EP1786937B1 - Beruhigter, unlegierter oder mikrolegierter walzstahl mit bake-hardening effekt und verfahren zu seiner herstellung - Google Patents

Beruhigter, unlegierter oder mikrolegierter walzstahl mit bake-hardening effekt und verfahren zu seiner herstellung Download PDF

Info

Publication number
EP1786937B1
EP1786937B1 EP05789368A EP05789368A EP1786937B1 EP 1786937 B1 EP1786937 B1 EP 1786937B1 EP 05789368 A EP05789368 A EP 05789368A EP 05789368 A EP05789368 A EP 05789368A EP 1786937 B1 EP1786937 B1 EP 1786937B1
Authority
EP
European Patent Office
Prior art keywords
rolled steel
weight
steel
values
proportion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05789368A
Other languages
English (en)
French (fr)
Other versions
EP1786937A1 (de
Inventor
Klaus Freier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1786937A1 publication Critical patent/EP1786937A1/de
Application granted granted Critical
Publication of EP1786937B1 publication Critical patent/EP1786937B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the invention relates to a method for producing a calmed, unalloyed or microalloyed rolled steel, which is cold rolled after a hot rolling with subsequent coiling and then annealed recrystallizing and then shows a bake hardening effect, wherein to achieve the bake hardening effect free, dissolved nitrogen is used in a proportion of> 0.001 wt.%.
  • the invention further relates to a tempered, unalloyed or microalloyed cold rolled rolled steel having a bake hardening effect which has a content of free dissolved nitrogen> 0.001% by weight.
  • unalloyed steels are those types of steel whose composition is free of alloying elements or whose proportion of alloying elements does not exceed predetermined limit values.
  • microalloyed steels are unalloyed steels which contain low levels of alloying elements (below limit values).
  • Well deformable rolled steels should have the property of ensuring high strength despite their good ductility. This applies, for example, to steel sheets used in the automotive industry. It has been found that certain steel grades after cold working significantly increase their yield strength values when subjected to a heat treatment such as, for example, bake coating. At temperatures of more than 120 ° C or 170 ° C, the steel is "aged", significantly increasing the yield strength of the steel. This effect is based on the action of free, dissolved carbon, which migrates due to the effect of heat in the dislocations formed in the cold deformation in the crystal structure and blocks them at a subsequent strain.
  • rolled steels of the type mentioned above which have a bake-hardening effect, basically only with a normal C content (C ⁇ 0.01 wt.%) Can be produced in a continuous annealing.
  • An alternative is to reduce the C content in the vacuum process well below 0.01 wt.%. In this case, it is possible to obtain free carbon in the forming crystal structure even at low cooling rates after recrystallizing annealing because the diffusion paths of the free carbon to free iron atoms have become so large due to the low carbon concentration that a significant portion of the free carbon atoms remains unbonded in the crystal structure and can cause the bake hardening effect.
  • US 2003/0015263 A1 discloses a method and a rolled steel of the type mentioned.
  • a minimum content of aluminum of 0.001% by weight is mentioned at the same time
  • the aluminum is used as deoxidizer for the steel. Since another deoxidizer is not indicated, aluminum concentrations well above 0.005 weight percent are required if complete soaking of the steel is to take place.
  • the lowest aluminum concentration is 0.009% by weight.
  • the steel has a C content of 0.0020 wt.% And lower.
  • the aluminum content is usually higher.
  • the steels exemplified predominantly contain additional alloying elements, in particular rare earth alloying elements or molybdenum, titanium, boron, copper, nickel, chromium, vanadium, etc.
  • additional alloying elements in particular rare earth alloying elements or molybdenum, titanium, boron, copper, nickel, chromium, vanadium, etc.
  • the relevant embodiments for steels which according to Table 15 are suitable for a good BH Value, assume a special recrystallizing annealing, which consists of a combination of a bell annealing and a continuous annealing and therefore requires a high investment costs.
  • the method according to the invention is carried out either with a bell annealing or with a continuous annealing.
  • the invention has for its object to enable the production of a calmed, unalloyed or microalloyed cold-rolled rolled steel with an improved bake-hardening effect, wherein the initial enabling a bake-hardening effect for certain steel grades should be included.
  • the method of the type mentioned is characterized in that a steel of the composition (in wt.%) According to the invention C 0.01-0.20 Si> 0.15 Mn ⁇ 1.40 P 0.020-0.08 S ⁇ 0.025 Al ⁇ 0.005 optional Nb 0.01 - 0.20, Remaining iron and unavoidable impurities is used.
  • a rolled steel of the type mentioned is further characterized by the composition (in wt.%) C 0.01-0.20 Si> 0.15 Mn ⁇ 1.40 P 0.02-0.08 S ⁇ 0.025 Al ⁇ 0.005 optional Nb 0.01 - 0.20, Remaining iron and unavoidable impurities is used.
  • the inventive design of the free-dissolved nitrogen bake-hardening effect on a tempered rolled steel assumes fundamental changes in the previous manufacturing practice of such calmed, tempered steels.
  • the tempering of the rolled steel must no longer take place with an excess amount of aluminum, because the excess amount of aluminum prevents the retention of a content of free nitrogen in the steel because of the high nitrogen affinity of the aluminum. Consequently, the steel must be tempered either by a means other than aluminum, or the steel must be made with a "pre-soak" with aluminum, with the addition of aluminum being somewhat substoichiometric, so that a residual sedimentation with another alloying element, preferably silicon, is made. Alternatively, pre-settling can also be achieved with a vacuum treatment. Carrying out complete reassurance with Silicon is possible, but not preferred because of the required high levels of addition.
  • the steel produced according to the invention is thus preferably free of aluminum, i. the aluminum content is less than 0.01% by weight, preferably less than 0.005% by weight. Should the aluminum content be higher, the proportion of free nitrogen bound thereby must be taken into account, so that the molten steel must be produced with a significantly higher proportion of free, dissolved nitrogen in order to ensure the proportion of free, dissolved nitrogen provided according to the invention.
  • the rolled steel according to the invention contains a proportion of ⁇ 0.15% by weight of silicon, preferably ⁇ 0.20% by weight of silicon.
  • the present invention allows for the first time without any special effort the production of ductile-glow-annealed cold tapes with a bake-hardening effect, when the steel has a normal C content (between 0.01 or 0.02 and 0.20 wt.%) ,
  • the present invention also makes it possible to produce those steels which are conventionally produced with a free carbon based bake hardening effect, now with a significantly improved bake hardening effect, which according to the invention has the (additional) effect of free, dissolved nitrogen is based in the crystal structure. Accordingly, it is readily possible to apply the method according to the invention also in pass-annealed rolled steels, so as to significantly enhance the already known bake hardening effect by the inventive measure.
  • the steels of the present invention have the remarkable property that the free nitrogen-based bake-hardening effect occurs only at a heat treatment after a previous deformation (BH2).
  • the particle size can be controlled by the proportion of the further alloying element, in particular by phosphorus.
  • the proportion of the further alloying element in particular by phosphorus.
  • Compared to aluminum-killed steels can be an equally fine or even produce a finer grain in the steel according to the invention.
  • the total content of nitrogen in the steel according to the invention is ⁇ 0.0090% by weight, preferably ⁇ 0.075% by weight, in particular ⁇ 0.0045% by weight.
  • the nitrogen content present in the production of the melt (0.0040 ⁇ N total ⁇ 0.0060% by weight) is preferably used, with the exception of addition of N.
  • FIGS. 1 to 11 An overview of the resulting technological properties is in the FIGS. 1 to 11 (as indicated in Table 1), each for a coiling temperature after hot rolling at 500 ° C (left column) and 700 ° C (right column respectively).
  • FIG. 1 relates to a comparison steel with a normal C content of 0.028 wt.% And negligible proportions of sulfur, phosphorus and aluminum.
  • the steel has been (end-) calmed with silicon and has a content of free, dissolved nitrogen of 0.0090 wt.% On. Due to its yield strength of almost 300 N / mm 2, it is already a high-strength steel and has a distinct, if not high, BH 2 effect (25 to 30 N / mm 2 ) at both reel temperatures after the annealing annealing.
  • FIG. 2 shows the results for a steel that is not fundamentally varied in composition.
  • the comparison with FIG. 3 can be seen that the addition of niobium (0.028 wt.%)
  • niobium 0.028 wt.%
  • FIGS. 8 and 9 which illustrate the results with the same composition after a continuous annealing, shows that the increase of BH2 values by the addition of niobium is achieved only in the bell annealing, but not in the continuous annealing.
  • FIGS. 4 and 5 for the bell annealing on the one hand and 10 and 11 for the continuous annealing on the other hand.
  • the FIGS. 4 and 5 further illustrate that the influence of niobium increasing the BH2 value decreases as the silicon content increases relatively. In the composition in the FIGS. 4 and 5 the silicon content is almost twice as high as in comparison figures 2 and 3.
  • FIG. 6 shows that a significant increase in the BH2 value can be achieved by adding phosphorus according to the invention (in this case 0.054% by weight).
  • FIG. 7 illustrates that after the addition of phosphorus, an increase in the silicon content has no positive effect on the BH2 value. It should be noted only an increase in the strength values with a simultaneous decrease in the parameters that are essential for ductility, namely Ag, A80 and n value.
  • FIGS. 16 to 18 show changes in the mechanical-technological properties of the steel according to the FIGS. 12 to 15 by a heat treatment at 250 ° C for three minutes, as typically occurs in a plastic tape coating.
  • FIGS. 19 to 22 illustrate the measurements for hot-dip galvanized steel strip made from the same melt and the FIGS. 23 to 25 the changes in the measured values by a heat treatment at 250 ° C for three minutes, as it typically occurs for a plastic tape coating.
  • the steel strip produced in the above composition was hot rolled in a conventional manner and then cooled by cooling to a coiler temperature of 500 ° C and 700 ° C, respectively. After cooling in the coiler cold rolling steps are carried out in a conventional manner, by which the steel sheet has been subjected to cold deformation of well over 50%.
  • the wound cold strip is in the coil in a hood furnace at a Temperature below 720 ° C (A1) recrystallizing annealed and cooled in the hood furnace under quasi-isothermal conditions.
  • the steel has a BH2 value of about 40 N / mm 2 at the low reel temperature and well above 40 N / mm 2 at the higher reel temperature, despite the bell annealing, as in FIG. 14 is recognizable.
  • the BH0 values, at least for the low reel temperature tend to be negligible.
  • Grain size is above ASTM 9 for the high reel temperature while well above ASTM 10 for the lower reel temperature. It can be seen that a virtually perfectly round grain is produced, since in the longitudinal and transverse direction completely identical grain sizes are measured.
  • FIGS. 16 to 18 illustrate the changes in the specified parameters after performing a heat treatment, as in a Coating is common, so a heat treatment for about three minutes at about 250 ° C.
  • FIGS. 19 to 22 clarify the mechanical-technological parameters for a re-crystallizing annealed after the hot rolling, reeling and cold rolling in a continuous annealing steel strip, which has been hot-dip galvanized.
  • a steel strip treated in this way has higher strength values and can be produced with a good BH 2 value which, depending on the strength, is usually of the order of 40 N / mm 2 .
  • the inventively achieved BH2 value is according to FIG. 21 much higher and is 80 to 90 N / mm 2 .
  • Such a BH2 value has hitherto not been achievable with conventional production methods.
  • the grain size is, depending on the reel temperature at ASTM 8.5 to 9.5, ie in the range of a fine-grained steel.
  • the low level of 0.0012 wt.% Free nitrogen indicated in the composition described is believed to be significant to the observed strain hardening prevention.
  • a free N content which is between 0.0010 and 0.0020% by weight is preferred.
  • the invention was able to produce a bell-annealed steel strip which, given relatively high strength values, has very good forming values and, at the same time, a clear BH 2 effect.
  • the result is a fine-grained structure with ASTM grain sizes 9.25 to 10.75.
  • the fine grain of unalloyed steel is comparable to the fine graininess otherwise achieved with a microalloyed steel.
  • the result is a homogeneous structure whose grain size in the longitudinal and transverse directions is the same size.
  • the steels according to the invention can be produced with a bake-hardening effect, which is based on the existence of free, dissolved nitrogen in the crystal structure.
  • This effect is increased by a control of the diffusion of the free nitrogen, namely by the addition according to the invention of phosphorus and possibly also of niobium.
  • phosphorus can influence the grain size of the resulting steel.
  • niobium an adjustment of the strength can be effected.
  • the steels according to the invention have consistently high elongation, r and n values, ie good deformation properties.
  • the steels of the invention show good BH2 values, but very low BH0 values.
  • the bake-hardening effect therefore utilizes usable only after a previous deformation.
  • the steels are almost free of aging at room temperature, so that there is only a slight amount of strain aging due to the free nitrogen.
  • the measured BH2 effect is enhanced by the addition of P according to the invention, since phosphorus activates nitrogen diffusion.
  • the BH2 values are obtained both at a heat treatment of 120 ° C and at 170 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines beruhigten, unlegierten oder mikrolegierten Walzstahls, der nach einem Heißwalzen mit anschließendem Aufhaspeln kalt gewalzt und anschließend rekristallisierend geglüht wird und danach einen Bake-Hardening-Effekt zeigt, wobei zur Erzielung des Bake-Hardening-Effekts freier, gelöster Stickstoff mit einem Anteil von > 0,001 Gew.% verwendet wird.
  • Die Erfindung betrifft ferner einen beruhigten, unlegierten oder mikrolegierten kalt gewalzter Walzstahl mit einem Bake-Hardening-Effekt, der einen Gehalt an freiem gelösten Stickstoff > 0,001 Gew.% aufweist.
  • Als unlegierte Stähle werden gemäß EN 10020 solche Stahlsorten bezeichnet, deren Zusammensetzung frei von Legierungselementen ist oder deren Anteil an Legierungselementen jeweils vorgegebene Grenzwerte nicht überschreitet.
  • Mikrolegierte Stähle sind im Rahmen dieser Definition unlegierte Stähle, die (unterhalb der Grenzwerte liegende) geringe Anteile an Legierungselementen enthalten.
  • Die Herstellung derartiger Stahlqualitäten als Walzstähle erfolgt praktisch nur noch in einem kontinuierlichen Gießverfahren, insbesondere dem Stranggießen. Eine Voraussetzung für die Herstellung eines Stranggussstahls ist die Beruhigung des Stahls, also seine Desoxidation, um eine Blasenbildung im flüssigen Stahl durch das Entstehen von gasförmigem CO oder CO2 aufgrund von freiem Sauerstoff zu verhindern. Diese Beruhigung des Stahls kann mit geeigneten Legierungselementen durchgeführt werden, die eine hohe Affinität zu Sauerstoff aufweisen und den freien Sauerstoff somit abbinden. Als derartiges Mittel zur Beruhigung des Stahls hat sich Aluminium aus zahlreichen Gründen durchgesetzt. Die Beruhigung des Stahls setzt voraus, dass das Beruhigungsmittel in einem stöchiometrischen Überschuss zugegeben wird, sodass das die Beruhigung bewirkende Legierungselement in einem Überschussanteil im Stahl verbleibt, während das entsprechende gebundene Oxid (Tonerde im Fall von Aluminium) mit der Schlacke aus der Stahlschmelze entfernt wird.
  • Der im Stahl verbleibende Überschussanteil an Aluminium ist als vorteilhaft erkannt worden, weil Aluminium ein Feinkornbildner ist, der die Umformbarkeit des gebildeten Walzstahls begünstigt. Alle Normen und Normentwürfe für gebräuchliche Walzstähle sehen daher einen Mindestgehalt an Aluminium im Stahl von 0,01 bei Titanzugabe, im Übrigen von 0,015 oder sogar 0,02 Gew.% vor.
  • Gut verformbare Walzstähle sollen die Eigenschaft haben, trotz ihrer guten Verformbarkeit eine hohe Festigkeit zu gewährleisten. Dies gilt beispielsweise für Stahlbleche, die in der Automobilindustrie verwendet werden. Es hat sich gezeigt, dass bestimmte Stahlsorten nach einer Kaltverformung ihre Streckgrenzenwerte deutlich erhöhen, wenn sie einer Wärmebehandlung unterzogen werden, wie sie beispielsweise beim Einbrennlackieren erfolgt. Bei den dabei verwendeten Temperaturen von über 120°C oder auch 170°C findet eine "Alterung" des Stahls statt, durch den die Streckgrenze des Stahls deutlich erhöht wird. Dieser Effekt beruht auf der Wirkung von freiem, gelöstem Kohlenstoff, der aufgrund der Wärmeeinwirkung in die bei der Kaltverformung entstandenen Versetzungen in der Kristallstruktur wandert und diese bei einer anschließenden Verformungsspannung blockiert. Es ist daher bekannt, dass ein Bake-Hardening-Effekt bei einem normalen C-Gehalt (0,02 - 0,20 Gew.%) nur dann auftreten kann, wenn ein kaltgewalzter Stahl im Durchlaufverfahren rekristallisierend geglüht wird, weil bei der dabei verwendeten hohen Abkühlgeschwindigkeit eine Verbindung des freien, gelösten Kohlenstoffs mit Eisen zur Bildung von Zementit unterbunden wird. Bei der Durchführung des rekristallisierenden Glühens in einem Haubenglühofen im festen Bund entstehen so geringe Abkühlgeschwindigkeiten, dass kein freier Kohlenstoff in dem Gefüge verbleibt, sodass der resultierende Stahl nicht altert und keinen Bake-Hardening-Effekt aufweist.
  • Bei den früheren nicht kontinuierlichen Blockgießverfahren konnte unberuhigter Stahl verwendet werden. Von daher ist es bekannt, dass eine Alterung grundsätzlich mit freiem Stickstoff in der Gefügestruktur auftritt. Dabei treten weitere nachteilige Eigenschaften des Stahls auf. Da das beim Stranggießverfahren für die Beruhigung verwendete Aluminium hoch affin zu Stickstoff ist und den freien Stickstoff sofort abbindet, spielt dieser Effekt in der Praxis für heutige beruhigte Walzstähle keine Rolle mehr.
  • Demgemäß sind Walzstähle der eingangs genannten Art, die einen Bake-Hardening-Effekt aufweisen, grundsätzlich nur mit einem normalen C-Gehalt (C ≥ 0,01 Gew.%) in einer Durchlaufglühe herstellbar. Eine Alternative besteht darin, den C-Gehalt im Vakuum-Verfahren deutlich unter 0,01 Gew.% abzusenken. In diesem Fall ist es möglich, auch bei geringen Abkühlgeschwindigkeiten nach einer rekristallisierenden Glühung freien Kohlenstoff in der sich bildenden Kristallstruktur zu erhalten, weil die Diffusionswege des freien Kohlenstoff zu freien Eisenatomen aufgrund der geringen Kohlenstoffkonzentration so groß geworden sind, dass ein nennenswerter Teil der freien Kohlenstoffatome ungebunden in der Kristallstruktur verbleibt und den Bake-Hardening-Effekt bewirken kann.
  • Es ist daher nicht möglich, Stähle ohne besondere Herstellungsverfahren, insbesondere gut umformbare, weiche haubengeglühte Güten, mit einem Bake-Hardening-Effekt herzustellen. Gleiches gilt für Warmbandstähle, die ebenfalls keinen freien C-Gehalt aufweisen und daher keinen darauf beruhenden Bake-Hardening-Effekt ausbilden können.
  • US 2003/0015263 A1 offenbart ein Verfahren und einen Walzstahl der eingangs erwähnten Art. Dabei wird ein Mindestgehalt an Aluminium von 0,001 Gew.% erwähnt, gleichzeitig jedoch zum Ausdruck gebracht, das Aluminium als Desoxydationsmittel für den Stahl eingesetzt wird. Da ein anderes Desoxydationsmittel nicht angegeben ist, sind Aluminiumkonzentrationen weit oberhalb von 0,005 Gew.% erforderlich, wenn eine vollständige Beruhigung des Stahls stattfinden soll. Für vakuum-entkohlte Stähle, wie sie in den Tabellen 1 und 6 dieser Druckschrift angegeben sind, beträgt die geringste Aluminiumkonzentration 0,009 Gew.%. Dabei hat der Stahl einen C-Gehalt von 0,0020 Gew.% und niedriger. Für nicht vakuum-entkohlte Stähle ist der Aluminiumgehalt regelmäßig höher. In einem Beispiel der Tabelle 15 findet sich ein Aluminiumgehalt von 0,004 Gew.%, dabei ist der Siliziumgehalt mit 0,01 Gew.% angegeben, sodass kein vollständig beruhigter Stahl vorliegen kann. Im Übrigen enthalten die beispielhaft angegebenen Stähle überwiegend Zusatz-Legierungselemente, insbesondere selten Erde-Legierungselemente oder Molybdän, Titan, Bor, Kupfer, Nickel, Chrom, Vanadium usw. Die betroffenen Ausführungsbeispiele für Stähle, die gemäß Tabelle 15 als geeignet für einen guten BH-Wert angesehen, setzen ein besonderes rekristallisierendes Glühen voraus, das aus einer Kombination eines Haubenglühens und eines Durchlaufglühens besteht und daher einen hohen Anlagenaufwand erfordert. Das erfindungsgemäße Verfahren wird entweder mit einem Haubenglühen oder mit einem kontinuierlichen Glühen vorgenommen.
  • Der Erfindung liegt die Aufgabe zugrunde, die Herstellung eines beruhigten, unlegierten oder mikrolegierten kalt gewalzten Walzstahls mit einem verbesserten Bake-Hardening-Effekt zu ermöglichen, wobei die erstmalige Ermöglichung eines Bake-Hardening-Effekts für bestimmte Stahlgüten eingeschlossen sein soll.
  • Zur Lösung dieser Aufgabe ist erfindungsgemäß das Verfahren der eingangs erwähnten Art dadurch gekennzeichnet, dass ein Stahl der Zusammensetzung (in Gew.%)
    C 0,01 - 0,20
    Si > 0,15
    Mn < 1,40
    P 0,020- 0,08
    S < 0,025
    Al < 0,005
    optional Nb 0,01 - 0,20,
    Rest Eisen und unvermeidbare Verunreinigungen
    verwendet wird.
  • Zur Lösung der genannten Aufgabe ist ferner ein Walzstahl der eingangs erwähnten Art gekennzeichnet durch die Zusammensetzung (in Gew.%)
    C 0,01 - 0,20
    Si > 0,15
    Mn < 1,40
    P 0,02 - 0,08
    S < 0,025
    Al < 0,005
    optional Nb 0,01 - 0,20,
    Rest Eisen und unvermeidbare Verunreinigungen
    verwendet wird.
  • Die erfindungsgemäße Ausbildung des Bake-Hardening-Effekts mit freiem, gelösten Stickstoff bei einem beruhigten Walzstahl setzt grundlegende Änderungen der bisherigen Herstellungspraxis derartiger beruhigter Walzstähle voraus. Die Beruhigung des Walzstahls darf nicht mehr mit einem Überschussanteil an Aluminium erfolgen, weil der Überschussanteil an Aluminium das Verbleiben eines Gehalts an freiem Stickstoff im Stahl wegen der hohen Stickstoffaffinität des Aluminiums unterbindet. Demzufolge muss die Beruhigung des Stahls entweder mit einem anderen Mittel als mit Aluminium erfolgen oder der Stahl muss mit einer "Vorberuhigung" mit Aluminium hergestellt werden, wobei die Zugabe von Aluminium etwas unterstöchiometrisch erfolgt, sodass eine Restberuhigung mit einem anderen Legierungselement, vorzugsweise mit Silizium, vorgenommen wird. Alternativ kann eine Vorberuhigung auch mit einer Vakuumbehandlung erzielt werden. Die Durchführung der vollständigen Beruhigung mit Silizium ist möglich, wegen der hierfür benötigten hohen Zugabemengen jedoch nicht bevorzugt.
  • Der erfindungsgemäß hergestellte Stahl ist somit vorzugsweise frei von Aluminium, d.h. der Aluminium-Gehalt liegt unter 0,01 Gew.%, vorzugsweise unter 0,005 Gew.%. Sollte der Aluminium-Gehalt höher liegen, muss der dadurch abgebundene Anteil an freiem Stickstoff berücksichtigt werden, sodass die Stahlschmelze mit einem deutlich höheren Anteil an freiem, gelösten Stickstoff hergestellt werden muss, um den erfindungsgemäß vorgesehenen Anteil an freiem, gelösten Stickstoff zu gewährleisten.
  • Es hat sich gezeigt, dass durch die erfindungsgemäße Maßnahme, die eine völlig neue Art der Stahlherstellung für einen Stranggussstahl erfordert, ein gewisser Bake-Hardening-Effekt aufgrund des freien, gelösten Stickstoffs erzielbar ist. Dieser Effekt ist aber in vielen Fällen für praktische Anwendungen nicht ausreichend. Es hat sich gezeigt, dass die Zugabe wenigstens eines weiteren Legierungselements den auf dem freien Stickstoff-Gehalt beruhenden Bake-Hardening-Effekt entscheidend vergrößern kann. Dies kann darauf zurückgeführt werden, dass das geeignete weitere Legierungselement die Diffusion des freien Stickstoffs (zu den Versetzungen) begünstigt. Als besonders geeignetes Legierungselement hierfür hat sich Phosphor mit einem Anteil ≥ 0,020 Gew.%, insbesondere ≥ 0,025 Gew.%, herausgestellt. Ein weiteres Legierungselement, das den Bake-Hardening-Effekt deutlich anhebt, ist Niob, das, vorzugsweise in Ergänzung zu dem einen Legierungselement (vorzugsweise Phosphor), mit einem Anteil ≥ 0,01 Gew.% enthalten ist.
  • Da die erfindungsgemäße (Rest-) Beruhigung des Walzstahls mit Silizium erfolgt, enthält der erfindungsgemäße Walzstahl einen Anteil ≥ 0,15 Gew.% Silizium, vorzugsweise ≥ 0,20 Gew.% Silizium.
  • Die vorliegende Erfindung erlaubt erstmalig ohne besonderen Aufwand die Herstellung von im Festbund haubengeglühten Kaltbändern mit einem Bake-Hardening-Effekt, wenn der Stahl einen normalen C-Gehalt (zwischen 0,01 bzw. 0,02 und 0,20 Gew.%) aufweist.
  • Die vorliegende Erfindung erlaubt ferner, diejenigen Stähle, die herkömmlich mit einem auf freiem Kohlenstoff beruhenden Bake-Hardening-Effekt hergestellt werden, nunmehr mit einem deutlich verbesserten Bake-Hardening-Effekt herzustellen, der erfindungsgemäß auf der (zusätzlichen) Wirkung von freiem, gelösten Stickstoff in der Kristallstruktur beruht. Demgemäß ist es ohne weiteres möglich, das erfindungsgemäße Verfahren auch bei durchlaufgeglühten Walzstählen anzuwenden, um so den bereits bekannten Bake-Hardening-Effekt durch die erfindungsgemäße Maßnahme deutlich zu verstärken.
  • Bevorzugte chemische Zusammensetzungen der erfindungsgemäßen Stähle ergeben sich aus den nachstehend angegebenen Grenzwerten:
    C 0,01-0,20 Gew.%
    Si 0,15-0,70 Gew.%
    Mn 0,15-1,40 Gew.%
    P 0,020-0,080 Gew. %
    S 0,003-0,025 Gew.%
    Al max. 0,005 Gew.%
    Nfrei min. 0,0010Gew.%
    Nb max. 0,09 Gew.%
  • Die erfindungsgemäßen Stähle weisen die bemerkenswerte Eigenschaft auf, dass der auf dem freien Stickstoff beruhende Bake-Hardening-Effekt nur bei einer Temperaturbehandlung nach einer vorherigen Verformung (BH2) auftritt.
  • Eine Alterung bei Raumtemperatur oder ohne vorherige Verformung tritt somit nicht in dem Maße wie bei einer Kohlenstoffalterung auf. Ein unerwünschter Alterungsvorgang bei nicht zu langer Lagerung des Stahls ist daher nicht zu befürchten.
  • Ferner lässt sich bei dem erfindungsgemäßen Stahl die Korngröße durch den Anteil des weiteren Legierungselements, insbesondere durch Phosphor, steuern. Im Vergleich zu aluminiumberuhigten Stählen lässt sich ein gleichfeines oder sogar ein feineres Korn bei dem erfindungsgemäßen Stahl herstellen.
  • Der Gesamtgehalt an Stickstoff beträgt bei dem erfindungsgemäßen Stahl ≤ 0,0090 Gew.%, bevorzugt ≤ 0,075 Gew.%, insbesondere < 0,0045 Gew.%. Bevorzugt wird der bei der Herstellung der Schmelze vorhandene Stickstoffgehalt (0,0040 ≤ Nges. ≤ 0,0060 Gew.%) genutzt, von einer Zulegierung von N somit abgesehen.
  • Im Folgenden soll die Erfindung anhand von Ausführungsbeispielen näher erläutert werden. Es wurden kaltgewalzte Stähle mit einer rekristallisierenden Glühung im Festbund im Haubenofen einerseits und in einer Durchlaufglühe andererseits hergestellt. Die verwendeten chemischen Zusammensetzungen ergeben sich aus der nachstehenden Tabelle 1, wobei die Zusammensetzung der Nummer 1-5 Vergleichsstähle sind.
    Lfd. Nr. Glühung Figur C Mn S N Si P Al Nb
    1 H 1 0,028 0,14 0,003 0,0090 0,70 0,005 0,004 -
    2 H 2 0,039 0,25 0,003 0,0065 0,33 0,005 0,004 -
    D 8
    3 H 3 0,039 0,25 0,003 0,0072 0,34 0,005 0,004 0,028
    D 9
    4 H 4 0,059 0,23 0,0065 0,60 0,004 0,004 -
    D 10
    5 H 5 0,059 0,23 0,003 0,0075 0,58 0,004 0,003 0,024
    D 11
    6 H 6 0,024 0,21 0,002 0,0082 0,28 0,054 0,005 -
    7 H 7 0,026 0,21 0,002 0,0084 0,56 0,054 0,004 -
    H = Glühung im Festbund im Haubenofen
    D = Glühung in der Durchlaufglühe
  • Eine Übersicht der dabei entstandenen technologischen Eigenschaften ist in den Figuren 1 bis 11 (wie in der Tabelle 1 angegeben) dargestellt worden, und zwar jeweils für eine Haspeltemperatur nach dem Warmwalzen von 500°C (jeweils linke Säule) und von 700°C (jeweils rechte Säule).
  • Figur 1 betrifft einen Vergleichsstahl mit einem normalen C-Gehalt von 0,028 Gew.% und zu vernachlässigenden Anteilen an Schwefel, Phosphor und Aluminium. Der Stahl ist mit Silizium (end-) beruhigt worden und weist einen Anteil von freiem, gelösten Stickstoff von 0,0090 Gew.% auf. Er ist aufgrund seiner Streckgrenze von knapp 300 N/mm2 bereits ein höherfester Stahl und weist einen deutlichen, wenn auch nicht hohen BH2-Effekt (25 bis 30 N/mm2) bei beiden Haspeltemperaturen nach der Durchführung der Haubenglühung auf.
  • Figur 2 zeigt die Ergebnisse für einen in der Zusammensetzung nicht prinzipiell variierten Stahl. Der Vergleich mit Figur 3 lässt erkennen, dass die Zugabe von Niob (0,028 Gew.%) hier zu einem deutlich erhöhten BH2-Effekt, insbesondere für die niedrige Haspeltemperatur von 500°C führt. Der Vergleich mit den Figuren 8 und 9, die die Ergebnisse bei gleicher Zusammensetzung nach einer Durchlaufglühung verdeutlichen, zeigt, dass die Erhöhung der BH2-Werte durch die Zugabe von Niob nur bei der Haubenglühung, nicht jedoch bei der Durchlaufglühung erreicht wird. Bei der Durchlaufglühung, bei der ein Teil des BH2-Effektes durch freien Kohlenstoff bewirkt wird, ist die Zugabe von Niob für den BH2-Effekt schädlich, da Niob einen Teil des freien Kohlenstoffs zu Carbid abbindet, was sich in der Erhöhung der Festigkeitswerte Rp 0,2 und Rm und in der Verringerung der Dehnungswerte Ag und A80 niederschlägt.
  • Die gleiche Aussage lässt sich den Figuren 4 und 5 für die Haubenglühung einerseits und 10 und 11 für die Durchlaufglühung andererseits entnehmen. Die Figuren 4 und 5 verdeutlichen ferner, dass der den BH2-Wert erhöhende Einfluss von Niob geringer wird, wenn der Silizium-Anteil sich relativ erhöht. Bei der Zusammensetzung in den Figuren 4 und 5 ist der Silizium-Anteil nahezu doppelt so hoch wie bei den Vergleichsfiguren 2 und 3.
  • Figur 6 zeigt, dass eine deutliche Erhöhung des BH2-Wertes durch eine erfindungsgemäße Zugabe von Phosphor (hier 0,054 Gew.%) erzielt werden kann.
  • Figur 7 verdeutlicht, dass nach der Zugabe von Phosphor eine Erhöhung des Silizium-Anteils keine positive Auswirkung auf den BH2-Wert hat. Festzustellen ist lediglich ein Ansteigen der Festigkeitswerte bei einem gleichzeitigen Abfall der für die Verformbarkeit wesentlichen Parameter, nämlich Ag, A80 und n-Wert.
  • Während die bisher dargestellten Ergebnisse auf Laborexperimenten beruhten, ist zusätzlich eine Betriebsschmelze unter industriellen Fertigungsbedingungen erstellt worden mit folgender erfindungsgemäßer chemischer Zusammensetzung in Gew.%.
    C Mn S N Si P Al N-frei
    0,061 0,26 0,008 0,0027 0,28 0,051 0,003 0,0012
  • Aus der Schmelze ist ein haubengeglühter elo-verzinkter Stahl hergestellt worden. Die dabei erzielten mechanisch-technologischen Eigenschaften des Stahlbandes sind in den Figuren 12 bis 15 aufgetragen.
  • Die Figuren 16 bis 18 zeigen Änderungen der mechanisch-technologischen Eigenschaften des Stahls gemäß den Figuren 12 bis 15 durch eine Wärmebehandlung bei 250° C für drei Minuten, wie sie bei einer Kunststoff-Bandbeschichtung typischerweise auftritt.
  • Die Figuren 19 bis 22 verdeutlichen die Messwerte für aus derselben Schmelze hergestelltes feuerverzinktes Stahlband und die Figuren 23 bis 25 die Änderungen der gemessen Werte durch eine Wärmebehandlung beim 250° C über drei Minuten, wie sie für eine Kunststoff-Bandbeschichtung typischerweise auftritt.
  • Das in der oben angegebenen Zusammensetzung hergestellte Stahlband ist in üblicher Weise warmgewalzt und danach durch Kühlung auf eine Haspeltemperatur von 500° C bzw. 700° C abgekühlt worden. Nach der Abkühlung im Haspel sind in üblicher Weise Kaltwalzschritte erfolgt, durch die das Stahlblech einer Kaltverformung von deutlich über 50 % unterworfen worden ist. Das aufgewickelte Kaltband ist im Coil in einem Haubenofen bei einer Temperatur unter 720° C (A1) rekristallisierend geglüht worden und im Haubenofen unter quasi isothermen Bedingungen abgekühlt worden.
  • In den Figuren 12 ff. sind gemessene Werte am Bandanfang (A), in der Bandmitte (M) und am Bandende (E) dargestellt, wobei die jeweils linke Säule eine in Längsrichtung des Bandes genommene Probe und die rechte Säule jeweils eine in Querrichtung genommene und geprüfte Probe darstellt.
  • Es zeigt sich, dass hohe Festigkeitswerte (untere Streckgrenze ReL) ≥ 260 N/mm2 auch bei einer hohen Haspeltemperatur erreicht werden. Die Zugfestigkeit (Rm) liegt im Bereich von 400 N/mm2.
  • Die für die Umformeigenschaften wichtigen Parameter A80, Ag, n-Wert und r-Wert zeigen hohe Werte, die die gute Verformbarkeit des Stahlbandes kennzeichnen. Der Stahl weist trotz der Haubenglühung einen BH2-Wert von etwa 40 N/mm2 bei der niedrigen Haspeltemperatur und deutlich über 40 N/mm2 bei der höheren Haspeltemperatur auf, wie dies in Figur 14 erkennbar ist. Demgegenüber sind die BH0-Werte, zumindest für die niedrige Haspeltemperatur, eher vernachlässigbar.
  • Es bestätigt sich daher, dass durch die vorliegende Erfindung ein BH2-Effekt ohne zusätzlichen Aufwand erzielbar ist, der auf der Existenz von freien, gelöstem Stickstoff beruht.
  • Die Korngröße liegt für die hohe Haspeltemperatur über ASTM 9, während sie für die niedrigere Haspeltemperatur deutlich über ASTM 10 liegt. Erkennbar ist, dass ein praktisch ideal rundes Korn entsteht, da in Längs- und Querrichtung völlig identische Korngrößen gemessen werden.
  • Die Figuren 16 bis 18 verdeutlichen die Änderungen der angegebenen Parameter nach der Durchführung einer Wärmebehandlung, wie sie bei einer Bandbeschichtung üblich ist, also eine Wärmebehandlung für etwa drei Minuten bei ca. 250°C.
  • Es zeigt sich, dass dabei der BH2-Effekt "verbraucht" wird, sodass die Werte für die obere und untere Streckgrenze entsprechend ansteigen. Überraschend ist dabei, dass gemäß Figuren 17 und 18 allenfalls geringe Änderungen der für die Umformung wesentlichen Parameter stattfindet. Die Änderungen der Dehnungswerte bewegen sich in der Größenordnung von maximal 3 %, während die Änderung der n-Werte und der r-Werte in der Größenordnung von unter 10 % liegen, wobei sich der r-Wert regelmäßig sogar verbessert.
  • Die Figuren 19 bis 22 verdeutlichen die mechanisch-technologischen Parameter für ein nach dem wie oben erfolgten Warmwalzen, Haspeln und Kaltwalzen in einer Durchlaufglühe rekristallisierend geglühtes Stahlband, das dabei feuerverzinkt worden ist. Bekanntlich weist ein derartig behandeltes Stahlband höhere Festigkeitswerte auf und lässt sich mit einem guten BH2-Wert erstellen, der abhängig von der Festigkeit üblicherweise in der Größenordnung von 40 N/mm2 liegt. Demgegenüber ist der erfindungsgemäß erzielte BH2-Wert gemäß Figur 21 wesentlich höher und liegt bei 80 bis 90 N/mm2. Ein derartiger BH2-Wert ist bisher nicht mit üblichen Fertigungsmethoden erzielbar gewesen. Die Korngröße liegt, je nach Haspeltemperatur bei ASTM 8,5 bis 9,5, also im Bereich eines feinkörnigen Stahls.
  • Das wie für den haubengeglühten Stahl beschriebene Experiment zum "Verbrauchen" des BH-Effektes führt gemäß den Figuren 23 bis 25 zu einer erheblichen Erhöhung der Festigkeitswerte ohne eine merkbare Beeinträchtigung der Umformwerte, wobei der für die Umformung wesentliche n-Wert tendenziell sogar noch verbessert wird. Bemerkenswert sind ferner die sehr guten Umformkennwerte, die sich in den hohen Werten für die Gleichmaßdehnung Ag, für die Dehnung A80, den n-Wert und die überraschend sehr hohen r-Werte in Querrichtung (1,5 bis > 1,6) manifestieren. Demgemäß steht ein Stahl zur Verfügung, der hohe Festigkeitswerte liefert, mit diesen hohen Festigkeitswerten aber umformbar ist wie ein wesentlich weicherer Stahl.
  • Der in der beschriebenen Zusammensetzung angegebene niedrige Gehalt von 0,0012 Gew.% freien Stickstoff dürfte für die festgestellte Vermeidung der Reckalterung bedeutsam sein. Bevorzugt ist somit ein freier N-Gehalt, der zwischen 0,0010 und 0,0020 Gew.% liegt.
  • Zusammenfassend ist festzustellen, dass durch die Erfindung ein haubengeglühtes Stahlband erstellt werden konnte, das bei relativ hohen Festigkeitswerten sehr gute Umformwerte und dabei einen deutlichen BH2-Effekt aufweist. Es entsteht ein feinkörniges Gefüge mit ASTM-Korngrößen 9,25 bis 10,75. Die Feinkörnigkeit des unlegierten Stahls ist vergleichbar mit der Feinkörnigkeit, die sonst mit einem mikrolegierten Stahl erzielt wird.
  • Es entsteht ein homogenes Gefüge, dessen Körngröße in Längsrichtung und Querrichtung gleich groß ist.
  • Für einen feuerverzinkten, durchlaufgeglühten Stahl werden hohe Festigkeitswerte bei sehr guten Umformwerten erzielt. Dabei werden extrem hohe BH2-Werte erreicht.
  • In beiden Fällen (Haubenglühe, Durchlaufglühe) werden nach einer simulierten Bandbeschichtung (Wärmebehandlung 250° C für drei Minuten) Festigkeitssteigerungen bei nur geringfügig veränderten Umformwerten erreicht.
  • Zusammenfassend ist festzustellen, dass die erfindungsgemäßen Stähle mit einem Bake-Hardening-Effekt herstellbar sind, der auf der Existenz von freiem, gelösten Stickstoff in der Kristallstruktur beruht. Dieser Effekt wird durch eine Steuerung der Diffusion des freien Stickstoffs erhöht, nämlich durch die erfindungsgemäße Zugabe von Phosphor und eventuell zusätzlich Niob. Durch die Zugabe von Phosphor lässt sich die Korngröße des entstehenden Stahls beeinflussen. Mit der Zugabe von Niob kann eine Einstellung der Festigkeit bewirkt werden.
  • Die erfindungsgemäßen Stähle haben durchweg hohe Dehnungs-, r- und n-Werte, also gute Verformungseigenschaften.
  • Die erfindungsgemäßen Stähle zeigen gute BH2-Werte, hingegen sehr niedrige BH0-Werte. Der Bake-Hardening-Effekt setzt daher verwertbar nur nach einer vorherigen Verformung ein. Die Stähle sind bei Raumtemperatur nahezu alterungsfrei, sodass eine Reckalterung durch den freien Stickstoff nur in geringem Maße vorhanden ist.
  • Der gemessene BH2-Effekt wird durch die erfindungsgemäße Zugabe von P verstärkt, da Phosphor die Stickstoff-Diffusion aktiviert. Die BH2-Werte ergeben sich sowohl bei einer Wärmebehandlung von 120°C als auch bei 170°C.
  • Die Tatsache, dass der erfindungsgemäße Stahl, dessen Bake-Hardening-Effekt auf dem Vorhandensein von freiem Stickstoff beruht, bei Raumtemperatur kaum altert, obwohl der freie Stickstoff nicht abgebunden ist, ist überraschend. Eine Erklärung könnte in einer Blockierung der Stickstoffdiffusion durch das Silizium liegen. Diese Blockierung kann durch die Temperaturbehandlung nach einer Verformung und durch die erfindungsgemäße Zugabe von Phosphor und eventuell Niob beseitigt bzw. gemildert werden.
  • Die den Figuren 12, 13, 15 bis 20 und 22 bis 25 zugrunde liegenden Messwerte sind in den nachstehenden Tabellen I bis IV wiedergegeben. Tabelle I Kaltband 01746 haubengeglüht/verzinkt; T Ha=500°C
    * = Anlieferungszustand + 250°C/3min
    Probenlage Prüfrichtung ReH N/mm2 ReL N/mm2 Ru N/mm2 Agl % A80 % n-Wert r-Wert ReH* N/mm2 ReL* N/mm2 Rm* N/mm2 Agl* % A80* % n* r*
    A längs 287 282 399 19,9 37,1 0,193 1,20 364 323 405 19,0 34,6 0,175 1,14
    quer 323 301 405 19,8 36,5 0,198 1,49 380 341 408 19,2 34,9 0,178 1,58
    M längs 279 278 404 19,7 34,9 0,193 1,24 368 328 410 18,4 33,4 0,175 1,19
    quer 301 294 408 19,9 34,7 0,192 1,49 388 347 411 18,3 35,0 0,174 1,65
    E längs 295 288 406 19,9 34,1 0,196 1,12 347 325 410 18,8 31,7 0,180 1,10
    quer 326 306 406 19,9 35,3 0,195 1,52 383 340 412 18,5 34,9 0,178 1,78
    Tabelle II Kaltband 01747 haubengeglüht / verzinkt; T Ha = 700°C
    * = Anlieferungszustaud + 250°C/3min
    Probenlage Prüfrichtung ReH N/mm2 ReL N/mm2 Rm N/mm2 Agl % A80 % n-Wert r-Wert ReH* N/mm2 ReL* N/mm2 Rm* N/mm2 Agl* % A80* % n* r*
    A längs 270 268 389 20,0 36,1 0,139 1,15 356 317 395 17,7 33,3 0,170 1,15
    quer 299 284 392 19,2 34,5 0,183 1,63 380 336 401 18,1 33,7 0,171 1,75
    M längs 265 265 384 17,8 32,8 0,172 1,22 359 319 394 17,1 31,1 0,166 1,21
    quer 277 277 390 17,5 31,0 0,166 1,69 366 336 400 16,5 30,9 0,160 1,75
    E längs 269 267 387 19,1 34,8 0,183 1,18 353 317 395 18,0 33,9 0,172 1,16
    quer 282 279 389 18,2 34,5 0,170 1,63 384 338 398 16,6 33,6 0,159 1,79
    Tabelle III Kaltband 01746 feuerverzinkt; T Ha = 500°C
    Probenlage Prüfrichtung ReH N/mm2 ReL N/mm2 Rm N/mm2 Agl % A80 % n-Wert r-Wert ReH* N/mm2 ReL* N/mm2 Rm* N/mm2 Agl* % A80* % n* r*
    A längs 355 350 449 15,7 28,6 0,149 1,20 455 411 458 15,8 27,9 0,151 1,29
    quer 366 356 454 15,3 28,8 0,143 1,69 474 415 460 15,4 26,0 0,148 1,80
    E längs 343 336 447 16,7 30,1 0,154 1,23 446 400 454 16,4 27,9 0,156 1,28
    quer 357 345 450 15,6 27,1 0,149 1,62 461 409 458 15,9 28,3 0,153 1,79
    E = Coil-Mitte des ungeteilten Bandes
    * = Anlieferungszustand + 250°C /3min
    Kaltband 01747 feuerverzinkt; T Ha=700°C Tabelle IV
    Probenlage Prüfrichtung ReH N/mm2 ReL N/mm2 Rm N/mm2 Agl % A80 % n-Wert r-Wert ReH* N/mm2 ReL* N/mm2 Rm* N/mm2 Agl* % A80* % n* r*
    A längs 304 296 419 19,0 34,0 0,184 1,14 380 345 428 18,8 33,7 0,184 1,18
    quer 341 316 426 18,3 30,6 0,179 1,66 400 348 429 18,1 29,9 0,181 1,87
    M längs 311 304 430 16,2 30,5 0,151 1,25 416 371 444 16,0 28,8 0,154 1,24
    quer 318 307 435 15,3 28,2 0,147 1,75 428 385 448 15,4 28,2 0,150 1,71
    E längs 315 312 434 16,5 28,8 0,154 1,16 418 378 448 15,9 28,7 0,155 1,19
    quer 321 316 439 15,8 30,1 0,149 1,57 436 394 452 15,5 28,2 0,150 1,79
    E = Coil-Mitte des ungeteilten Bandes
    * = Anlieferungszustand + 230°C /5min

Claims (18)

  1. Verfahren zur Herstellung eines beruhigten, unlegierten oder mikrolegierten Walzstahls, der nach einem Heißwalzen mit anschließendem Aufhaspeln kalt gewalzt und anschließend rekristallisierend geglüht wird und danach einen Bake-Hardening-Effekt zeigt, wobei zur Erzielung des Bake-Hardening-Effekts freier, gelöster Stickstoff mit einem Anteil von > 0,001 Gew.% verwendet wird, dadurch gekennzeichnet, dass ein Stahl der Zusammensetzung (in Gew.%)
    C 0,01 - 0,20
    Si ≥ 0,15
    Mn ≤ 1,40
    P 0,020- 0,08
    S ≤ 0,025
    Al ≤ 0,005
    optional Nb 0,01 - 0,20,
    Rest Eisen und unvermeidbare Verunreinigungen
    verwendet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das rekristallisierende Glühen als Durchlaufglühung oder als Haubenglühung im Festbund vorgenommen wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Anteil C zwischen 0,02 und 0,20 Gew.% liegt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Anteil an Silizium zwischen 0,20 und 0,70 Gew.% liegt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Anteil an Phosphor zwischen 0,020 und 0,080 Gew.% liegt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein zusätzlicher Bake-Hardening-Effekt mit freiem Kohlenstoff eingestellt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der potentielle Bake-Hardening-Effekt bei einer vor der Verformung erfolgenden Wärmebehandlung zwischen 150 und 300°C für einige Minuten zur Erhöhung der Festigkeitseigenschaften verbraucht wird.
  8. Beruhigter, unlegierter oder mikrolegierter kalt gewalzter Walzstahl mit einem Bake-Hardening-Effekt, der einen Gehalt an freiem gelösten Stickstoff > 0,001 Gew.% aufweist, gekennzeichnet durch die Zusammensetzung (in Gew.%)
    C 0,01 - 0,20
    Si > 0,15
    Mn < 1,40
    P 0,02 - 0,08
    S < 0,025
    Al < 0,005
    optional Nb 0,01 - 0,20,
    Rest Eisen und unvermeidbare Verunreinigungen
    verwendet wird.
  9. Walzstahl nach Anspruch 8, mit einem Gehalt an C 0,02 - 0,20 Gew.%.
  10. Walzstahl nach Anspruch 8 oder 9, gekennzeichnet durch einen Anteil an Silizium von 0,20 - 0,70 Gew.%.
  11. Walzstahl nach einem der Ansprüche 8 bis 10, gekennzeichnet durch einen Anteil an Phosphor zwischen 0,020 und 0,080 Gew.%.
  12. Walzstahl nach einem der Ansprüche 8 bis 11, gekennzeichnet durch BH2-Werte ≥ 75 N/mm2 bei Re-Werten ≥ 290 N/mm2 nach einer Feuerverzinkung.
  13. Walzstahl nach einem der Ansprüche 8 bis 12, gekennzeichnet durch Re-Werte ≥ 330 N/mm2 bei n-Werten ≥ 0,15 und einen reduzierten BH2-Effekt.
  14. Walzstahl nach Anspruch 12 oder 13, gekennzeichnet durch eine Korngröße ASTM ≥ 8,5.
  15. Walzstahl nach einem der Ansprüche 8 bis 12, gekennzeichnet durch eine untere Streckgrenze ReL ≥ 260 N/mm2 und einen BH2-Wert ≥ 40 N/mm2 nach einer rekristallisierenden Haubenglühung.
  16. Walzstahl nach Anspruch 15, gekennzeichnet durch n-Werte ≥ 0,17 und Körngrößen ASTM ≥ 9.
  17. Walzstahl nach Anspruch 16, gekennzeichnet durch Körngrößen ASTM ≥ 10.
  18. Walzstahl nach einem der Ansprüche 8 bis 17, gekennzeichnet durch eine Blechdicke von ≥ 0,05 mm.
EP05789368A 2004-09-09 2005-09-08 Beruhigter, unlegierter oder mikrolegierter walzstahl mit bake-hardening effekt und verfahren zu seiner herstellung Not-in-force EP1786937B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410044022 DE102004044022A1 (de) 2004-09-09 2004-09-09 Beruhigter, unlegierter oder mikrolegierter Walzstahl mit Bake-hardening-Effekt und Verfahren zu seiner Herstellung
PCT/DE2005/001589 WO2006026982A1 (de) 2004-09-09 2005-09-08 Beruhigter, unlegierter oder mikrolegierter walzstahl mit bake-hardening effekt und verfahren zu seiner herstellung

Publications (2)

Publication Number Publication Date
EP1786937A1 EP1786937A1 (de) 2007-05-23
EP1786937B1 true EP1786937B1 (de) 2013-02-20

Family

ID=35585311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05789368A Not-in-force EP1786937B1 (de) 2004-09-09 2005-09-08 Beruhigter, unlegierter oder mikrolegierter walzstahl mit bake-hardening effekt und verfahren zu seiner herstellung

Country Status (3)

Country Link
EP (1) EP1786937B1 (de)
DE (1) DE102004044022A1 (de)
WO (1) WO2006026982A1 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157623A (en) * 1974-11-18 1976-05-20 Nippon Kokan Kk Takaitosoyakitsukekokaseitosugureta hijikoseiomotsukochoryokureienkohanno seizohoho
JP3900619B2 (ja) * 1996-10-31 2007-04-04 Jfeスチール株式会社 焼付硬化性および耐室温時効性に優れた熱延鋼板およびめっき鋼板ならびに熱延鋼板の製造方法
CA2297291C (en) * 1999-02-09 2008-08-05 Kawasaki Steel Corporation High tensile strength hot-rolled steel sheet and method of producing the same
TW550296B (en) * 2000-02-29 2003-09-01 Kawasaki Steel Co High tensile cold-rolled steel sheet having excellent strain aging hardening properties and manufacturing method thereof
KR20020019124A (ko) * 2000-05-26 2002-03-09 에모또 간지 변형시효 경화특성을 갖는 냉연강판 및 아연도금강판, 및이들의 제조방법
US20030015263A1 (en) * 2000-05-26 2003-01-23 Chikara Kami Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
EP1291447B1 (de) * 2000-05-31 2005-05-04 JFE Steel Corporation Kaltgewalztes stahlblech mit ausgezeichneten reckalterungseigenschaftenund herstellungsverfahren für ein solches stahlblech
JP4622187B2 (ja) * 2001-08-21 2011-02-02 Jfeスチール株式会社 歪時効硬化特性に優れるとともに室温時効劣化のない冷延鋼板および冷延めっき鋼板ならびにそれらの製造方法

Also Published As

Publication number Publication date
EP1786937A1 (de) 2007-05-23
DE102004044022A1 (de) 2006-03-16
WO2006026982A1 (de) 2006-03-16

Similar Documents

Publication Publication Date Title
EP2710158B1 (de) Hochfestes stahlflachprodukt und verfahren zu dessen herstellung
DE69908450T2 (de) Breitflanschträger aus Stahl mit hoher Zähigkeit und Streckgrenze und Verfahren zur Herstellung dieser Bauteile
DE4040355C2 (de) Verfahren zur Herstellung eines dünnen Stahlblechs aus Stahl mit hohem Kohlenstoffgehalt
EP2836614B1 (de) Hochfester mehrphasenstahl und verfahren zur herstellung eines bandes aus diesem stahl
EP1918402B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein Komplexphasen-Gefüge bildenden Stahl
EP3974554A1 (de) Stahlflachprodukt mit guter alterungsbeständigkeit und verfahren zu seiner herstellung
EP2905348B1 (de) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
EP2840159B1 (de) Verfahren zum Herstellen eines Stahlbauteils
DE102006058917A1 (de) Hochfeste Stahlbleche mit einer hervorragenden Verformbarkeit und Verfahren zum Herstellen derselben
EP2439290A1 (de) Mehrphasenstahl, aus einem solchen Mehrphasenstahl hergestelltes kaltgewalztes Flachprodukt und Verfahren zu dessen Herstellung
DE3142782A1 (de) Verfahren zum herstellen von stahl mit hoher festigkeit und hoher zaehigkeit
DE3586698T2 (de) Stahl mit hoher bruchfestigkeit und hoher zaehigkeit.
DE2348249A1 (de) Kornorientierter siliciumstahl und verfahren zu seiner herstellung
EP0422378A1 (de) Verfahren zur Verbesserung der Kaltumformbarkeit vergütbarer Stähle
DE3024303C2 (de)
DE3880276T2 (de) Kaltgewalzter feinblechstahl mit hohem r-wert und verfahren zu seiner herstellung.
EP1398390B1 (de) Ferritisch/martensitischer Stahl mit hoher Festigkeit und sehr feinem Gefüge
DE3881002T2 (de) Durch wärmrbehandlung härtbares warmgewalztes stahlfeinblech mit ausgezeichneter kaltverformbarkeit und verfahren zu seiner herstellung.
EP1399598B2 (de) Verfahren zum herstellen von hochfesten, aus einem warmband kaltverformten stahlprodukten mit guter dehnbarkeit
EP3847284B1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
EP0231864B1 (de) Alterungsfreier Bandstahl
EP1225235A2 (de) Verfahren zur Herstellung eines kalt gewalzten Bandes oder Bleches aus Stahl und nach dem Verfahren herstellbares Band oder Blech
EP1352982A2 (de) Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrissfreien Formteilen und Formteil
EP1918404B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Aluminium legierten Mehrphasenstahl
DE3007560A1 (de) Verfahren zum herstellen von warmgewalztem blech mit niedriger streckspannung, hoher zugfestigkeit und ausgezeichnetem formaenderungsvermoegen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005013483

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0009460000

Ipc: C22C0038020000

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/02 20060101ALI20120503BHEP

Ipc: C22C 38/04 20060101ALI20120503BHEP

Ipc: C22C 38/02 20060101AFI20120503BHEP

Ipc: C21D 9/46 20060101ALI20120503BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 597609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013483

Country of ref document: DE

Effective date: 20130418

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

26N No opposition filed

Effective date: 20131121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013483

Country of ref document: DE

Effective date: 20131121

BERE Be: lapsed

Owner name: FREIER, KLAUS

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130908

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130908

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050908

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005013483

Country of ref document: DE

Representative=s name: GRAMM, LINS & PARTNER PATENT- UND RECHTSANWAEL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20160923

Year of fee payment: 12

Ref country code: NL

Payment date: 20160922

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160922

Year of fee payment: 12

Ref country code: AT

Payment date: 20160921

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 597609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170908

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180927

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013483

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401