EP0200088B1 - Wear-resistant coated hard-metal body and method for the production thereof - Google Patents

Wear-resistant coated hard-metal body and method for the production thereof Download PDF

Info

Publication number
EP0200088B1
EP0200088B1 EP86105195A EP86105195A EP0200088B1 EP 0200088 B1 EP0200088 B1 EP 0200088B1 EP 86105195 A EP86105195 A EP 86105195A EP 86105195 A EP86105195 A EP 86105195A EP 0200088 B1 EP0200088 B1 EP 0200088B1
Authority
EP
European Patent Office
Prior art keywords
intermediate layer
hard
metal
hard metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86105195A
Other languages
German (de)
French (fr)
Other versions
EP0200088A1 (en
Inventor
Udo Dr. König
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Widia GmbH
Original Assignee
Fried Krupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6269734&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0200088(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fried Krupp AG filed Critical Fried Krupp AG
Publication of EP0200088A1 publication Critical patent/EP0200088A1/en
Application granted granted Critical
Publication of EP0200088B1 publication Critical patent/EP0200088B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component

Definitions

  • the invention relates to a wear-resistant coated hard metal body, which consists of a hard metal base body, a metallic intermediate layer and at least one metal-free hard material layer.
  • the invention further relates to a method for producing this hard metal body.
  • DE-OS 2 528 255 discloses utility articles and decorative articles provided with a coating, the coating of which is 0.1 to 50 ⁇ m thick and consists of hard materials, the hard materials being the carbides and / or nitrides and / or borides and / or Silicides and / or oxides of the elements of 111th to Vl. Periodic table group are used.
  • DE-OS 2 528 255 it is also proposed to use one or more intermediate layers of metals or of alloys of metals and hard materials or of hard materials to improve the adhesive strength of the hard materials or to reduce thermal stresses.
  • both metallic and non-metallic substances come into question, such as. B. steels, cast materials, non-ferrous metals, light metals, hard metals, glass and ceramics.
  • the composite material known from CH-PS 542 678 is produced in that the intermediate layer material is deposited on the substrate by chemical reaction from the gas phase, the substrate material and intermediate layer material diffusing into one another, and in that the cover layer is chemically reacted from the gas phase on the intermediate layer deposits, with the cover layer material and the intermediate layer material diffusing into one another.
  • a wear-resistant coated hard metal body which is suitable as a tool for cutting and non-cutting shaping, is known with a metallic intermediate layer.
  • substrate material and interlayer material diffuse into one another.
  • the high temperatures of 900 to 1200 ° C. for the diffusion process are disadvantageous.
  • the invention is therefore based on the object of providing a wear-resistant coated hard metal body which consists of a hard metal base body, a metallic intermediate layer and at least one metal-free hard material layer which has wear properties and which allow its use as a tool for cutting and non-cutting shaping of metallic workpieces Intermediate layer is applied at much lower temperatures.
  • the metallic intermediate layer consists of molybdenum and / or tungsten, has a thickness of 0.1 to 2 J.Lm and is applied to the hard metal base body by a PVD process, which is applied during the application of the Intermediate layer has a temperature of 200 to 600 ° C.
  • a body designed in this way has wear properties which enable its use as a tool for the non-cutting and cutting shaping of metallic workpieces.
  • the metallic intermediate layer made of molybdenum and / or tungsten is applied to the hard metal base body by direct sputtering, since in this PVD process a particularly uniform sputtering of the molybdenum and / or tungsten onto the hard metal base body is achieved.
  • the properties of the intermediate layer according to the invention can advantageously be varied by replacing 0.1 to 49% by weight of the molybdenum and / or the tungsten with titanium, zirconium, hafnium, niobium and / or tantalum.
  • the object underlying the invention is further achieved by a method for producing the wear-resistant coated hard metal body, in which the metallic intermediate layer is applied to the hard metal base body by a PVD process, which is heated to a temperature of 200 to 600 ° C. during the application of the intermediate layer becomes.
  • a method for producing the wear-resistant coated hard metal body in which the metallic intermediate layer is applied to the hard metal base body by a PVD process, which is heated to a temperature of 200 to 600 ° C. during the application of the intermediate layer becomes.
  • the metallic intermediate layer is applied to the hard metal base body by direct cathode sputtering, since a particularly uniform sputtering of the intermediate layer is achieved with this PVD process.
  • at least one metal-free hard material layer is applied to the metallic intermediate layer by reactive sputtering or that at least one metal-free hard material layer is applied to the metallic intermediate layer by gas phase reaction.
  • the application of hard material layers by reactive sputtering or by gas phase reaction is known per se.
  • hard metal base bodies were used, which were designed as indexable inserts with the geometric shape SNUN 120408 and made of hard metal M15 (composition in% by weight: 82.5 WC, 11 (Ti, Ta, Nb) C, 6.5 Co ) passed.
  • the indexable insert was first treated in a CVD system at 1020 ° C. with a gas mixture of titanium tetrachloride, methane and hydrogen. After 60 minutes the temperature was lowered to 990 ° C and methane was replaced by nitrogen. After a total of 180 minutes, the oven heating was turned off and the insert was cooled in flowing hydrogen. A metallographic cut showed that a hard material double layer of titanium carbide and titanium nitride with a total thickness of 7.5 J.Lm had formed on the carbide insert.
  • a layer of titanium nitride was formed at a temperature of 350 ° C. on the indexable insert by reactive sputtering of a titanium target (cathode) in a gas atmosphere composed of 10% by volume nitrogen and 90% by volume argon and a pressure of 1 Pascal a thickness of 7.2 J.Lm deposited.
  • a 0.6 ⁇ m thick intermediate layer made of nickel was produced on an indexable insert by direct sputtering of a nickel target in an argon atmosphere, the indexable insert having a temperature of approximately 400.degree.
  • a titanium nitride layer was then applied to the intermediate nickel layer in the manner described in Example 2.
  • An intermediate molybdenum layer with a thickness of 0.6 ⁇ m was deposited on the indexable insert by sputtering a molybdenum target in an argon atmosphere.
  • the indexable insert had a temperature of approximately 400 ° C. during the deposition of the molybdenum intermediate layer.
  • a titanium nitride hard material layer was then applied to the molybdenum intermediate layer in the manner described in Example 2.
  • the indexable inserts were examined by metallographic methods, the layer thicknesses being measured and the bond between the base bodies and the layers being qualitatively assessed. With the help of the scratch test, in which a diamond cone tip is drawn over the layer with increasing contact load, a quantitative measure of the adhesive strength, the so-called critical load, could be determined. Finally, the edge retention of the coated indexable inserts was determined on a test lathe by machining a C60 steel shaft. The results of the tests are given in Table 1. The indexable insert coated according to Example 1 after the CVD process reached a critical load of 4.5 kg in the scratch test. In the machining test, a crater depth of 25 ⁇ m and a wear mark width of 0.15 mm were found after a turning time of 12 minutes.
  • the indexable insert coated according to Example 2 showed a critical load of only 2.5 kg.
  • the lower layer adhesive strength had an impact due to a higher crater wear and a larger wear mark width.
  • layer flaking was observed in the indexable insert coated according to Example 2.
  • the indexable insert according to Example 3 already showed so much scour wear after a turning time of 2 minutes that the machining test was terminated.
  • the indexable insert according to the invention according to Example 4 had a high critical load and thus also a high adhesive strength of the hard material layer. With regard to the wear characteristics, this indexable insert was superior to the comparison insert according to example 1.
  • An indexable insert was coated by direct sputtering with a molybdenum intermediate layer and then by reactive sputtering with a 2 ⁇ m thick aluminum oxide layer.
  • the temperature of the hard metal base body was approximately 400 ° C. during the two coating processes.
  • the critical load of the indexable insert coated in this way was determined to be 6 kg. In the absence of the molybdenum intermediate layer, the critical load was 1.5 kg.
  • an indexable insert was provided with an intermediate layer made of a molydane alloy which consisted of 0.07% zirconium, 0.5% titanium and the rest molybdenum. This intermediate layer also gave the subsequently applied titanium nitride hard material layer good adhesive strength and good wear properties.

Description

Die Erfindung betrifft einen verschleißfesten beschichteten Hartmetallkörper, der aus einem Hartmetallgrundkörper, einer metallischen Zwischenschicht und mindestens einer metallfreien Hartstoffschicht besteht. Die Erfindung betrifft ferner ein Verfahren zur Herstellung dieses Hartmetallkörpers.The invention relates to a wear-resistant coated hard metal body, which consists of a hard metal base body, a metallic intermediate layer and at least one metal-free hard material layer. The invention further relates to a method for producing this hard metal body.

Aus der DE-OS 2 528 255 sind mit einem Überzug versehene Gebrauchs- und Ziergegenstände bekannt, deren Überzug 0,1 bis 50 um dick ist und aus Hartstoffen besteht, wobei als Hartstoffe die Carbide und/oder Nitride und/oder Boride und/oder Silicide und/oder Oxide der Elemente der 111. bis Vl. Gruppe des Periodensystems zur Anwendung kommen. In der DE-OS 2 528 255 wird ferner vorgeschlagen, zur Verbesserung der Haftfestigkeit der Hartstoffe bzw. zur Verminderung von thermischen Spannungen eine oder mehrere Zwischenschichten aus Metallen oder aus Legierungen von Metallen und Hartstoffen oder aus Hartstoffen zu verwenden. Als Grundmaterial der bekannten Gebrauchs- und Ziergegenstände kommen sowohl metallische als auch nichtmetallische Stoffe in Frage, wie z. B. Stähle, Gußwerkstoffe, Buntmetalle, Leichtmetalle, Hartmetalle, Glas und Keramik.DE-OS 2 528 255 discloses utility articles and decorative articles provided with a coating, the coating of which is 0.1 to 50 µm thick and consists of hard materials, the hard materials being the carbides and / or nitrides and / or borides and / or Silicides and / or oxides of the elements of 111th to Vl. Periodic table group are used. In DE-OS 2 528 255 it is also proposed to use one or more intermediate layers of metals or of alloys of metals and hard materials or of hard materials to improve the adhesive strength of the hard materials or to reduce thermal stresses. As the basic material of the known utensils and ornaments, both metallic and non-metallic substances come into question, such as. B. steels, cast materials, non-ferrous metals, light metals, hard metals, glass and ceramics.

Die bekannten Gebrauchs- und Ziergegenstände können dadurch hergestellt werden, daß die Zwischen- und Deckschichten durch Gasphasenreaktion nach dem CVD-Prgzeß nacheinander auf dem Grundkörper abgeschieden werden. Auch aus der CH-PS 542 678 ist ein Verbundwerkstoff für Schneidwerkzeuge bekannt, der aus einem metallischen oder nichtmetallischen Substrat, mindestens einer Zwischenschicht und einer verschleißfesten Deckschicht besteht, wobei die Zwischenschicht folgende Eigenschaften aufweisen muß:

  • a) Ihre mittlere Härte liegt zwischen derjenigen des Substrats und derjenigen der Deckschicht,
  • b) sie ist duktiler als die Deckschicht,
  • c) ihr mittlerer thermischer Ausdehnungskoeffizient liegt zwischen demjenigen des Substrats und demjenigen der Deckschicht,
  • d) sie ist sowohl im Substrat wie in der Deckschicht teilweise gelöst,
  • e) die mittlere Korngröße ist wesentlich kleiner als die Schichtdicke.
The known utensils and decorative objects can be produced in that the intermediate and cover layers are deposited one after the other on the base body by gas phase reaction after the CVD process. A composite material for cutting tools is also known from CH-PS 542 678, which consists of a metallic or non-metallic substrate, at least one intermediate layer and a wear-resistant cover layer, the intermediate layer having to have the following properties:
  • a) their average hardness is between that of the substrate and that of the top layer,
  • b) it is more ductile than the top layer,
  • c) their average coefficient of thermal expansion lies between that of the substrate and that of the cover layer,
  • d) it is partially dissolved both in the substrate and in the cover layer,
  • e) the average grain size is significantly smaller than the layer thickness.

Der aus der CH-PS 542 678 bekannte Verbundwerkstoff wird dadurch hergestellt, daß man auf dem Substrat das Zwischenschichtmaterial durch chemische Reaktion aus der Gasphase abscheidet, wobei Substratmaterial und Zwischenschichtmaterial ineinander diffundieren, und daß man die Deckschicht durch chemische Reaktion aus der Gasphase auf der Zwischenschicht abscheidet, wobei Deckschichtmaterial und Zwischenschichtmaterial ineinander diffundieren.The composite material known from CH-PS 542 678 is produced in that the intermediate layer material is deposited on the substrate by chemical reaction from the gas phase, the substrate material and intermediate layer material diffusing into one another, and in that the cover layer is chemically reacted from the gas phase on the intermediate layer deposits, with the cover layer material and the intermediate layer material diffusing into one another.

Aus der AT-B-336 905 ist ein verschleißfester beschichteter Hartmetallkörper, der als Werkzeug zur spanenden und spanlosen Formgebung geeignet ist, mit einer metallischen Zwischenschicht bekannt. Auch hier diffundieren Substratmaterial und Zwischenschichtmaterial ineinander. Nachteilig sind dabei die für den Diffusionsvorgang hohen Temperaturen von 900 bis 1200°C.From AT-B-336 905 a wear-resistant coated hard metal body, which is suitable as a tool for cutting and non-cutting shaping, is known with a metallic intermediate layer. Here, too, substrate material and interlayer material diffuse into one another. The high temperatures of 900 to 1200 ° C. for the diffusion process are disadvantageous.

Der Erfindung liegt daher die Aufgabe zugrunde, einen verschleißfesten beschichteten Hartmetallkörper zu schaffen, der aus einem Hartmetallgrundkörper, einer metallischen Zwischenschicht und mindestens einer metallfreien Hartstoffschicht besteht, der Verschleißeigenschaften aufweist, die seine Verwendung als Werkzeug zur spanenden und spanlosen Formgebung von metallischen Werkstücken ermöglichen und dessen Zwischenschicht bei wesentlich niedrigeren Temperaturen aufgebracht wird.The invention is therefore based on the object of providing a wear-resistant coated hard metal body which consists of a hard metal base body, a metallic intermediate layer and at least one metal-free hard material layer which has wear properties and which allow its use as a tool for cutting and non-cutting shaping of metallic workpieces Intermediate layer is applied at much lower temperatures.

Die der Erfindung zugrundeliegende Aufgabe wird dadurch gelöst, daß die metallische Zwischenschicht aus Molybdän und/oder Wolfram besteht, eine Dicke von 0,1 bis 2 J.Lm hat und durch einen PVD-Prozeß auf den Hartmetallgrundkörper aufgebracht ist, der während des Aufbringens der Zwischenschicht eine Temperatur von 200 bis 600° C aufweist. Ein derartig gestalteter Körper hat Verschleißeigenschaften, die seine Verwendung als Werkzeug für die spanlose und spanende Formgebung von metallischen Werkstücken ermöglichen.The object on which the invention is based is achieved in that the metallic intermediate layer consists of molybdenum and / or tungsten, has a thickness of 0.1 to 2 J.Lm and is applied to the hard metal base body by a PVD process, which is applied during the application of the Intermediate layer has a temperature of 200 to 600 ° C. A body designed in this way has wear properties which enable its use as a tool for the non-cutting and cutting shaping of metallic workpieces.

Nach der Erfindung ist es besonders vorteilhaft, wenn die metallische Zwischenschicht aus Molybdän und/oder Wolfram durch direkte Kathodenzerstäubung auf den Hartmetallgrundkörper aufgebracht ist, da bei diesem PVD-Prozeß ein besonders gleichmäßiges Aufstäuben des Molybdäns und/oder Wolframs auf den Hartmetallgrundkörper erreicht wird. Die Eigenschaften der erfindungsgemäßen Zwischenschicht können in vorteilhafter Weise dadurch variiert werden, daß 0,1 bis 49 Gew.-% des Molybdäns und/oder des Wolframs durch Titan, Zirkon, Hafnium, Niob und/oder Tantal ersetzt sind. Ein erfindungsgemäßer Hartmetallkörper, dessen metallfreie Hartstoffschichten aus Titancarbid, Titannitrid, Titancarbonitrid oder Aluminiumoxid bestehen, hat besonders gute Verschleißeigenschaften.According to the invention, it is particularly advantageous if the metallic intermediate layer made of molybdenum and / or tungsten is applied to the hard metal base body by direct sputtering, since in this PVD process a particularly uniform sputtering of the molybdenum and / or tungsten onto the hard metal base body is achieved. The properties of the intermediate layer according to the invention can advantageously be varied by replacing 0.1 to 49% by weight of the molybdenum and / or the tungsten with titanium, zirconium, hafnium, niobium and / or tantalum. A hard metal body according to the invention, the metal-free hard material layers of which consist of titanium carbide, titanium nitride, titanium carbonitride or aluminum oxide, has particularly good wear properties.

Die der Erfindung zugrundeliegende Aufgabe wird ferner durch ein Verfahren zur Herstellung des verschleißfesten beschichteten Hartmetallkörpers gelöst, bei dem die metallische Zwischenschicht durch einen PVD-Prozeß auf den Hartmetallgrundkörper aufgebracht wird, der während des Aufbringens der Zwischenschicht auf eine Temperatur von 200 bis 600°C aufgeheizt wird. Überraschenderweise hat sich gezeigt, daß Zwischenschichten aus Molybdän und/oder Wolfram den Hartstoffschichten eine ausgezeichnete Haftfestigkeit verleihen, obwohl es bei den erfindungsgemäßen Verfahrenstemperaturen nicht zu Diffusionsvorgängen zwischen dem Hartmetallgrundkörper und der metallischen Zwischenschicht kommt, die nach den bisherigen Erkenntnissen für das gute Haftvermögen der Schichten verantwortlich sind.The object underlying the invention is further achieved by a method for producing the wear-resistant coated hard metal body, in which the metallic intermediate layer is applied to the hard metal base body by a PVD process, which is heated to a temperature of 200 to 600 ° C. during the application of the intermediate layer becomes. Surprisingly, it has been shown that intermediate layers made of molybdenum and / or tungsten give the hard material layers excellent adhesive strength, although at the process temperatures according to the invention there are no diffusion processes between the hard metal base body and the metallic intermediate layer, which, to date, have been responsible for the good adhesion of the layers are.

Nach der Erfindung ist es besonders vorteilhaft, wenn die metallische Zwischenschicht durch direkte Kathodenzerstäubung auf den Hartmetallgrundkörper aufgebracht wird, da mit diesem PVD-Prozeß ein besonders gleichmäßiges Aufstäuben der Zwischenschicht erreicht wird. In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß auf die metallische Zwischenschicht mindestens eine metallfreie Hartstoffschicht durch reaktive Kathodenzerstäubung aufgebracht wird oder daß auf die metallische Zwischenschicht mindestens eine metallfreie Hartstoffschicht durch Gasphasenreaktion aufgebracht wird. Das Aufbringen von Hartstoffschichten durch reaktive Kathodenzerstäubung bzw. durch Gasphasenreaktion ist an sich bekannt.According to the invention, it is particularly advantageous if the metallic intermediate layer is applied to the hard metal base body by direct cathode sputtering, since a particularly uniform sputtering of the intermediate layer is achieved with this PVD process. In a further embodiment of the The invention provides that at least one metal-free hard material layer is applied to the metallic intermediate layer by reactive sputtering or that at least one metal-free hard material layer is applied to the metallic intermediate layer by gas phase reaction. The application of hard material layers by reactive sputtering or by gas phase reaction is known per se.

Der Gegenstand der Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert.The subject matter of the invention is explained in more detail below on the basis of exemplary embodiments.

Bei den nachfolgenden Ausführungsbeispielen wurden Hartmetallgrundkörper benutzt, welche als Wendeschneidplatte mit der geometrischen Form SNUN 120408 gestaltet waren und aus Hartmetall M15 (Zusammensetzung in Gew.-%: 82,5 WC, 11 (Ti, Ta, Nb) C, 6,5 Co) bestanden.In the following exemplary embodiments, hard metal base bodies were used, which were designed as indexable inserts with the geometric shape SNUN 120408 and made of hard metal M15 (composition in% by weight: 82.5 WC, 11 (Ti, Ta, Nb) C, 6.5 Co ) passed.

Beispiel 1:Example 1:

Die Wendeschneidplatte wurde in einer CVD-Anlage zunächst bei 1020°C mit einem Gasgemisch aus Titantetrachlorid, Methan und Wasserstoff behandelt. Nach 60 Minuten wurde die Temperatur auf 990°C gesenkt und Methan durch Stickstoff ersetzt. Nach insgesamt 180 Minuten wurde die Ofenheizung abgeschaltet, und die Wendeschneidplatte wurde in strömendem Wasserstoff abgekühlt. Durch einen metallographischen Schliff wurde festgestellt, daß sich auf der Wendeschneidplatte aus Hartmetall eine Hartstoff-Doppelschicht aus Titancarbid und Titannitrid von insgesamt 7,5 J.Lm Dicke gebildet hatte.The indexable insert was first treated in a CVD system at 1020 ° C. with a gas mixture of titanium tetrachloride, methane and hydrogen. After 60 minutes the temperature was lowered to 990 ° C and methane was replaced by nitrogen. After a total of 180 minutes, the oven heating was turned off and the insert was cooled in flowing hydrogen. A metallographic cut showed that a hard material double layer of titanium carbide and titanium nitride with a total thickness of 7.5 J.Lm had formed on the carbide insert.

Beispiel 2:Example 2:

In einer Kathodenzerstäubungsanlage wurde bei einer Temperatur von 350° C auf der Wendeschneidplatte durch reaktive Kathodenzerstäubung eines Titantargets (Kathode) in einer Gasatmosphäre aus 10 Vol.-% Stickstoff und 90 Vol.-% Argon und einem Druck von 1 Pascal eine Schicht aus Titannitrid mit einer Dicke von 7,2 J.Lm abgeschieden.In a cathode sputtering system, a layer of titanium nitride was formed at a temperature of 350 ° C. on the indexable insert by reactive sputtering of a titanium target (cathode) in a gas atmosphere composed of 10% by volume nitrogen and 90% by volume argon and a pressure of 1 Pascal a thickness of 7.2 J.Lm deposited.

Beispiel 3:Example 3:

Auf einer Wendeschneidplatte wurde eine 0,6 um dicke Zwischenschicht aus Nickel durch die direkte Kathodenzerstäubung eines Nickeltargets in einer Argon-Atmosphäre erzeugt, wobei die Wendeschneidplatte eine Temperatur von ca. 400°C hatte. Anschließend wurde auf die Nickel-Zwischenschicht eine Titannitridschicht in der Weise aufgebracht, wie es in Beispiel 2 beschrieben ist.A 0.6 μm thick intermediate layer made of nickel was produced on an indexable insert by direct sputtering of a nickel target in an argon atmosphere, the indexable insert having a temperature of approximately 400.degree. A titanium nitride layer was then applied to the intermediate nickel layer in the manner described in Example 2.

Beispiel 4:Example 4:

Auf die Wendeschneidplatte wurde eine Molybdän-Zwischenschicht mit einer Dicke von 0,6 um durch Kathodenzerstäubung eines Targets aus Molybdän in einer Argon-Atmosphäre abgeschieden. Die Wendeschneidplatte hatte während der Abscheidung der Molybdän-Zwischenschicht eine Temperatur von ca. 400° C. Anschließend wurde auf die Molybdän-Zwischenschicht eine Titannitrid-Hartstoffschicht in der Weise aufgebracht, wie es in Beispiel 2 beschrieben ist.An intermediate molybdenum layer with a thickness of 0.6 µm was deposited on the indexable insert by sputtering a molybdenum target in an argon atmosphere. The indexable insert had a temperature of approximately 400 ° C. during the deposition of the molybdenum intermediate layer. A titanium nitride hard material layer was then applied to the molybdenum intermediate layer in the manner described in Example 2.

Nach der Beschichtung wurden die Wendeschneidplatten durch metallographische Methoden untersucht, wobei die Schichtdicken gemessen und der Verbund zwischen den Grundkörpern und den Schichten qualitativ beurteilt wurde. Mit Hilfe des Kratztestes, bei dem eine Diamantkegelspitze mit zunehmender Auflagelast über die Schicht gezogen wird, konnte eine quantitative Meßgröße für die Haftfestigkeit, die sogenannte kritische Last, bestimmt werden. Schlieslich wurde die Schneidhaltigkeit der beschichteten Wendeschneidplatten auf einer Prüfdrehbank durch Zerspanen einer Welle aus Stahl C60 festgestellt. Die Ergebnisse der Versuche sind in der Tabelle 1 angegeben. Die gemäß Beispiel 1 nach dem CVD-Prozeß beschichtete Wendeschneidplatte erreichte beim Kratztest eine kritische Last von 4,5 kg. Beim Zerspanungstest wurde nach einer Drehzeit von 12 Minuten eine Kolktiefe von 25 µm und eine Verschleißmarkenbreite von 0,15 mm festgestellt. Die gemäß Beispiel 2 beschichtete Wendeschneidplatte zeigte eine kritische Last von nur 2,5 kg. Im Zerspanungstest wirkte sich die geringere Schichthaftfestigkeit durch einen höheren Kolkverschleiß und eine höhere Verschleißmarkenbreite aus. Nach dem Zerspanungstest wurden bei der gemäß Beispiel 2 beschichteten Wendeschneidplatte Schichtabplatzungen beobachtet. Die Wendeschneidplatte nach Beispiel 3 zeigte bereits nach einer Drehzeit von 2 Minuten einen so großen Kolkverschleiß, daß der Zerspanungstest abgebrochen wurde. Die erfindungsgemäße Wendeschneidplatte gemäß Beispiel 4 besaß eine hohe kritische Last und somit auch eine hohe Haftfestigkeit der Hartstoffschicht. Hinsichtlich der Verschleißkennwerte war diese Wendeschneidplatte der Vergleichsplatte gemäß Beispiel 1 überlegen. Nach der Erfindung ist es also möglich, bei einer niedrigen Beschichtungstemperatur gleiche oder bessere Haftfestigkeiten und Verschleißkennwerte zu erzielen als dies bei Wendeschneidplatten möglich ist, die nach dem CVD-Verfahren beschichtet werden. Durch die niedrigen Prozeßtemperaturen des erfindungsgemäßen Verfahrens können nunmehr Hartmetallwerkzeuge beschichtet werden, die bisher wegen der hohen Temperaturen beim CVD-Prozeß nicht beschichtet werden konnten, wie z. B. verzugsempfindliche Hochgenauigkeitsteile Und gelötete Hartmetallteile.After coating, the indexable inserts were examined by metallographic methods, the layer thicknesses being measured and the bond between the base bodies and the layers being qualitatively assessed. With the help of the scratch test, in which a diamond cone tip is drawn over the layer with increasing contact load, a quantitative measure of the adhesive strength, the so-called critical load, could be determined. Finally, the edge retention of the coated indexable inserts was determined on a test lathe by machining a C60 steel shaft. The results of the tests are given in Table 1. The indexable insert coated according to Example 1 after the CVD process reached a critical load of 4.5 kg in the scratch test. In the machining test, a crater depth of 25 µm and a wear mark width of 0.15 mm were found after a turning time of 12 minutes. The indexable insert coated according to Example 2 showed a critical load of only 2.5 kg. In the machining test, the lower layer adhesive strength had an impact due to a higher crater wear and a larger wear mark width. After the machining test, layer flaking was observed in the indexable insert coated according to Example 2. The indexable insert according to Example 3 already showed so much scour wear after a turning time of 2 minutes that the machining test was terminated. The indexable insert according to the invention according to Example 4 had a high critical load and thus also a high adhesive strength of the hard material layer. With regard to the wear characteristics, this indexable insert was superior to the comparison insert according to example 1. According to the invention it is therefore possible to achieve the same or better adhesive strengths and wear characteristics at a low coating temperature than is possible with indexable inserts that are coated using the CVD process. Due to the low process temperatures of the method according to the invention, hard metal tools can now be coated, which previously could not be coated due to the high temperatures in the CVD process, such as. B. warp sensitive high precision parts and soldered hard metal parts.

Beispiel 5:Example 5:

Eine Wendeschneidplatte wurde durch direkte Kathoden-Zerstäubung mit einer Molybdän-Zwischenschicht und anschließend durch reaktive Kathodenzerstäubung mit einer 2 um dicken Aluminiumoxidschicht überzogen. Die Temperatur des Hartmetallgrundkörpers betrug während der beiden Beschichtungsvorgänge ca. 400°C. Die kritische Last der so beschichteten Wendeschneidplatte wurde mit 6 kg bestimmt. Beim Fehlen der Molybdän-Zwischenschicht ergab sich eine kritische Last von 1,5 kg.An indexable insert was coated by direct sputtering with a molybdenum intermediate layer and then by reactive sputtering with a 2 μm thick aluminum oxide layer. The temperature of the hard metal base body was approximately 400 ° C. during the two coating processes. The critical load of the indexable insert coated in this way was determined to be 6 kg. In the absence of the molybdenum intermediate layer, the critical load was 1.5 kg.

Beispiel 6:Example 6:

Eine Wendeschneidplatte wurde unter den in Beispiel 4 genannten Bedingungen mit einer Zwischenschicht aus einer Molydänlegierung, die aus 0,07 % Zirkon, 0,5 % Titan und Rest Molybdän bestand, versehen. Auch diese Zwischenschicht verlieh der anschließend aufgebrachten Titannitrid-Hartstoffschicht eine gute Haftfestigkeit und gute Verschleißeigenschaften.Under the conditions mentioned in Example 4, an indexable insert was provided with an intermediate layer made of a molydane alloy which consisted of 0.07% zirconium, 0.5% titanium and the rest molybdenum. This intermediate layer also gave the subsequently applied titanium nitride hard material layer good adhesive strength and good wear properties.

Nachfolgend wird die Bedeutung einiger hier verwendeter Begriffe näher erläutert.The meaning of some of the terms used here is explained in more detail below.

PVD-Prozeß (Physical Vapor Deposition-Prozeß):

  • Verfahren zur Beschichtung von Substraten, wobei die Beschichtung durch physikalische Methoden herbeigeführt wird. Als physikalische Methoden werden das Aufdampfen, die Kathodenzerstäubung, die Lichtbogenzerstäubung usw. angesehen.
PVD process (Physical Vapor Deposition Process):
  • Process for coating substrates, the coating being brought about by physical methods. Evaporation, sputtering, sputtering, etc. are considered physical methods.

CVD-Prozeß (Chemical Vapor Deposition-Prozeß):

  • Bei diesem Verfahren werden die Schichten durch chemische Reaktionen, die in der Gasphase ablaufen, auf dem Substrat abgeschieden.
CVD process (Chemical Vapor Deposition Process):
  • In this process, the layers are deposited on the substrate by chemical reactions that take place in the gas phase.

Hartstoffe:

  • Hierzu gehören Carbide, Nitride, Boride, Silicide und Oxide, die eine besonders große Härte besitzen und die einen hohen Schmelzpunkt haben, wie z. B. Titancarbid, Titannitrid, Titancarbonitrid, Aluminiumoxid, Zirkonoxid, Borcarbid, Siliciumcarbid, Titandiborid.
Hard materials:
  • These include carbides, nitrides, borides, silicides and oxides, which have a particularly high hardness and which have a high melting point, such as. B. titanium carbide, titanium nitride, titanium carbonitride, aluminum oxide, zirconium oxide, boron carbide, silicon carbide, titanium diboride.

Hartmetall:

  • Die Hartmetalle bestehen aus einer Bindemetallphase, die aus Eisen, Cobalt und/oder Nickel zusammengesetzt ist, und aus einer Hartstoffphase, die vorzugsweise harte Carbide des Wolframs, Titans, Niobs und/oder Tantals enthält. Hartmetalle werden heute durch Gießverfahren und pulvermetallurgische Verfahren hergestellt.
Hard metal:
  • The hard metals consist of a binder metal phase, which is composed of iron, cobalt and / or nickel, and of a hard material phase, which preferably contains hard carbides of tungsten, titanium, niobium and / or tantalum. Hard metals are manufactured today by casting processes and powder metallurgical processes.

Kathodenzerstäubung:

  • In einem Vakuumkessel, der Argon enthält und in dem ein Druck von ca. 10-2 mbar herrscht, befindet sich eine planare, kreisförmige oder rechteckige Targetplatte. Die zu beschichtenden Substrate werden in einem Abstand von einigen cm zum Target auf einem Teller positioniert. Ein elektrisches Feld zwischen Target und Substratteller bewirkt eine teilweise Ionisation des im Vakuumkessel enthaltenen Gases. Hinter der Targetplatte ist ein kräftiger Topfmagnet angebracht, dessen Feldlinien die freien Elektronen des Plasmas vor dem Target auf Kreisbahnen bzw. Spiralbahnen zwingen, wobei die Ebenen der Elektronenbahnen ungefähr parallel zur Targetplatte liegen. Durch die kreisförmigen Bahnen der Elektronen wird die lonisationsdichte wesentlich erhöht, und man kann bei relativ niedrigen Gasdrücken arbeiten. Das Zerstäuben des Targets wird durch die durch das elektrische Feld beschleunnigten positiven Argonionen bewirkt. Die abgestäubten Atome oder Atomgruppen treffen mit relativ großer Energie auf das Substrat auf. Man unterscheidet zwischen direkter und reaktiver Kathodenzerstäubung. Bei der direkten Kathodenzerstäubung wird das Targetmaterial direkt auf das Substrat aufgebracht. Bei der reaktiven Kathodenzerstäubung wird zum Arbeitsgas Argon noch eine gasförmige Komponente hinzugefügt, die mit dem abgestäubten Targetmaterial reagiert. Eine Molybdän-Zwischenschicht wird beispielsweise durch Zerstäubung eines Molybdän-Targets erzeugt, während zur Abscheidung von Titannitrid in einem Argon-Stickstoff-Gemisch gearbeitet wird, das etwa 5 % Stickstoff enthält. Das vom Titan-Target abgestäubte Titan reagiert mit dem Stickstoff zu Titannitrid, das auf dem Substrat eine Titannitrid-Hartstoffschicht bildet.
    Figure imgb0001
Cathode sputtering:
  • In a vacuum vessel, which contains argon and in which there is a pressure of about 10- 2 mbar, is a planar, circular or rectangular target plate. The substrates to be coated are in one Position a few cm from the target on a plate. An electrical field between the target and the substrate plate causes partial ionization of the gas contained in the vacuum vessel. A strong pot magnet is attached behind the target plate, the field lines of which force the free electrons of the plasma in front of the target on circular or spiral paths, the planes of the electron paths being approximately parallel to the target plate. Due to the circular orbits of the electrons, the ionization density is increased significantly and one can work at relatively low gas pressures. The target is atomized by the positive argon ions accelerated by the electric field. The dusted atoms or groups of atoms hit the substrate with a relatively large amount of energy. A distinction is made between direct and reactive sputtering. With direct cathode sputtering, the target material is applied directly to the substrate. In reactive cathode sputtering, a gaseous component is added to the working gas argon, which reacts with the dusted target material. A molybdenum intermediate layer is produced, for example, by sputtering a molybdenum target, while an argon-nitrogen mixture containing about 5% nitrogen is used to deposit titanium nitride. The titanium dusted from the titanium target reacts with the nitrogen to form titanium nitride, which forms a titanium nitride hard material layer on the substrate.
    Figure imgb0001

Claims (8)

1. A wear-resistant coated hard metal body comprising a hard metal base body, a metallic intermediate layer and at least one metal-free layer of hard material characterized in that the metallic intermediate layer consists of molybdenum and/or tungsten, has a thickness of 0.1 to 2 um, and is applied by a PVD process to the hard metal base body, which has a temperature of 200 to 600° C during the application of the intermediate layer.
2. A hard metal body according to claim 1, characterized in that the metallic intermediate layer of molybdenum and/or tungsten is applied to the hard metal base member by direct cathode atomization.
3. A hard metal body according to claims 1 to 2, characterized in that 0.1 to 49 % by weight of the molybdenum and/or tungsten is replaced by titanium, zirconium, hafnium, niobium and/or tantalum.
4. A hard metal body according to claims 1 to 3, characterized in that the metal-free layers of hard material consist of titanium carbide, titanium nitride, titanium carbonitride or aluminium oxide.
5. A process for the preparation of the wear-resistant coated hard metal body according to claims 1 to 4, characterized in that the metal intermediate layer is applied by a PVD process to the hard metal base body, which is heated to a temperature of 200 to 600° C during the application of the intermediate layer.
6. A process according to claim 5, characterized in that the metal intermediate layer is applied to the hard metal base body by direct cathode atomization.
7. A process according to claims 5 and 6, characterized in that at least one metal-free layer of hard material is applied to the metal intermediate layer by reactive cathode atomization.
8. A process according to claims 5 and 6, characterized in that at least one metal-free layer of hard material is applied to the metal intermediate layer by gas phase reaction.
EP86105195A 1985-05-03 1986-04-15 Wear-resistant coated hard-metal body and method for the production thereof Expired EP0200088B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3515919 1985-05-03
DE19853515919 DE3515919A1 (en) 1985-05-03 1985-05-03 WEAR-RESISTANT COATED HARD METAL BODY AND METHOD FOR THE PRODUCTION THEREOF

Publications (2)

Publication Number Publication Date
EP0200088A1 EP0200088A1 (en) 1986-11-05
EP0200088B1 true EP0200088B1 (en) 1989-01-25

Family

ID=6269734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86105195A Expired EP0200088B1 (en) 1985-05-03 1986-04-15 Wear-resistant coated hard-metal body and method for the production thereof

Country Status (5)

Country Link
US (1) US4728579A (en)
EP (1) EP0200088B1 (en)
JP (1) JPS61264171A (en)
DE (1) DE3515919A1 (en)
IN (2) IN165323B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781989A (en) * 1986-03-07 1988-11-01 Mitsubishi Kinzoku Kabushiki Kaisha Surface-coated cutting member
US4804583A (en) * 1987-05-26 1989-02-14 Exxon Research And Engineering Company Composition of matter that is hard and tough
US5069092A (en) * 1987-12-16 1991-12-03 Ford Motor Company Cutting tool for aluminum workpieces having enhanced crater wear resistance
US5157997A (en) * 1987-12-16 1992-10-27 Ford Motor Company Cutting tool for aluminum workpieces having enhanced crater wear resistance
EP0349925A1 (en) * 1988-07-04 1990-01-10 INTERATOM Gesellschaft mit beschränkter Haftung Process for coating substrates made of high melting metals
GB8827541D0 (en) * 1988-11-25 1988-12-29 Atomic Energy Authority Uk Multilayer coatings
EP0404973A1 (en) * 1989-06-27 1991-01-02 Hauzer Holding B.V. Process and apparatus for coating substrates
DE4037480A1 (en) * 1990-11-24 1992-05-27 Krupp Widia Gmbh METHOD FOR PRODUCING A COATED CARBIDE CUTTING BODY
JPH0649645A (en) * 1992-07-31 1994-02-22 Yoshida Kogyo Kk <Ykk> Hard multilayered film formed body and its production
CA2150739A1 (en) * 1994-06-14 1995-12-15 Deepak G. Bhat Method of depositing a composite diamond coating onto a hard substrate
DE4434428A1 (en) * 1994-09-27 1996-03-28 Widia Gmbh Composite body, use of this composite body and method for its production
DE19601234A1 (en) * 1996-01-15 1997-07-17 Widia Gmbh Composite body and process for its manufacture
US6228484B1 (en) * 1999-05-26 2001-05-08 Widia Gmbh Composite body, especially for a cutting tool
JP4225081B2 (en) * 2002-04-09 2009-02-18 株式会社村田製作所 Electronic component manufacturing method, electronic component, and surface acoustic wave filter
US20050129565A1 (en) * 2003-12-15 2005-06-16 Ohriner Evan K. Tungsten alloy high temperature tool materials
DE102006008762A1 (en) * 2006-02-24 2007-09-13 BSH Bosch und Siemens Hausgeräte GmbH Household appliance with improved shaft
US7732014B2 (en) * 2006-04-18 2010-06-08 Philos Jongho Ko Process for diffusing titanium and nitride into a material having a generally compact, granular microstructure
JP4704970B2 (en) * 2006-07-19 2011-06-22 株式会社神戸製鋼所 Hard film with excellent film removal

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE342324C (en) *
DE336905C (en) * 1919-10-22 1921-05-19 Walter Breakenridge Templeton Jack
DE1060517B (en) * 1957-11-22 1959-07-02 Siemens Planiawerke Ag Electrically heavy-duty carbon or graphite electrode
CH542678A (en) * 1969-06-02 1973-10-15 Suisse De Rech S Horlogeres La Composite material for cutting tools
US3640689A (en) * 1970-03-04 1972-02-08 Fansteel Inc Composite hard metal product
FR2183603B1 (en) * 1972-05-12 1974-08-30 Cit Alcatel
SE412417B (en) * 1973-01-18 1980-03-03 Massachusetts Inst Technology CUTTING TOOLS OF VOLFRAKBARID AND PROCEDURES BEFORE ITS MANUFACTURING
AT350285B (en) * 1974-08-07 1979-05-25 Plansee Metallwerk COVERED, METAL USE ITEMS
AT336905B (en) * 1975-02-10 1977-06-10 Plansee Metallwerk WEAR PART FOR CHIPPING AND CHANDELESS FORMING
AT342324B (en) * 1975-02-28 1978-03-28 Plansee Metallwerk USED AND JEWELRY ITEMS
US4018631A (en) * 1975-06-12 1977-04-19 General Electric Company Coated cemented carbide product
US4162345A (en) * 1976-07-06 1979-07-24 Chemetal Corporation Deposition method and products
DE3503105A1 (en) * 1985-01-30 1986-07-31 Leybold-Heraeus GmbH, 5000 Köln METHOD FOR COATING MACHINE PARTS AND TOOLS WITH CARBIDE MATERIAL AND MACHINE PARTS AND TOOLS PRODUCED BY THE METHOD

Also Published As

Publication number Publication date
JPS61264171A (en) 1986-11-22
DE3515919A1 (en) 1986-11-06
JPH0580548B2 (en) 1993-11-09
EP0200088A1 (en) 1986-11-05
IN165910B (en) 1990-02-10
IN165323B (en) 1989-09-23
DE3515919C2 (en) 1993-08-19
US4728579A (en) 1988-03-01

Similar Documents

Publication Publication Date Title
EP0200088B1 (en) Wear-resistant coated hard-metal body and method for the production thereof
DE69527124T3 (en) Hard composite material for tools
DE60133705T3 (en) Tool made of a sintered boron nitride body with a coated surface
DE2954498C2 (en)
US4284687A (en) Compound body
DE102007010595B4 (en) Amorphous carbon-based hard multilayer coating
EP0306077B1 (en) Process for the production of multilayer coated hard metal parts
EP0598762B1 (en) Tool with wear-resistant cutting edge made of cubic boron nitride or polycrystalline cubic boron nitride, a method of manufacturing the tool and its use
DE19546357C2 (en) Hard coating with excellent abrasion resistance for substrate coating
EP1726687A2 (en) Coated tool
EP0093706B1 (en) Tool and method for its production
DE4407274C1 (en) Process for the production of wear-resistant coatings of cubic boron nitride, and their use
DE3144192A1 (en) Process for vapour-coating a surface
DE4112218A1 (en) COATING SYSTEMS FOR TITANIUM OXIDATION PROTECTION
WO2006005200A1 (en) CONDUCTIVE MATERIAL COMPRISING AN Me-DLC HARD MATERIAL COATING
DE112008001882B4 (en) Cold forming tool and method of forming a hard coating film
EP0617140B1 (en) Substrate body of hard alloy with diamond coating of excellent adhesive strength
DE4434428A1 (en) Composite body, use of this composite body and method for its production
WO2011113927A1 (en) Coating based on nial2o4 in spinel structure
DE3030149C2 (en)
DE3907693A1 (en) METHOD FOR PRODUCING TUNGSTEN CARBIDE BY CHEMICAL VAPOR DEPOSITION
EP0018432B1 (en) Metallic article provided with a wear and corrosion resistant protective coating of tungsten carbide
DE1942292B2 (en) PROCESS FOR DEPOSITING A COATING
EP2630270B1 (en) Target for arc processes
WO2018130628A1 (en) Method for treating the surface of a hard metal body and for coating the treated hard metal body with a diamond layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT SE

17P Request for examination filed

Effective date: 19870330

17Q First examination report despatched

Effective date: 19880316

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SANDVIK AKTIEBOLAG

Effective date: 19891024

ITTA It: last paid annual fee
PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19921222

EAL Se: european patent in force in sweden

Ref document number: 86105195.1

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;KRUPP WIDIA GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;WIDIA GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010411

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010424

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020307

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020416

EUG Se: european patent has lapsed

Ref document number: 86105195.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030415

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050415

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO