EP1771596A1 - CONDUCTIVE MATERIAL COMPRISING AN Me-DLC HARD MATERIAL COATING - Google Patents

CONDUCTIVE MATERIAL COMPRISING AN Me-DLC HARD MATERIAL COATING

Info

Publication number
EP1771596A1
EP1771596A1 EP05747049A EP05747049A EP1771596A1 EP 1771596 A1 EP1771596 A1 EP 1771596A1 EP 05747049 A EP05747049 A EP 05747049A EP 05747049 A EP05747049 A EP 05747049A EP 1771596 A1 EP1771596 A1 EP 1771596A1
Authority
EP
European Patent Office
Prior art keywords
layer
material according
elements
metal
guide material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05747049A
Other languages
German (de)
French (fr)
Inventor
Thomas Jabs
Michael Scharf
Martin Grischke
Orlaw Massler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Surface Solutions AG Pfaeffikon
Wieland Werke AG
Original Assignee
Wieland Werke AG
OC Oerlikon Balzers AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG, OC Oerlikon Balzers AG filed Critical Wieland Werke AG
Publication of EP1771596A1 publication Critical patent/EP1771596A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates to a conductive material made of a copper-containing alloy for use as a plug or Klemm ⁇ connection according to the preamble of claim 1. Further, a contact piece according to claim 18, and a semifinished product according to claim 19 or a band or profile according to claim 20 ,
  • Copper-containing conductive materials are also known from the prior art, such as the good suitability of copper materials for the application of galvanic layers for Ober ⁇ surface refinement.
  • PVD, CVD or PVD / CVD layers have hitherto been used little on the relatively soft copper materials, since, for example, in the case of a sliding stress with high load, as can occur when mounting plug-in or clamped connections, the layer In the base material is pressed or breaks and many used for the tool coating layer system too high a coefficient of friction (for example, the carbides WC, or Cr x Cy have a coefficient of friction of about 0.5 and greater), have too high roughness or poor electrical conductivity which makes them unsuitable for such an application.
  • the carbides WC, or Cr x Cy have a coefficient of friction of about 0.5 and greater
  • DE 1 802 932 discloses a high-frequency plasma method for coating electrical contacts with carbide wear protection layers. Similar to DE 3011694, wherein inter alia the application of a galvanic adhesive layer on various hardened or hardened metallic Werk ⁇ materials and an adjoining PVD coating in High-frequency plasma is described in which, inter alia, a carbide hard material layer is deposited. This achieves good electrical conductivity and increased wear protection, but the carbide coating results in a relatively high coefficient of friction.
  • the invention is based on the object to provide a copper-containing control material, in which the disadvantages of the prior art are avoided and better electrical properties and a better service life and sliding behavior compared to conventionally coated materials are achieved.
  • modified carbon-containing sliding or hard coatings having a carbon content of greater than or equal to 40 but less than or equal to 70 atomic percent, which are deposited on copper or copper alloys, it is possible the hardness of the surface and thus the To increase the wear and abrasion resistance of the materials without significantly changing their excellent electrical properties.
  • the carbon content is understood as meaning the content of carbide-bound and free carbon which, together with the carbide former and additional optional elements added to 100%.
  • a hard layer having defined tribological and electrical properties is deposited with a method as described in more detail below, which leads to an extension of the service life of the guide materials.
  • the layers are slightly less hard than conventional hard carbides, for example, but significantly harder than the carrier material and thus protect it against abrasive wear. Surprisingly, these layers better protect the carrier material in plug-in and clamping applications than conventional hard-coating systems, wherein a support layer may additionally be provided for applications with high surface pressure. In the case of existing hard coatings, this could also be attributed to the relatively low coefficient of friction, which has advantageous effects, for example when used in a plug connection, since this simultaneously reduces the insertion forces and prevents scratching of a possibly uncoated counterpart.
  • galvanically coated conductive materials examples include Cr, Ni or CrNi layers, which are applied before the support layer.
  • plasma CVD, PVD or PVD / CVD hybrid processes are particularly suitable for the deposition of Me-DLC layers for the coating of, for example, hardenable copper materials.
  • an additional support layer comprising at least one metal Me from the elements of subgroups IV, V, and VI of the Periodic Table of the Elements (ie Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) or aluminum or Si included, could further impressions even at very high loads are avoided.
  • Stauer ⁇ layers have proven to be particularly advantageous in addition to the metallic phase and a non-metal such as C, N, B, or 0 or the HartstoffVerbin ⁇ containing the metals with these non-metals.
  • the backing layer systems TiN or Ti / TiN (ie, a metallic titanium layer with an adjoining Titannitridhart für), CrN or Cr / CrN, Cr x C ⁇ or Cr / Cr x C y, Cr x (CN) ⁇ or Cr / Cr x (CN) y , TiAl or TiAlN and TiAl / TiAlN mentioned.
  • the support layer has a minimum layer thickness. This depends above all on the surface pressure occurring depending on the application. For example, with a low surface pressure even with layer thicknesses of 0.5 .mu.m, a sufficient supporting effect of the DLC layer could be achieved, while with a support layer of 0.3 .mu.m, the supporting effect was no longer sufficient. In general, however, a layer thickness of at least 1 to about 3 microns is recommended. For applications in which particularly high surface pressures occur, larger layer thicknesses, for example 6 ⁇ m, may also be advantageous.
  • a metallic intermediate layer with or without a graded transition, or directly a transition layer, for example in the form of a gradient layer with increasing carbon content towards the sliding layer can be applied become .
  • the DLC overlay itself is therefore advantageously carried out as follows: Directly on the support layer, a metallic intermediate layer comprising at least one metal Me from the elements of the IV, V, VI subgroup, Al or Si deposited.
  • a metallic intermediate layer comprising at least one metal Me from the elements of the IV, V, VI subgroup, Al or Si deposited.
  • an intermediate layer of the elements Cr or Ti is used, which have been found to be particularly suitable for this purpose.
  • nitridic, carbidic, boridic or oxidic interlayers, or interlayers which are a mixture of one or more metals with one or more of the said non-metals, which, if required, can be used even on a metallic base layer with or without graded Transition can be constructed.
  • this intermediate step can be omitted if the adhesion layer itself consists of a metal or a compound suitable as an adhesion-promoting layer.
  • a transition layer in particular in the form of a gradient layer, preferably adjoins, in the course of which, perpendicular to the workpiece surface, the metal content decreases and the C content increases.
  • the increase in the carbon can be effected by increasing possibly different carbide phases, by increasing the free carbon, or by a mixture of such phases with the metallic phase of the intermediate layer.
  • the thickness of the gradient layer can be adjusted by setting suitable process ramps.
  • the increase of the C-content or decrease of the metallic phase can take place continuously or stepwise, furthermore, at least in one part of the gradient layer, a sequence of metal-rich and C-type metals can also be obtained.
  • a MeC layer which is applied for example by sputtering, and the proportion of free carbon by adding a carbon-containing reactive gas continuously or gradually increased.
  • tungsten carbide-based layers for example, a ratio of about 50: 1 to about 2: 1 of the carbide bound to the free carbon has proved favorable. Similar dependencies could also be found for layers based on chromium carbide, tantalum carbide or molybdenum carbide.
  • the material properties (for example modulus of elasticity, structure etc.) of the support layer and the DLC layer are substantially continuously adapted to each other and thus the risk of crack formation along an otherwise occurring metal or Si / DLC interface counteracted.
  • the conclusion of the DLC sliding layer can be made by switching off the sputtering and / or bias supply upon reaching a defined flow of the carbon-containing process gas or upon reaching a certain pressure. Another possibility is to keep the coating parameters constant during the last process phase in order to keep the properties of the outer functional layer constant over a desired minimum layer thickness.
  • the hardness of the entire carbon layer is set to a value greater than 0.8 GPa, preferably greater than or equal to 10 GPa, and even at layer thicknesses> 1 .mu.m, preferably> 2 .mu.m, an adhesive strength is better on a steel test specimen having a hardness of about 60 HRC or equal to HF 3, but preferably equal to HF 1 according to VDI 3824 sheet 4 is achieved.
  • the growth rate is about 1-3 ⁇ m / h and depends, in addition to the process parameters, also on the loading and mounting. In particular, this affects whether the parts to be coated 1-, 2- or 3-turn, on magnetic brackets, or clamped or plugged attached. Also, the total mass and plasma transmittance of the supports is important, for example, with lightly constructed brackets, e.g. achieved by using storage plates, instead of plates made of solid material, higher growth rates and an overall better layer quality.
  • the layer stress can be at 0.8 GPa and thus in the usual range of hard DLC layers. Furthermore, such layers, with a slightly lower hardness (9 to 15 GPa), a significantly lower coefficient of friction on the insertion forces occurring reduced.
  • these properties can be achieved by adding, for example by co-sputtering, evaporation, alloying to the target materials or the like, small amounts of the elements -S
  • Ag, Au, Cu, Fe, Ir, Mo, Ni, Pd, Pt, Os, Rh, Ru, W and / or their alloys are improved and / or stabilized against corrosion / oxidation. If it is desired to achieve particularly good conductive properties, it is advantageous to provide a residual metal content of at least 30 to at most 60%, preferably between 40 and 50%, in the final layer package.
  • a metal-containing DLC sliding layer on a CuSn ⁇ bronze in the final, ie outer layer area was formed by means of chromium adhesion layer, but applied without additional support layer.
  • a chromium adhesion layer was first applied as in process example 1 of DE 100 18 143.
  • the WC targets are run for 6 minutes at constant Ar flow and 3.5 kW power, then the acetylene gas flow is increased to 200 sccm in 11 minutes and held constant for 60 minutes at the parameters described in Table 1. Subsequently, the coating process is stopped.
  • Example 2 Differs from Example 1 in that the acetylene gas flow in the last stage of the process in 5 min. only increased to 80 sccm and held there for 60 minutes.
  • Example 2 Differs from Example 1 in that the acetylene gas flow in the last process phase in 2 min. increased to 30 sccm and held there for 60 minutes constant.
  • Example 5 Differs from Example 1 in that no acetylene added in the last stage of the process and the WC targets are operated after switching off the Cr targets, 60 min at constant Ar flow.
  • Example 5 Differs from Example 1 in that no acetylene added in the last stage of the process and the WC targets are operated after switching off the Cr targets, 60 min at constant Ar flow.
  • Example 5 a CrN support layer was first deposited and then applied to Example 3 a Me-DLC conductive layer on the support layer.
  • the deposition of the CrN supporting layer was carried out in accordance with the parameters given in Table 5), in which case a low-voltage arc discharge ignited in the central axis between a hot cathode and an auxiliary anode was additionally operated to increase the plasma density.
  • Example 6 a chromium adhesion layer was first applied as in Example 1. The subsequent WC-containing functional layer was doped with Ag.
  • WC targets For activated Cr targets, four WC targets each with 1 kW power are activated and both target types are simultaneously run for 2 minutes, whereby the power of the WC targets is 1 kW within 2 minutes with the Ar flow remaining constant is increased to 3.5 kW.
  • Two silver targets also incorporated in the coating system are ignited simultaneously with the WC targets and their power increased from 0 to 1 kW in the same period.
  • the negative substrate voltage on the components is ramped up from 0 V applied at the end of the Cr adhesion layer to 300 V in 2 minutes.
  • the Cr targets are switched off.
  • the WC and Ag targets are operated together for 6 min at constant Ar flow, then the Acetylengaspound in 2 min. increased to 30 sccm and during the last coating phase the parameters according to Table 6 were kept constant for 60 minutes.
  • Example 1 is a typical example of an a-C: H: Me or Me-DLC layer, with a strongly increasing C-content towards the surface.
  • Example 4 represents a carbide layer, without appreciable amounts of free carbon. The indicated measured values were determined by averaging at 5 different measuring points in each case 10 s after application of a contact weight of 100 g. The tip of the Kunststoff ⁇ weight consists of gold with a diameter of 3 mm. The determination of the individual value was confirmed by a preceding and subsequent reference measurement of gold.
  • the frictional force of the connectors was determined on a macro wear test bench for
  • Test duration 3000 cycles 25 cycles
  • the indication of the frictional force after a defined number of cycles shows the frictional wear of the sample.
  • the tinned standard plug has a friction force of 1000 ⁇ iN after 25 cycles. Increasing the number of cycles to more than 30 leads to complete destruction.
  • the values for DLC coated connectors are in the third column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Contacts (AREA)
  • Manufacture Of Switches (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Abstract

The invention relates to a conductive material consisting of an alloy that contains copper, for use as a plug-in or clip connection. Said material comprises a cover layer that is deposited on at least some sections of the contact surface, said layer consisting at least of a support layer and an adhesive layer. The anti-friction layer has a carbon content greater or less than 40 and less than or equal to 70 atomic percent.

Description

Kupferhaltiger Leitwerkstoff mit Me-DLC HartstoffbeschichtungCopper-containing material with Me-DLC hard coating
Technisches GebietTechnical area
Die Erfindung betrifft einen Leitwerkstoff aus einer kupfer- haltigen Legierung für den Einsatz als Steck- oder Klemm¬ verbindung gemäss dem Oberbegriff des Anspruchs 1. Ferner ein Kontaktstück nach Anspruch 18, sowie ein Halbzeug nach Anspruch 19 bzw. ein Band oder Profil nach Anspruch 20.The invention relates to a conductive material made of a copper-containing alloy for use as a plug or Klemm¬ connection according to the preamble of claim 1. Further, a contact piece according to claim 18, and a semifinished product according to claim 19 or a band or profile according to claim 20 ,
Stand der TechnikState of the art
Kupferhaltige Leitwerkstoffe sind ebenso aus dem Stand der Technik bekannt, wie die.gute Eignung von Kupferwerkstoffen für das Aufbringen von galvanischen Schichten für die Ober¬ flächenveredelung. Hingegen wurden PVD-, CVD- bzw. PVD/CVD- Schichten bis heute auf den relativ weichen Kupferwerkstoffen wenig eingesetzt, da beispielsweise bei einer Gleitbean¬ spruchung mit hoher Belastung, wie sie auch beim Montieren von Steck- oder Klemmverbindungen vorkommen kann, die Schicht in den Grundwerkstoff gedrückt wird bzw. durchbricht und viele für die Werkzeugbeschichtung eingesetzte Schichtsystem einen zu hohen Reibkoeffizient (beispielsweise haben die Carbide WC, bzw. CrxCy einen Reibkoeffizient von ca. 0.5 und grösser), zu hohe Rauhigkeit oder eine schlechte elektrische Leitfähigkeit aufweisen, die sie für eine derartige Anwendung wenig geeignet macht.Copper-containing conductive materials are also known from the prior art, such as the good suitability of copper materials for the application of galvanic layers for Ober¬ surface refinement. On the other hand, PVD, CVD or PVD / CVD layers have hitherto been used little on the relatively soft copper materials, since, for example, in the case of a sliding stress with high load, as can occur when mounting plug-in or clamped connections, the layer In the base material is pressed or breaks and many used for the tool coating layer system too high a coefficient of friction (for example, the carbides WC, or Cr x Cy have a coefficient of friction of about 0.5 and greater), have too high roughness or poor electrical conductivity which makes them unsuitable for such an application.
DE 1 802 932 offenbart ein Hochfrequenz-Plasma-Verfahren zur Beschichtung von elektrischen Kontakten mit karbidischen Verschleissschutzschichten. Ähnlich DE 3011694, wobei unter anderem das Aufbringen einer galvanischen Haftschicht auf verschiedenen gehärteten oder ausgehärteten metallischen Werk¬ stoffen und eine daran anschliessende PVD-Beschichtung im Hochfrequenzplasma beschrieben wird, bei der unter anderem eine karbidische Hartstoffschicht abgeschieden wird. Dadurch wird eine gute elektrische Leitfähigkeit sowie ein erhöhter Verschleissschütz erreicht, wobei sich aber aus der Carbid- beschichtung ein relativ hoher Reibkoeffizient ergibt.DE 1 802 932 discloses a high-frequency plasma method for coating electrical contacts with carbide wear protection layers. Similar to DE 3011694, wherein inter alia the application of a galvanic adhesive layer on various hardened or hardened metallic Werk¬ materials and an adjoining PVD coating in High-frequency plasma is described in which, inter alia, a carbide hard material layer is deposited. This achieves good electrical conductivity and increased wear protection, but the carbide coating results in a relatively high coefficient of friction.
Aus DE 4421144 sind beschichtete Werkzeuge bekannt, bei denen zur Erhöhung der Standzeit zunächst eine HartstoffSchicht aus Metallcarbid und anschliessend eine freien Kohlenstoff enthaltende ReibminderungsSchicht auf Wolframcarbidbasis aufgebracht wird.From DE 4421144 coated tools are known in which a hard material layer of metal carbide and then a free carbon-containing ReibminderungsSchicht is applied to tungsten carbide base to increase the service life.
Darstellung der ErfindungPresentation of the invention
Der Erfindung liegt die Aufgabe zu Grunde, einen kupferhal- tigen Leitwerkstoff zur Verfügung zu stellen, bei welchem die Nachteile des Standes der Technik vermieden werden und bessere elektrische Eigenschaften sowie ein besseres Standzeit- und Gleitverhalten gegenüber herkömmlich beschichteten Werkstoffen erreicht werden.The invention is based on the object to provide a copper-containing control material, in which the disadvantages of the prior art are avoided and better electrical properties and a better service life and sliding behavior compared to conventionally coated materials are achieved.
Diese Aufgabe wird durch die erfindungsgemässen Merkmale im kennzeichnenden Teil des Anspruchs 1 gelöst.This object is achieved by the inventive features in the characterizing part of claim 1.
Durch die Anwendung erfindungsgemäss modifizierter kohlen¬ stoffhaltiger Gleit- bzw. Hartschichten mit einem Kohlenstoff¬ gehalt grösser oder gleich 40 aber kleiner oder gleich 70 Atomprozent, die auf Kupfer- oder Kupferlegierungen abge¬ schieden werden, ist es möglich die Härte der Oberfläche und damit die Verschleiß- und Abriebfestigkeit der Werkstoffe zu erhöhen, ohne dass sich deren ausgezeichnete elektrische Eigenschaften wesentlich ändern. Als Kohlenstoffgehalt wird dabei der Gehalt an karbidisch gebundenem und freiem Kohlen¬ stoff verstanden, der sich gemeinsam mit dem Karbidbildner und fakultativen weiteren Elementen auf 100% ergänzt. Dabei wird, mit einem wie unten näher beschriebenen Verfahren, eine Hart¬ schicht mit definierten tribologischen und elektrischen Eigen¬ schaften abgeschieden, die zu einer Verlängerung der Standzeit der Leitwerkstoffe führt. Die Schichten sind etwas weniger hart als herkömmliche beispielsweise karbidische Hart¬ schichten, aber deutlich härter als der Trägerwerkstoff und schützen diesen dadurch gegen abrasiven Verschleiß. Über¬ raschenderweise schützen diese Schichten den Trägerwerkstoff bei Steck- und Klemmanwendungen besser als herkömmliche Hart¬ schichtsysteme, wobei für Anwendungen mit hoher Flächen¬ pressung zusätzlich noch eine Stützschicht vorgesehen sein kann. Dies könnte bei vorliegenden Hartschichten auch auf den verhältnismässig niedrigen Reibwert zurückzuführen sein, der sich vorteilhaft beispielsweise bei Verwendung in einer Steck¬ verbindung auswirkt, da damit gleichzeitg die Steckkräfte verringert und ein Zerkratzen eines möglicherweise auch unbeschichteten Gegenstücks verhindert wird.By using according to the invention modified carbon-containing sliding or hard coatings having a carbon content of greater than or equal to 40 but less than or equal to 70 atomic percent, which are deposited on copper or copper alloys, it is possible the hardness of the surface and thus the To increase the wear and abrasion resistance of the materials without significantly changing their excellent electrical properties. The carbon content is understood as meaning the content of carbide-bound and free carbon which, together with the carbide former and additional optional elements added to 100%. In this case, a hard layer having defined tribological and electrical properties is deposited with a method as described in more detail below, which leads to an extension of the service life of the guide materials. The layers are slightly less hard than conventional hard carbides, for example, but significantly harder than the carrier material and thus protect it against abrasive wear. Surprisingly, these layers better protect the carrier material in plug-in and clamping applications than conventional hard-coating systems, wherein a support layer may additionally be provided for applications with high surface pressure. In the case of existing hard coatings, this could also be attributed to the relatively low coefficient of friction, which has advantageous effects, for example when used in a plug connection, since this simultaneously reduces the insertion forces and prevents scratching of a possibly uncoated counterpart.
Gerade diese Eigenschaften machen solche Schichten auch für Anwendungen im Fahrzeug- oder Flugzeugbau bzw. bei allen Anwendungen bei denen Dauerbelastungen durch Vibrationen, Schwingungen oder Ähnlichem unter Umständen auch in Verbindung mit Stossbelastungen auftreten, geeignet. Durch die höhere Stabilität gegenüber herkömmlichen Kupferleitwerkstoffen werden funktionsstörende oder gar funktionsverhindernde Erscheinungen von Oberflächenermüdung an solchen Verbindungs¬ stellen vermieden, die durch die relativ geringe Festigkeit des Kupfers bzw. der vorbekannten beschichteten Kupfer¬ werkstoffe auftreten kann. Weiters können dabei auch Triboxidationserscheinungen, die bei erhöhten Arbeitstempera- turen auftreten und häufig die Ursache für das Versagen von derartigen Steck- und Klemmverbindungen sind, wirkungsvoll verhindert werden. Auf folgenden erfindungsgemäss beschichteten kupferhaltigen Legierungen konnte bis jetzt beim Einsatz als Steck- und Klemmverbindungen eine markante Verbesserung der Belastbarkeit festgestellt werden: Kupfer, Bronze, Messing oder Neusilber. Jedoch sind ähnliche Verbesserungen auch bei Verwendung anderer Grundwerkstoffe wie beispielsweise CuBe und anderen Legierungen, bzw. beim Einsatz für andere Anwendungen zu erwarten.It is precisely these properties that make such layers suitable for applications in vehicle or aircraft construction or in all applications in which continuous loads due to vibrations, oscillations or the like may also occur in conjunction with shock loads. Due to the higher stability compared to conventional copper conductive materials, dysfunctional or even function-preventing phenomena of surface fatigue at joints which can occur due to the relatively low strength of the copper or of the previously coated copper materials are avoided. Furthermore, it is also possible to effectively prevent triboxidation phenomena which occur at elevated working temperatures and are frequently the cause of the failure of such plug and clamp connections. On the following copper-containing alloys coated according to the invention, a marked improvement in the load-bearing capacity could be ascertained up to now when used as push-in and clamp connections: copper, bronze, brass or nickel silver. However, similar improvements are expected when using other base materials such as CuBe and other alloys, or when used for other applications.
Des Weiteren kann es auch vorteilhaft sein, galvanisch vorbe¬ schichtete Leitwerkstoffe zu verwenden. Beispiele dafür sind Cr-, Ni- bzw. CrNi-Schichten, die vor der Stützschicht aufge¬ bracht werden.Furthermore, it may also be advantageous to use galvanically coated conductive materials. Examples of these are Cr, Ni or CrNi layers, which are applied before the support layer.
Aufgrund der niedrigen Abscheidungstemperaturen eignen sich Plasma CVD-, PVD- bzw. PVD/CVD-Hybridverfahren besonders zur Abscheidung von Me-DLC Schichten für die Beschichtung von beispielsweise aushärtbaren Kupferwerkstoffen.Due to the low deposition temperatures, plasma CVD, PVD or PVD / CVD hybrid processes are particularly suitable for the deposition of Me-DLC layers for the coating of, for example, hardenable copper materials.
Allerdings konnte mit herkömmlichen beispielsweise in DE 4421144 beschriebenen freien Kohlenstoff enthaltenden Schichten, bzw. in US4992153 bzw. DE10018143 beschriebenen Me- DLC-Schichten (DLC steht für „diamond like carbon" ) keine ausreichende Leitfähigkeit und ebenso wie bei bekannten Carbidschichten kein ausreichender Schutz gegen ein wie oben erwähntes Eindrücken in den Grundwerkstoff erzielt werden. Erstaunlicherweise konnte nur durch Einstellen des Kohlen¬ stoffgehalts auf grösser oder gleich 40, aber kleiner oder gleich 70 Atomprozent bereits eine wesentliche Verbesserung der Leitfähigkeit erzielt werden. Besonders gute Ergebnisse wurden mit einem Kohlenstoffgehalt grösser oder gleich 50, aber kleiner oder gleich 60 Atomprozent erzielt. Durch Aufbringen einer zusätzlichen Stützschicht, die zumindest ein Metall Me aus den Elementen der Nebengruppe IV, V, und VI des Periodensystems der Elemente (d.h. Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) bzw. Aluminium oder Si umfasst, konnte weiters ein Eindrücken auch bei sehr hohen Lasten vermieden werden. Als besonders vorteilhaft haben sich dabei Stütz¬ schichten erwiesen, die neben der metallischen Phase auch noch ein Nichtmetall wie C, N, B, oder 0 bzw. die HartstoffVerbin¬ dungen der Metalle mit diesen Nichtmetallen enthalten. Lediglich beispielhaft seien hier die StützSchichtSysteme TiN bzw. Ti/TiN (d.h. eine metallische Titanschicht mit einer daran anschliessenden Titannitridhartschicht) , CrN bzw. Cr/CrN, CrxCγ bzw. Cr/CrxCy, Crx(CN)γ bzw. Cr/Crx(CN)y, TiAl bzw. TiAlN und TiAl/TiAlN erwähnt.However, with conventional free carbon-containing layers described, for example, in DE 4421144, or Me-DLC layers described in US Pat. No. 4,992,153 or DE10018143 (DLC stands for "diamond-like carbon"), sufficient conductivity could not be afforded and, as is the case with known carbide layers, insufficient protection against Surprisingly, only by adjusting the carbon content to greater than or equal to 40 but less than or equal to 70 atomic percent could a substantial improvement in conductivity be achieved equal to 50 but less than or equal to 60 atomic percent. By applying an additional support layer comprising at least one metal Me from the elements of subgroups IV, V, and VI of the Periodic Table of the Elements (ie Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) or aluminum or Si included, could further impressions even at very high loads are avoided. Stütz¬ layers have proven to be particularly advantageous in addition to the metallic phase and a non-metal such as C, N, B, or 0 or the HartstoffVerbin¬ containing the metals with these non-metals. Merely by way of example here are the backing layer systems TiN or Ti / TiN (ie, a metallic titanium layer with an adjoining Titannitridhartschicht), CrN or Cr / CrN, Cr x C γ or Cr / Cr x C y, Cr x (CN) γ or Cr / Cr x (CN) y , TiAl or TiAlN and TiAl / TiAlN mentioned.
Allerdings ist dabei je nach Anwendungsfall zu beachten, dass die Stützschicht eine Mindestschichtdicke aufweist. Dies ist vor allem von der je nach Anwendungsfall auftretenden Flächen¬ pressung abhängig. Beispielsweise konnte bei einer geringen Flächenpressung bereits mit Schichtdicken von 0.5 μm eine ausreichende Stützwirkung der DLC-Schicht erreicht werden, während bei einer Stützschicht von 0.3 μm die Stützwirkung nicht mehr ausreichend gegeben war. Im Allgemeinen ist jedoch eine Schichtdicke von zumindest 1 bis ca. 3 μm empfehlenswert. Für Anwendungen bei denen besonders hohe Flächenpressungen auftreten, können auch grossere Schichtdicken beispielsweise 6 μm vorteilhaft sein.However, depending on the application, it should be noted that the support layer has a minimum layer thickness. This depends above all on the surface pressure occurring depending on the application. For example, with a low surface pressure even with layer thicknesses of 0.5 .mu.m, a sufficient supporting effect of the DLC layer could be achieved, while with a support layer of 0.3 .mu.m, the supporting effect was no longer sufficient. In general, however, a layer thickness of at least 1 to about 3 microns is recommended. For applications in which particularly high surface pressures occur, larger layer thicknesses, for example 6 μm, may also be advantageous.
Zusätzlich kann noch zwischen der Stützschicht und der Gleit¬ schicht eine metallische Zwischenschicht mit oder ohne gradiertem Übergang, oder direkt eine ÜbergangsSchicht, beispielsweise in Form einer Gradientenschicht mit gegen die Gleitschicht hin zunehmendem Kohlenstoffgehalt aufgebracht werden .In addition, between the support layer and the sliding layer, a metallic intermediate layer with or without a graded transition, or directly a transition layer, for example in the form of a gradient layer with increasing carbon content towards the sliding layer, can be applied become .
Die DLC-Gleitschicht selbst wird daher vorteilhafterweise wie folgt ausgeführt: Direkt auf der Stützschicht wird eine metallische Zwischenschicht, die zumindest ein Metall Me aus den Elementen der IV, V, VI Nebengruppe, Al oder Si umfasst, abgelegt. Bevorzugt wird eine Zwischenschicht aus den Elementen Cr oder Ti verwendet, die sich für diesen Zweck als besonders geeignet erwiesen haben. Es können aber auch nitridische, karbidische, boridische, oder oxydische Zwischen¬ schichten, bzw. Zwischenschichten, die eine Mischung aus einem oder mehreren Metallen mit einem oder mehreren der genannten Nichtmetalle verwendet werden, die bei Bedarf selbst auf einer metallischen Grundschicht mit oder ohne gradiertem Übergang aufgebaut sein können. Bei Aufbringen der Kohlenstoff - Gleitschicht direkt auf der Haftschicht kann dieser Zwischen¬ schritt unterbleiben, wenn die Haftschicht selbst aus einem Metall oder aus einer als Haftschicht geeigneten Verbindung besteht.The DLC overlay itself is therefore advantageously carried out as follows: Directly on the support layer, a metallic intermediate layer comprising at least one metal Me from the elements of the IV, V, VI subgroup, Al or Si deposited. Preferably, an intermediate layer of the elements Cr or Ti is used, which have been found to be particularly suitable for this purpose. However, it is also possible to use nitridic, carbidic, boridic or oxidic interlayers, or interlayers, which are a mixture of one or more metals with one or more of the said non-metals, which, if required, can be used even on a metallic base layer with or without graded Transition can be constructed. When the carbon-lubricant layer is applied directly to the adhesion layer, this intermediate step can be omitted if the adhesion layer itself consists of a metal or a compound suitable as an adhesion-promoting layer.
Daran, oder alternativ direkt, ohne Zwischenschicht, schliesst sich bevorzugt eine ÜbergangsSchicht insbesondere in Form einer Gradientenschicht an, in deren Verlauf senkrecht zur Werkstückoberfläche der Metallgehalt ab- und der C-Gehalt zunimmt. Der Zuwachs des Kohlenstoffs kann dabei durch Zunahme gegebenenfalls unterschiedlicher karbidischer Phasen, durch Zunahme des freien Kohlenstoffs, bzw. durch eine Mischung derartiger Phasen mit der metallischen Phase der Zwischen¬ schicht erfolgen. Die Dicke der Gradientenschicht kann dabei, wie dem Fachmann bekannt, durch Einstellung geeigneter Prozessrampen eingestellt werden. Die Zunahme des C-Gehalts bzw. Abnahme der metallischen Phase kann kontinuierlich oder stufenweise erfolgen, weiters kann zumindest in einem Teil der Gradientenschicht auch eine Abfolge metallreicher und C- reicher Einzelschichten zum weiteren Abbau von SchichtSpannun¬ gen vorgesehen werden. Beispielsweise kann dabei von einer MeC-Schicht, die beispielsweise durch Sputtern aufgebracht wird, ausgegangen und der Anteil des freien Kohlenstoffs durch Zugabe eines kohlenstoffhaltigen Reaktivgases kontinuierlich oder schrittweise erhöht werden. Dabei hat sich beispielsweise für Schichten auf Wolframkarbidbasis ein Verhältnis von ca. 50:1 bis ca. 2:1 des karbidisch gebundenen zum freien Kohlenstoff als günstig erwiesen. Auch für Schichten auf Chromkarbid-, Tantalkarbid- bzw. Molybdänkarbidbasis konnten ähnliche Abhängigkeiten festgestellt werden.On this, or alternatively directly, without an intermediate layer, a transition layer, in particular in the form of a gradient layer, preferably adjoins, in the course of which, perpendicular to the workpiece surface, the metal content decreases and the C content increases. The increase in the carbon can be effected by increasing possibly different carbide phases, by increasing the free carbon, or by a mixture of such phases with the metallic phase of the intermediate layer. As is known to the person skilled in the art, the thickness of the gradient layer can be adjusted by setting suitable process ramps. The increase of the C-content or decrease of the metallic phase can take place continuously or stepwise, furthermore, at least in one part of the gradient layer, a sequence of metal-rich and C-type metals can also be obtained. rich individual layers for further degradation of SchichtSpannun¬ conditions are provided. For example, it can be based on a MeC layer, which is applied for example by sputtering, and the proportion of free carbon by adding a carbon-containing reactive gas continuously or gradually increased. For tungsten carbide-based layers, for example, a ratio of about 50: 1 to about 2: 1 of the carbide bound to the free carbon has proved favorable. Similar dependencies could also be found for layers based on chromium carbide, tantalum carbide or molybdenum carbide.
Durch die erwähnten Ausbildungen der Gradientenschicht werden die Materialeigenschaften (beispielsweise E-Modul, Struktur etc.) der Stütz- und der DLC-Schicht im wesentlichen kontinuierlich aneinander angepasst und damit der Gefahr der Rissbildung entlang einer sonst auftretenden Metall bzw. Si / DLC-Grenzflache entgegengewirkt.As a result of the mentioned embodiments of the gradient layer, the material properties (for example modulus of elasticity, structure etc.) of the support layer and the DLC layer are substantially continuously adapted to each other and thus the risk of crack formation along an otherwise occurring metal or Si / DLC interface counteracted.
Der Abschluss der DLC-Gleitschicht kann durch Abschalten der Sputter und/oder Biasversorgung bei Erreichen eines definier¬ ten Fluss des kohlenstoffhaltigen Prozessgases oder bei Erreichen eines bestimmten Druckes erfolgen. Ein andere Möglichkeit ist es während der letzten Prozessphase die Beschichtungsparamter konstant zu halten um die Eigenschaften der äusseren FunktionsSchicht über eine gewünschte Mindest- schichtstärke konstant zu halten.The conclusion of the DLC sliding layer can be made by switching off the sputtering and / or bias supply upon reaching a defined flow of the carbon-containing process gas or upon reaching a certain pressure. Another possibility is to keep the coating parameters constant during the last process phase in order to keep the properties of the outer functional layer constant over a desired minimum layer thickness.
Die Härte der gesamten Kohlenstoff-Schicht wird dabei auf einen Wert grösser 0.8 GPa, bevorzugt grösser/gleich 10 GPa eingestellt, wobei auch bei Schichtdicken > 1 um, bevorzugt > 2 um auf einem Stahlprüfkörper mit einer Härte von ca. 60 HRC eine Haftfestigkeit besser oder gleich HF 3, bevorzugt aber gleich HF 1 nach VDI 3824 Blatt 4 erreicht wird. Messungen des Kontaktwiderstands erfindungsgemässer DLC-Schichten ergaben Werte zwischen δ = 0.1 mΩ und δ = 90 mΩ, wobei bevorzugt Werte zwischen 0.5 mΩ und 10 mΩ eingestellt werden, da einerseits δ-Werte kleiner 0.5 mΩ nur durch erhebliche Zusätze von Edelmetallen erzielbar sind, wodurch sich die Herstell¬ kosten deutlich erhöhen und andererseits für einige Anwen¬ dungen ein Kontaktwiderstand grösser 10 mΩ bereits zu gross ist.The hardness of the entire carbon layer is set to a value greater than 0.8 GPa, preferably greater than or equal to 10 GPa, and even at layer thicknesses> 1 .mu.m, preferably> 2 .mu.m, an adhesive strength is better on a steel test specimen having a hardness of about 60 HRC or equal to HF 3, but preferably equal to HF 1 according to VDI 3824 sheet 4 is achieved. Measurements of the contact resistance of inventive DLC layers revealed Values between δ = 0.1 mΩ and δ = 90 mΩ, whereby values between 0.5 mΩ and 10 mΩ are preferably set, since on the one hand δ values of less than 0.5 mΩ can only be achieved by substantial additions of noble metals, whereby the production costs increase significantly and on the other hand, for some applications, a contact resistance of more than 10 mΩ is already too high.
Gleichzeitig zeichnet sich die vorliegende Kohlenstoff-Schicht durch die für Me-Kohlenstoff typischen niedrigen Reib¬ koeffizienten, bevorzugt μ < 0.2 im Stift / Scheibetest bei einer Schichtrauhigkeit von Ra=0.01-0.04; R2 DIN < 0.8 bevorzugt < 0.5 aus .At the same time, the present carbon layer is characterized by the low friction coefficients typical for Me carbon, preferably μ <0.2 in the pencil / Scheib test, with a layer roughness of R a = 0.01-0.04; R 2 DIN <0.8 preferably <0.5.
Die Wachstumsgeschwindigkeit liegt bei etwa 1-3 μm/h und hängt, neben den Prozessparametern, auch von der Beladung und Halterung ab. Insbesonders wirkt sich hierbei aus ob die zu beschichtenden Teile 1-, 2- oder dreifach drehend, auf Magnethalterungen, oder geklemmt bzw. gesteckt befestigt werden. Auch die Gesamtmasse und Plasmadurchgängigkeit der Halterungen ist von Bedeutung, so werden beispielsweise mit leichtgebauten Halterungen, z.B. durch Verwendung von Speichentellern, statt Tellern aus Vollmaterial, höhere Wachstumsgeschwindigkeiten und eine gesamthaft bessere Schichtqualität erzielt. Die Schichtspannung kann bei 0.8 GPa und somit im üblichen Bereich von harten DLC-Schichten liegen. Weiters weisen solche Schichten, bei etwas geringerer Härte (9 bis 15 GPa) , einen deutlich geringeren Reibkoeffizienten auf der die auftretenden Steckkräfte verringert.The growth rate is about 1-3 μm / h and depends, in addition to the process parameters, also on the loading and mounting. In particular, this affects whether the parts to be coated 1-, 2- or 3-turn, on magnetic brackets, or clamped or plugged attached. Also, the total mass and plasma transmittance of the supports is important, for example, with lightly constructed brackets, e.g. achieved by using storage plates, instead of plates made of solid material, higher growth rates and an overall better layer quality. The layer stress can be at 0.8 GPa and thus in the usual range of hard DLC layers. Furthermore, such layers, with a slightly lower hardness (9 to 15 GPa), a significantly lower coefficient of friction on the insertion forces occurring reduced.
Weiters können diese Eigenschaften durch Zugabe, beispiels¬ weise durch Co-Sputtern, -Verdampfen, Zulegieren zu den Targetwerkstoffen oder Ähnlichem, kleiner Mengen der Elemente -S-Furthermore, these properties can be achieved by adding, for example by co-sputtering, evaporation, alloying to the target materials or the like, small amounts of the elements -S
Ag, Au, Cu, Fe, Ir, Mo, Ni, Pd, Pt, Os, Rh, Ru, W und/oder deren Legierungen verbessert und/oder gegen Korrosion/ Oxidation stabilisiert werden. Will man besonders gute Leit¬ eigenschaften erzielen, so ist es vorteilhaft im abschlies- senden Schichtpaket einen Restmetallgehalt von mindestens 30 bis maximal 60 %, bevorzugt zwischen 40 und 50 %, vorzusehen.Ag, Au, Cu, Fe, Ir, Mo, Ni, Pd, Pt, Os, Rh, Ru, W and / or their alloys are improved and / or stabilized against corrosion / oxidation. If it is desired to achieve particularly good conductive properties, it is advantageous to provide a residual metal content of at least 30 to at most 60%, preferably between 40 and 50%, in the final layer package.
Auf Grund der ausgezeichneten mechanischen Eigenschaften solcher metallhaltigen DLC-Schichten können diese auch dann vorteilhaft angewandt werden, wenn zusätzlich eine Lager¬ funktion des beschichteten Leitwerkstoffs erwünscht ist. Beispielsweise können solche Leitwerkstoffe vorteilhaft für Lager angewandt werden, die gleichzeitig der Übertragung elektrischer Signale dienen.Due to the excellent mechanical properties of such metal-containing DLC layers, these can also be used advantageously, if in addition a Lager¬ function of the coated Leitwerkstoffs is desired. For example, such control materials can be advantageously used for bearings which simultaneously serve to transmit electrical signals.
Beispiele und VersucheExamples and experiments
Im folgenden wird die Erfindung anhand verschiedener Ausführungsbeispiele beschrieben. Alle Me-DLC Schichten, bzw. Stützschichten wurden bei Temperaturen von weniger als 250 °C auf Kupferwerkstoffen, in einer, wie in DE 100 18 143 unter Figur 1 und dazugehöriger Beschreibung [0076] bis [0085] modifizierten, Balzers BAI 830 C Produktionsanläge, abgeschieden. Dazu wurde bei allen Beschichtungen eine Vorbehandlung mit einem, wie aus Prozessbeispiel 1 obiger Schrift bekannten Heiz- und Ätzprozess unter Verwendung eines Niedervoltbogens vorgenommen. Die entsprechend bezeichneten Stellen obiger Offenbarungsschrift werden zum integralen Bestandteil vorliegender Anmeldung erklärt.In the following the invention will be described with reference to various embodiments. All Me-DLC layers or support layers were at temperatures of less than 250 ° C on copper materials, in a, as in DE 100 18 143 under Figure 1 and related description [0076] to [0085] modified, Balzers BAI 830 C Produktionsanläge , isolated. For this purpose, in all coatings, a pretreatment was carried out using a heating and etching process known from process example 1 above using a low-voltage arc. The correspondingly designated passages of the above disclosure will become an integral part of the present application.
Vergleichendes Beispiel 1Comparative Example 1
Dabei wurde eine im abschliessenden d.h. äusseren Schicht¬ bereich metallhaltige DLC-Gleitschicht auf einer CuSnδ-Bronze mittels ChromhaftSchicht, aber ohne zusätzliche Stützschicht aufgebracht. Nach der oben erwähnten Vorbehandlung wurde zunächst eine Chromhaftschicht wie in Prozessbeispiel 1 von DE 100 18 143 aufgebracht.In this case, a metal-containing DLC sliding layer on a CuSnδ bronze in the final, ie outer layer area was formed by means of chromium adhesion layer, but applied without additional support layer. After the above-mentioned pretreatment, a chromium adhesion layer was first applied as in process example 1 of DE 100 18 143.
Anschliessend wurden bei aktivierten Cr-Targets sechs WC- Targets mit einer Leistung von jeweils 1 kW aktiviert und beide Targettypen für 2 min gleichzeitig laufengelassen. Dabei wird die Leistung der WC-Targets bei gleich bleibendem Ar- Fluss in 2 Minuten von 1 kW auf 3.5 kW erhöht. Gleichzeitig wird auf den Bauteilen die negative Substratspannung von der am Ende der Cr-Haftschicht angelegten Spannung von 0 V in 2 min rampenförmig auf 300 V erhöht. Die 300 V sind also dann erreicht, wenn die WC-Targets auf höchster Leistung laufen. Anschliessend werden die Cr-Targets abgeschaltet. Die WC- Targets werden 6 min bei konstantem Ar-Fluss und 3.5 kW Leistung laufengelassen, dann wird der Acetylengasfluss in 11 min auf 200 sccm erhöht und 60 Minuten bei den in Tabelle 1 beschriebenen Parametern konstant gehalten. Anschliessend wird der Beschichtungsprozess gestoppt. Subsequently, with activated Cr targets, six WC targets with a power of 1 kW each were activated and both target types were run simultaneously for 2 min. At the same time, the power of the WC targets is increased from 1 kW to 3.5 kW in 2 minutes while maintaining the Ar flow. At the same time, the negative substrate voltage on the components is ramped up from 0 V applied at the end of the Cr adhesion layer to 300 V in 2 minutes. The 300 V are reached when the WC targets are running at full power. Subsequently, the Cr targets are switched off. The WC targets are run for 6 minutes at constant Ar flow and 3.5 kW power, then the acetylene gas flow is increased to 200 sccm in 11 minutes and held constant for 60 minutes at the parameters described in Table 1. Subsequently, the coating process is stopped.
Tabelle 1) Beschichtungsparameter 1 - metallhaltige DLC- SchichtTable 1) Coating parameter 1 - metal-containing DLC layer
Fluss Argon 115 sccmRiver Argon 115 sccm
Fluss Acetylen 200 sccrαFlow of acetylene 200 sccrα
BiasSpannung -300 VBias voltage -300 V
Spulenspannung obere Spule 6 ACoil voltage upper coil 6 A
Spulenspannung untere Spule 0 ACoil voltage lower coil 0 A
Targe11eistung 6 x 3.5 kWTare output 6 x 3.5 kW
Beispiel 2Example 2
Unterscheidet sich von Beispiel 1 dadurch, dass der Acetylen- gasfluss in der letzten Prozessphase in 5 min. nur auf 80 sccm erhöht und dort 60 Minuten konstant gehalten wird.Differs from Example 1 in that the acetylene gas flow in the last stage of the process in 5 min. only increased to 80 sccm and held there for 60 minutes.
Beispiel 3Example 3
Unterscheidet sich von Beispiel 1 dadurch, dass der Acetylen- gasfluss in der letzten Prozessphase in 2 min. auf 30 sccm erhöht und dort 60 Minuten konstant gehalten wird.Differs from Example 1 in that the acetylene gas flow in the last process phase in 2 min. increased to 30 sccm and held there for 60 minutes constant.
Vergleichendes Beispiel 4Comparative Example 4
Unterscheidet sich von Beispiel 1 dadurch, dass in der letzten Prozessphase kein Acethylen zugesetzt und die WC-Targets, nach abschalten der Cr-Targets, 60 min bei konstantem Ar-Fluss betrieben werden. Beispiel 5Differs from Example 1 in that no acetylene added in the last stage of the process and the WC targets are operated after switching off the Cr targets, 60 min at constant Ar flow. Example 5
Für Beispiel 5 wurde zunächst eine CrN-Stützschicht abgeschieden und anschliessend anlog zu Beispiel 3 eine Me- DLC-Leitschicht auf der Stützschicht aufgebracht. Die Abscheidung der CrN-Stützschicht erfolgte gemäss den in Tabelle 5) angegebenen Parmetern, dabei wurde zur Erhöhung der Plasmadichte zusätzlich eine in der zentralen Achse zwischen einer Heisskathode und einer Hilfsanode gezündete Niedervolt- bogenentladung betrieben.For Example 5, a CrN support layer was first deposited and then applied to Example 3 a Me-DLC conductive layer on the support layer. The deposition of the CrN supporting layer was carried out in accordance with the parameters given in Table 5), in which case a low-voltage arc discharge ignited in the central axis between a hot cathode and an auxiliary anode was additionally operated to increase the plasma density.
Tabelle 5) Beschichtungsparameter CrN-StützschichtTable 5) Coating parameters CrN support layer
Beispiel 6Example 6
Für Beispiel 6 wurde zunächst eine Chromhaftschicht wie in Beispiel 1 aufgebracht. Die daran anschliessende WC-haltige Funktionsschicht wurde mit Ag dotiert.For Example 6, a chromium adhesion layer was first applied as in Example 1. The subsequent WC-containing functional layer was doped with Ag.
Dazu werden bei aktivierten Cr-Targets vier WC-Targets mit jeweils 1 kW Leistung aktiviert und beide Targettypen für 2 min gleichzeitig laufengelassen, wobei die Leistung der WC- Targets bei gleich bleibendem Ar-Fluss in 2 Minuten von 1 kW auf 3,5 kW erhöht wird. Zwei ebenfalls in der Beschichtungsan¬ läge eingebaute Silbertargets werden gleichzeitig mit den WC- Targets gezündet und deren Leistung im selben Zeitraum von 0 auf 1 kW erhöht. Gleichzeitig wird auf den Bauteilen die negative SubstratSpannung von der am Ende der Cr-Haftschicht angelegten Spannung von 0 V in 2 min rampenförmig auf 300 V erhöht. Anschliessend werden die Cr-Targets abgeschaltet. Die WC- und Ag-Targets werden gemeinsam 6 min bei konstantem Ar- Fluss betrieben, dann wird der Acetylengasfluss in 2 min. auf 30 sccm erhöht und während der letzten Beschichtungsphase die Parameter gemäss Tabelle 6 für 60 Minuten konstant gehalten.For activated Cr targets, four WC targets each with 1 kW power are activated and both target types are simultaneously run for 2 minutes, whereby the power of the WC targets is 1 kW within 2 minutes with the Ar flow remaining constant is increased to 3.5 kW. Two silver targets also incorporated in the coating system are ignited simultaneously with the WC targets and their power increased from 0 to 1 kW in the same period. At the same time, the negative substrate voltage on the components is ramped up from 0 V applied at the end of the Cr adhesion layer to 300 V in 2 minutes. Subsequently, the Cr targets are switched off. The WC and Ag targets are operated together for 6 min at constant Ar flow, then the Acetylengasfluss in 2 min. increased to 30 sccm and during the last coating phase the parameters according to Table 6 were kept constant for 60 minutes.
Tabelle 6) Beschichtungsparameter metallhaltige DeckschichtTable 6) Coating parameters metal-containing cover layer
Fluss Argon 115 sccmRiver Argon 115 sccm
Fluss Acetylen 30 sccmFlow of acetylene 30 sccm
BiasSpannung -300 VBias voltage -300 V
Spulenspannung obere Spule 6 ACoil voltage upper coil 6 A
Spulenspannung untere Spule 0 ACoil voltage lower coil 0 A
Targetleistung WC 4 x 3.5 kWTarget power WC 4 x 3.5 kW
Targetleistung Ag 2 x 1 kWTarget power Ag 2 x 1 kW
Beurteilung der SchichtenAssessment of the layers
Wie aus Tabelle 7 erkennbar weisen Schichten des Standes der Technik, wie in den vergleichenden Beispielen 1 und 4 beschrieben, einen verhältnismässig hohen Kontaktwiderstand auf. Beispiel 1 steht hierbei als typisches Beispiel einer a- C:H:Me- bzw. Me-DLC-Schicht, mit einem zur Oberfläche hin stark ansteigenden C-Anteil. Beispiel 4 steht für eine Karbid¬ schicht, ohne nennenswerte Anteile an freiem Kohlenstoff. Die angegebenen Messwerte wurden über Mittelwertbildung an 5 verschiedenen Messpunkten jeweils 10 s nach Auflegen eines Kontaktgewicht von 100 g ermittelt. Die Spitze des Kontakt¬ gewichtes besteht aus Gold mit einem Durchmesser von 3 mm. Die Bestimmung des Einzelwerts wurde durch eine vor- und nachher¬ gehende Referenzmessung an Gold bestätigt.As can be seen from Table 7, layers of the prior art, as described in Comparative Examples 1 and 4, have a relatively high contact resistance. Example 1 is a typical example of an a-C: H: Me or Me-DLC layer, with a strongly increasing C-content towards the surface. Example 4 represents a carbide layer, without appreciable amounts of free carbon. The indicated measured values were determined by averaging at 5 different measuring points in each case 10 s after application of a contact weight of 100 g. The tip of the Kontakt¬ weight consists of gold with a diameter of 3 mm. The determination of the individual value was confirmed by a preceding and subsequent reference measurement of gold.
Die Ermittlung der Reibkraft der Steckverbindungen erfolgte auf einem Makroverschleissprüfstand fürThe frictional force of the connectors was determined on a macro wear test bench for
DLC-Stecker StandardsteckerDLC plug standard plug
(verzinnt)(tinned)
Probengeometrie rider on flat rider on flatSample geometry rider on flat rider on flat
Durchmesser des riders 4 mm 4 mmDiameter of the rider 4 mm 4 mm
Kontaktfläche 0.3 mm2 0.3 mm2 Contact area 0.3 mm 2 0.3 mm 2
Prüfatmosphäre trocken trockenTest atmosphere dry dry
Frequenz 1 Zyklus in 2.5 s 1 Zyklus in 2.5 sFrequency 1 cycle in 2.5 s 1 cycle in 2.5 s
Prüfdauer 3000 Zyklen 25 ZyklenTest duration 3000 cycles 25 cycles
Normalkraft 20 N 5 NNormal force 20 N 5 N
Reibweg 3 mm 3 mmFriction travel 3 mm 3 mm
Die Angabe der Reibkraft nach einer definierten Zyklenzahl zeigt den Reibverschleiss der Probe. Der verzinnte Standard¬ stecker hat nach 25 Zyklen eine Reibkraft von 1000 πiN. Eine Erhöhung der Zyklenzahl auf mehr als 30 führt zu einer voll¬ ständigen Zerstörung. Die Werte für DLC beschichtete Stecker befinden sich in der dritten Spalte.The indication of the frictional force after a defined number of cycles shows the frictional wear of the sample. The tinned standard plug has a friction force of 1000 πiN after 25 cycles. Increasing the number of cycles to more than 30 leads to complete destruction. The values for DLC coated connectors are in the third column.
Überraschenderweise zeigte sich in den Versuchen, dass Schichten deren Anteil an freiem Kohlenstoff in einem Zwischenbereich liegt (Beispiele 2 bis 3), einen deutlich geringeren Kontaktwiderstand aufweisen. Dieser geringe Kontaktwiderstand blieb auch bei Aufbringen einer zusätzlichen CrN-Stützschicht wie in Beispiel 5 angegeben erhalten. Durch Co-Sputtern von Ag wie in Beispiel 6 beschrieben konnte der Kontaktwiderstand noch weiter abgesenkt werden.Surprisingly, it was found in the experiments that layers whose proportion of free carbon is in an intermediate range (Examples 2 to 3), have a significantly lower contact resistance. This low Contact resistance was also maintained when applying an additional CrN support layer as indicated in Example 5. By co-sputtering Ag as described in Example 6, the contact resistance could be further lowered.
Tabelle 7) Kontaktwiderstand und Reibkraft unterschiedlicher DLC-Schichten:Table 7) Contact resistance and frictional force of different DLC layers:

Claims

Patentansprüche claims
1. Leitwerkstoff aus einer kupferhaltigen Legierung für den Einsatz als Steck- oder Klemmverbindung mit einer zumindest auf Teilen der Kontaktfläche abgeschiedenen Deckschicht, die zumindest aus einer Haftschicht und einer kohlenstoffhaltigen Gleitschicht besteht, dadurch gekennzeichnet, dass die Gleitschicht einen Kohlenstoffgehalt von grösser oder gleich 40 und kleiner oder gleich 70 Atomprozent aufweist.1. Conducting material made of a copper-containing alloy for use as a plug or clamp connection with a deposited at least on parts of the contact surface cover layer, which consists of at least an adhesive layer and a carbon-containing sliding layer, characterized in that the sliding layer has a carbon content of greater than or equal to 40 and less than or equal to 70 atomic percent.
2. Leitwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass die Gleitschicht eine Hartschicht ist und diamantartigen Kohlenstoff umfasst.Second conductive material according to claim 1, characterized in that the sliding layer is a hard layer and diamond-like carbon comprises.
3. Leitwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass die Gleitschicht zusätzlich zumindest ein Metall Me aus den Elementen der IV, V, und VI Nebengruppe des Periodensystems der Elemente (d.h. Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) bzw. Si umfasst.3. Conducting material according to claim 1, characterized in that the sliding layer additionally comprises at least one metal Me from the elements of the IV, V, and VI subgroup of the Periodic Table of the Elements (ie Ti, Zr, Hf; V, Nb, Ta; Cr, Mo , W) or Si.
4. Leitwerkstoff gemäss Anspruch 3, dadurch gekenn- zeichnet, dass die Gleitschicht eine Metallkarbid- und eine darauf abgelegte Metallkarbidschicht mit einem gegen die Oberfläche ansteigenden Gehalt an freiem Kohlenstoff enthält.4. Guide material according to claim 3, characterized in that the sliding layer contains a metal carbide and a metal carbide layer deposited thereon with a content of free carbon increasing against the surface.
5. Leitwerkstoff gemäss Anspruch 4, dadurch gekenn- zeichnet, dass das Metallkarbid ein Karbid der5. Guide material according to claim 4, characterized in that the metal carbide is a carbide of
Nebengruppe IV, V, und VI des Periodensystems der Elemente, bevorzugt Tantal-, Molybden-, Chrom- oder Wolframkarbid ist. Subgroup IV, V, and VI of the Periodic Table of the Elements, preferably tantalum, molybdenum, chromium or tungsten carbide.
6. Leitwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen Haftschicht und Gleitschicht eine Stützschicht vorgesehen ist, oder die Haftschicht als Stützschicht ausgeführt ist.6. Conductive material according to one of the preceding claims, characterized in that between the adhesive layer and the sliding layer, a support layer is provided, or the adhesive layer is designed as a support layer.
7. Leitwerkstoff gemäss Anspruch 6, dadurch gekennzeichnet, dass die Stützschicht zumindest ein Metall Me aus den Elementen der IV, V, und VI Nebengruppe des Periodensystems der Elemente (d.h. Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) bzw. Aluminium oder Si umfasst.7. Guide material according to claim 6, characterized in that the support layer comprises at least one metal Me from the elements of the IV, V, and VI subgroup of the Periodic Table of the Elements (ie Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) or aluminum or Si.
8. Leitwerkstoff gemäss Anspruch 6, dadurch gekennzeichnet, dass die Stützschicht zusätzlich oder ausschliesslich eine oder mehrere Hartstoffverbindungen die zumindest ein Metall Me und zumindest ein Nichtmetall umfasst, das Metall zumindest eines der Elemente der IV, V, und VI Nebengruppe des PSE (d.h. Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W), Aluminium oder Si und das Nichtmetall zumindest eines der Elemente C, N, B oder 0 ist, bevorzugt aber Kohlenstoff enthält.8. Guide material according to claim 6, characterized in that the support layer additionally or exclusively one or more hard material compounds comprising at least one metal Me and at least one non-metal, the metal of at least one of the elements of the IV, V, and VI subgroup of the PSE (ie Ti , Zr, Hf, V, Nb, Ta, Cr, Mo, W), aluminum or Si and the non-metal is at least one of the elements C, N, B or O, but preferably contains carbon.
9. Leitwerkstoff nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass zwischen der Stützschicht und der Gleitschicht eine ÜbergangsSchicht aufgebracht ist.9. Guide material according to one of claims 6 to 8, characterized in that between the support layer and the sliding layer, a transition layer is applied.
10. Leitwerkstoff gemäss Anspruch 9, dadurch gekennzeichnet, dass die ÜbergangsSchicht aus zumindest einem Metall Me aus den Elementen der IV, V, und VI10. Guide material according to claim 9, characterized in that the transition layer of at least one metal Me from the elements of IV, V, and VI
Nebengruppe des Periodensystems der Elemente (d.h. Ti, Zr, Hf; V, Nb, Ta; Cr, Mo, W) bzw. Aluminium oder Si besteht. Subgroup of the Periodic Table of the Elements (ie Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) or aluminum or Si.
11. Leitwerkstoff gemäss Anspruch 9, dadurch gekennzeichnet, dass die ÜbergangsSchicht eine Gradientenschicht ist, wobei der C-Gehalt der ÜbergangssChicht zur Gleitschicht hin zunimmt.11. Guide material according to claim 9, characterized in that the transition layer is a gradient layer, wherein the C content of the transition layer increases toward the sliding layer.
12. Leitwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Haftschicht und/oder die Stutzschicht bevorzugt aber zumindest die Gleitschicht geringe Mengen eines oder mehrerer der folgenden Elemente und/oder deren Legierungen enthält: Ag, Au, Cu, Fe7 Ir, Mo, Ni, Pd, Pt, Os, Rh, Ru, W.12. Guide material according to one of the preceding claims, characterized in that the adhesive layer and / or the backing layer preferably but at least the overlay contains small amounts of one or more of the following elements and / or their alloys: Ag, Au, Cu, Fe 7 Ir, Mo, Ni, Pd, Pt, Os, Rh, Ru, W.
13. Leitwerkstoff nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass die Schichtdicke der Stützschicht zwischen 0.5 und 6 μm, bevorzugt zwischen 1 bis 3 μm beträgt.13. Guide material according to one of claims 6 to 11, characterized in that the layer thickness of the support layer is between 0.5 and 6 microns, preferably between 1 to 3 microns.
14. Leitwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kontaktwiderstand zwischen 0.1 bis 90 mΩ, bevorzugt zwischen 0.5 und 10 mΩ ist.14. Conductive material according to one of the preceding claims, characterized in that the contact resistance between 0.1 to 90 mΩ, preferably between 0.5 and 10 mΩ.
15. Leitwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass die kupferhaltige Legierung Kupfer, Bronze, Messing oder Neusilber ist.15. Conductive material according to claim 1, characterized in that the copper-containing alloy is copper, bronze, brass or nickel silver.
16. Leitwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass die kupferhaltige Legierung galvanisch vorbeschichtet ist.16. Guide material according to claim 1, characterized in that the copper-containing alloy is electroplated precoated.
17. Leitwerkstoff gemäss Anspruch 1, dadurch gekennzeichnet, dass die kupferhaltige Legierung mit einer Cr einer Ni bzw. einer CrNi-Legierung galvanisch vorbeschichtet ist.17. Guide material according to claim 1, characterized in that the copper-containing alloy with a Cr of a Ni or a CrNi alloy is electroplated precoated.
18. Elektrisches Kontaktstück das einen Leitwerkstoff nach einem der vorhergehenden Ansprüche umfässt oder daraus besteht.18. Electrical contact piece which comprises a control material according to one of the preceding claims or consists thereof.
19. Elektrisch leitendes Halbzeug mit zumindest einem Kontaktstück nach Anspruch 18.19. An electrically conductive semi-finished product with at least one contact piece according to claim 18.
20. Elektrisch leitendes Band oder Profil mit zumindest einem Kontaktstück nach Anspruch 19. 20. Electrically conductive tape or profile with at least one contact piece according to claim 19.
EP05747049A 2004-07-09 2005-06-15 CONDUCTIVE MATERIAL COMPRISING AN Me-DLC HARD MATERIAL COATING Withdrawn EP1771596A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH11662004 2004-07-09
PCT/CH2005/000333 WO2006005200A1 (en) 2004-07-09 2005-06-15 CONDUCTIVE MATERIAL COMPRISING AN Me-DLC HARD MATERIAL COATING

Publications (1)

Publication Number Publication Date
EP1771596A1 true EP1771596A1 (en) 2007-04-11

Family

ID=34969505

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05747049A Withdrawn EP1771596A1 (en) 2004-07-09 2005-06-15 CONDUCTIVE MATERIAL COMPRISING AN Me-DLC HARD MATERIAL COATING

Country Status (7)

Country Link
US (1) US7771822B2 (en)
EP (1) EP1771596A1 (en)
JP (1) JP5133057B2 (en)
KR (1) KR101256231B1 (en)
CN (1) CN101001976B (en)
BR (1) BRPI0513139A (en)
WO (1) WO2006005200A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1980645A1 (en) * 2007-04-13 2008-10-15 Ralf Stein Method for applying a multi-layer coating to workpieces and/or work materials
DE102007047629A1 (en) * 2007-04-13 2008-10-16 Stein, Ralf Method of applying a high-strength coating to workpieces and / or materials
DE102008042747A1 (en) * 2008-10-10 2010-04-15 Federal-Mogul Burscheid Gmbh Sliding element in an internal combustion engine, in particular piston ring
US8449995B2 (en) 2009-03-31 2013-05-28 Seagate Technology Llc Corrosion resistant coating for copper substrate
DE102010004853B4 (en) 2010-01-16 2017-11-16 Schaeffler Technologies AG & Co. KG Electrically insulated rolling bearing
JP5049358B2 (en) * 2010-01-25 2012-10-17 株式会社神戸製鋼所 Method for producing a tungsten-containing diamond-like carbon film on a base material of a contact probe pin for a semiconductor inspection apparatus
KR101935067B1 (en) * 2011-03-02 2019-01-03 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 Sliding component coated with metal-comprising carbon layer for improving wear and friction behavior by tribological applications under lubricated conditions
CN102644042A (en) * 2012-04-11 2012-08-22 燕山大学 Method for increasing electric conductivity of copper-chromium alloy
US9968980B2 (en) * 2013-07-19 2018-05-15 Oerlikon Surface Solutions Ag, Pfäffikon Coatings for forming tools
CN103509964B (en) * 2013-09-18 2015-10-14 温州银泰合金材料有限公司 Rare earth alloy electrical contact terminal and production method thereof
JP2016128599A (en) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 Diamond-like carbon layer laminate and method for manufacturing the same
WO2019099299A1 (en) * 2017-11-15 2019-05-23 Lintec Of America, Inc. Nanofiber sheet holder
CN108359954A (en) * 2018-04-16 2018-08-03 中国科学院宁波材料技术与工程研究所 Carbon-base film and preparation method thereof
CN109930120B (en) * 2018-12-20 2020-12-25 兰州空间技术物理研究所 Intelligent composite lubricating film for surfaces of space movable parts and preparation method thereof
CN114574802A (en) * 2022-03-15 2022-06-03 西安交通大学 Novel chromium carbide coating and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD255446A3 (en) * 1985-12-23 1988-04-06 Hochvakuum Dresden Veb HARD COAT WITH HIGH WEAR RESISTANCE AND DECORATIVE BLACK OWN COLOR
JPS62195815A (en) 1986-02-21 1987-08-28 エヌオーケー株式会社 Manufacture of electric contact parts
JPH07109034B2 (en) * 1991-04-08 1995-11-22 ワイケイケイ株式会社 Hard multilayer film forming body and method for producing the same
JP3336682B2 (en) * 1992-07-02 2002-10-21 住友電気工業株式会社 Hard carbon film
EP0605179B1 (en) * 1992-12-22 1997-05-02 Citizen Watch Co. Ltd. Hard carbon coating-clad base material
US6087025A (en) * 1994-03-29 2000-07-11 Southwest Research Institute Application of diamond-like carbon coatings to cutting surfaces of metal cutting tools
US6110329A (en) * 1996-06-25 2000-08-29 Forschungszentrum Karlsruhe Gmbh Method of manufacturing a composite material
JPH10228828A (en) 1997-02-13 1998-08-25 Furukawa Electric Co Ltd:The Sealed contact material and sealed contact with electrode made thereof
JPH10241479A (en) 1997-02-26 1998-09-11 Furukawa Electric Co Ltd:The Sealed contact material and sealed contact using this material in electrode
ES2256948T3 (en) * 1997-06-16 2006-07-16 Robert Bosch Gmbh PROCEDURE AND DEVICE FOR COATING IN A VACUUM PHASE OF A SUBSTRATE.
JPH1149506A (en) * 1997-07-31 1999-02-23 Kyocera Corp Ornamental member
NL1007046C2 (en) * 1997-09-16 1999-03-17 Skf Ind Trading & Dev Coated rolling bearing.
US6726993B2 (en) * 1997-12-02 2004-04-27 Teer Coatings Limited Carbon coatings, method and apparatus for applying them, and articles bearing such coatings
DE19922161A1 (en) 1998-05-18 1999-12-09 Fraunhofer Ges Forschung Anti-adhesion coating for e.g. soldering/welding tools and electric contacts
DE19954164B4 (en) * 1999-11-10 2008-08-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor for determining the state of characteristics of mechanical components using amorphous carbon layers with piezoresistive properties
DE10018143C5 (en) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC layer system and method and apparatus for producing such a layer system
JP2002025346A (en) * 2000-07-13 2002-01-25 Sumitomo Electric Ind Ltd Conductive member
US6994474B2 (en) * 2001-05-29 2006-02-07 Nsk Ltd. Rolling sliding member and rolling apparatus
JP3918603B2 (en) * 2002-03-27 2007-05-23 株式会社デンソー Fuel pump bearing, manufacturing method thereof, and fuel pump
US6961213B2 (en) * 2002-06-24 2005-11-01 Seagate Technology Llc Disk drive spindle motor having hydrodynamic bearing working surface with low friction layer formed on wear resistant layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006005200A1 *

Also Published As

Publication number Publication date
JP2008506036A (en) 2008-02-28
WO2006005200A1 (en) 2006-01-19
CN101001976A (en) 2007-07-18
BRPI0513139A (en) 2008-04-29
JP5133057B2 (en) 2013-01-30
KR20070046820A (en) 2007-05-03
US7771822B2 (en) 2010-08-10
KR101256231B1 (en) 2013-04-17
US20080075625A1 (en) 2008-03-27
CN101001976B (en) 2010-12-29

Similar Documents

Publication Publication Date Title
DE102007010595B4 (en) Amorphous carbon-based hard multilayer coating
EP0087836B1 (en) Carbonaceous sliding layer
DE60133705T3 (en) Tool made of a sintered boron nitride body with a coated surface
WO2006005200A1 (en) CONDUCTIVE MATERIAL COMPRISING AN Me-DLC HARD MATERIAL COATING
EP1883714B1 (en) Slide bearing composite material, use and method of production
EP3577253B1 (en) Coated tool
EP3380645B1 (en) Coating a body with a layer of diamond and a layer of hard material
DE2356616A1 (en) ABRASION RESISTANT BEARING MATERIAL AND METHOD FOR ITS MANUFACTURING
EP1726687A2 (en) Coated tool
EP2209929A1 (en) Coated article
EP0200088B1 (en) Wear-resistant coated hard-metal body and method for the production thereof
WO2009129930A1 (en) Film resistor with a constant temperature coefficient and production of a film resistor of this type
EP3189243B1 (en) Plain bearing or part thereof, method for producing same and use of a cucrzr alloy as a plain bearing material
DE102013108108A1 (en) CORROSION AND WEAR RESISTANT PLATFORMS
EP1769100A1 (en) Dlc hard material coatings on bearing materials containing copper
DE112008001882B4 (en) Cold forming tool and method of forming a hard coating film
DE102006057484A1 (en) Rolling bearings with a surface coating
EP0018432A1 (en) Metallic article provided with a wear and corrosion resistant protective coating of tungsten carbide
DE2110520C3 (en) Method of coating a cemented carbide article - US Pat
WO2007056779A1 (en) Coated hard metal member
DE3107217C2 (en) High-temperature resistant, wear-resistant workpieces and processes for their manufacture
DE10242475B3 (en) Wear protection layer
AT517717A4 (en) Method for depositing a layer on a plain bearing element blank
DE102022115550A1 (en) Coated tool, process for its production and use of the tool
DE102013218322A1 (en) Evaporator body for a PVD coating system and method for providing such an evaporator body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRISCHKE, MARTIN

Inventor name: MASSLER, ORLAW

Inventor name: JABS, THOMAS

Inventor name: SCHARF, MICHAEL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MASSLER, ORLAW

Inventor name: JABS, THOMAS

Inventor name: SCHARF, MICHAEL

Inventor name: GRISCHKE, MARTIN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080612

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WIELAND-WERKE AG

Owner name: OERLIKON TRADING AG, TRUEBBACH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON SURFACE SOLUTIONS AG, TRUEBBACH

Owner name: WIELAND-WERKE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170103