EP1768212B1 - Structure conductrice variable en fonction de la fréquence - Google Patents

Structure conductrice variable en fonction de la fréquence Download PDF

Info

Publication number
EP1768212B1
EP1768212B1 EP06121114A EP06121114A EP1768212B1 EP 1768212 B1 EP1768212 B1 EP 1768212B1 EP 06121114 A EP06121114 A EP 06121114A EP 06121114 A EP06121114 A EP 06121114A EP 1768212 B1 EP1768212 B1 EP 1768212B1
Authority
EP
European Patent Office
Prior art keywords
conductive
nanostructures
plane
dielectric substrate
flat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06121114A
Other languages
German (de)
English (en)
Other versions
EP1768212A1 (fr
Inventor
Anne Ghis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1768212A1 publication Critical patent/EP1768212A1/fr
Application granted granted Critical
Publication of EP1768212B1 publication Critical patent/EP1768212B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements

Definitions

  • the invention relates to a conductive structure of variable extent depending on the frequency and, more particularly, a multi-band antenna ground plane.
  • two conductive reinforcements separated by a dielectric medium constitute a planar capacitor whose capacitance C is proportional to the surface of the reinforcements opposite:
  • VS ⁇ 0 ⁇ ⁇ r ⁇ S / e ( ⁇ 0 is the dielectric permittivity of the vacuum, ⁇ r the relative dielectric permittivity of the material between the two plates of the capacitor, S the surface of the armatures opposite, e the distance between the two plates).
  • the value of a capacitance is generally defined, on the one hand, by the geometry of the component (and, in particular, the design of the metal zones) and, on the other hand, by the nature and the thicknesses of the insulation layers.
  • the number of capacitors is optimized according to the number of configurations required.
  • the control signals of the state of the switches must then be taken into account in the design and implementation of the device.
  • the implementation of such a switching system is particularly cumbersome to implement.
  • the dimensions of the circuits are no longer negligible in front of the wavelength of the electromagnetic excitation. This means that the trajectories of the electrons participating in the current strongly depend on the local geometry of the conductors. For example, reducing the width of a driver is an obstacle causing reflections and can be likened to a high frequency inductance.
  • connections between the elements of the same circuit can no longer be considered as perfect links.
  • These connections must indeed be considered as passive elements having a resistance, a inductance and a significant capacity.
  • switches active components of the transistors or electromechanical components type
  • microelectronic systems must take into account, depending on the frequency of use, on the one hand, the electrical characteristics and the specificities of implementation of these systems (implementation, technological process, postponement (for example, report says “above IC”), etc.) and, on the other hand, the management and routing of the control signals.
  • microstructures made by lithography and etching techniques, are then distributed over the entire surface of the ground plane. These microstructures insert resonant circuits of LC type (inductance L / capacitance C) in the propagation of the surface currents. The geometry of the microstructures is then calculated to make the high impedance ground plane at a specified resonant frequency, usually the frequency of the carrier.
  • LC type inductance L / capacitance C
  • the Figures 1a and 1b illustrate a first example of antenna ground plane of the prior art provided with such microstructures.
  • the Figures 1a and 1b are respectively a cross-sectional view and a top view of the antenna ground plane.
  • a support S for example a printed circuit substrate, is covered, on a first face, with a set of disjointed conductive blocks m and, on a second face, opposite to the first face, with a uniform conductive plane P.
  • V-shaped metallized holes connect the conducting blocks m to the conductive plane P.
  • the distance d separating two adjacent conductive blocks determines a capacitance Ca.
  • a metallized hole V constitutes an inductive inductance connection La.
  • the resulting surface is therefore inductive to the electrodes. low "frequencies and capacitive at" high "frequencies.
  • the figure 2 is a sectional view of another example of an antenna ground plane of the prior art.
  • the conductive blocks are not here all arranged in the same plane but in two parallel planes P1 and P2 separated by a distance D.
  • the blocks m2 located in the plane P2 are partially opposite the blocks m1 located in the plane P1.
  • the metal surfaces opposite the blocks m1 and m2 then constitute, with the dielectric layer of thickness D which separates them, capacitors. The control of the size of the facing surfaces makes it possible to adjust the capacity of the capacitors and hence the resonance frequency of the ground plane.
  • the prior art antenna ground planes described above are designed for a single carrier frequency. This represents a disadvantage. Indeed, some electromagnetic information transmission systems are likely, for different reasons, to change the carrier frequency. This is the case, for example, when a congestion of the communication network occurs. Specific antennas capable of transmitting at different carrier frequencies (eg dual-band antennas capable of transmitting at two different frequencies) have been designed for this purpose. An antenna ground plane calculated for a single carrier frequency is then not optimal for other carrier frequencies that may be used. The performance of the antenna is then deteriorated.
  • the second planar conductive layer completely surrounds the first planar conductive layer.
  • a second face of the substrate dielectric is covered with a conductive plane.
  • the one-dimensional nanostructures are carbon nanotubes.
  • the invention also relates to an antenna multi-band ground plane comprising a dielectric substrate covered, on a first face, with a set of plane conductive patterns and, on a second face, opposite to the first face, of a plane conductive, the planar conductive patterns being connected to the conductive plane through metallized holes which pass through the dielectric substrate, characterized in that an additional plane conductive pattern completely surrounds each planar conductive pattern, the additional planar conductive pattern being separated by a space, of the plane conductive pattern which it surrounds, and in that one-dimensional nanostructures having a resonant frequency are distributed on the dielectric substrate in the space separating the plane conductive pattern from the additional conductive pattern, the one-dimensional nanostructures having an axis substantially perpendicular to the plane of the flat conductive patterns.
  • the one-dimensional nanostructures are carbon nanotubes.
  • electrically conductive blocks are present in the thickness of the dielectric substrate, in a plane parallel to the planes of the first and second faces of the dielectric substrate and situated between said planes of the first and second faces, at least a fraction of an additional plane conductive pattern facing at least a fraction of at least one electrically conductive pad, a metallized hole connecting each electrically conductive pad to the conductive plane on the second face of the dielectric substrate.
  • the invention advantageously makes it possible, among other things, simply to realize dual-band antennas whose ground plane is high impedance to the two carrier frequencies that may be used.
  • the inductance / capacitance characteristics of the microstructures are then adapted to the two resonance frequencies.
  • the Figures 3a and 3b illustrate a first example of a conductive structure of variable extent as a function of the frequency according to the invention.
  • the figure 3a is a top view of the structure and the figure 3b is a cross-sectional view.
  • the surface plane element SA and the surface plane strip SB are separated by a distance 11.
  • Nanostructures vertical unidimensional NT are distributed over a surface SAB, in a space of width 11 which separates the surface element SA from the surface strip SB.
  • the NT one-dimensional nanostructures are carbon nanotubes such as those described in the international application. WO 02/080361 A1 . It is also possible to use other materials to make one-dimensional nanostructures. Carbon is preferentially chosen for its excellent chemical and mechanical stability. Nanowires can also be used.
  • a "one-dimensional” nanostructure means a wire structure whose length is much greater than the diameter and whose average diameter varies, for example, from a few nanometers to a few tens of nanometers.
  • the "unidimensional" characteristic is essential to have a mechanical resonance whatever the direction of the excitation.
  • the axis of the unidimensional nanostructures is substantially perpendicular to the planar surface elements SA and SB.
  • carbon nanotubes are hollow carbon tubes whose average diameter varies from a few nanometers to a few tens of nanometers.
  • F R 1 ⁇ 875 2 8 ⁇ ⁇ ⁇ 1 The 2 ⁇ ⁇ 2 + ⁇ ⁇ i 2 ⁇ Eb ⁇
  • the length L of the nanotubes may vary, for example, from substantially 10 nm to substantially 100 ⁇ m.
  • the nanotubes are reported on the substrate 1 in a manner which is described below, with reference to the Figures 13 to 16 .
  • each nanotube is a high quality factor band-pass filtering element.
  • the filtering properties of the nanotubes are used to modulate the conductive surfaces.
  • the assembly consisting of the surface plane element SA, of the set of nanotubes distributed over the surface SAB and of the surface conducting strip SB is it equivalent to a single conductive surface equal to the sum SA + SAB + SB, whereas at the frequencies located on either side of the resonant frequency, the surfaces SA and SB are electrically isolated from each other.
  • two adjacent coplanar conductive surfaces interconnected from edge to edge by a set of vertical one-dimensional nanostructures, behave as a single conductive surface at the resonant frequency nanostructures, and as two separate surfaces at the other frequencies.
  • nanostructures disclosed in the international application WO 02/080361 are laid on a conductive surface.
  • the nanostructures are laid directly on a dielectric substrate.
  • An advantageous feature of the unidimensional nanostructure filter is that it allows the currents to propagate in an omnidirectional and delocalized manner, ie over the entire length of the side common to the two conductive surfaces, without introducing any discontinuity in the geometry of the conductors.
  • one of the surfaces is connected to a conductive element only by a joint of one-dimensional nanostructures (this is the case, for example, of the surface SB on the Figures 3a and 3b ), it behaves as electrically floating for all the frequencies other than the resonance frequency of the nanostructures, and as electrically connected to the conducting element at the resonant frequency.
  • the dielectric substrate F is covered on a second face, opposite to the first face, of a conductive plane M.
  • the conductive structure illustrated in FIGS. Figures 3a and 3b is therefore a capacitor whose capacity varies according to the frequency.
  • the three surfaces S1, S2, S3 are electrically isolated from each other.
  • the figure 5 represents a top view of a first example of a dual-band antenna ground plane according to the invention.
  • a set of elementary patterns are regularly distributed on the first face of the substrate S.
  • An elementary pattern consists of a conductive pad p1, surrounded by a set of vertical one-dimensional nanostructures NT, which set of vertical nanostructures NT is itself surrounded by a conductive strip b1.
  • the conductive pad p1, the set of vertical nanostructures NT and the band b1 have, for example, a hexagonal geometry.
  • the conductive pad p1 is electrically connected, by a metallized hole V, to a conductive plane P located on a second face of the opposite substrate of the first face (not shown in the figure).
  • the bands b1 are electrically isolated from the blocks p1 and, consequently, only the blocks p1 contribute to the conduction in the antenna ground plane.
  • the band b1 and the block p1 of each elementary pattern are electrically connected to each other. It is then the p1 blocks, the NT nanostructures and the b1 bands that contribute to the antenna ground plane. It is thus possible to produce a ground plane which has a high impedance at two frequencies of different carriers, one of the two carrier frequencies being the frequency resonance of nanostructures.
  • the high impedance ground plane is then advantageously a dual-band ground plane without band switching.
  • the Figures 6a and 6b represent a second example of a dual-band antenna ground plane according to the invention.
  • This second example corresponds, in the context of the invention, to the two-band mass plane represented in FIG. figure 2 , in the context of the prior art.
  • the conductive blocks are then located in two parallel planes P1 and P2 separated by a distance D.
  • the difference between the dual-band ground plane of the invention and the dual-band ground plane of the prior art is that the conductive surface of the blocks m2 located in the plane P2 varies according to the frequency.
  • a square m2 is in fact composed of an electrically conductive plane element m2a surrounded by an electrically conductive flat strip m2b, the space separating the strip m2b from the plane element m2a being filled with one-dimensional vertical nanostructures NT.
  • the surface of a m2 block is thus the sum of the surface of the m2a element, the m2b band and the space filled with NT nanotubes which separates the m2a element from the m2b band.
  • the area of a square block m2 is the area of the single element m2a, the band m2b being electrically isolated from the rest of the circuit.
  • the Figures 7 - 16 illustrate an example of a process for manufacturing nanotubes.
  • the figure 7 illustrates the formation of a layer of metal or electrical conductor 2 on a dielectric substrate 1.
  • the dielectric substrate 1 is chosen according to the desired electrical performance.
  • the substrate 1 is it, preferably, alumina (SiO 2 ) for use frequencies of the order of a few Gigahertz.
  • Other materials can however be used such as, for example, sapphire, quartz, beryllium oxide, titanium dioxide, glass.
  • the material that constitutes the electrical conductor layer 2 is, for example, silver, copper, gold, aluminum, niobium, molybdenum, chromium, titanium, tantalum.
  • the formation of the conductive layer 2 is followed by the deposition of a resin layer 3 on the conductive layer 2, and then an etching of the resin layer 3 ( figure 8 ) followed by etching of the conductive layer 2 ( figure 9 ).
  • the etchings of the resin layer 3 and the conductive layer 2 lead to a surface E of the dielectric substrate 1 which one-dimensional nanostructures will be formed (cf. figure 9 ).
  • the zone Z once defined is engraved (cf. figure 12 ) and a catalyst 6 is deposited on the resin layer 4 and on the surface E (cf. figure 13 ).
  • the catalyst 6 may be, for example, Fe / Co, Nickel, or Fe / Si, deposited by evaporation or by spraying to a thickness that may vary, for example, from 1 nm to 100 nm.
  • a withdrawal of the resin 4 is then carried out so that the catalyst 6 is only present on the surface E (cf. figure 14 ).
  • Catalyst 6 is then configured into a multiplicity of plots.
  • Plt plots are obtained, for example, using fine lithography techniques that allow obtaining a regular network of studs or using thermal coalescence techniques that allow to obtain studs whose size is distributed according to a mean distribution around a targeted value (cf. figure 15 ).
  • Plt plots are, for example, cylindrical elements of a few nanometers in diameter.
  • the one-dimensional NT nanostructures are then produced in situ, by plasma-assisted chemical vapor deposition, more commonly known as PECVD ("Plasma Enhanced Chemical Vapor Deposition").
  • PECVD plasma-assisted chemical vapor deposition
  • the PECVD deposit is, for example, a vapor phase carbon deposit.
  • the NT nanostructures then grow naturally, unidimensionally, from the plt plots (cf. figure 16 ).
  • the diameter of the studs determines that of the nanostructures (they are substantially equal). At most the PECVD deposit lasts, the longer the nanostructures are.
  • the upper end of the nanostructures is positioned substantially at the surface of the conductive layer 2.
  • the vibration of the nanostructures is caused by the electromagnetic field related to the displacement of the electrons in the conductive plane 2.
  • the vibration is maximal when the field is maximum, that is to say when the center of oscillation of the nanostructures is positioned, in height, substantially in the middle of the thickness of the conductive
  • the substrate 1 has a single-level surface on which the conductive layer 2 and the NT nanostructures (cf. figure 16 ).
  • the zone of the substrate 1 on which the nanostructures are placed is not at the same level as that where is placed the conductive layer 2.
  • the substrate 1 is then either raised (cf. figure 17 ) is lowered (cf. figure 18 ) under the nanostructures.
  • the substrate 1 is selectively etched where the conductive layer 2 is intended to be deposited.
  • it is the area where the nanotubes are placed which is previously selectively etched.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Filters And Equalizers (AREA)

Description

    Domaine technique et art antérieur
  • L'invention concerne une structure conductrice d'étendue variable en fonction de la fréquence et, plus particulièrement, un plan de masse multi-bandes pour antenne.
  • Électriquement, deux armatures conductrices séparées par un milieu diélectrique constituent un condensateur plan dont la capacité C est proportionnelle à la surface des armatures en regard : C = ε 0 ε r S / e
    Figure imgb0001
    0 est la permittivité diélectrique du vide, εr la permittivité diélectrique relative du matériau entre les deux armatures du condensateur, S la surface des armatures en regard, e la distance entre les deux armatures).
  • En électronique et en microélectronique, la valeur d'une capacité est en général définie, d'une part, par la géométrie du composant (et, en particulier, le dessin des zones métalliques) et, d'autre part, par la nature et les épaisseurs des couches d'isolant.
  • Pour certaines applications, on peut vouloir modifier la valeur de la capacité insérée dans un circuit électrique. Différentes possibilités s'offrent pour modifier cette valeur :
    1. a) changer la distance entre les armatures en regard, par exemple par un dispositif électromécanique, ou
    2. b) changer les caractéristiques diélectriques du matériau isolant les armatures, par exemple en employant des matériaux spécifiques aux propriétés électrochimiques appropriés, ou encore
    3. c) changer les dimensions de la surface des armatures en regard.
  • Dans le dernier cas (c)), il est d'usage de relier plusieurs condensateurs à l'aide de commutateurs. Selon l'état des commutateurs, les condensateurs sont connectés en parallèle, en plus ou moins grand nombre, les uns avec les autres et forment ainsi une capacité égale à la somme des capacités individuelles des condensateurs connectés.
  • Le nombre de condensateurs est optimisé selon le nombre de configurations nécessaires. Les signaux de commande de l'état des commutateurs doivent alors être pris en compte dans la conception et la réalisation du dispositif. La mise en oeuvre d'un tel système de commutation est particulièrement lourde à mettre en oeuvre. Par ailleurs, dans le cas des dispositifs fonctionnant à haute fréquence, les dimensions des circuits ne sont plus négligeables devant la longueur d'onde de l'excitation électromagnétique. Cela signifie que les trajectoires des électrons participant au courant dépendent fortement de la géométrie locale des conducteurs. Par exemple, la diminution de la largeur d'un conducteur est un obstacle provoquant des réflexions et pouvant être assimilé à une inductance en haute fréquence.
  • La mise "en parallèle" de surfaces conductrices par l'intermédiaire d'éléments introduisant des discontinuités dans les conducteurs est alors électriquement plus complexe que la seule "addition" des surfaces. L'acheminement du signal de commande des commutateurs (transistors ou dispositifs électromécaniques) est également une contrainte, du fait de la densité habituelle des circuits.
  • Pour les mêmes raisons, en microélectronique, dans le cas d'applications à fréquences suffisamment élevées, les connections entre les éléments d'un même circuit ne peuvent plus être considérées comme des liaisons parfaites. Ces connections doivent en effet être considérées comme des éléments passifs ayant une résistance, une inductance et une capacité non négligeables. Il en est de même des commutateurs (composants actifs de type transistors ou composants électromécaniques) qui ne peuvent plus être considérés comme idéaux.
  • La conception des systèmes microélectroniques doit alors prendre en compte, en fonction des fréquences d'utilisation, d'une part, les caractéristiques électriques et les spécificités de mise en oeuvre de ces systèmes (implantation, procédé technologique, report (par exemple, report dit "above IC"), etc.) et, d'autre part, la gestion et l'acheminement des signaux de commande.
  • Dans le cas particulier des plans de masse pour antenne haute fréquence, les courants de surface générés dans le plan de masse des antennes diminuent les performances de celles-ci. Pour éviter ces courants, des techniques de structuration de surface ont été développées. Des microstructures, réalisées par des techniques de lithographie et gravure, sont alors réparties sur l'ensemble de la surface du plan de masse. Ces microstructures insèrent des circuits résonants de type LC (inductance L/capacité C) dans la propagation des courants de surface. La géométrie des microstructures est alors calculée pour rendre le plan de masse haute impédance à une fréquence de résonance spécifiée, en général la fréquence de la porteuse.
  • Les figures 1a et 1b illustrent un premier exemple de plan de masse d'antenne de l'art antérieur muni de telles microstructures. Les figures 1a et 1b sont respectivement une vue en coupe transversale et une vue de dessus du plan de masse d'antenne.
  • Un support S, par exemple un substrat de circuit imprimé, est recouvert, sur une première face, d'un ensemble de pavés conducteurs disjoints m et, sur une deuxième face, opposée à la première face, d'un plan conducteur uniforme P. Des trous métallisés V relient les pavés conducteurs m au plan conducteur P. La distance d qui sépare deux pavés conducteurs voisins détermine une capacité Ca. Un trou métallisé V constitue une liaison inductive d'inductance La. La surface résultante est en conséquence inductive aux "basses" fréquences et capacitive aux fréquences "élevées". L'impédance du plan de masse de l'antenne est alors très élevée à la fréquence de résonance donnée par l'équation (2) : Fo = 2 π La × Ca - 1 / 2
    Figure imgb0002
  • La figure 2 représente une vue en coupe d'un autre exemple de plan de masse d'antenne de l'art antérieur. Les pavés conducteurs ne sont pas ici tous disposés dans un même plan mais dans deux plans parallèles P1 et P2 séparés par une distance D. Les pavés m2 situés dans le plan P2 sont partiellement en regard des pavés m1 situés dans le plan P1. Les surfaces métalliques en regard des pavés m1 et m2 constituent alors, avec la couche de diélectrique d'épaisseur D qui les sépare, des condensateurs. Le contrôle de la dimension des surfaces en regard permet d'ajuster la capacité des condensateurs et, partant, la fréquence de résonance du plan de masse.
  • Les plans de masse d'antenne de l'art antérieur décrits ci-dessus sont conçus pour une fréquence de porteuse unique. Ceci représente un inconvénient. En effet, certains systèmes de transmission d'informations par voie électromagnétique sont susceptibles, pour différentes raisons, de changer de fréquence de porteuse. C'est le cas, par exemple, lorsque se produit un encombrement du réseau de communication. Des antennes spécifiques, capables d'émettre à des fréquences de porteuse différentes (par exemple des antennes bi-bande pouvant émettre à deux fréquences différentes) ont été conçues à cette fin. Un plan de masse d'antenne calculé pour une fréquence de porteuse unique n'est alors pas optimal pour les autres fréquences de porteuse susceptibles d'être utilisées. Les performances de l'antenne s'en trouvent alors détériorées.
  • La demande internationale WO-A-02 080361 divulgue des structures conductrices variables en fonction de la fréquence constituées de nanostructures unidimensionnelles posées sur une surface conductrice. Les nanostructures unidimensionnelles sont des nanotubes de carbone. La surface conductrice tend à réduire fortement, voire à annuler la fonction de filtrage des nanostructures. Ceci représente un inconvénient. L'invention ne présente pas l'ensemble des inconvénients mentionnés ci-dessus.
  • Exposé de l'invention
  • En effet, l'invention concerne une structure conductrice comprenant au moins une première couche conductrice plane déposée sur une première face d'un substrat diélectrique, la première couche conductrice plane étant munie d'au moins un bord, caractérisée en ce qu'elle comprend :
    • au moins une deuxième couche conductrice plane déposée sur la première face du substrat diélectrique, la deuxième couche conductrice plane étant munie d'au moins un bord en regard du bord de la première couche conductrice plane, et
    • un ensemble de nanostructures unidimensionnelles ayant une fréquence de résonance, les nanostructures unidimensionnelles ayant un axe sensiblement perpendiculaire au plan des première et deuxième couches conductrices et étant réparties, sur le substrat diélectrique, entre le bord de la première couche conductrice plane et le bord de la deuxième couche conductrice plane.
  • Selon une caractéristique supplémentaire de l'invention, la deuxième couche conductrice plane entoure complètement la première couche conductrice plane.
  • Selon une caractéristique supplémentaire de l'invention, une deuxième face du substrat diélectrique, opposée à la première face, est recouverte d'un plan conducteur.
  • Selon une caractéristique supplémentaire de l'invention, les nanostructures unidimensionnelles sont des nanotubes de carbone.
  • L'invention concerne également un plan de masse multi-bandes pour antenne comprenant un substrat diélectrique recouvert, sur une première face, d'un ensemble de motifs conducteurs plans et, sur une deuxième face, opposée à la première face, d'un plan conducteur, les motifs conducteurs plans étant reliés au plan conducteur par l'intermédiaire de trous métallisés qui traversent le substrat diélectrique, caractérisé en ce qu'un motif conducteur plan supplémentaire entoure complètement chaque motif conducteur plan, le motif conducteur plan supplémentaire étant séparé, par un espace, du motif conducteur plan qu'il entoure, et en ce que des nanostructures unidimensionnelles ayant une fréquence de résonance sont réparties, sur le substrat diélectrique, dans l'espace qui sépare le motif conducteur plan du motif conducteur supplémentaire, les nanostructures unidimensionnelles ayant un axe sensiblement perpendiculaire au plan des motifs conducteurs plans.
  • Selon une caractéristique supplémentaire de l'invention, les nanostructures unidimensionnelles sont des nanotubes de carbone.
  • Selon une caractéristique supplémentaire de l'invention, des pavés électriquement conducteurs sont présents, dans l'épaisseur du substrat diélectrique, dans un plan parallèle aux plans des première et deuxième faces du substrat diélectrique et situé entre lesdits plans des première et deuxième faces, au moins une fraction d'un motif conducteur plan supplémentaire étant en regard d'au moins une fraction d'au moins un pavé électriquement conducteur, un trou métallisé reliant chaque pavé électriquement conducteur au plan conducteur situé sur la deuxième face du substrat diélectrique.
  • Le procédé de fabrication de structure conductrice selon l'invention comprend :
    • une formation de couche de conducteur électrique sur un substrat diélectrique,
    • une formation de couche de résine sur la couche de conducteur électrique,
    • une gravure locale de la couche de résine et de la couche de conducteur électrique afin de dégager une surface du substrat diélectrique,
    • un dépôt de couche de résine sur ladite surface du substrat diélectrique et sur la couche de conducteur électrique qui entoure la surface du substrat diélectrique,
    • une étape de définition, à partir de ladite surface du substrat diélectrique, d'une zone de croissance pour les nanostructures unidimensionnelles,
    • une étape de gravure de la couche de résine pour former la zone de croissance préalablement définie,
    • un dépôt de catalyseur sur la couche de résine et la surface du substrat diélectrique,
    • un retrait de la couche de résine recouverte du catalyseur,
    • une étape de configuration du catalyseur sous forme de plots,
    • une croissance de nanostructures unidimensionnelles à partir des plots par dépôt PECVD.
  • L'invention permet avantageusement, entre autres, de réaliser simplement des antennes bi-bande dont le plan de masse est haute impédance aux deux fréquences de porteuse susceptibles d'être utilisées. Les caractéristiques inductance/capacité des microstructures sont alors adaptées aux deux fréquences de résonance.
  • Brève description des figures
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture d'un mode de réalisation préférentiel fait en référence aux figures jointes parmi lesquelles :
    • les figures 1a et 1b, déjà décrites, illustrent un premier exemple de plan de masse d'antenne selon l'art connu,
    • la figure 2, déjà décrite, illustre un deuxième exemple de plan de masse d'antenne selon l'art connu,
    • les figures 3a et 3b illustrent un premier exemple de surface conductrice d'étendue variable en fonction de la fréquence selon l'invention,
    • la figure 4 illustre un deuxième exemple de surface conductrice d'étendue variable en fonction de la fréquence selon l'invention,
    • la figure 5 illustre un premier exemple de plan de masse d'antenne bi-bande selon l'invention,
    • les figures 6a et 6b illustrent un deuxième exemple de plan de masse d'antenne bi-bande selon l'invention,
    • les figures 7 - 16 illustrent un exemple de procédé de réalisation de nanostructures unidimensionnelles selon l'invention,
    • les figures 17 et 18 illustrent deux variantes d'un exemple de dispositif obtenu selon le procédé décrit aux figures 7-16.
  • Sur toutes les figures, les mêmes repères désignent les mêmes éléments.
  • Description détaillée de modes de réalisation de l'invention.
  • Les figures 3a et 3b illustrent un premier exemple de structure conductrice d'étendue variable en fonction de la fréquence selon l'invention. La figure 3a est une vue de dessus de la structure et la figure 3b en est une vue en coupe transversale.
  • Un milieu diélectrique F est recouvert, sur une première face, d'un élément plan électriquement conducteur de surface SA (SA = a x b) et d'une bande plane électriquement conductrice de surface SB qui entoure l'élément plan de surface SA. L'élément plan de surface SA et la bande plane de surface SB sont séparés par une distance 11. Des nanostructures unidimensionnelles verticales NT sont réparties sur une surface SAB, dans un espace de largeur 11 qui sépare l'élément de surface SA de la bande de surface SB. Selon le mode de réalisation préférentiel de l'invention, les nanostructures unidimensionnelles NT sont des nanotubes de carbone tels que ceux décrits dans la demande internationale WO 02/080361 A1 . Il est également possible d'utiliser d'autres matériaux pour réaliser les nanostructures unidimensionnelles. Le carbone est préférentiellement choisi pour son excellente stabilité chimique et mécanique. Des nanofils peuvent également être utilisés.
  • De façon générale, par nanostructure "unidimensionnelle", il faut entendre une structure filaire dont la longueur est très supérieure au diamètre et dont le diamètre moyen varie, par exemple, de quelques nanomètres à quelques dizaines de nanomètres. La caractéristique "unidimensionnelle" est essentielle pour avoir une résonance mécanique quelle que soit la direction de l'excitation. L'axe des nanostructures unidimensionnelles est sensiblement perpendiculaire aux éléments plans de surfaces SA et SB.
  • Selon le mode de réalisation préférentiel de l'invention, les nanotubes de carbone sont des tubes de carbone creux dont le diamètre moyen varie de quelques nanomètres à quelques dizaines de nanomètres. Pour un nanotube ayant un diamètre extérieur Δ, un diamètre intérieur Δi, une longueur L, une densité ρ et un module d'élasticité Eb, il apparaît que la fréquence de résonance FR s'écrit : F R = 1 875 2 8 Π 1 L 2 Δ 2 + Δ i 2 Eb ρ
    Figure imgb0003
  • La longueur L des nanotubes peut varier, par exemple, de sensiblement 10nm à sensiblement 100µm. Les nanotubes sont reportés sur le substrat 1 d'une manière qui est décrite ci-dessous, en référence aux figures 13 à 16.
  • De l'équation (3) ci-dessus, il apparaît que chaque nanotube est un élément de filtrage de type passe-bande à facteur de qualité élevé. Dans le cadre de l'invention, les propriétés de filtrage des nanotubes sont utilisées pour moduler les surfaces conductrices. Ainsi, à la fréquence de résonance FR des nanotubes, l'ensemble constitué de l'élément plan de surface SA, de l'ensemble de nanotubes répartis sur la surface SAB et de la bande conductrice de surface SB est-il équivalent à une surface conductrice unique égale à la somme SA + SAB + SB, alors que, aux fréquences situées de part et d'autre de la fréquence de résonance, les surfaces SA et SB sont électriquement isolées l'une de l'autre.
  • De façon plus générale, deux surfaces conductrices coplanaires voisines, reliées entre elles de bord en bord par un ensemble de nanostructures unidimensionnelles verticales, se comportent comme une surface conductrice unique à la fréquence de résonance des nanostructures, et comme deux surfaces séparées aux autres fréquences.
  • On notera que les nanostructures divulguées dans la demande internationale WO 02/080361 sont posées sur une surface conductrice. Dans la présente invention, les nanostructures sont posées directement sur un substrat diélectrique.
  • Une particularité avantageuse du filtre de nanostructures unidimensionnelles est de permettre une propagation des courants de façon omnidirectionnelle et délocalisée, c'est à dire sur toute la longueur du côté commun aux deux surfaces conductrices, sans introduire de discontinuité dans la géométrie des conducteurs.
  • Les mouvements de charges électriques dans la surface conductrice sont donc possibles, dans chacune des surfaces séparées, à toutes les fréquences sauf à la fréquence de résonance des nanostructures, et, dans les deux surfaces, comme si elles n'en faisaient qu'une seule à la fréquence de résonance des nanostructures.
  • En particulier, si une des surfaces n'est reliée à un élément conducteur que par un joint de nanostructures unidimensionnelles (c'est le cas, par exemple, de la surface SB sur les figures 3a et 3b), elle se comporte comme électriquement flottante pour toutes les fréquences autres que la fréquence de résonance des nanostructures, et comme électriquement connectée à l'élément conducteur à la fréquence de résonance.
  • Dans l'exemple donné aux figures 3a et 3b, le substrat diélectrique F est recouvert sur une deuxième face, opposée à la première face, d'un plan conducteur M. La structure conductrice illustrée sur les figures 3a et 3b est en conséquence un condensateur dont la capacité varie en fonction de la fréquence.
  • Selon l'invention, il est également possible de réaliser des filtres de nanostructures unidimensionnelles à différentes fréquences de résonance entre des éléments conducteurs. La figure 4 illustre ce type d'exemple. Une première armature métallique de surface S1 est placée entre une deuxième armature métallique de surface S2 et une troisième armature métallique de surface S3. Un espace de largeur 12 sépare les première et deuxième armatures et un espace de largeur 13 sépare les deuxième et troisième armatures. Des nanostructures verticales NT sont uniformément réparties dans les espaces qui séparent les armatures. La fréquence de résonance du premier ensemble de nanostructures est réglée à une première fréquence FR1 et la fréquence de résonance du deuxième ensemble de est réglée à une deuxième fréquence de résonance FR2. Il s'en suit:
    • que les surfaces conductrices S1 et S2 sont électriquement reliées entre elles à la fréquence FR1, et
    • que les surfaces conductrices S1 et S3 sont électriquement reliées entre elles à la fréquence FR2.
  • Aux fréquences autres que les fréquences FR1 et FR2, les trois surfaces S1, S2, S3 sont électriquement isolées les unes des autres.
  • La figure 5 représente une vue de dessus d'un premier exemple de plan de masse d'antenne bi-bande selon l'invention. Un ensemble de motifs élémentaires sont régulièrement répartis sur la première face du substrat S. Un motif élémentaire est constitué d'un pavé conducteur p1, entouré par un ensemble de nanostructures unidimensionnelles verticales NT, lequel ensemble de nanostructures verticales NT est lui-même entouré par une bande conductrice b1. Le pavé conducteur p1, l'ensemble de nanostructures verticales NT et la bande b1 ont, par exemple, une géométrie hexagonale. Le pavé conducteur p1 est électriquement relié, par un trou métallisé V, à un plan conducteur P situé sur une deuxième face du substrat opposée de la première face (non représenté sur la figure).
  • Aux fréquences d'utilisation différentes de la fréquence de résonance des nanostructures, les bandes b1 sont électriquement isolées des pavés p1 et, en conséquence, seuls les pavés p1 contribuent à la conduction dans le plan de masse d'antenne. Par contre, à la fréquence de résonance des nanotubes, la bande b1 et le pavé p1 de chaque motif élémentaire sont électriquement reliés entre eux. Ce sont alors les pavés p1, les nanostructures NT et les bandes b1 qui contribuent au plan de masse d'antenne. On peut ainsi réaliser un plan de masse qui présente une haute impédance à deux fréquences de porteuses différentes, une des deux fréquences de porteuse étant la fréquence de résonance des nanostructures. Le plan de masse haute impédance est alors avantageusement un plan de masse bi-bande sans commutation de bande.
  • Les principaux avantages d'un plan de masse d'antenne à nanostructures unidimensionnelles peuvent s'énumérer comme suit :
    • le plan de masse haute impédance peut-être multi-bandes sans commutation physique,
    • aucune électrode de commande n'est nécessaire pour la commutation,
    • les fréquences de résonance sont définies par la géométrie des motifs et/ou une polarisation continue,
    • pas de report de MEMS (MEMS pour "Micro ElectroMechanical System").
  • Les figures 6a et 6b représentent un deuxième exemple de plan de masse d'antenne bi-bande selon l'invention. Ce deuxième exemple correspond, dans le cadre de l'invention, au plan de masse bi-bande représenté en figure 2, dans le cadre de l'art antérieur. Les pavés conducteurs sont alors situés dans deux plans parallèles P1 et P2 séparés par une distance D. La différence entre le plan de masse bi-bande de l'invention et le plan de masse bi-bande de l'art antérieur consiste en ce que la surface conductrice des pavés m2 situés dans le plan P2 varie en fonction de la fréquence. Un pavé m2 est en effet constitué d'un élément plan électriquement conducteur m2a entouré par une bande plane électriquement conductrice m2b, l'espace qui sépare la bande m2b de l'élément plan m2a étant empli de nanostructures unidimensionnelles verticales NT. A la fréquence de résonance des nanostructures NT, la surface d'un pavé m2 est ainsi la somme de la surface de l'élément m2a, de la bande m2b et de l'espace empli de nanotubes NT qui sépare l'élément m2a de la bande m2b. Par contre, aux fréquences autres que la fréquence de résonance des nanostruçtures, la surface d'un pavé m2 est la surface du seul élément m2a, la bande m2b étant électriquement isolée du reste du circuit.
  • Les figures 7 - 16 illustrent un exemple de procédé de fabrication de nanotubes.
  • La figure 7 illustre la formation d'une couche de métal ou de conducteur électrique 2 sur un substrat diélectrique 1. Le substrat diélectrique 1 est choisi en fonction des performances électriques souhaitées. Ainsi, le substrat 1 est-il, préférentiellement, de l'alumine (SiO2) pour des fréquences d'utilisation de l'ordre de quelques Gigahertzs. D'autres matériaux peuvent cependant être utilisés tels que, par exemple, le saphir, le quartz, l'oxyde de béryllium, le dioxyde de titane, le verre. Le matériau qui constitue la couche de conducteur électrique 2 est, par exemple, l'argent, le cuivre, l'or, l'aluminium, le niobium, le molybdène, le chrome, le titane, le tantale.
  • La formation de la couche conductrice 2 est suivie du dépôt d'une couche de résine 3 sur la couche conductrice 2, puis, d'une gravure de la couche de résine 3 (figure 8) suivie d'une gravure de la couche conductrice 2 (figure 9). Les gravures de la couche de résine 3 et de la couche conductrice 2 conduisent à dégager une surface E du substrat diélectrique 1 sur laquelle les nanostructures unidimensionnelles vont être formées (cf. figure 9).
  • A la gravure de la couche conductrice 2 succède le dépôt d'une couche de résine 4 (cf. figure 10). Le dépôt de la couche de résine 4 est suivi par une étape de définition d'une zone Z dans laquelle les nanostructures unidimensionnelles vont croître (cf. figures 11 et 12). La définition de la zone Z peut se faire, par exemple, de deux manières différentes :
    • par autoalignement en illuminant à l'aide d'un rayonnement ultraviolet R le substrat par sa face arrière (cf. figure 11, le substrat doit alors être transparent aux fréquences de ultraviolet), ou
    • à l'aide d'un masque (non représenté sur les figures).
  • La zone Z une fois définie est gravée (cf. figure 12) et un catalyseur 6 est déposé sur la couche de résine 4 et sur la surface E (cf. figure 13). Le catalyseur 6 peut être, par exemple, du Fe/Co, du Nickel, ou du Fe/Si, déposé par évaporation ou par pulvérisation sur une épaisseur pouvant varier, par exemple, de 1nm à 100nm.
  • Un retrait de la résine 4 est alors effectué de sorte que le catalyseur 6 ne soit plus présent que sur la surface E (cf. figure 14).
  • Le catalyseur 6 est ensuite configuré en une multiplicité de plots plt. Les plots plt sont obtenus, par exemple, à l'aide de techniques de lithographie fine qui permettent l'obtention d'un réseau régulier de plots ou à l'aide de techniques de coalescence thermique qui permettent l'obtention de plots dont la taille est répartie selon une distribution moyenne autour d'une valeur ciblée (cf. figure 15). Les plots plt sont, par exemple, des éléments cylindriques de quelques nanomètres de diamètre.
  • Les nanostructures unidimensionnelles NT sont ensuite réalisées in situ, par dépôt chimique en phase vapeur assisté par plasma, plus communément appelé dépôt PECVD (PECVD pour "Plasma Enhanced Chemical Vapor Deposition"). Le dépôt PECVD est, par exemple, un dépôt de carbone en phase vapeur. Les nanostructures NT croissent alors naturellement, de façon unidimensionnelle, à partir des plots plt (cf. figure 16). Le diamètre des plots détermine celui des nanostructures (ils sont sensiblement égaux). Au plus le dépôt PECVD dure, au plus les nanostructures sont longues. De façon préférentielle, l'extrémité haute des nanostructures est positionnée sensiblement au niveau de la surface de la couche conductrice 2. En effet, la vibration des nanostructures est provoquée par le champ électromagnétique lié au déplacement des électrons dans le plan conducteur 2. La vibration est maximale quand le champ est maximal, c'est-à-dire lorsque le centre d'oscillation des nanostructures est positionné, en hauteur, sensiblement au milieu de l'épaisseur de la couche conductrice 2.
  • Dans le procédé décrit ci-dessus, le substrat 1 présente une surface à un seul niveau sur lequel sont placés la couche conductrice 2 et les nanostructures NT (cf. figure 16). Selon d'autres modes de réalisation, la zone du substrat 1 sur laquelle sont placées les nanostructures n'est pas au même niveau que celle où est placée la couche conductrice 2. Le substrat 1 est alors soit rehaussé (cf. figure 17) soit abaissé (cf. figure 18) sous les nanostructures. Dans le cas d'un substrat rehaussé, le substrat 1 est sélectivement gravé là où la couche conductrice 2 est destinée à être déposée. Dans le cas d'un substrat abaissé, c'est la zone où les nanotubes sont placés qui est préalablement gravée sélectivement.

Claims (7)

  1. Structure conductrice comprenant au moins une première couche conductrice plane déposée sur une première face d'un substrat diélectrique, la première couche conductrice plane étant munie d'au moins un bord, caractérisée en ce qu'elle comprend :
    - au moins une deuxième couche conductrice plane déposée sur la première face du substrat diélectrique, la deuxième couche conductrice plane étant munie d'au moins un bord en regard du bord de la première couche conductrice plane, et
    - un ensemble de nanostructures unidimensionnelles (NT) ayant une fréquence de résonance (FR), les nanostructures unidimensionnelles ayant un axe sensiblement perpendiculaire au plan des première et deuxième couches conductrices et étant réparties, sur le substrat diélectrique, entre le bord de la première couche conductrice plane et le bord de la deuxième couche conductrice plane.
  2. Structure conductrice selon la revendication 1, dans laquelle la deuxième couche conductrice plane entoure complètement la première couche conductrice plane.
  3. Structure conductrice selon l'une des revendications 1 ou 2, dans laquelle une deuxième face du substrat diélectrique, opposée à la première face, est recouverte d'un plan conducteur.
  4. Structure conductrice selon l'une des revendications 1 à 3, dans laquelle les nanostructures unidimensionnelles sont des nanotubes de carbone.
  5. Plan de masse multi-bandes pour antenne comprenant un substrat diélectrique (S) recouvert, sur une première face, d'un ensemble de motifs conducteurs plans (p1, m2a) et, sur une deuxième face, opposée à la première face, d'un plan conducteur (P), les motifs conducteurs plans (p1, m2a) étant reliés au plan conducteur (P) par l'intermédiaire de trous métallisés (V) qui traversent le substrat diélectrique (S), caractérisé en ce qu'un motif conducteur plan supplémentaire (b1, m2b) entoure complètement chaque motif conducteur plan (p1, m2a), le motif conducteur plan supplémentaire étant séparé, par un espace, du motif conducteur plan qu'il entoure, et en ce que des nanostructures unidimensionnelles (NT) ayant une fréquence de résonance sont réparties, sur le substrat diélectrique, dans l'espace qui sépare le motif conducteur plan (p1, m2a) du motif conducteur supplémentaire (b1, m2b), les nanostructures unidimensionnelles (NT) ayant un axe sensiblement perpendiculaire au plan des motifs conducteurs plans.
  6. Plan de masse multi-bandes selon la revendication 5, dans lequel les nanostructures unidimensionnelles sont des nanotubes de carbone.
  7. Plan de masse multi-bandes selon l'une des revendications 5 ou 6, caractérisé en ce que des pavés électriquement conducteurs (m1) sont présents, dans l'épaisseur du substrat diélectrique, dans un plan (P1) parallèle aux plans des première et deuxième faces du substrat diélectrique et situé entre lesdits plans des première et deuxième faces, au moins une fraction d'un motif conducteur plan supplémentaire (m2a) étant en regard d'au moins une fraction d'au moins un pavé électriquement conducteur (m1), un trou métallisé reliant chaque pavé électriquement conducteur (m1) au plan conducteur (P) situé sur la deuxième face du substrat diélectrique.
EP06121114A 2005-09-26 2006-09-22 Structure conductrice variable en fonction de la fréquence Not-in-force EP1768212B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0552871A FR2891405B1 (fr) 2005-09-26 2005-09-26 Structure conductrice d'etendue variable en fonction de la frequence

Publications (2)

Publication Number Publication Date
EP1768212A1 EP1768212A1 (fr) 2007-03-28
EP1768212B1 true EP1768212B1 (fr) 2008-04-02

Family

ID=36282850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06121114A Not-in-force EP1768212B1 (fr) 2005-09-26 2006-09-22 Structure conductrice variable en fonction de la fréquence

Country Status (5)

Country Link
EP (1) EP1768212B1 (fr)
AT (1) ATE391350T1 (fr)
DE (1) DE602006000856T2 (fr)
ES (1) ES2306378T3 (fr)
FR (1) FR2891405B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791433B2 (en) * 2008-02-29 2010-09-07 Nokia Corporation Apparatus, method, and computer program product providing edgeless carbon nanotube resonator arrays

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700550B2 (en) * 1997-01-16 2004-03-02 Ambit Corporation Optical antenna array for harmonic generation, mixing and signal amplification
KR20000074609A (ko) * 1999-05-24 2000-12-15 김순택 카본 나노 튜브를 이용한 전계 방출 어레이 및 그 제조방법
US6737939B2 (en) * 2001-03-30 2004-05-18 California Institute Of Technology Carbon nanotube array RF filter

Also Published As

Publication number Publication date
EP1768212A1 (fr) 2007-03-28
DE602006000856D1 (de) 2008-05-15
ATE391350T1 (de) 2008-04-15
FR2891405A1 (fr) 2007-03-30
ES2306378T3 (es) 2008-11-01
FR2891405B1 (fr) 2011-11-25
DE602006000856T2 (de) 2009-05-07

Similar Documents

Publication Publication Date Title
EP1580844B1 (fr) Cellule déphaseuse à polarisation linéaire et à longueur résonante variable au moyen de commutateurs mems
CA1295732C (fr) Antenne multifrequence, utilisable notamment dans le domaine des telecommunications spatiales
EP1032001A1 (fr) Composant inductif, tranformateur intégré, notamment destinés à être incorporés dans un circuit radiofréquence, et circuit intégré associé avec un tel composant inductif ou transformateur intégré
FR2905793A1 (fr) Dispositif magnetique integre controle piezoelectriquement
EP1964204B1 (fr) Boitier avec fonction accordable en frequence
EP1543535B1 (fr) Procédé de réalisation des microcommutateurs a actuation electrostatique a faible temps de reponse et a commutation de puissance
WO2017212047A1 (fr) Antenne filaire large bande a motifs resistifs avec resistance variable
FR2852165A1 (fr) Procede de realisation d'un microresonateur piezolectrique accordable
EP1617503A1 (fr) Filtre fréquentiel et son procédé de réalisation
WO2004001899A1 (fr) Cellule dephaseuse pour reseau reflecteur d'antenne
EP1768212B1 (fr) Structure conductrice variable en fonction de la fréquence
EP1438728B1 (fr) Micro-condensateur variable (mems) a fort rapport et faible tension d'actionnement
EP3417507A1 (fr) Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque
EP1202376A1 (fr) Résonateur électrique
EP1000465A1 (fr) Transducteur unidirectionnel grave a ondes acoustiques de surface
EP2772943A1 (fr) Procédé de réalisation d'un dispositif microélectronique et dispositif correspondant
EP2024986B1 (fr) Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure
FR2964499A1 (fr) Ligne de transmission haute frequence accordable
EP1536439B1 (fr) Composant incluant un condensateur variable
EP1019927B1 (fr) Procede pour augmenter la frequence de fonctionnement d'un circuit magnetique et circuit magnetique correspondant
EP4203189A1 (fr) Antenne fil plaque monopolaire à bande passante élargie
FR2958085A1 (fr) Ligne de transmission haute frequence accordable
EP4079680B1 (fr) Dispositif de conversion électromécanique et système utilisant un tel dispositif
FR3009431A1 (fr) Guide d'onde rectangulaire a ondes lentes
CN116325496A (zh) 声反射器中具有通过质量载荷调谐频率的固态安装体声波谐振器及其制造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602006000856

Country of ref document: DE

Date of ref document: 20080515

Kind code of ref document: P

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20080430

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080904

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2306378

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

26N No opposition filed

Effective date: 20090106

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080922

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080703

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150928

Year of fee payment: 10

Ref country code: FI

Payment date: 20150817

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150916

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160923

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160922

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160923

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180913

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180919

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006000856

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190922