EP1776267A1 - Procede et dispositif pour mesurer une distance entre des vehicules - Google Patents

Procede et dispositif pour mesurer une distance entre des vehicules

Info

Publication number
EP1776267A1
EP1776267A1 EP05768010A EP05768010A EP1776267A1 EP 1776267 A1 EP1776267 A1 EP 1776267A1 EP 05768010 A EP05768010 A EP 05768010A EP 05768010 A EP05768010 A EP 05768010A EP 1776267 A1 EP1776267 A1 EP 1776267A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
branch
measuring
sections
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05768010A
Other languages
German (de)
English (en)
Other versions
EP1776267B1 (fr
Inventor
Jörg SCHWEIZER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1776267A1 publication Critical patent/EP1776267A1/fr
Application granted granted Critical
Publication of EP1776267B1 publication Critical patent/EP1776267B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/34Control, warning or like safety means along the route or between vehicles or trains for indicating the distance between vehicles or trains by the transmission of signals therebetween
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L21/00Station blocking between signal boxes in one yard
    • B61L21/10Arrangements for trains which are closely following one another

Definitions

  • the invention relates to a method and an arrangement for measuring the distance of means of transport, such as vehicles, in particular of vehicles, driving one behind the other on a route (road, rail) in one direction.
  • the invention relates to the field which concerns the regulation of means of transport (vehicles) in motion and relates to a device as well as a method for determining the distance between vehicles, in particular between any two consecutive vehicles of a vehicle body is in motion to measure.
  • Devices are known, e.g. Distance meters that work on the basis of laser or ultrasound and that allow to measure the distance from an obstacle.
  • these known devices often work incorrectly and are expensive and sensitive due to their complex structure.
  • Devices which are usually used to exchange digital data between two trains, with the aim of stopping the following train, if the connection has a certain time duration which is greater than a predetermined safety limit (for example 2 seconds). , is interrupted.
  • a predetermined safety limit for example 2 seconds
  • the object of the present invention is to provide a simple and reliable device (device) and a similar method for measuring (detecting) the distance between transport means (vehicles).
  • the means for measuring the distance (d n ) between any vehicle (V n ) comprises a plurality of vehicles (V) and the vehicle ahead of it (V n _ x ), wherein the vehicles along a route (rail, road or similar) and moving in one direction.
  • This device contains along the entire route laid a reference conductor (LG) and a measuring conductor (LD).
  • the measuring conductor (LD) consists of several consecutive mutually electrically separated sections (S m ), each of which has a certain length (1).
  • the segments (S m ) of the measuring conductor (LD) are electrically connected to the preceding with respect to the direction of travel segment (S ⁇ 1 ) by a diode (D).
  • a constant current generator (G n ) is provided in each vehicle that moves along the specific route and in the specific direction.
  • the contacts of the constant current generator (G n ), first contacts (P n ) and second contacts (Q n ) are respectively connected to a position of the vehicle (V n ) corresponding portion (SJ of the measuring conductor (LD) and the reference conductor (LG) electrically connected along this movable.
  • the second contact to the electrical connection (Q n ) is preferably by a corresponding third movable electrical connection (contact T n ) with a portion (S m ) subsequent section (S k ) of the measuring conductor (LD) behind the first electrical Ver ⁇ bond (P n ) is connected.
  • the contacts of the constant current generator (G n ) form, in particular an output (E n ), which provides a voltage signal with the distance (d n ) between the corresponding vehicle (V n ) the preceding vehicle (V n - I1 ) is correlated.
  • the invention can be used with particular advantage in transport systems with rail-bound transport vehicles, such as they are known from WO 02/04273 Al, are applied.
  • FIG. 1 shows a schematic view of vehicles traveling along a roadway and equipped with the device according to the invention
  • FIG. 2 shows a partially schematized view of the device according to the invention
  • FIG. 3 shows a partially schematic view of a part of FIG Device according to the invention at a point at which the carriageway bifurcates
  • Figs. 4 to 6 are diagrams showing the course of signals which occur in the device according to the invention
  • Fig. 7 schematically shows the electrical conditions when measuring the distance.
  • a device 1 for measuring the distance (d n ) between any two successive means of transport (V n ) and (V ⁇ 1 ), the vehicles such as vehicles (road HFGermane, rail-bound transport u. Like.) From a plurality of vehicles (V) are behind the other, eg in a column at any speed on a (vorbestimm ⁇ th) route 2 in a (certain) direction. It should be pointed out that the device according to the invention also works successfully for measuring the distance between any two vehicles when the vehicles are stationary.
  • the device 1 has components that are stationary and, for example, in the roadway (road, highway, tracks, rails, etc.) are integrated, and also has components that are provided on the vehicles.
  • the device 1 has a reference conductor (LG) and a Meßlei ⁇ ter (LD), which are laid along the roadway 2.
  • LG reference conductor
  • LD Meßlei ⁇ ter
  • the reference conductor (LG) is a bare conductor (conductor line) and may consist of rails or outdoor ropes.
  • the measuring conductor (LD) is also a bare line and consists of several successive separate sections (S m ), wherein each section (SJ has a certain length (1).
  • the sections (S m ) of the measuring conductor (LD) are arranged in a row on the carriageway parallel to the reference conductor (LG), their adjacent ends being electrically isolated from one another by interruptions or insulating spacers.
  • Such Ab ⁇ spacers may consist of plastic or ceramic and have a length which is less than a third, preferably less than one-hundredth of the length (1) of the sections (SJ is.
  • Each section (SJ is electrically connected to the preceding section (S 1 ⁇ 1 ) by a diode (D), wherein the passage direction of the diode (D) coincides with the predetermined direction of travel of the vehicles on the road 2.
  • each portion (SJ of the sense conductor (LD) is electrically connected to the reference conductor (LG) through resistors (R) having a resistance of 50K ohms.
  • the components of the device 1 according to the invention provided on vehicles (V n ) are movable electrical connections (contacts), eg sliding contacts, skids or brushes, first connections (contacts P n ) and second connections (contacts QJ and third connections (contacts T n ) are provided.
  • Further components of the device 1 according to the invention which are arranged on vehicles (V n ), are electrical generators, of which a constant current (G n ) and a variable voltage (W n ), eg voltages with a sinusoidal course, are emitted.
  • G n constant current
  • W n variable voltage
  • the first electrical movable contact (P n ) connects the first contact of the constant current generator (G n ) with a portion (SJ of the measuring conductor (LD) corresponding to the position of the vehicle (VJ).
  • the second movable contact (Q n ) connects the second contact of the constant current generator (GJ and the first contact of the variable voltage generator (W n ) with the reference conductor (LG).
  • the third movable electrical contact (T n ) connects the second contact of the variable voltage generator (W n ) with the portion (S k ) of the measuring conductor (LD), this portion (S k ) with respect to the direction of travel of the vehicle behind the section (S m ) is located.
  • variable voltage generator (W n ) is replaced by a simple direct electrical connection between the second movable contact (Q n ) and the third electrically movable contact (T n ).
  • the contacts of the constant current generator (G n ) represent a two-pole output, which provides voltage signals which are correlated with the distance (d n ) between the relevant vehicle (V n ) and the preceding vehicle (V n-1 ) ,
  • FIG. 3 an embodiment of the device according to the invention in the area of a (road) fork, or a (road) branch is shown.
  • the first three consecutive sections (SJ of one branch 2 of the road are connected by connecting conductors 4 to the corresponding sections (S 1n ) of the other branch 3 of the road.
  • Successive connecting conductors 4 are connected to each other by a diode (D) and are alternately connected via resistors (R) to the reference conductor (LG) of one branch 2 and that of the other branch 3, respectively.
  • the device according to the invention comprises in one embodiment for each vehicle (V n ) a device for estimating the distance (d n ), which can operate analog or digital and has A / D interface, which is connected to the output (E n ) and in the standard de is to calculate the estimate of the distance (d n ).
  • the operation of the method according to the invention provides, the distance (d n ) in the vehicle (V n ) by means of the voltage (u n ) between the two contacts of the power source (G n ), the qualitatively in Fig. 4 as a function of distance ( d n ) is evaluated.
  • a short-time average (U n ) of (u n (t) ) is calculated to estimate the distance (d n ).
  • the mean value (U n ) must be recalculated every time the distance (d n ) is changed.
  • (U n ) is a monotonically increasing function of the spacing (d n ), as shown in FIG. 4.
  • the voltage (U D ) is the voltage difference between the terminals of each of the diodes (D), each of which is traversed by the same current (I).
  • FIG 7 illustrates once again the electrical conditions and the procedure of carriage (V n ), which measures its distance to the preceding vehicle (V n-1 ).
  • the power source of car (V n ) impresses the measuring current (I n ) in the measuring rail (LD), which flows to the left due to the selected polarity of the diode chain. If there is no carriage in the measuring range, the voltage will be at the measuring point (E n )
  • the accuracy of the distance measurement can be increased by additionally increasing the height of the steps, i. the für ⁇ flow voltage of the diodes are measured. This is mainly dependent on the temperature.
  • the measuring current I determines the range of the measurement. It must be dimensioned for a measurement in the linear range so that the current through the voltage source (i Q ) is significantly greater than the current through the resistors (i R ). If this condition is fulfilled, (u n (t)) will be almost independent of the measuring current (I). Carriage (V n ) can check this by resizing the measuring current (I) and checking the effect on the measured value (u n (t)).
  • the direction of the measurement can be reversed by reversing the measuring current (I). This makes it possible to use the distance measuring method according to the invention for both directions of travel of the carriages.
  • a break in the reference conductor (LD) or in the measuring conductor (LG) between successive vehicles (V n and V n-1 ) can be identified by the method described in the "open circuit". If one or more diodes (D) have a short circuit, the measured distance (d n ) is always shorter than the actual one. This fact is considered safe for anti-collision systems.
  • An advantage of the invention is a simple safe and reliable means of measuring the distance between vehicles, which is capable of detecting anomalies and disturbances.
  • a method is used which is based on the measurement of the forward voltage of the diode chain.
  • Semiconductor diodes have a characteristic in the flow direction, which is characterized in that the diode is not a similar switch, but that a voltage drop (UD) occurs in the forward direction, which is essentially logarithmically dependent on the current.
  • the measurement principle according to the invention is based on the fact that a measuring current (I) is impressed between the current grinders of two consecutively moving cars (vehicles) and then a voltage is measured which is n.UD, where (n) the number of sections (S 1n ) of the interrupted contact conductor (LD) with the length (1) (ie the Fluß ⁇ voltage of the diode chain).
  • the distance between the carriages is therefore equal to the product of the length (1) of the sections (SJ of the sliding conductor (LD) and the measured voltage (U meas )) broken by the voltage drop across the diode (UD) (1 * U meas / UD 4 (in which the staircase width corresponds to the length (1) of the sections (SJ).)
  • the staircase is approximately at the bottom but not quite linear due to the resistors (R).
  • the non-linear The area in the upper part is based on the fact that part of the impressed measuring current in each section is conducted across the resistor (R). At some point there will be no current and the Fluß ⁇ voltage over the last diodes of the measuring range, as mentioned above, smaller.
  • the measuring current (I) defines only the range of the measurement, not the result itself.
  • An advantage of the device according to the invention is that decoupling takes place through the use of the diodes, so that each car can measure the distance to the car traveling in front of it.
  • This advantage is due to the blocking characteristic of the diodes, i. those diodes which are located between the two sections (SJ (front and rear contact points) which are contacted by the same carriage are pre-poled in the reverse direction, so that the length (1) of the sections (SJ) must always be smaller than the distance between the front.
  • the device 1 comprises along the said path a reference conductor (LG) and a measuring conductor (LD), the latter consisting of a multiplicity of successive, mutually separate sections (SJ having a predetermined length 1. Each section (SJ) electrically connected to the preceding section (SJ through a diode (D).
  • LG reference conductor
  • LD measuring conductor
  • a constant current generator (G n ) of the device 1 is provided whose contacts are each connected to one of the positives. on the vehicle (V n ) corresponding portion (SJ of the measuring conductor (LD) and with the reference conductor (LG) by first movable elektri ⁇ cal contacts (P n ), and by second movable electrical contacts (Q n ) are connected.
  • Every second electrical contact (Q n ) is connected through a corresponding third, movable electrical contact (T n ) with a segment (S k ) following the section (SJ), with respect to the direction behind the first electrical contact (P n ). connected.
  • the contacts of the constant current generator (G n ) form an output (E n ) which provides a voltage signal which corresponds to the distance (d n ) between the relevant vehicle (V n ) and the preceding vehicle (V n-1 ) is correlated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Traffic Control Systems (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
EP05768010A 2004-08-06 2005-08-04 Procede et dispositif pour mesurer une distance entre des vehicules Not-in-force EP1776267B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT000510A ITBO20040510A1 (it) 2004-08-06 2004-08-06 Dispositivo e metodo per la misurazione della distanza tra veicoli
PCT/AT2005/000312 WO2006012662A1 (fr) 2004-08-06 2005-08-04 Procede et dispositif pour mesurer une distance entre des vehicules

Publications (2)

Publication Number Publication Date
EP1776267A1 true EP1776267A1 (fr) 2007-04-25
EP1776267B1 EP1776267B1 (fr) 2008-01-23

Family

ID=35094186

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05768010A Not-in-force EP1776267B1 (fr) 2004-08-06 2005-08-04 Procede et dispositif pour mesurer une distance entre des vehicules

Country Status (10)

Country Link
US (1) US20080297144A1 (fr)
EP (1) EP1776267B1 (fr)
KR (1) KR20090043413A (fr)
CN (1) CN101001776A (fr)
AT (1) ATE384653T1 (fr)
AU (1) AU2005269240A1 (fr)
DE (1) DE502005002685D1 (fr)
ES (1) ES2301038T3 (fr)
IT (1) ITBO20040510A1 (fr)
WO (1) WO2006012662A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463700A (en) * 2008-09-23 2010-03-24 Robin Weber A signalling system to control the distance between two vehicles on the same track
CN112441080B (zh) * 2019-08-30 2022-09-06 比亚迪股份有限公司 列车定位方法、设备、系统、计算机设备及存储介质
CN114397803B (zh) * 2022-01-24 2022-09-13 同济大学 驾驶设备的授时方法、驾驶设备以及授时系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459937A (en) * 1967-05-19 1969-08-05 Gen Electric Self-checking system for a vehicle separation system
BE711079A (fr) * 1968-02-21 1968-08-21 Acec Procede et dispositif de mesure de distance parcourue par un vehicule a trajet guide, par exemple ferroviaire ou analogue.
US4014503A (en) * 1974-05-17 1977-03-29 Siemens Aktiengesellschaft Method and apparatus for control of central spacing of track-operated vehicles
US4683976A (en) * 1984-05-18 1987-08-04 Konrad Rosenbauer Kg Service vehicle
US5629595A (en) * 1995-06-19 1997-05-13 The Walt Disney Company Method and apparatus for an amusement ride having an interactive guided vehicle
FR2762810B1 (fr) * 1997-04-30 1999-07-30 Soc Gle Techniques Etudes Dispositif d'alimentation par le sol de vehicule electrique avec mise a la terre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006012662A1 *

Also Published As

Publication number Publication date
KR20090043413A (ko) 2009-05-06
WO2006012662A1 (fr) 2006-02-09
AU2005269240A1 (en) 2006-02-09
ES2301038T3 (es) 2008-06-16
US20080297144A1 (en) 2008-12-04
EP1776267B1 (fr) 2008-01-23
CN101001776A (zh) 2007-07-18
ITBO20040510A1 (it) 2004-11-06
DE502005002685D1 (de) 2008-03-13
ATE384653T1 (de) 2008-02-15

Similar Documents

Publication Publication Date Title
EP2593754B1 (fr) Procédé de détection d'une position de commutation d'un dispositif de commutation
EP2862744A2 (fr) Procédé et dispositif de surveillance d'un câble de conducteur de retour d'une voie équipée de deux rails
EP1776267B1 (fr) Procede et dispositif pour mesurer une distance entre des vehicules
EP3170692A1 (fr) Procédé et dispositif de détermination d'au moins une quantité d'énergie individuelle d'un véhicule
EP0545026B1 (fr) Système de commande automatique sûre de la distance mutuelle de véhicules.
DE19903644C1 (de) Einrichtung zur Positionserfassung
DE2838224A1 (de) Verfahren und vorrichtung zum feststellen von heisslaeufern
DE3046103C2 (fr)
EP0272343B1 (fr) Dispositif pour le contrôle de la présence de trains dans des sections de voies déterminées
DE3127672C2 (de) Einrichtung bei Rangieranlagen zur Gleisfreilängenmessung
EP1364380B1 (fr) Commutateur electrique
WO2015036258A1 (fr) Système de limites de segments dans un réseau de lignes à contact glissant s'étendant en longueur
DE19708518C2 (de) Verfahren und Vorrichtung zum Auffinden einer Defektstelle in einer Leiterschleife
DE3235733A1 (de) Einrichtung zur gleisfreimeldung
DE102018133409A1 (de) Thermische Überwachung von Stromschienenanlagen
DE10331628A1 (de) Potentiometerdiagnose
DE3113538A1 (de) "vorrichtung zur erkennung der bewegungsrichtung eines fahrzeuges auf induktivem wege"
DE10123433A1 (de) Verfahren zur Gleisfreilängenmessung
DE1908399C3 (de) Vorrichtung zur Messung der von einem spurgebundenen Fahrzeug durchfahrenen Strecke
DE1801494C (de) Isolierstoßfreie, mit Wechselstrom gespeiste Gleisstromkreise für Eisenbahnsicherungsanlagen
WO2001069234A1 (fr) Dispositif electronique pour mesurer la conductance
EP4144612A1 (fr) Dispositif capteur, agencement et procédé de détection d'un changement d'un champ magnétique
DE1125521B (de) Einrichtung zur selbsttaetigen Lenkung von Fahrzeugen entlang einer Leitlinie
DE2203993A1 (de) Einrichtung zur fein-positionierung von schienenfahrzeugen
DE1939061C (de) Verfahren und Vorrichtung zum Ausscheiden von irreführenden Doppler-Signalen bei einer Doppler-Radar-Geschwindigkeitsmeßeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005002685

Country of ref document: DE

Date of ref document: 20080313

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20080401035

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2301038

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080523

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080623

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080804

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100803

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100819

Year of fee payment: 6

Ref country code: TR

Payment date: 20100803

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20100806

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101025

Year of fee payment: 6

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20080401035

Country of ref document: GR

Effective date: 20120302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005002685

Country of ref document: DE

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110804

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110805