EP1778817A1 - Procede de consolidation du sol et composition pour la mise en oeuvre de ce procede - Google Patents

Procede de consolidation du sol et composition pour la mise en oeuvre de ce procede

Info

Publication number
EP1778817A1
EP1778817A1 EP05857857A EP05857857A EP1778817A1 EP 1778817 A1 EP1778817 A1 EP 1778817A1 EP 05857857 A EP05857857 A EP 05857857A EP 05857857 A EP05857857 A EP 05857857A EP 1778817 A1 EP1778817 A1 EP 1778817A1
Authority
EP
European Patent Office
Prior art keywords
soil
bacteria
solution
calcifying
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05857857A
Other languages
German (de)
English (en)
Inventor
Jean-Pierre Hamelin
Gérard Evers
Sabine Darson-Balleur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soletanche Freyssinet SA
Original Assignee
Compagnie du Sol SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie du Sol SARL filed Critical Compagnie du Sol SARL
Publication of EP1778817A1 publication Critical patent/EP1778817A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials

Definitions

  • the invention relates to a method for soil consolidation, and a composition for carrying out this method. Fine or liquefiable soils have a very low permeability, of the order of
  • calcifying bacteria in renovation of facings is described in patent applications EP-A-388,304 and FR-A-2,734,261.
  • the advantage of calcifying bacteria is that they can penetrate deeply into Soils through the culture medium in which they are, live there as nutrients are brought to them and grow carbonates on the surface of the soil grains maintaining an open porosity if necessary.
  • An object of the invention is therefore to have a soil consolidation method, which is environmentally friendly and / or health.
  • Another object of the invention is to provide a method in which the consolidation "cement" does not exhibit a setting phenomenon.
  • Another object of the invention is to have a method which is less restrictive to implement than conventional methods. These objects are achieved according to the present invention using a combination of calcifying bacterial solutions and solutions bacterial denitrifying.
  • the invention relates to a soil consolidation method which comprises the following steps: a) feeding the soil with one or more solution (s) of calcifying bacteria; b) the circulation of this (these) solutions in the soil; c) feeding the soil with one or more nutritive solution (s) for the calcifying bacteria and the circulation of this (these) solution (s) in the soil; d) feeding the soil with one or more solution (s) of denitrifying bacteria and the circulation of this (these) solution (s) in the soil.
  • calcifying bacteria bacteria that make or grow carbonates. These bacteria are also known under the name of carbonatogenic bacteria (see in particular the patent application FR-A-2,734,261). As examples of calcifying bacteria that may be used in the method of the invention, mention may be made of bacteria belonging to the following families:
  • Bacillaceae preferably of the genus Bacillus such as Bacillus cereus, Bacillus pasteur / I, etc.
  • Pseudomonadaceae preferably of the genus Pseudomonas, for example Pseudomonas stutzerii, ..
  • Enterobactehaceae preferably of the genus Proteus as for example Proteus mirabilis, ..
  • Myxococcal preferably of the genus Myxococcus such as Myxococcus xanthus, ..
  • denitrifying bacterium soil bacteria that convert nitrate nitrogen to molecular nitrogen and ammonia.
  • denitrifying bacteria that may be used in the process of the invention, mention may be made of the following bacteria: • Pseudomonas denitrificans,
  • bacteria solution or bacterial solution
  • suitable culture medium from about 10 6 to about 10 9 cells / ml.
  • Culture medium for calcifying bacteria o 0.01 M phosphate buffer pH 6.5 o 1% (w / v) Casitone o 0.1% (w / v) MgSO 4 .7H 2 O
  • Culture medium for denitrifying bacteria o 1000 ml Distilled water o 5 g Peptone o 3 g Meat extract.
  • Each medium is sterilized by autoclaving for 20 minutes at 121 ° C. After cooling, it is inoculated with the above bacteria.
  • the first step of the process according to the invention consists in feeding the soil that it is desired to consolidate with one or more solution (s) of calcifying bacteria.
  • supply boreholes preferably located around the area to be consolidated, and, on the other hand, boreholes for pumping or capture (eg filter tips), preferably arranged in the center of the area to consolidate.
  • This network of supply and capture wells (hereinafter also called “firing plan”) is designed to delineate the flow of fluids to the volume of the soil to be treated.
  • the number and position of supply and capture wells is determined in such a way that the time required to replace the total volume of water (naturally occurring in the soil) in the area to be consolidated does not does not exceed half of the practical life of bacteria in their culture medium.
  • the calcifying bacteria are thus injected into the soil, by gravity, by means of the power holes. Then a depression is created in the area to be treated by means of the boreholes (for example, filter points).
  • capture systems operate under vacuum at a pressure maximum of - 0.7 bar. Depression thus established has the effect of circulating the bacterial solution (s) in the area to be treated and to remove the water present in the soil; in this way we obtain a "leaching" of the soil.
  • the speed of circulation of the bacterial solution is governed by the permeability of the soil, which itself governs the flow rate and the injection speed of said solution.
  • the circulation is continued until the filling in bacterial solution (s) has reached the desired level; this level is determined by an analysis of the bacterial solution content in water, recovered by the capture systems.
  • the calcifying bacteria are then supplied with the necessary nutrients to ensure the carbonation of the soil and thus the desired consolidation.
  • the nutritive solution (s) is (are) injected into the soil (always by gravity) through the supply boreholes, then circulates in the zone to be consolidated according to the principle indicated above, the depression created to circulate the calcifying bacteria being maintained.
  • the time required to reach a satisfactory level of carbonation is of the order of 30 to 45 days.
  • Nutrient solutions are standard solutions, well known to those skilled in the art. They provide calcifying bacteria with a source of organic carbon, nitrogen, and other elements essential for their physiological function. It is understood that if several types of calcifying bacteria are used, it may be necessary to use different nutrient solutions, meeting the needs of each type of bacteria.
  • This solution is sterilized by autoclaving for 20 minutes at 121 ° C. and then cooled before use.
  • the calcifying bacteria die to leave only the original soil that was carbonate. As indicated previously, during carbonation, bacteria Calcificants produce nitrogenous compounds that are released into the surrounding environment. So, to "neutralize” these rejects, denitrifying bacteria are used.
  • the advantage of the process lies in the fact that the denitrifying bacteria use the degradation products of calcifying bacteria as nutrients to their own metabolism, which makes the process perfectly ecological.
  • the solution (s) of denitrifying bacteria is (are) injected (s) into the soil, always via the drilling of feeding, then circulates (it) in the zone to consolidate thanks to the depression created to make circulating calcifying bacteria and nutrient solutions.
  • the solution (s) of denitrifying bacteria is (are) injected (s) in step a), simultaneously or after the injection of the solution (s). ) of calcifying bacteria.
  • the method according to the invention can be optimized by using means of control of the evolution of the treatment, to adapt it accordingly, such as:
  • the evolution of the degree of carbonation is evaluated preferably by geophysical methods, for example by measuring the evolution of the shear wave velocity in the field between supply boreholes and pumping or capture wells.
  • the bacterial content and / or degradation products of the calcifying bacteria of the water recovered by the capture systems is also analyzed. If this analysis reveals the presence of nitrogen compounds, for example nitrates, it is possible to treat the water recovered with a solution of denitrifying bacteria as defined above. The treated water can then be reinjected into the soil, for example in the water table.
  • the process according to the invention makes it possible to preserve the porosity of the ground, which is favorable in certain cases (maintenance of the underground circulation, particular case of the liquefaction of the soil in the event of an earthquake) , or on the contrary to clog the pores.
  • the bacterium Myxococcus xanthus has the following advantages:
  • the invention relates to a composition for implementing the method described above.
  • This composition contains separately (i) calcifying bacteria, (ii) denitrifying bacteria and (iii) optionally one or more nutritive solution (s) for calcifying bacteria.
  • the bacteria whether calcifying or denitrifying, are cultured on the intervention site from freeze-dried strains or in solution in a suitable culture medium.
  • the composition can be in the form of a "kit" in two or three parts each containing the appropriate amounts of calcifying and denitrifying bacteria and, where appropriate, nutrient solutions.
  • Figures IA and IB show schematically the implementation of the method of the invention for the treatment of the soil under an existing building.
  • Figure 1A is a plan view of the "firing plan" (network of supply and capture wells) used in the method of the invention. More specifically, the firing plan comprises 18 supply boreholes 1 disposed around the perimeter of the zone to be treated, and 5 filtering tips 2 disposed in the center of the zone to be treated.
  • Figure 1B is a sectional view of the treatment implemented under a building.
  • the shaded area 3 represents the extent to be consolidated.
  • feeding holes are fed with a calcifying bacterial solution, in this case a solution of Myxococcus xanthus bacteria in a culture medium comprising:
  • the filter tips located in the center of the area to be treated, are depressed, which allows the bacterial solution to circulate within the area to be treated.
  • the time when the filling has reached the desired level is defined.
  • the water recovered by the filter tips is analyzed and treated by denitrifying bacteria, as soon as the analysis reveals the presence of releases produced by the calcifying bacteria.
  • the water recovered by the filter tips is recirculated in closed circuit and treated with denitrifying bacteria until a level compatible with the standards in force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

L'invention concerne un procédé de consolidation du sol, selon lequel on utilise une combinaison de bactéries calcifiantes et de bactéries dénitrifiantes. L'invention concerne également une composition pour la mise en oeuvre de ce procédé.

Description

Procédé de consolidation du sol et composition pour la mise en œuyre de ce procédé
L'invention concerne un procédé pour la consolidation du sol, ainsi qu'une composition pour la mise en œuvre de ce procédé. Les sols fins ou liquéfiables ont une perméabilité très faible, de l'ordre de
10"5 m/s. La consolidation ou l'étanchéité de tels sols implique l'injection de solutions dont la taille maximale des grains qu'elle contient doit être inférieure au micron. Dans cette optique des solutions minérales ont été mises au point avec, comme contre partie, des temps de prise courts qui limitent leur pénétration dans le sol et la libération de phases polluantes telles que de l'ammoniac ou des nitrates.
Par ailleurs, l'utilisation de bactéries calcifiantes en rénovation de parements, est décrite dans les demandes de brevet EP-A-388 304 et FR-A- 2 734 261. L'intérêt des bactéries calcifiantes est qu'elles peuvent pénétrer profondément dans les sols via le milieu de culture dans lequel elles sont, y vivre tant que des nutriments leurs sont apportés et y faire croître des carbonates à la surface des grains de sol en maintenant une porosité ouverte si nécessaire.
On notera, à ce sujet, que l'idée d'utiliser des bactéries pour « cimenter » le sol, a fait l'objet d'une étude en Australie (voir wwwJnnovation.wa.qov.au/Innovation/News/2002/07'). Toutefois, à la connaissance de la Demanderesse, cette étude n'a pas fait l'objet à ce jour d'une mise en application concrète
En poursuivant ses recherches dans ce domaine, la Demanderesse a constaté que les bactéries calcifiantes produisent des composés azotés qui sont rejetés dans le milieu environnant. Cet inconvénient peut avoir des conséquences néfastes sur l'environnement et/ou sur la santé, par exemple si le sol à consolider se trouve à proximité d'un point d'eau.
Un objet de l'invention consiste donc à disposer d'un procédé de consolidation du sol, qui soit respectueux de l'environnement et/ou de la santé.
Un autre objet de l'invention consiste à disposer d'un procédé dans lequel le « ciment » de consolidation ne présente pas de phénomène de prise.
Un autre objet de l'invention consiste à disposer d'un procédé qui soit moins contraignant à mettre en œuvre que les procédés classiques. Ces objets sont atteints, conformément à la présente invention, en utilisant une combinaison de solutions bactériennes calcifiantes et de solutions bactériennes dénitrifiantes.
Ainsi, selon un premier aspect, l'invention concerne un procédé de consolidation du sol qui comprend les étapes suivantes : a) l'alimentation du sol avec une ou plusieurs solution(s) de bactéries calcifiantes ; b) la circulation de cette (ces) solutions dans le sol ; c) l'alimentation du sol avec une ou plusieurs solution(s) nutritive(s) pour les bactéries calcifiantes et la circulation de cette (ces) solution(s) dans le sol ; d) l'alimentation du sol avec une ou plusieurs solution(s) de bactéries dénitrifiantes et la circulation de cette (ces) solution(s) dans le sol.
Par « bactéries calcifiantes », on entend des bactéries qui fabriquent ou font croître des carbonates. Ces bactéries sont également connues sous le nom de bactéries carbonatogènes (voir notamment la demande de brevet FR-A- 2 734 261). A titre d'exemple de bactéries calcifiantes susceptibles d'être utilisées dans le procédé de l'invention, on peut citer les bactéries appartenant aux familles suivantes :
• Bacillaceae (de préférence du genre Bacillus comme par exemple Bacillus cereus, Bacillus pasteur/ I, .. ) • Pseudomonadaceae (de préférence du genre Pseudomonas comme par exemple Pseudomonas stutzerii,..)
• Enterobactehaceae (de préférence du genre Proteus comme par exemple Proteus mirabilis,..)
• Myxococcales (de préférence du genre Myxococcus comme par exemple Myxococcus xanthus,..).
Par « bactérie dénitrifiante », on entend des bactéries du sol qui transforment l'azote nitrique en azote moléculaire et en ammoniaque.
A titre d'exemple de bactéries dénitrifiantes susceptibles d'être utilisées dans le procédé de l'invention, on peut citer les bactéries suivantes : • Pseudomonas denitrificans,
• Azospirillum brasilense,
• Pseudoxanthomonas broegbernesis,
• Luteimonas mephitis,
• Stenotrophomonas nitritireducens, • Thermomonas brevis ou Thermomonas fusca,
• Nitratireductor aquibiodomus. Par « solution de bactéries » (ou solution bactérienne), il faut comprendre que les bactéries sont en solution dans un milieu de culture approprié, à raison de environ 106 à environ 109 cellules/ml.
A titre indicatif, on donne ci-après un exemple de milieu de culture pour les bactéries calcifiantes et un exemple pour les bactéries dénitrifiantes. • Milieu de culture pour les bactéries calcifiantes o Tampon phosphate 0,01 M à pH 6,5 o 1 % (p/v) Casitone o 0,1 % (p/v) MgSO4.7H2O • Milieu de culture pour les bactéries dénitrifiantes o 1000 ml Eau distillée o 5 g Peptone o 3 g Extrait de viande.
Chaque milieu est stérilisé à l'autoclave pendant 20 min à 121°C. Après refroidissement, il est ensemencé par les bactéries ci-dessus.
La première étape du procédé conforme à l'invention consiste à alimenter le sol que l'on souhaite consolider avec une ou plusieurs solution(s) de bactéries calcifiantes.
Au préalable, on aura pris soin de réaliser sur le site à traiter : - d'une part, des forages d'alimentation, disposés de préférence sur le pourtour de la zone à consolider, et d'autre part, des forages de pompage ou de captage (par exemple des pointes filtrantes), disposés de préférence au centre de la zone à consolider. Ce réseau de forages d'alimentation et de captage (que l'on appellera également par la suite « plan de tir ») est conçu de façon à permettre de délimiter le cheminement des fluides au seul volume du sol à traiter. En règle générale, le nombre et la position des forages d'alimentation et de captage est déterminé de manière à ce que le temps nécessaire pour substituer le volume total de l'eau (naturellement présente dans le sol) dans la zone à consolider, ne dépasse pas la moitié de la durée de vie pratique des bactéries dans leur milieu de culture.
Les bactéries calcifiantes sont donc injectées dans le sol, par gravité, au moyen des forages d'alimentation. Puis on crée une dépression dans la zone à traiter au moyen des forages de captage (par exemple, des pointes filtrantes).
Typiquement, les systèmes de captage fonctionnent sous vide à une pression maximum de - 0,7 bar. La dépression ainsi établie a pour effet de faire circuler la ou les solutions bactérienne(s) dans la zone à traiter et de chasser l'eau présente dans le sol ; on obtient de la sorte un « lessivage » du sol. Bien évidemment, la vitesse de circulation de la solution bactérienne est gouvernée par la perméabilité du sol, qui elle même gouverne le débit et la vitesse d'injection de ladite solution. La circulation est poursuivie jusqu'à ce que le remplissage en solution(s) bactérienne(s) ait atteint le niveau souhaité ; ce niveau est déterminé par une analyse de la teneur en solution bactérienne dans l'eau, récupérée par les systèmes de captage. On apporte ensuite aux bactéries calcifiantes les nutriments nécessaires pour assurer la carbonatation du sol et donc la consolidation désirée. La ou les solution(s) nutritive(s) est (sont) injectée(s) dans le sol (toujours par gravité) par l'intermédiaire des forages d'alimentation, puis circule(nt) dans la zone à consolider selon le principe indiqué ci-dessus, la dépression créée pour faire circuler les bactéries calcifiantes étant maintenue. En fonction de la nature et du volume du sol à traiter, ainsi que du degré de consolidation souhaité, il peut s'avérer nécessaire de répéter cette étape une ou plusieurs fois. La durée nécessaire pour atteindre un niveau satisfaisant de carbonatation (grâce à l'apport des nutriments) est de l'ordre de 30 à 45 jours. Les solutions nutritives sont des solutions standards, bien connues de l'homme du métier. Elles apportent aux bactéries calcifiantes une source de carbone organique, d'azote, et d'autres éléments indispensables à leur fonction physiologique. On comprend bien que si plusieurs types de bactéries calcifiantes sont utilisés, il peut être nécessaire d'utiliser des solutions nutritives différentes, répondant aux besoins de chaque type de bactéries.
A titre indicatif, on donne ci-après un exemple de solution nutritive pour la production de carbonate par les bactéries calcifiantes.
• Tampon phosphate 0,01 M à pH 8
• 1 % (p/v) Casitone • 1 % (p/v) Ca(CH3COO)2.4H2O
• 0,02 % (p/v) K2CO3.1/2H2O.
Cette solution est stérilisée à l'autoclave pendant 20 min à 121°C puis refroidie avant utilisation.
Après l'arrêt de l'injection de la (des) solution(s) nutritive(s), les bactéries calcifiantes meurent pour ne plus laisser que le sol d'origine qui a été carbonate. Comme indiqué précédemment, lors de la carbonatation, les bactéries calcifiantes produisent des composés azotés qui sont rejetés dans le milieu environnant. On utilise donc, pour « neutraliser » ces rejets, des bactéries dénitrifiantes.
L'intérêt du procédé réside dans le fait que les bactéries dénitrifiantes utilisent les produits de dégradation des bactéries calcifiantes comme nutriments à leur propre métabolisme, ce qui rend ainsi le procédé parfaitement écologique.
La ou les solution(s) de bactéries dénitrifiantes est (sont) injectée(s) dans le sol, toujours par l'intermédiaire des forages d'alimentation, puis circule(nt) dans la zone à consolider grâce à la dépression créée pour faire circuler les bactéries calcifiantes et les solutions nutritives.
Selon un mode de réalisation particulier de l'invention, la ou les solution(s) de bactéries dénitrifiantes est (sont) injectée(s) à l'étape a), simultanément ou après l'injection de la (des) solution(s) de bactéries calcifiantes.
Le procédé conforme à l'invention peut être optimisé en utilisant des moyens de contrôle de l'évolution du traitement, pour l'adapter en conséquence, tels que :
• des moyens d'analyse des produits pompés et des dégagements gazeux,
• des essais géotechniques adaptés, ou géophysiques. Ainsi, l'évolution du degré de carbonatation est évaluée de préférence par des méthodes géophysiques, par exemple en mesurant l'évolution de la vitesse des ondes de cisaillement dans le terrain entre forages d'alimentation et forages de pompage ou de captage.
La teneur bactérienne et/ou en produits de dégradation des bactéries calcifiantes de l'eau récupérée par les systèmes de captage est également analysée. Si cette analyse révèle la présence de composés azotés, par exemple des nitrates, il est possible de traiter l'eau récupérée par une solution de bactéries dénitrifiantes telle que définie ci-dessus. L'eau traitée peut ensuite être réinjectée dans le sol, par exemple dans la nappe phréatique. Selon le type de micro-organismes utilisés, le procédé conforme à l'invention permet de conserver la porosité du terrain, ce qui est favorable dans certains cas (maintien de la circulation souterraine, cas particulier de la liquéfaction des sols en cas de séisme), ou au contraire de boucher les pores.
Par exemple, la bactérie Myxococcus xanthus présente les avantages suivants :
• elle permet de déposer une couche de CaCO3 sur la paroi des pores sans les boucher,
• le dépôt de calcite est fortement lié aux grains de sol pré-existants,
• les nouveaux cristaux de calcite ainsi formés sont plus résistants que le matériau d'origine, • W est possible de moduler la productivité des bactéries et la nature de leurs dépôts grâce à la modification de leur milieu de culture. L'utilisation de solutions bactériennes pour la consolidation du sol offre les avantages suivants par rapport aux coulis traditionnels :
• elles ont des propriétés rhéologiques proches de celles de l'eau, donc une excellente pénétrabilité dans le terrain,
• elles ne présentent pas de phénomène de prise, ce qui leur confère un grand rayon d'action ; les forages peuvent donc être beaucoup plus espacés que ceux nécessaires à un traitement classique d'injection. Ces deux propriétés permettent une grande souplesse dans la conception du « plan de tir », qui peut être en outre adapté en cours de traitement.
Un autre avantage lié aux propriétés ci-dessus est que la mise en œuvre du procédé ne nécessite pas de matériel spécifique et présente moins de contraintes que l'injection classique (stockage des produits, matériel de préparation- malaxage, mise en œuvre sous forte pression, contrainte de nettoyage, etc).
Selon un second aspect, l'invention concerne une composition pour la mise en œuvre du procédé décrit ci-dessus. Cette composition contient séparément (i) des bactéries calcifiantes, (ii) des bactéries dénitrifiantes et (iii) éventuellement une ou plusieurs solution(s) nutritive(s) pour les bactéries calcifiantes. Les bactéries, qu'elles soient calcifiantes ou dénitrifiantes, sont mises en culture sur le site d'intervention à partir de souches lyophilisées ou en solution dans un milieu de culture approprié. La composition peut se présenter sous la forme d'un « kit » en deux ou trois parties contenant chacune les quantités appropriées de bactéries calcifiantes et dénitrifiantes et, le cas échéant, de solutions nutritives. L'invention va maintenant être décrite plus en détail à l'aide de l'exemple suivant, donné à titre purement illustratif.
Exemple : consolidation du sous-sol d'un immeuble Les Figures IA et IB représentent schématiquement la mise en œuvre du procédé de l'invention pour le traitement du sol sous un immeuble existant. La Figure IA est une vue à plat du « plan de tir » (réseau de forages d'alimentation et de captage) utilisé dans le procédé de l'invention. Plus précisément, le plan de tir comprend 18 forages d'alimentation 1 disposés sur le pourtour de la zone à traiter, et 5 pointes filtrantes 2 disposées au centre de la zone à traiter.
La Figure IB est une vue en coupe du traitement mis en œuvre sous un immeuble. La zone hachurée 3 représente l'étendue à consolider.
Dans un premier temps, on alimente les forages d'alimentation avec une solution bactérienne calcifiante, en l'espèce une solution de bactéries Myxococcus xanthus dans un milieu de culture comportant :
• un tampon phosphate 0,01 M à pH 6,5 • 1 % (p/v) Casitone
• 0,1 % (p/v) MgSO4.7H2O.
Les pointes filtrantes, situés au centre de la zone à traiter, sont mises en dépression, ce qui permet à la solution bactérienne de circuler au sein de la zone à traiter. Par une analyse appropriée de la teneur en solution bactérienne dans l'eau, récupérée par les pointes filtrantes, on définit le moment où le remplissage a atteint le niveau souhaité.
L'opération est ensuite poursuivie avec la mise en place d'une solution nutritive pour favoriser la carbonatation par les bactéries, de composition :
• Tampon phosphate 0,01 M à pH 8 • 1 % (p/v) Casitone
• 1 % (p/v) Ca(CH3COO)2.4H2O
• 0,02 % (p/v) K2CO3.1/2H2O.
Pendant cette période, l'eau récupérée par les pointes filtrantes est analysée et traitée par des bactéries dénitrifiantes, dès que l'analyse révèle la présence de rejets produits par les bactéries calcifiantes.
Après la phase de carbonatation, l'eau récupérée par les pointes filtrantes est remise en circulation en circuit fermé et traitée par des bactéries dénitrifiantes jusqu'à atteindre un niveau compatible avec les normes en vigueur.

Claims

REVENDICATIONS
1. Procédé de consolidation du sol, qui comprend les étapes suivantes : a) l'alimentation du sol avec une ou plusieurs solution(s) de bactéries calcifiantes ; b) la circulation de cette (ces) solutions dans le sol ; c) l'alimentation du sol avec une ou plusieurs solution(s) nutritive(s) pour les bactéries calcifiantes et la circulation de cette (ces) solution(s) dans le sol ; d) l'alimentation du sol avec une ou plusieurs solution(s) de bactéries dénitrifiantes et la circulation de cette (ces) solution(s) dans le sol.
2. Procédé selon la revendication 1, dans lequel l'alimentation en solutions bactériennes et nutritive(s) est réalisée au moyen d'un réseau de forages d'alimentation.
3. Procédé selon la revendication 2, dans lequel les forages d'alimentation sont disposés sur le pourtour de la zone à consolider.
4. Procédé selon l'une des revendications 1 à 3, dans lequel la circulation dans le sol des différentes solutions est assurée au moyen d'un réseau de forages de pompage ou de captage.
5. Procédé selon la revendication 4, dans lequel les forages de pompage ou de captage sont disposés au centre de la zone à consolider.
6. Procédé selon l'une des revendications 1 à 5, qui comprend en outre le contrôle du degré d'avancement de la consolidation du sol et/ou l'analyse de l'eau récupérée par les forages de pompage ou de captage.
7. Procédé selon l'une des revendications 1 à 6, dans lequel les bactéries calcifiantes sont choisies parmi les familles Bacillaceae, Pseudomonadaceae,
Enterobacteriaceae et Myxococcales.
8. Composition pour la consolidation du sol, qui comprend séparément (i) des bactéries calcifiantes, (ii) des bactéries dénitrifiantes et (iii) éventuellement une ou plusieurs solution(s) nutritive(s) pour les bactéries calcifiantes.
9. Composition selon la revendication 8, dans laquelle les bactéries calcifiantes sont choisies parmi les familles Bacillaceae, Pseudomonadaceae, Enterobacteriaceae et Myxococcales.
10. Composition selon la revendication 8 ou 9, dans laquelle les bactéries sont sous la forme de souches lyophilisées ou en solution dans leur milieu de culture.
EP05857857A 2004-07-28 2005-07-26 Procede de consolidation du sol et composition pour la mise en oeuvre de ce procede Withdrawn EP1778817A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0451685A FR2873725B1 (fr) 2004-07-28 2004-07-28 Procede de consolidation du sol et composition pour la mise en oeuvre de ce procede
PCT/FR2005/050619 WO2006131611A1 (fr) 2004-07-28 2005-07-26 Procede de consolidation du sol et composition pour la mise en oeuvre de ce procede

Publications (1)

Publication Number Publication Date
EP1778817A1 true EP1778817A1 (fr) 2007-05-02

Family

ID=34947577

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05857857A Withdrawn EP1778817A1 (fr) 2004-07-28 2005-07-26 Procede de consolidation du sol et composition pour la mise en oeuvre de ce procede

Country Status (6)

Country Link
US (1) US20080298901A1 (fr)
EP (1) EP1778817A1 (fr)
JP (1) JP2008508450A (fr)
AU (1) AU2005332811A1 (fr)
FR (1) FR2873725B1 (fr)
WO (1) WO2006131611A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064414A1 (fr) 2009-11-24 2011-06-03 Compañía General De Canteras S. A. Procédé de récupération de sols

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1854860A1 (fr) 2006-05-09 2007-11-14 Stichting Geodelft Joint biologique
JP4621634B2 (ja) * 2006-06-29 2011-01-26 国立大学法人北海道大学 微生物を用いたカルシウムを含む地盤の固結方法
JP2008063495A (ja) * 2006-09-08 2008-03-21 Kyokado Eng Co Ltd 土または建造物躯体の処理方法
FR2911887B1 (fr) * 2007-01-30 2009-04-24 Cie Du Sol Soc Civ Ile Amelioration de la resistance d'un materiau poreux ou permeable, ou de la calcification bacterienne
FR2985746B1 (fr) * 2012-01-16 2014-03-07 Soletanche Freyssinet Procede pour la consolidation du sol
JP5140879B1 (ja) * 2012-06-22 2013-02-13 強化土株式会社 地盤改良工法
CN106759248B (zh) * 2016-12-29 2018-09-21 河海大学 绿色沙漠地表防风结构
CN110770400B (zh) * 2017-05-30 2021-11-12 洛桑联邦理工学院 土工织物
CL2018000789A1 (es) * 2018-03-27 2018-07-20 Aguamarina Spa Procedimiento para utilizar el relave como material de construcción dándole características impermeabilizantes y reduciendo su agrietamiento
CN108824419A (zh) * 2018-06-26 2018-11-16 温州大学 真空预压联合生物矿化加固高含水土体的方法
CN109576193B (zh) * 2019-01-15 2021-06-18 内蒙古工业大学 一种微生物修复液及其在砂质基坑坡面防护中的应用方法
CN112176805A (zh) * 2020-09-27 2021-01-05 中交路桥建设有限公司 膨胀土中石灰掺量比的确定方法
CN112227345A (zh) * 2020-09-29 2021-01-15 中交路桥建设有限公司 膨胀土掺灰改良的施工方法
CN113417295B (zh) * 2021-06-07 2022-08-12 海南大学 一种基坑微生物土重力式围护结构及其施工方法
NL2029273B1 (en) * 2021-09-29 2023-04-06 Boskalis Bv Baggermaatschappij Method for treatment of a soil body
JP7449596B2 (ja) 2022-06-06 2024-03-14 強化土エンジニヤリング株式会社 地盤強化工法および該工法に用いる地盤固結材

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304590A (en) * 1979-02-09 1981-12-08 Ciba-Geigy Corporation Methods and compositions for the control of harmful organisms containing aliphatic primary diamines

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558739A (en) * 1983-04-05 1985-12-17 The Board Of Regents For The University Of Oklahoma Situ microbial plugging process for subterranean formations
US4799545A (en) * 1987-03-06 1989-01-24 Chevron Research Company Bacteria and its use in a microbial profile modification process
JP2601697B2 (ja) * 1988-08-30 1997-04-16 清水建設株式会社 微生物を用いた地盤改良方法
FR2644475B1 (fr) * 1989-03-17 1991-07-12 Univ Paris Curie Procede de traitement biologique d'une surface artificielle
US5037240A (en) * 1990-07-19 1991-08-06 Ocean Toad Enterprises Inc. In-situ soil treatment process
GB9021114D0 (en) * 1990-09-28 1990-11-14 Alberta Oil Sands Tech Microbial manipulations of surfactant-containing foams to reduced subterranean formation permeability
US5143155A (en) * 1991-03-05 1992-09-01 Husky Oil Operations Ltd. Bacteriogenic mineral plugging
JP3288843B2 (ja) * 1993-06-10 2002-06-04 キヤノン株式会社 汚染土壌水系の生物的浄化方法
US5563066A (en) * 1993-10-26 1996-10-08 Buchanan; Alan B. Method and apparatus for remediating contaminated soil containing organic compounds
US5387057A (en) * 1993-11-09 1995-02-07 Deloach; Anthony Contaminated ground site remediation system
US5415777A (en) * 1993-11-23 1995-05-16 Sunbelt Ventures, Inc. Process for the decontamination of soils contaminated by petroleum products
GB9412997D0 (en) * 1994-06-28 1994-08-17 Pelletier Marc Antoine Method of decontaminating soils in situ combining horizontal radial flow technique and depolluting agents in a confined site
US5570973A (en) * 1994-07-11 1996-11-05 Foremost Solutions, Inc. Method and system for bioremediation of contaminated soil using inoculated diatomaceous earth
US5597265A (en) * 1995-02-01 1997-01-28 Gallo; Bruce M. Method and apparatus for the in-situ treatment of contamination in soil
FR2734261B1 (fr) * 1995-05-17 1997-08-01 Calcite Nouvelles compositions pour mortier biologique, procede de recouvrement d'une surface ou de comblement d'une cavite a l'aide des compositions
US5695641A (en) * 1996-02-14 1997-12-09 Cosulich; John P. Method and apparatus for enhancing methane production
IL117783A0 (en) * 1996-04-02 1996-08-04 Yissum Res Dev Co Means and process for nitrate removal
US6719902B1 (en) * 1997-04-25 2004-04-13 The University Of Iowa Research Foundation Fe(o)-based bioremediation of aquifers contaminated with mixed wastes
CA2216024A1 (fr) * 1997-09-22 1999-03-22 Stanley M. Kozak Systeme de gestion ameliore des dechets a un site d'enfouissement
US5928433A (en) * 1997-10-14 1999-07-27 The Lubrizol Corporation Surfactant-assisted soil remediation
JP3600892B2 (ja) * 2001-12-10 2004-12-15 株式会社竹中工務店 地盤の透水性を低下させる方法
FR2836502B1 (fr) * 2002-02-25 2004-05-21 Freyssinet Int Stup Procede de renforcement d'une structure par un materiau composite et renfort obtenu par ce procede

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304590A (en) * 1979-02-09 1981-12-08 Ciba-Geigy Corporation Methods and compositions for the control of harmful organisms containing aliphatic primary diamines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006131611A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064414A1 (fr) 2009-11-24 2011-06-03 Compañía General De Canteras S. A. Procédé de récupération de sols

Also Published As

Publication number Publication date
US20080298901A1 (en) 2008-12-04
JP2008508450A (ja) 2008-03-21
AU2005332811A1 (en) 2006-12-14
FR2873725A1 (fr) 2006-02-03
FR2873725B1 (fr) 2006-11-24
WO2006131611A1 (fr) 2006-12-14

Similar Documents

Publication Publication Date Title
EP1778817A1 (fr) Procede de consolidation du sol et composition pour la mise en oeuvre de ce procede
US8720546B2 (en) Prevention of biomass aggregation at injection wells
EP0388304B1 (fr) Procédé de traitement biologique d'une surface artificielle
FR2502166A1 (fr) Composition a base de ciment, de bentonite et d'eau, pour consolider un sol de faible consistance et procede pour consolider ledit sol par mise en oeuvre de ladite composition
WO2006030164A1 (fr) Traitement de polluants par phytolixiviation
EP3239299B1 (fr) Procédé d'obtention d'une substance minérale cimentaire
CA2861300C (fr) Procede pour la consolidation du sol
BE1016355A3 (fr)
CA2068223C (fr) Procede ameliore de transport des particules en milieu poreux
WO2021251811A1 (fr) Dispositif de traitement des eaux usees par filtres vetiver zizania et biochar
EP1935851A1 (fr) Plantations équipées pour le traitement d'effluents organiques par bio-assainissement
WO2023187220A1 (fr) Composition pour dégrader une matière organique, son procédé de fabrication et utilisations de celle-ci
US11097970B2 (en) Biological lagoon systems and methods for industrial wastewater remediation
FR2895426A1 (fr) Procede et installation d'exploitation de nappe d'eau souterraine
US9962747B2 (en) Biomolecular zonal compositions and methods
CN106477716B (zh) 一种用于废弃钻井液处理的活性污泥培养方法
Ronner et al. Microbial clogging of wastewater infiltration systems
FR3110173A1 (fr) Procédé de traitement d’une formation souterraine comprenant des micro-organismes
Cusack et al. Effects of biocide treatment and backflow pressure on the permeability of microbially fouled model cores
Gatellier et al. Hydrocarbon spills impact on soils and applicable remedial techniques-VI. 2. report
FR2930462A1 (fr) Procede pour reduire l'ecoulement des fluides au sein d'un milieu poreux au moyen d'un processus biologique
Patterson Characteristics of Shell Middens on the Coastal Margins of Southeast Texas
Bailey An alkaliphilic bacterial system for triggering biopolymer gels
FR2919783A1 (fr) Procede de traitement d'un sol degrade et de construction d'un sol artificiel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLETANCHE FREYSSINET

17Q First examination report despatched

Effective date: 20091113

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100629