 2006-10-18 2008-04-24 Ngk Insulators, Ltd. Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
CA2677107C (fr) 2007-01-31 2015-03-31 Basf Catalysts Llc Catalyseurs de gaz comprenant des nids d'abeilles a paroi poreuse
DE502007003465D1 (de) * 2007-02-23 2010-05-27 Umicore Ag & Co Kg Katalytisch aktiviertes Dieselpartikelfilter mit Ammoniak-Sperrwirkung
US8114354B2 (en) * 2007-12-18 2012-02-14 Basf Corporation Catalyzed soot filter manufacture and systems
JP5419371B2 (ja) * 2008-03-17 2014-02-19 日本碍子株式会社 触媒担持フィルタ
JP2009226375A (ja) * 2008-03-25 2009-10-08 Ngk Insulators Ltd 触媒担持フィルタ
JP5291966B2 (ja) * 2008-03-25 2013-09-18 日本碍子株式会社 触媒担持フィルタ
EP2112339A1 (fr) 2008-04-24 2009-10-28 Umicore AG & Co. KG Procédé et dispositif de nettoyage de gaz d'échappement d'un moteur à combustion interne
JP5273446B2 (ja) 2008-05-12 2013-08-28 日産自動車株式会社 排ガス浄化用触媒及びその製造方法
DE102008002151A1 (de) 2008-06-02 2009-12-03 Robert Bosch Gmbh Verfahren zur Beschichtung keramischer Körper, insbesondere Rußpartikelfilter
BRPI0913881A2 (pt) * 2008-06-27 2019-09-24 Umicore Ag & Co Kg processo para realizar reações catalizadas de forma heterogênea com alta seletividade e rendimento
US8524185B2 (en) 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
GB0903262D0 (en) * 2009-02-26 2009-04-08 Johnson Matthey Plc Filter
US8512657B2 (en) 2009-02-26 2013-08-20 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
JP6436615B2 (ja) * 2009-04-22 2018-12-12 ビーエーエスエフ コーポレーション Scr触媒を含むパーシャルフィルタ基板及び排出処理システム及びエンジンの排気処理方法
US8246923B2 (en) 2009-05-18 2012-08-21 Umicore Ag & Co. Kg High Pd content diesel oxidation catalysts with improved hydrothermal durability
DE102009033635B4 (de) * 2009-07-17 2020-11-05 Umicore Ag & Co. Kg Katalytisch aktives Partikelfilter mit Schwefelwasserstoff-Sperrfunktion, seine Verwendung und Verfahren zur Entfernung von Stickoxiden und Partikeln
US8557203B2 (en) * 2009-11-03 2013-10-15 Umicore Ag & Co. Kg Architectural diesel oxidation catalyst for enhanced NO2 generator
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters
GB201100595D0 (en) 2010-06-02 2011-03-02 Johnson Matthey Plc Filtration improvements
JP2013043138A (ja) * 2011-08-25 2013-03-04 Denso Corp 触媒担持体及びその製造方法
GB2513364B (en) 2013-04-24 2019-06-19 Johnson Matthey Plc Positive ignition engine and exhaust system comprising catalysed zone-coated filter substrate
GB201207313D0 (en) 2012-04-24 2012-06-13 Johnson Matthey Plc Filter substrate comprising three-way catalyst
JP5844704B2 (ja) * 2012-09-07 2016-01-20 本田技研工業株式会社 排気浄化フィルタ
US9266092B2 (en) 2013-01-24 2016-02-23 Basf Corporation Automotive catalyst composites having a two-metal layer
EP2772302A1 (fr) 2013-02-27 2014-09-03 Umicore AG & Co. KG Catalyseur d'oxydation hexagonale
GB2512648B (en) 2013-04-05 2018-06-20 Johnson Matthey Plc Filter substrate comprising three-way catalyst
DE102013013973A1 (de) 2013-08-23 2015-02-26 Clariant Produkte (Deutschland) Gmbh Partikelfilter zur Reinigung von Abgasen, Abgasreinigungssystem und Verfahren zur Reinigung von Abgas
CN103865610B (zh) * 2014-03-12 2016-01-27 合肥工业大学 一种提升发动机生物质燃油碳烟颗粒润滑功效的摩擦催化剂
US10850265B2 (en) 2014-06-18 2020-12-01 Basf Corporation Molecular sieve catalyst compositions, catalytic composites, systems, and methods
US9764313B2 (en) 2014-06-18 2017-09-19 Basf Corporation Molecular sieve catalyst compositions, catalyst composites, systems, and methods
US9889437B2 (en) 2015-04-15 2018-02-13 Basf Corporation Isomorphously substituted catalyst
JP6293638B2 (ja) * 2014-10-17 2018-03-14 株式会社キャタラー 排ガス浄化装置
JP6594163B2 (ja) * 2015-10-30 2019-10-23 株式会社キャタラー 排ガス浄化装置
DE102018108346A1 (de) * 2018-04-09 2019-10-10 Umicore Ag & Co. Kg Beschichteter Wandflussfilter
DE102018110804B4 (de) * 2018-05-04 2024-06-27 Umicore Ag & Co. Kg Beschichteter Wandflussfilter
CN108906042A (zh) * 2018-07-17 2018-11-30 无锡威孚环保催化剂有限公司 一种柴油车颗粒补集催化剂及其制备方法
DE102019100097B4 (de) * 2019-01-04 2021-12-16 Umicore Ag & Co. Kg Verfahren zur Herstellung von katalytisch aktiven Wandflussfiltern
GB201901560D0 (en) 2019-02-05 2019-03-27 Magnesium Elektron Ltd Zirconium based dispersion for use in coating filters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084806A1 (fr) * 2004-03-05 2005-09-15 Johnson Matthey Public Limited Company Procede de fabrication d'un filtre traversant a parois en ceramique
WO2006021338A1 (fr) * 2004-08-21 2006-03-02 Umicore Ag & Co. Kg Procede pour enduire d'une composition de revetement un filtre de type wall flow
WO2006021337A1 (fr) * 2004-08-21 2006-03-02 Umicore Ag & Co. Kg Filtre a particules dote d'un revetement catalytique, son procede de production et son utilisation
WO2006021339A1 (fr) * 2004-08-21 2006-03-02 Umicore Ag & Co. Kg Procede pour revetir un filtre a ecoulement sur paroi d'une composition de revetement
WO2006042699A1 (fr) * 2004-10-19 2006-04-27 Umicore Ag & Co. Kg Procede et dispositif pour enduire une serie de supports

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701472B1 (fr) * 1993-02-10 1995-05-24 Rhone Poulenc Chimie Procédé de préparation de compositions à base d'oxydes mixtes de zirconium et de cérium.
JP3387290B2 (ja) * 1995-10-02 2003-03-17 トヨタ自動車株式会社 排ガス浄化用フィルター
DE50011443D1 (de) * 2000-03-01 2005-12-01 Umicore Ag & Co Kg Katalysator für die Reinigung der Abgase von Dieselmotoren und Verfahren zu seiner Herstellung
CN1473073A (zh) * 2000-09-08 2004-02-04 日本碍子株式会社 催化剂及氧化铝负载载体的制造方法
JP3874270B2 (ja) * 2002-09-13 2007-01-31 トヨタ自動車株式会社 排ガス浄化フィルタ触媒及びその製造方法
US7875250B2 (en) * 2003-12-11 2011-01-25 Umicore Ag & Co. Kg Exhaust treatment device, and methods of making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084806A1 (fr) * 2004-03-05 2005-09-15 Johnson Matthey Public Limited Company Procede de fabrication d'un filtre traversant a parois en ceramique
WO2006021338A1 (fr) * 2004-08-21 2006-03-02 Umicore Ag & Co. Kg Procede pour enduire d'une composition de revetement un filtre de type wall flow
WO2006021337A1 (fr) * 2004-08-21 2006-03-02 Umicore Ag & Co. Kg Filtre a particules dote d'un revetement catalytique, son procede de production et son utilisation
WO2006021339A1 (fr) * 2004-08-21 2006-03-02 Umicore Ag & Co. Kg Procede pour revetir un filtre a ecoulement sur paroi d'une composition de revetement
WO2006042699A1 (fr) * 2004-10-19 2006-04-27 Umicore Ag & Co. Kg Procede et dispositif pour enduire une serie de supports

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006021336A1 *
SRINIVAS S ET AL: "A scalable silicon microreactor for preferential CO oxidation: performance comparison with a tubular packed-bed microreactor", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 274, no. 1-2, 28 October 2004 (2004-10-28), pages 285 - 293, XP004558626, ISSN: 0926-860X, DOI: 10.1016/J.APCATA.2004.07.012 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650042A1 (fr) 2012-04-13 2013-10-16 Umicore AG & Co. KG Système de réduction de polluants des véhicules à essence
WO2013153081A1 (fr) 2012-04-13 2013-10-17 Umicore Ag & Co. Kg Système de réduction de polluants destiné à des véhicules à essence
US9581063B2 (en) 2012-04-13 2017-02-28 Umicore Ag & Co. Kg Pollutant abatement system for gasoline vehicles

Also Published As

Publication number Publication date
CN101039749A (zh) 2007-09-19
JP2008510604A (ja) 2008-04-10
WO2006021336A1 (fr) 2006-03-02
DE102004040548A1 (de) 2006-02-23
KR20070067098A (ko) 2007-06-27
US20090129995A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
EP1789191A1 (fr) Procede de revetement d'un filtre a ecoulement par paroi ayant des matieres solides fines, filtre ainsi obtenu et son utilisation
EP1789161B1 (fr) Filtre a particules dote d'un revetement catalytique, son procede de production et son utilisation
EP2247385B1 (fr) Procédé d'application d'un revêtement sur un filtre à particules diesel et filtre à particules diesel fabriqué par ce procédé
EP1789190B1 (fr) Procede pour revetir un filtre a ecoulement sur paroi d'une composition de revetement
DE102005062317B4 (de) Verfahren zur katalytischen Beschichtung von keramischen Wabenkörpern
EP2558691B1 (fr) Filtre à particules diesel revêtu d'un réducteur catalytique ayant des propriétés améliorées
DE60311930T2 (de) Filterkatalysator für die Reinigung von Dieselabgasen und Herstellungsverfahren dafür
EP3799946B1 (fr) Utilisation d'une installation d'épuration de gaz d'échappement pour purifier de gaz d'échappement de moteurs à combustion interne fonctionnant essentiellement sur un mélange d'air/carburant stöchiométrioue
EP2181749B1 (fr) Filtre à particules diesel doté de propriétés de pression dynamique améliorées
DE60201514T2 (de) Katalytischer abgasfilter für teilchen eines dieselmotors
EP3981493A1 (fr) Filtre à particules
US20080026141A1 (en) Particle Filter Provided with Catalytic Coating
DE102006027578A1 (de) Filter zur Reinigung von Gasgemischen sowie Verfahren zu dessen Herstellung
WO2022129023A1 (fr) Filtre à particules catalytiquement actif ayant un haut degré d'efficacité de filtration
EP1600200A1 (fr) Appareil pour la purification de mélanges gazeux et procédé de fabrication
DE102022002854A1 (de) Katalytisch aktiver Partikelfilter mit hoher Filtrationseffizienz und Oxidationsfunktion
WO2007141072A1 (fr) Filtre pour enlever des particules d'un flux de gaz ainsi que son procédé de fabrication
EP2046487A1 (fr) Filtre pour l'extraction de particules d'un courant gazeux et son procédé de fabrication
DE102007018816A1 (de) Verfahren zur Herstellung beschichteter poröser keramischer Substrate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KREUZER, THOMAS

Inventor name: KUEHN, CHRISTIAN

Inventor name: LOX, EGBERT

Inventor name: PFEIFER, MARCUS

Inventor name: KOEGEL, MARKUS

Inventor name: STAAB, ROGER

Inventor name: SPURK, PAUL

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080519

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121009