EP1768150B1 - High voltage circuit breaker with improved interrupting capacity - Google Patents
High voltage circuit breaker with improved interrupting capacity Download PDFInfo
- Publication number
- EP1768150B1 EP1768150B1 EP05405556A EP05405556A EP1768150B1 EP 1768150 B1 EP1768150 B1 EP 1768150B1 EP 05405556 A EP05405556 A EP 05405556A EP 05405556 A EP05405556 A EP 05405556A EP 1768150 B1 EP1768150 B1 EP 1768150B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas flow
- partial gas
- gas
- switching
- partial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000012432 intermediate storage Methods 0.000 claims description 77
- 238000001816 cooling Methods 0.000 claims description 36
- 238000003860 storage Methods 0.000 claims description 14
- 238000010791 quenching Methods 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims 2
- 238000007599 discharging Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 230
- 230000000171 quenching effect Effects 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 6
- 241000722921 Tulipa gesneriana Species 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/70—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
- H01H33/72—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber
- H01H33/74—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber wherein the break is in gas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/53—Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
- H01H33/57—Recuperation of liquid or gas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/04—Means for extinguishing or preventing arc between current-carrying parts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/664—Contacts; Arc-extinguishing means, e.g. arcing rings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/02—Housings; Casings; Bases; Mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/70—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
- H01H33/88—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
- H01H2033/888—Deflection of hot gasses and arcing products
Definitions
- the invention relates to the field of high-voltage technology, in particular the high-voltage circuit breakers in electrical power distribution networks. It is based on a method and a high voltage switch according to the preamble of the independent claims.
- a flow control device which surrounds the extinguishing gas flow coaxially and has a lateral surface with two outflow openings.
- the lateral surface of the flow-deflecting device defines an exhaust gas volume. Partial flows of the quenching gas flow out of the outflow openings into the switching chamber volume. The outflow directions of the directly opposite outflow openings are directed so that they intersect each other. It is thereby achieved that the extinguishing gas is favorably mixed after passing through the respective outflow openings.
- the outlet openings may be associated with additional swirling body or baffles to additionally swirl the leaking from the outlet openings switching gas. By mixing and turbulence, the extinguishing gas flow is braked upon entry into the switching chamber volume, cooled and dielectrically solidified to avoid flashovers on the switching chamber housing.
- a high voltage circuit breaker is disclosed with an interrupter unit, in which The exhaust gases are deflected twice by 180 °.
- a concentrically arranged, hollow cylindrical, radially flowed through perforated plate is present on the fixed contact side.
- the perforated plate serves as a heat sink, which extracts heat from the quenching gas.
- the perforated plate does not increase the flow resistance for the quenching gas. In the area of the perforated plate, a uniform, laminar quenching gas flow is maintained.
- a circuit breaker in which exhaust gas is also passed from an arc chamber through a hollow contact in a concentrically arranged exhaust volume and from there into a more external extinguishing chamber volume.
- at least one intermediate volume and possibly an additional volume are arranged concentrically between the hollow contact and the exhaust volume and separated from one another by intermediate walls which have bores or gas passage openings. Due to the radial outflow of the switching gases from the inner to the outer volumes, the exhaust gases are jet-like directed and vortexed on the partition walls of the volumes. In this way, heat is transferred turbulently convective to the intermediate walls in a highly efficient manner.
- the passage openings between the hollow contact volume, the intermediate volume and optionally the additional volume are offset from each other on the circumference.
- the passage openings between the additional volume and the exhaust volume are arranged offset from each other on the circumference and / or in the axial direction.
- the invention is based on the prior art according to US 4,471,187 , There, a high voltage switch is shown with a special exhaust design, wherein cold gas is present in the outflow volume, the outflow volume is bypassed by a first partial gas flow and only a second partial gas flow displaces the cold gas from the outflow volume.
- the first and second partial gas flows are flowed together at the open end of the outflow volume into the large-volume switching circuit housing.
- the invention consists in a method for cooling a switching gas in an electrical switching device for electrical power grids, in particular in a high voltage switch, wherein the switching device comprises a switching chamber which is enclosed by a switching chamber housing, wherein further in a switching process hot switching gas from an arc extinguishing zone to a Cold gas filled exhaust area flows and the hot switching gas is split into at least two partial gas flows, wherein at least a portion of the cold gas is stored in the exhaust area and the first partial gas flow bypasses the cached cold gas and is discharged into the switching chamber and with the help of the second partial gas flow, the cached cold gas displaced from the exhaust area and mixed before flowing into the switching chamber housing with the first partial gas flow, wherein behind the mixing zone and before entering the Scha lthunt housing in a mixing channel, the first partial gas flow is additionally mixed with the cached cold gas.
- the embodiment according to claim 2 and 10 has the advantage that the first partial gas flow flows out of the exhaust largely at the same time as the stored cold gas, which is displaced from the second partial gas flow from the exhaust area and in particular the intermediate storage volume.
- the invention also relates to an electrical switching device for an electrical energy supply network, in particular a high-voltage switch.
- the switching device comprises a switching chamber, which is enclosed by a switching chamber housing and a Arc extinguishing zone and an exhaust volume for cooling of hot switching gas, wherein at the beginning of a switching operation, an exhaust area of the exhaust volume is filled with cold gas, means for splitting the hot switching gas in at least two partial gas flows are present, further in the exhaust area a buffer storage volume for storing cold gas is present, a first means is present, which directs the first partial gas flow, bypassing the intermediate storage volume in the switching chamber housing, and a second means is provided, which directs the second partial gas flow to the stored cold gas and thereby causes the displacement of the stored cold gas from the intermediate storage volume behind the mixing zone and before entering the switching chamber housing a mixing channel is arranged, in which an additional mixing of the first partial gas flow with the displaced from the intermediate storage volume cold gas st attfindet.
- the embodiments according to claim 15-19 indicate preferred structural embodiments for the buffer storage volume.
- Fig. 1 shows simplified the exhaust area of a conventional high-voltage switch, which is constructed concentrically around a switch axis 1a and in the hot switching gas 11, 110 from the arc zone 6 along a path, here a meandering path, is discharged from the exhaust volume 4 into the switching chamber 2.
- the cold gas 111 is forced out of the exhaust area, without contributing to the cooling of the switching gas 11, 110.
- Fig. 2 shows a simplified embodiment of a switching gas cooling according to the invention.
- the hot switching gas 11, 110 is split into two partial gas flows 11a, 11b, at least part of the cold gas 111 is temporarily stored in the exhaust area 7, 8, the first partial gas flow 11a is conducted past the cached cold gas 111 and flowed into the switching chamber 2, and with the aid of the second partial gas flow 11b the cached cold gas 111 is removed from the exhaust area 7, 8 displaced and mixed before flowing out into the switching chamber housing 3 with the first partial gas flow 11a.
- the mixed switching gas 13 has already at the beginning of the switching gas emission a significantly reduced temperature compared to the conventional exhaust according to Fig. 1 where first cold gas 111 and then the relatively little cooled hot gas 110 flows out.
- further embodiments of the switching gas cooling process in connection with the Fig. 2-9 discussed.
- the longer path can be divided into at least two paths, namely into the second partial gas flow 11b and a third or further partial gas flow 11c supporting this.
- an improved mixing of the switching gas 11 can be achieved.
- the cached portion of the cold gas 111 is temporarily stored in the exhaust area in a cold gas reservoir or intermediate storage volume 7, 8, wherein the intermediate storage volume 7, 8 an inlet opening 70 and an outlet opening 80 for the second 11b and the optional, further supporting partial gas flow 11c and in the region Outlet opening 80 has a mixing zone 12, in which the stored cold gas 111 is mixed with the first partial gas flow 11 a.
- a negative pressure in the region of the mixing zone 12 is generated by the first partial gas flow 11a, through which the cached cold gas 111 from the intermediate storage volume 7, 8 is sucked.
- the suction may be effective alone or in support of cold gas displacement.
- the first partial gas flow 11a may be mixed with the intermediately stored cold gas 111 and in particular with a pre-cooled second partial gas flow 11b and optionally with a third or further partial gas flow 11c.
- gas jets can also be formed in the first partial gas flow 11a and in the displaced cold gas flow 111 and directed against one another in such a way that they swirl and mix with one another.
- the switching gas 11 is effectively cooled before or during the outflow into the switching chamber housing 3.
- switching gas 11 can also be directed to a baffle plate 9b and cooled there ( Fig. 9 ); and / or in the switching gas 11, an extended path, in particular a meandering path, can be predetermined by means of steering means 9c and / or a recirculation area can be formed by means of turbulence means 9c ( Fig. 9 ). Other, not mentioned aids for switching gas cooling can also be used.
- the contact tulip can also be formed as a hollow exhaust outflow tube with a Hohljorausströmö réelle 5a. Concentric with the arcing contact system 5, the rated current contacts are arranged, which in turn are surrounded by the switching chamber insulator 3a.
- an exhaust area 7, 8 of the exhaust volume 4 is filled with cold gas 111.
- a buffer storage volume 7, 8 for storing cold gas 111 is arranged, wherein a first means 71; 101, 102, which directs the first partial gas flow 11a, bypassing the intermediate storage volume 7, 8 into the switching chamber housing 3, and a second means 7a, 7b, 72 is present, which directs the second partial gas flow 11b to the stored cold gas 111 and thereby the displacement of the stored cold gas 111 from the intermediate storage volume 7, 8 causes.
- Fig. 3-9 show this constructive embodiments.
- a shorter path for the first partial gas flow 11a and a longer path for the second partial gas flow 11b and optionally for at least one further partial gas flow 11c should be provided between the arc extinguishing zone 6 and the switching chamber housing 3c.
- a path length difference 2 * 1 between the longer and shorter path through a flow-through length 2 * 1 by the intermediate storage volume 7, 8 predetermined.
- the path length difference or flow length can also be composed of two or more unequal length partial paths ( Fig. 5-8 ).
- the intermediate storage volume 7, 8 has an inlet opening 70 and an outlet opening 80, the first means 71 directing the first partial gas flow 11a bypassing the intermediate storage volume 7, 8 to the outlet opening 80 and the second means 7a, 7b, 72 directing the second partial gas flow 11b or optionally further partial gas flows 11c to the inlet opening 70 and through the intermediate storage volume 7 to the outlet opening 80 directs.
- a mixing zone 12 for mixing the first partial gas flow 11a with the cold gas 111 should be present, which is stored in the intermediate storage volume 7, 8 and which is displaced from the intermediate storage volume 7, 8 by the second partial gas flow 11b.
- the mixing zone 12 can at the same time be designed as a vacuum zone 12 for sucking the stored cold gas 111 from the intermediate storage volume 7, 8. This can be z. B. by the flow conditions and in particular flow velocities of the partial flows 11a, 11b and optionally 11c in the region of the vacuum zone 12 can be achieved.
- the mixing zone 12 can also be designed as a turbulence zone 12 for the first partial gas flow 11a and the cold gas 111, in particular of gas jets of the first partial gas flow 11a and the cold gas 111.
- Diameter D and length L should be dimensioned so that an efficient mixture of the already premixed partial gas flows 11a, 11b, 11c with the cold gas 111 and with each other is realized.
- the mixing channel 10 can be axially ( Fig. 3-4 . 7-9 ) and / or radially ( Fig. 5-6 ) be aligned.
- the storage capacity of the intermediate storage volume 7, 8 is dimensioned such that a desired mixing time and mixing temperature of the first partial gas flow 11a with the temporarily stored cold gas 111 can be achieved. Also, the flow-through length, z. 2 * 1 in Fig. 3-4 , be dimensioned by the intermediate storage volume 7, 8 so that a desired time delay of the second partial gas flow 11a in the intermediate storage volume 7, 8 relative to the first partial gas flow 11b can be realized.
- Fig. 3-9 also show preferred structural designs of the switching device 1.
- the exhaust volume 4 is enclosed by an exhaust housing 4a having an outflow opening 101 and an exhaust port 102 to the switching chamber housing 2 out.
- the intermediate storage volume 7, 8 is formed by a permeable body 7 a, 7 b, 8 a, 8 b, which is arranged in the exhaust volume 4.
- the first opening 71 is close to Outflow opening 101, in particular radially opposite, arranged; and / or to provide a maximum path for the second partial gas flow 11b, the second opening 72 is located far away from the outflow opening 101, in particular axially maximally spaced apart from the outflow opening 101; and / or a third or further opening 73 is arranged between the first and second openings 71, 72 for a further partial gas flow 11c in the axial direction 1a (FIG. Fig. 8 , right side).
- the further partial gas flow 11c the long path can be divided into at least two paths 11b, 11c. As a result, the mixing of the switching gas 11 in the outer volume 8 can be improved.
- the second opening 72 cooperates with a deflecting device 7b, 8b, 8a for returning the stored cold gas 111 and the second partial gas flow 11b to the outlet opening 80 of the intermediate storage volume 7, 8; and / or the path length difference between the shorter path 11a for the first partial gas flow and the longer path 11b for the second partial gas flow is given by the axial distance between the first and second openings 71, 72.
- the openings 71, 72, 73 may be holes or slots in a wall 7a, 7b of the body 7a, 7b, 8a, 8b.
- the openings 71, 72, 73 may be arranged in a radial wall 7a and / or in an axial wall 7b of the body 7a, 7b, 8a, 8b.
- a number, size (ie cross-sectional area A 1 , A 2 , A 3 ) and position of the first, second and optionally third openings 71, 72, 73 should be selected so that the first partial gas flow 11 a still largely in the exhaust volume 4 with the stored cold gas 111 is mixable.
- the outer cylinder 8a, 8b surrounds the inner cylinder 7a, 7b, defines an outer volume V 2 and has an exit opening 80 for the stored cold gas 111 and the second partial gas flow 11b toward the extinguishing arc zone 6.
- the inner cylinder 7a, 7b and outer cylinder 8a, 8b communicate with each other through the second opening 72 and optionally the third opening 73.
- the inner and outer volumes V 1 , V 2 should be coordinated so that a desired storage capacity for the cold gas 111 and a desired flow dynamics for the second partial gas flow 11b can be realized.
- the buffer storage volume 7, 8, the first means 71; 101, 102 and the second means 7a, 7b, 72 may be arranged in the exhaust area 7, 8 of a first and / or a second contact 5 of the switching device 1.
- the switching device 1 may be a high-voltage circuit breaker 1 or a high-current switch or a circuit breaker o. ⁇ . Act.
- Fig. 3-8 left side or drive contact side and right side or fixed contact side two partial gas flows 11a, 11b realized through holes 71, 72;
- Fig. 4 left side with slots 71, 72 instead of holes and right side with large-area second opening 72 in the rear wall 7b of the inner cylinder 7a, 7b;
- Fig. 5-6 axially aligned first and second openings 71, 72 and inner cylinder 7a, 7b shortened axially (left side) and / or radially reduced (right side); further mixing channel 10 with radial exhaust or gas outlet 102;
- Fig. 3 left side or drive contact side and right side or fixed contact side two partial gas flows 11a, 11b realized through holes 71, 72
- Fig. 4 left side with slots 71, 72 instead of holes and right side with large-area second opening 72 in the rear wall 7b of the inner cylinder 7a, 7b
- Fig. 5-6 axially aligned first and second openings 71, 72 and inner cylinder 7a, 7
- Slits 72 for the second partial gas flow 11b are dimensioned such that a hot gas jet or jet is built up and impacted against the outer wall 8a of the outer cylinder 8a, 8b, as discussed further below;
- Fig. 8 Additional volume 9a for building up a hot gas jet or jet (left side) and third openings 73 for splitting off a third partial gas flow 11c;
- Fig. 9 first partial gas flow 11a or, as shown, second partial gas flow 11b with further cooling mechanisms 9.
- Aids 9, 9a, 9b, 9c; 74, 75 for pre-cooling of the switching gas 11 may be arranged in the exhaust volume 4 of the switching device 1.
- the aids 9, 9a, 9b, 9c; 74, 75 may be arranged in the hot gas flow 110 before the splitting into the partial gas flows 11a, 11b, 11 and / or in the first partial gas flow and / or in the second partial gas flow 11a, 11b and possibly in the further partial gas flow 11c.
- Such aids relate on the one hand jet-forming outflow openings 74 in the intermediate storage volume 7, 8 and / or in an additional volume 9a for the formation of gas jets and a baffle 75 for turbulence and intensive turbulent convective cooling of the gas jets.
Landscapes
- Circuit Breakers (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Electronic Switches (AREA)
Abstract
Description
Die Erfindung bezieht sich auf das Gebiet der Hochspannungstechnik, insbesondere der Hochspannungsleistungsschalter in elektrischen Energieverteilnetzen. Sie geht aus von einem Verfahren und einem Hochspannungsschalter gemäss Oberbegriff der unabhängigen Patentansprüche.The invention relates to the field of high-voltage technology, in particular the high-voltage circuit breakers in electrical power distribution networks. It is based on a method and a high voltage switch according to the preamble of the independent claims.
In der
In der
In dem Gebrauchsmuster
In der
In den vorbekannten Schaltern wird kaltes Gas, das vor dem Schaltvorgang in der Unterbrechereinheit verweilt, von heissem Abgas, das aus der Lichtbogenzone abströmt, verdrängt und aus dem Auspuff rausgeschoben. Der zu verdrängende Kaltgasanteil behindert das Abströmen der heissen Abgase und geht für Kühlzwecke ungenützt verloren.In the previously known switches, cold gas that remains in the interrupter unit before the switching operation is displaced by hot exhaust gas flowing out of the arc zone and pushed out of the exhaust pipe. The displaced to cold gas content hinders the outflow of hot exhaust gases and is lost for cooling purposes unused.
Bei der Erfindung wird ausgegangen von dem Stand der Technik gemäß
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Kühlung eines Schaltgases in einem elektrischen Schaltgerät und ein zugehöriges elektrisches Schaltgerät mit einer verbesserten Schaltleistung anzugeben. Diese Aufgabe wird erfindungsgemäss durch die Merkmale der unabhängigen Ansprüche gelöst.Object of the present invention is to provide a method for cooling a switching gas in an electrical switching device and an associated electrical switching device with an improved switching performance. This object is achieved according to the invention by the features of the independent claims.
Die Erfindung besteht in einem Verfahren zur Kühlung eines Schaltgases in einem elektrischen Schaltgerät für elektrische Energieversorgungsnetze, insbesondere in einem Hochspannungsschalter, wobei das Schaltgerät eine Schaltkammer umfasst, die von einem Schaltkammergehäuse umschlossen ist, wobei ferner bei einem Schaltvorgang heisses Schaltgas von einer Lichtbogenlöschzone zu einem mit Kaltgas gefüllten Auspuffbereich strömt und das heisse Schaltgas in mindestens zwei Teilgasströmungen aufgespalten wird, wobei zumindest ein Teil des Kaltgases im Auspuffbereich zwischengespeichert wird und die erste Teilgasströmung an dem zwischengespeicherten Kaltgas vorbeigeleitet und in die Schaltkammer abgeströmt wird und mit Hilfe der zweiten Teilgasströmung das zwischengespeicherte Kaltgas aus dem Auspuffbereich verdrängt und vor dem Abströmen in das Schaltkammergehäuse mit der ersten Teilgasströmung durchmischt wird, wobei hinter der Durchmischungszone und vor Eintritt in das Schaltkammergehäuse in einem Durchmischungskanal die erste Teilgasströmung mit dem zwischengespeicherten Kaltgas zusätzlich vermischt wird. Durch die Zwischenspeicherung des Kaltgases und die Vermischung mit dem ersten heissen Teilgasstrom wird dieser effizient gekühlt. Diese Kühlung erfolgt zu einem sehr frühen Zeitpunkt beim Abströmen des ersten Teilgasstroms aus der Lichtbogenlöschzone. Im Auspuffvolumen vorhandenes Kaltgas wird nicht ungenutzt hinausverdrängt, sondern zur Abgaskühlung genutzt. Die Verdrängung des Kaltgases aus dem Zwischenspeichervolumen erfolgt durch den zweiten Teilgasstrom, insbesondere indem dieser durch das Zwischenspeichervolumen geströmt wird, oder indem durch diesen das Zwischenspeichervolumen in seiner Grösse reduziert wird, z. B. durch Ausüben von Gasdruck auf eine beweglich gelagerte Wand des Zwischenspeichervolumens, oder indem dieser einen Unterdruck erzeugt und dadurch das Kaltgas aus dem Zwischenspeichervolumen ansaugt, durch Kombination derartiger Effekte oder auf andere Weise. Durch die verbesserte Kühlung wird das Schaltgas dielektrisch wirkungsvoller als bisher verfestigt, die Schaltleistung kann gesteigert werden und/oder das Schaltkammergehäuse kann kompakter, insbesondere schlanker, dimensioniert werden, ohne elektrische Überschläge zwischen dem abströmenden Schaltgas und dem Schaltkammergehäuse zu riskieren.The invention consists in a method for cooling a switching gas in an electrical switching device for electrical power grids, in particular in a high voltage switch, wherein the switching device comprises a switching chamber which is enclosed by a switching chamber housing, wherein further in a switching process hot switching gas from an arc extinguishing zone to a Cold gas filled exhaust area flows and the hot switching gas is split into at least two partial gas flows, wherein at least a portion of the cold gas is stored in the exhaust area and the first partial gas flow bypasses the cached cold gas and is discharged into the switching chamber and with the help of the second partial gas flow, the cached cold gas displaced from the exhaust area and mixed before flowing into the switching chamber housing with the first partial gas flow, wherein behind the mixing zone and before entering the Scha ltkammer housing in a mixing channel, the first partial gas flow is additionally mixed with the cached cold gas. The intermediate storage of the cold gas and the mixing with the first hot partial gas flow, this is cooled efficiently. This cooling takes place at a very early time when the first partial gas flow out of the arc extinguishing zone. In the exhaust volume existing cold gas is not displaced unused, but used for exhaust gas cooling. The displacement of the cold gas from the intermediate storage volume is effected by the second partial gas flow, in particular by this is passed through the buffer storage volume or by the buffer storage volume is reduced in size, for. B. by applying gas pressure to a movably mounted wall of the intermediate storage volume, or by this generates a negative pressure and thereby sucks the cold gas from the intermediate storage volume, by combining such effects or otherwise. Due to the improved cooling, the switching gas is dielectrically more effective than previously solidified, the switching capacity can be increased and / or the switching chamber housing can be more compact, in particular slimmer, dimensioned without risking electrical flashovers between the outflowing switching gas and the switching chamber housing.
Das Ausführungsbeispiel gemäss Anspruch 2 und 10 hat den Vorteil, dass die erste Teilgasströmung weitgehend zeitgleich aus dem Auspuff ausströmt wie das gespeicherte Kaltgas, das von der zweiten Teilgasströmung aus dem Auspuffbereich und insbesondere dem Zwischenspeichervolumen verdrängt wird.The embodiment according to
Die Ausführungsbeispiele gemäss Anspruch 3-6 und 11-14 geben vorteilhafte Geometrien und bevorzugte Dimensionierungskriterien für den Auspuffbereich und insbesondere für das Zwischenspeichervolumen, die Durchmischungszone und den Durchmischungskanal an.The embodiments according to claims 3-6 and 11-14 indicate advantageous geometries and preferred dimensioning criteria for the exhaust area and in particular for the intermediate storage volume, the mixing zone and the mixing channel.
Die Ausführungsbeispiele gemäss Anspruch 7-8 und 20-21 geben verschiedene Varianten und Einbauorte für Hilfsmittel an, mit denen das Schaltgas zusätzlich gekühlt werden kann. Mit Vorteil wird der erste und/oder zweite Teilgasstrom durch Gasjetbildung und Gasjetverwirbelung an einer Prallwand zusätzlich gekühlt.The embodiments according to claim 7-8 and 20-21 indicate different variants and installation locations for aids with which the switching gas can be additionally cooled. Advantageously, the first and / or second partial gas stream is additionally cooled by gas jet formation and gas jet turbulence on a baffle wall.
In einem weiteren Aspekt hat die Erfindung auch ein elektrisches Schaltgerät für ein elektrisches Energieversorgungsnetz, insbesondere einen Hochspannungsschalter, zum Gegenstand. Das Schaltgerät umfasst eine Schaltkammer, die von einem Schaltkammergehäuse umschlossen ist und eine Lichtbogenlöschzone sowie ein Auspuffvolumen zur Kühlung von heissem Schaltgas aufweist, wobei zu Beginn einer Schalthandlung ein Auspuffbereich des Auspuffvolumens mit Kaltgas gefüllt ist, wobei Mittel zur Aufspaltung des heissen Schaltgases in mindestens zwei Teilgasströmungen vorhanden sind, wobei ferner in dem Auspuffbereich ein Zwischenspeichervolumen zur Speicherung von Kaltgas vorhanden ist, ein erstes Mittel vorhanden ist, das die erste Teilgasströmung unter Umgehung des Zwischenspeichervolumens in das Schaltkammergehäuse lenkt, und ein zweites Mittel vorhanden ist, das die zweite Teilgasströmung zum gespeicherten Kaltgas lenkt und dadurch die Verdrängung des gespeicherten Kaltgases aus dem Zwischenspeichervolumen bewirkt, wobei hinter der Durchmischungszone und vor Eintritt in das Schaltkammergehäuse ein Durchmischungskanal angeordnet ist, in dem eine zusätzliche Durchmischung der ersten Teilgasströmung mit dem aus dem Zwischenspeichervolumen verdrängten Kaltgas stattfindet.In a further aspect, the invention also relates to an electrical switching device for an electrical energy supply network, in particular a high-voltage switch. The switching device comprises a switching chamber, which is enclosed by a switching chamber housing and a Arc extinguishing zone and an exhaust volume for cooling of hot switching gas, wherein at the beginning of a switching operation, an exhaust area of the exhaust volume is filled with cold gas, means for splitting the hot switching gas in at least two partial gas flows are present, further in the exhaust area a buffer storage volume for storing cold gas is present, a first means is present, which directs the first partial gas flow, bypassing the intermediate storage volume in the switching chamber housing, and a second means is provided, which directs the second partial gas flow to the stored cold gas and thereby causes the displacement of the stored cold gas from the intermediate storage volume behind the mixing zone and before entering the switching chamber housing a mixing channel is arranged, in which an additional mixing of the first partial gas flow with the displaced from the intermediate storage volume cold gas st attfindet.
Die Ausführungsbeispiele gemäss Anspruch 15-19 geben bevorzugte konstruktive Ausführungsformen für das Zwischenspeichervolumen an.The embodiments according to claim 15-19 indicate preferred structural embodiments for the buffer storage volume.
Weitere Ausführungen, Vorteile und Anwendungen der Erfindung ergeben sich aus abhängigen Ansprüchen, aus den Anspruchskombinationen sowie aus der nun folgenden Beschreibung und den Figuren.Further embodiments, advantages and applications of the invention will become apparent from the dependent claims, from the claim combinations and from the following description and the figures.
Es zeigen schematisch
- Fig. 1
- den Auspuffbereich einer Unterbrechereinheit mit Kaltgasverlust gemäss Stand der Technik;
- Fig. 2
- erste Ausführungsform eines Auspuffbereichs mit erfindungsgemässer Heissgas-Kaltgas Durchmischung;
- Fig. 3
- zweite Ausführungsformen mit jeweils zwei Teilströmungen antriebskontaktseitig und festkontaktseitig;
- Fig. 4
- dritte Ausführungsformen mit Öffnungsschlitzen im Zwischenspeichervolumen;
- Fig. 5,6
- vierte Ausführungsformen mit axialen Öffnungen im Zwischenspeichervolumen und radialem Gasaustritt aus dem Auspuff;
- Fig. 5-8
- fünfte Ausführungsformen mit Gasjetverwirbelung zur Vorkühlung des Schaltgases; und
- Fig. 9
- sechste Ausführungsformen mit anderen Mechanismen zur Vorkühlung der zweiten Teilgasströmung.
- Fig. 1
- the exhaust area of a breaker unit with cold gas loss according to the prior art;
- Fig. 2
- first embodiment of an exhaust area with inventive hot gas-cold gas mixing;
- Fig. 3
- second embodiments with two partial flows drive contact side and fixed contact side;
- Fig. 4
- third embodiments with opening slots in the buffer storage volume;
- Fig. 5.6
- fourth embodiments with axial openings in the intermediate storage volume and radial gas outlet from the exhaust;
- Fig. 5-8
- fifth embodiments with Gasjet Verwirbelung for precooling of the switching gas; and
- Fig. 9
- sixth embodiments with other mechanisms for pre-cooling the second partial gas flow.
In den Figuren werden für gleiche Teile die gleichen Bezugszeichen verwendet und gegebenenfalls werden sich wiederholende Bezugszeichen weggelassen.In the figures, the same reference numerals are used for the same parts and, if necessary, repeated reference numerals are omitted.
Beim Schaltgaskühlverfahren wird die zweite Teilgasströmung 11b zum zwischengespeicherten Kaltgas 111 geführt, um dieses direkt oder indirekt aus dem Auspuffvolumen 7, 8 zu verdrängen. In
Mit Vorteil wird der zwischengespeicherte Teil des Kaltgases 111 im Auspuffbereich in einem Kaltgasreservoir oder Zwischenspeichervolumen 7, 8 zwischengespeichert, wobei das Zwischenspeichervolumen 7, 8 eine Eintrittsöffnung 70 und eine Austrittsöffnung 80 für die zweite 11b und die optionale, weitere unterstützende Teilgasströmung 11c und im Bereich der Austrittsöffnung 80 eine Durchmischungszone 12 aufweist, in welcher das gespeicherte Kaltgas 111 mit der ersten Teilgasströmung 11a vermischt wird.Advantageously, the cached portion of the
Bevorzugt wird von der ersten Teilgasströmung 11a ein Unterdruck im Bereich der Durchmischungszone 12 erzeugt, durch den das zwischengespeicherte Kaltgas 111 aus dem Zwischenspeichervolumen 7, 8 angesogen wird. Die Ansaugung kann alleine oder unterstützend zur Kaltgasverdrängung wirksam sein. Zusätzlich kann hinter der Durchmischungszone 12 und vor Eintritt in das Schaltkammergehäuse 3 in einem Durchmischungskanal 10 die erste Teilgasströmung 11a mit dem zwischengespeicherten Kaltgas 111 und insbesondere mit einer vorgekühlten zweiten Teilgasströmung 11b und optional einer dritten oder weiteren Teilgasströmung 11c vermischt werden. Beispielsweise können auch Gasjets in der ersten Teilgasströmung 11a und im verdrängten Kaltgasstrom 111 gebildet und so gegeneinander gerichtet werden, dass sie einander verwirbeln und durchmischen. Dadurch wird zusätzlich zum Durchmischungskanal 10 das Schaltgas 11 vor oder beim Abströmen in das Schaltkammergehäuse 3 wirksam gekühlt.Preferably, a negative pressure in the region of the mixing
Die Speicherkapazität des Zwischenspeichervolumens 7, 8 soll vorzugsweise nach Massgabe einer gewünschten Mischungsdauer und Mischungstemperatur der ersten Teilgasströmung 11a mit dem zwischengespeicherten Kaltgas 111 gewählt werden. Zudem kann eine Wegdifferenz zwischen dem längeren und dem kürzeren Weg gleich einer Durchströmungslänge durch das Zwischenspeichervolumen 7, 8 gewählt werden. Beispielsweise ist gemäß
Besonders bevorzugt wird die erste Teilgasströmung 11a unter Umgehung des Zwischenspeichervolumens 7, 8 über einen minimalen Weg in das Schaltkammergehäuse 3 abgeströmt; und/oder die zweite Teilgasströmung 11b wird durch das Zwischenspeichervolumen 7, 8 über einen maximalen Weg in das Schaltkammergehäuse 3 abgeströmt; und/oder eine weitere Teilgasströmung 11c (
Darüberhinaus kann das Schaltgas 11 mit Hilfsmitteln zur Vorkühlung 9, 9a, 9b, 9c; 74, 75 im Auspuffvolumen 4 des Schaltgeräts 1 vorgekühlt werden (
Gegenstand der Erfindung ist auch ein elektrisches Schaltgerät 1, das zunächst anhand von
Zu Beginn einer Schalthandlung ist ein Auspuffbereich 7, 8 des Auspuffvolumens 4 mit Kaltgas 111 gefüllt. Es sind Mittel 71, 72, 73; 7a, 7b; 8a, 8b zur Aufspaltung des heissen Schaltgases 11, 110 in mindestens zwei Teilgasströmungen 11a, 11b, 11c vorhanden. Im Auspuffbereich 7, 8 ist ein Zwischenspeichervolumen 7, 8 zur Speicherung von Kaltgas 111 angeordnet, wobei ein erstes Mittel 71; 101, 102 vorhanden ist, das die erste Teilgasströmung 11a unter Umgehung des Zwischenspeichervolumens 7, 8 in das Schaltkammergehäuse 3 lenkt, und ein zweites Mittel 7a, 7b, 72 vorhanden ist, das die zweite Teilgasströmung 11b zum gespeicherten Kaltgas 111 lenkt und dadurch die Verdrängung des gespeicherten Kaltgases 111 aus dem Zwischenspeichervolumen 7, 8 bewirkt.At the beginning of a switching operation, an
Die
In
Im Bereich der Austrittsöffnung 80 soll eine Durchmischungszone 12 zur Vermischung der ersten Teilgasströmung 11a mit dem Kaltgas 111 vorhanden sein, das im Zwischenspeichervolumen 7, 8 gespeichert ist und das durch die zweite Teilgasströmung 11b aus dem Zwischenspeichervolumen 7, 8 verdrängt wird. Die Durchmischungszone 12 kann zugleich als Unterdruckzone 12 zur Ansaugung des gespeicherten Kaltgases 111 aus dem Zwischenspeichervolumen 7, 8 ausgestaltet sein. Dies kann z. B. durch die Strömungsverhältnisse und insbesondere Strömungsgeschwindigkeiten der Teilströmungen 11a, 11b und gegebenenfalls 11c im Bereich der Unterdruckzone 12 erreicht werden. Zudem kann die Durchmischungszone 12 auch als Verwirbelungszone 12 für die erste Teilgasströmung 11a und das Kaltgas 111, insbesondere von Gasjets der ersten Teilgassströmung 11a und des Kaltgases 111, ausgestaltet sein.In the region of the
Ausserdem ist hinter der Durchmischungszone 12 und vor Eintritt in das Schaltkammergehäuse 3 ein Durchmischungskanal 10 angeordnet, in dem eine zusätzliche Durchmischung der ersten Teilgasströmung 11a mit dem aus dem Zwischenspeichervolumen 7, 8 verdrängten Kaltgas 111 und insbesondere mit einer vorgekühlten zweiten Teilgasströmung 11b und gegebenenfalls einer weiteren Teilgasströmung 11c stattfindet. Der Durchmischungskanal 10 ist z. B. durch eine innenliegende Kanalwand 10a vom Zwischenspeichervolumen 8 separiert und mit diesem über eine Kanaleintrittsöffnung 101 verbunden. Die Kanaleintrittsöffnung 101 wirkt somit als Abströmöffnung aus dem Zwischenspeichervolumen 7, 8 und die Kanalaustrittsöffnung als eigentliche Auspufföffnung 102. Der Durchmischungskanal 10 weist einen Durchmesser D und eine Länge L zwischen der Kanaleintrittsöffnung 101 und Kanalaustrittsöffnung 102 auf. Durchmesser D und Länge L sollen so dimensioniert sein, dass eine effiziente Mischung der bereits vorgemischten Teilgasströmungen 11a, 11b, 11c mit dem Kaltgas 111 und miteinander realisiert wird. Der Durchmischungskanal 10 kann axial (
Die Speicherkapazität des Zwischenspeichervolumens 7, 8 ist so dimensioniert, dass eine gewünschte Mischungsdauer und Mischungstemperatur der ersten Teilgasströmung 11a mit dem zwischengespeicherten Kaltgas 111 erreichbar ist. Auch soll die Durchströmungslänge, z. B. 2*1 in
Bevorzugt ist zur Schaffung eines minimalen Weges für die erste Teilgasströmung 11a die erste Öffnung 71 nahe der Abströmöffnung 101, insbesondere radial gegenüberliegend, angeordnet; und/oder zur Schaffung eines maximalen Weges für die zweite Teilgasströmung 11b ist die zweite Öffnung 72 weit entfernt von der Abströmöffnung 101, insbesondere axial maximal beabstandet zur Abströmöffnung 101, angeordnet; und/oder eine dritte oder weitere Öffnung 73 ist für eine weitere Teilgasströmung 11c in axialer Richtung 1a zwischen der ersten und zweiten Öffnung 71, 72 angeordnet (
Vorzugsweise wirkt die zweite Öffnung 72 mit einer Umlenkeinrichtung 7b, 8b, 8a zur Rückführung des gespeicherten Kaltgases 111 und der zweiten Teilgasströmung 11b zur Austrittsöffnung 80 des Zwischenspeichervolumens 7, 8 zusammen; und/oder die Weglängendifferenz zwischen dem kürzeren Weg 11a für die erste Teilgasströmung und dem längeren Weg 11b für die zweite Teilgasströmung ist durch den axialen Abstand zwischen der ersten und zweiten Öffnung 71, 72 gegeben. Die Öffnungen 71, 72, 73 können Löcher oder Schlitze in einer Wandung 7a, 7b des Körpers 7a, 7b, 8a, 8b sein. Die Öffnungen 71, 72, 73 können in einer radialen Wandung 7a und/oder in einer axialen Wandung 7b des Körpers 7a, 7b, 8a, 8b angeordnet sein. Eine Anzahl, Grösse (d. h. Querschnittsfläche A1, A2, A3) und Position der ersten, zweiten und gegebenenfalls dritten Öffnungen 71, 72, 73 sollen so gewählt sein, dass die erste Teilgasströmung 11a noch im Auspuffvolumen 4 weitgehend mit dem gespeicherten Kaltgas 111 durchmischbar ist. Insbesondere sollen im durchströmbaren Körper 7a, 7b, 8a, 8b mehrere Löcher oder Schlitze 72 und gegebenenfalls 73 so am Umfang und/oder entlang der axialen Erstreckung angeordnet sein, dass sich im zweiten und gegebenenfalls weiteren Teilgasströmen 11b, 11c eine Heissgasfront ausbildet und keine Kaltgastaschen im Zwischenspeichervolumen 7, 8 bestehen bleiben. Typischerweise wird im Bereich der Öffnungen 71, 72, 73 der gesamte Durchströmungsquerschnitt A0=A1+A2, gegebenenfalls A0=A1+A2+A3, am geringsten und die Durchströmungsgeschwindigkeit am höchsten sein.Preferably, the
Der durchströmbare Körper 7a, 7b, 8a, 8b kann einen Innenzylinder 7a, 7b und einen Aussenzylinder 8a, 8b umfassen. Innen- und Aussenzylinder 7a, 7b, 8a, 8b sind vorzugsweise koaxial zueinander und zur Schalterachse 1a angeordnet. Durch Innen- und Aussenzylinder 7a, 7b, 8a, 8b ist das Zwischenspeichervolumen 7, 8 radial durch mindestens zwei Mantelflächen 7a, 8a und axial endseitig durch zugehörige Bodenflächen 7b, 8b begrenzt. Der Innenzylinder 7a, 7b definiert ein inneres Volumen V1 und weist zur Löschbogenzone 6 hin eine Eintrittsöffnung 70 für die zweite Teilgasströmung 11a auf. Der Aussenzylinder 8a, 8b umgreift den Innenzylinder 7a, 7b, definiert ein äusseres Volumen V2 und weist zur Löschbogenzone 6 hin eine Austrittsöffnung 80 für das gespeicherte Kaltgas 111 und die zweite Teilgasströmung 11b auf. Der Innenzylinder 7a, 7b und Aussenzylinder 8a, 8b stehen durch die zweite Öffnung 72 und gegebenenfalls die dritte Öffnung 73 miteinander in Verbindung. Das innere und äussere Volumen V1, V2 sollen so aufeinander abgestimmt sein, dass eine gewünschte Speicherkapazität für das Kaltgas 111 und eine gewünschte Durchströmungsdynamik für die zweite Teilgasströmung 11b realisierbar sind.The flow-through
Das Zwischenspeichervolumen 7, 8, das erste Mittel 71; 101, 102 und das zweite Mittel 7a, 7b, 72 können im Auspuffbereich 7, 8 eines ersten und/oder eines zweiten Kontakts 5 des Schaltgeräts 1 angeordnet sein. Bei dem Schaltgerät 1 kann es sich um einen Hochspannungsleistungsschalter 1 oder einen Hochstromschalter oder einen Trennschalter o. ä. handeln.The
Im Detail sind in
Hilfsmittel 9, 9a, 9b, 9c; 74, 75 zur Vorkühlung des Schaltgases 11 können im Auspuffvolumen 4 des Schaltgeräts 1 angeordnet sein. Die Hilfsmittel 9, 9a, 9b, 9c; 74, 75 können in der Heissgasströmung 110 vor der Aufspaltung in die Teilgasströmungen 11a, 11b, 11 und/oder in der ersten Teilgasströmung und/oder in der zweiten Teilgasströmung 11a, 11b und gegebenenfalls in der weiteren Teilgasströmung 11c angeordnet sein. Solche Hilfsmittel betreffen einerseits jetbildende Ausströmöffnungen 74 im Zwischenspeichervolumen 7, 8 und/oder in einem Zusatzvolumen 9a zur Bildung von Gasjets sowie eine Prallwand 75 zur Verwirbelung und intensiven turbulent konvektiven Kühlung der Gasjets. Weitere Details dieses Kühlmechanismus können der vorveröffentlichten
- 11
- elektrisches Schaltgerät, Unterbrechereinheit; Hochspannungsleistungsschalterelectrical switching device, breaker unit; High voltage circuit breaker
- 1a1a
- Zentrale Achse, SchalterachseCentral axis, switch axis
- 22
- Schaltkammer, SchaltkammervolumenSwitching chamber, switching chamber volume
- 33
- Schaltkammergehäuse, SchaltkammerwandSwitching chamber housing, switching chamber wall
- 3a3a
- SchaltkammerisolatorSwitching chamber insulator
- 44
- Auspuffvolumenexhaust volume
- 4a4a
- Auspuffgehäuse, Auspuffwand; StromanschlussarmaturenExhaust Casing, Exhaust Wall; Electricity fittings
- 55
- Lichtbogenkontaktsystem, erster Kontakt, Schaltstift, Festkontakt; zweiter Kontakt, Kontakttulpe, Hohlkontakt, AntriebskontaktArcing contact system, first contact, switching pin, fixed contact; second contact, contact tulip, hollow contact, drive contact
- 5a5a
- HohlkontaktausströmöffnungHohlkontaktausströmöffnung
- 66
- LichtbogenlöschzoneArc quenching zone
- 6a6a
- Isolierstoffdüseinsulating
- 7, 87, 8
- kaltgasgefüllter Auspuffbereich, Zwischenspeichervolumen, Kaltgasreservoircold gas filled exhaust area, intermediate storage volume, cold gas reservoir
- 77
- erstes Volumen V1, inneres Volumenfirst volume V 1 , inner volume
- 7a, 7b, 8a, 8b7a, 7b, 8a, 8b
- durchströmbarer Körperpermeable body
- 7a, 7b7a, 7b
- Aussenwand, Rückwand des inneren Volumens; durchströmbarer KörperOuter wall, rear wall of the inner volume; permeable body
- 7070
- Eintrittsöffnung in ZwischenspeichervolumenInlet opening in intermediate storage volume
- 7171
- erste Ausströmöffnung(en)first outflow opening (s)
- 7272
- zweite Ausströmöffnung(en), Durchströmöffnung(en)second outflow opening (s), throughflow opening (s)
- 7373
- dritte Ausströmöffnung(en), weitere Ausströmöffnung(en), Durchströmöffnung(en)third outflow opening (s), further outflow opening (s), throughflow opening (s)
- 7474
- jetbildende Ausströmöffnung(en)jet-forming outflow opening (s)
- 7575
- Prallwandbaffle wall
- 88th
- zweites Volumen V2, äusseres Volumensecond volume V 2 , external volume
- 8080
- Austrittsöffnung in ZwischenspeichervolumenOutlet opening in intermediate storage volume
- 8a, 8b8a, 8b
- Aussenwand, Rückwand des Zwischenspeichervolumens oder KaltgasreservoirsOuter wall, rear wall of the intermediate storage volume or cold gas reservoir
- 99
- Hilfsmittel zur VorkühlungAuxiliary for pre-cooling
- 9a9a
- Zusatzvolumen, Vorkühlvolumen, jetbildendes Volumen V3 Additional volume, pre-cooling volume, jet-forming volume V 3
- 9b9b
- Prallplatteflapper
- 9c9c
- Lenkmittel, Verwirbelungsmittel für SchaltgasSteering means, swirling agent for switching gas
- 1010
- Durchmischungskanal, zusätzliche DurchmischungslängeMixing channel, additional mixing length
- 10a10a
- innenliegende Kanalwandinside channel wall
- 101101
- Kanaleintrittsöffnung, AbströmöffnungChannel inlet opening, outflow opening
- 102102
- Kanalaustrittsöffnung, AuspufföffnungDuct outlet opening, exhaust opening
- 1111
- LöschgasströmungQuenching gas flow
- 11a, 11b11a, 11b
- erste, zweite Teilgasströmungfirst, second partial gas flow
- 11c11c
- dritte Teilgasströmung, weitere Teilgasströmungenthird partial gas flow, further partial gas flows
- 110110
- Heissgashot gas
- 111111
- Kaltgascold gas
- 1212
- Durchmischungszone; Unterdruckzone; VerwirbelungszoneMixing zone; Under pressure zone; turbulence
- 1313
- durchmischtes Abgasmixed exhaust gas
- A1, A2, A3 A 1 , A 2 , A 3
- Querschnittsfläche der ersten, zweiten, dritten Ausströmöffnung(en)Cross-sectional area of the first, second, third outflow opening (s)
- A0 A 0
- GesamtausströmflächeGesamtausströmfläche
- L, DL, D
- Länge, Durchmesser des DurchmischungskanalsLength, diameter of the mixing channel
- 11
- Abstand zwischen AusströmöffnungenDistance between outflow openings
Claims (26)
- Method for cooling a switching gas (11) in an electrical breaker device (1) for electrical power supply systems, in particular in a high-voltage circuit breaker (1), the breaker device (1) comprising a switching chamber (2) which is surrounded by a switching chamber housing (3), in addition, in the event of a switching operation, hot switching gas (11, 110) flowing from an arc-quenching zone (6) to an exhaust region (7, 8) filled with cold gas (111), the hot switching gas (11, 110) being split up into at least two partial gas flows (11a, 11b, 11c),a) at least part of the cold gas (111) being stored intermediately in the exhaust region (7, 8), and the first partial gas flow (11a) being guided past the intermediately stored cold gas (111) and flowing away into the switching chamber (2), andb) with the aid of the second partial gas flow (11b), the intermediately stored cold gas (111) being forcibly displaced out of the exhaust region (7, 8) and mixed with the first partial gas flow (11a) before flowing away into the switching chamber housing (3), characterized in thatc) the first partial gas flow (11a) is additionally mixed with the intermediately stored cold gas (111) downstream of the mixing zone (12) and upstream of the inlet into the switching chamber housing (3) in a mixing channel (10).
- Method for cooling a switching gas (11) according to Claim 1, characterized in thata) the second partial gas flow (11b) is guided towards the intermediately stored cold gas (111), and/orb) the first partial gas flow (11a) flows away into the switching chamber housing (3) over a relatively short path, and the second partial gas flow (11b) and possibly a further or third partial gas flow (11c) assisting it flows away into the switching chamber housing (3) over a relatively long path.
- Method for cooling a switching gas (11) according to Claim 2, characterized in thata) the intermediately stored part of the cold gas (111) is stored intermediately in the exhaust region in an intermediate storage volume (7, 8), andb) the intermediate storage volume (7, 8) has an inlet opening (70) and an outlet opening (80) for the second partial gas flow (11b) and possibly the further partial gas flow (11c) and has, in the region of the outlet opening (80), the mixing zone (12), in which the stored cold gas (111) is mixed with the first partial gas flow (11a).
- Method for cooling a switching gas (11) according to Claim 3, characterized in thata) a low pressure is produced in the region of the mixing zone (12) by the first partial gas flow (11a), by means of which low pressure the intermediately stored cold gas (111) is sucked out of the intermediate storage volume (7, 8), and/orb) gas jets are produced in the region of the mixing zone (12) in the first partial gas flow (11a) and in the cold gas (111) and are directed towards one another and as a result mixed, and/orc) the first partial gas flow (11a) is additionally mixed with a precooled second partial gas flow (11b) and possibly a further partial gas flow (11c) in the mixing channel (10).
- Method for cooling a switching gas (11) according to one of Claims 3-4, characterized in thata) the storage capacity of the intermediate storage volume (7, 8) is selected according to a desired mixing duration and mixing temperature of the first partial gas flow (11a) with the intermediately stored cold gas (111), and/orb) a path difference (2*1) between the relatively long path and the relatively short path is selected to be equal to a throughflow length (2*1) through the intermediate storage volume (7, 8).
- Method for cooling a switching gas (11) according to one of Claims 3-5, characterized in thata) the first partial gas flow (11a) flows away into the switching chamber housing (3) over a minimum path whilst bypassing the intermediate storage volume (7, 8), and/orb) the second partial gas flow (11b) flows away into the switching chamber housing (3) over a maximum path through the intermediate storage volume (7, 8), and/orc) a further partial gas flow (11c) flows away into the switching chamber housing (3) at least over some sections through the intermediate storage volume (7, 8).
- Method for cooling a switching gas (11) according to one of Claims 1-6, characterized in thata) the switching gas (11) is precooled using auxiliary means for precooling (9, 9a, 9b, 9c; 74, 75) in the exhaust volume (4) of the breaker device (1),b) in particular in that the hot gas (110) is precooled before it is split up into the partial gas flows (11a, 11b, 11c), and/or the first partial gas flow (11a) and/or the second partial gas flow (11b) and possibly a further partial gas flow (11c) is/are precooled.
- Method for cooling a switching gas (11) according to one of Claims 1-7, characterized in thata) a gas jet is formed in the switching gas (11) by means of a jet-forming outflow opening (74) in the intermediate storage volume (7, 8) and/or in a secondary volume (9a), which gas jet is guided onto a baffle wall (75) and is swirled there, and/orb) the switching gas (11) is guided onto a baffle plate (9b), and/orc) an extended path, in particular a meandering path, is predetermined in the switching gas (11) by means of guiding means (9c), and/or a recirculation area is formed by means of swirling means (9c).
- Method for cooling a switching gas (11) according to Claim 1, characterized in that the mixing channel (10) between its channel inlet opening (101) and channel outlet opening (102) has a diameter (D) and a length (L) which are dimensioned such that efficient mixing of the already premixed partial gas flows (11a, 11b, 11c) with the cold gas (111) and with one another is realized.
- Electrical breaker device (1) for an electrical power supply system, in particular a high-voltage circuit breaker (1), comprising a switching chamber (2) which is surrounded by a switching chamber housing (3) and has an arc-quenching zone (6) and an exhaust volume (4) for cooling hot switching gas (11, 110), an exhaust region (7, 8) of the exhaust volume (4) being filled with cold gas (111) at the beginning of a switching operation, in addition means (71, 72, 73; 7a, 7b; 8a, 8b) being provided for splitting the hot switching gas (11, 110) up into at least two partial gas flows (11a, 11b, 11c),a) an intermediate storage volume (7, 8) being arranged in the exhaust region (7, 8) for storing cold gas (111),b) a first means (71; 101, 102) being provided which guides the first partial gas flow (11a) into the switching chamber housing (3) whilst bypassing the intermediate storage volume (7, 8), andc) a second means (7a, 7b, 72) being provided which guides the second partial gas flow (11b) towards the stored cold gas (111) and, as a result, causes the stored cold gas (111) to be forcibly displaced out of the intermediate storage volume (7, 8), characterized in thatd) a mixing channel (10) is arranged downstream of the mixing zone (12) and upstream of the inlet into the switching chamber housing (3), in which mixing channel (10) additional mixing of the first partial gas flow (11a) with the cold gas (111), which has been forcibly displaced out of the intermediate storage volume (7, 8), takes place.
- Electrical breaker device (1) according to Claim 10, characterized in thata) a relatively short path for the first partial gas flow (11a) and a relatively long path for the second partial gas flow (11b) and possibly a further partial gas flow (11c) are predetermined in the exhaust region (7, 8) between the arc-quenching zone (6) and the switching chamber housing (3), andb) in particular in that a path length difference (2*1) between the relatively long path and the relatively short path is predetermined by a throughflow length (2*1) through the intermediate storage volume (7, 8).
- Electrical breaker device (1) according to one of Claims 10-11, characterized in thata) the intermediate storage volume (7, 8) has an inlet opening (70) and an outlet opening (80),b) the first means (71) guides the first partial gas flow (11a) towards the outlet opening (80) whilst bypassing the intermediate storage volume (7, 8), andc) the second means (7a, 7b, 72) guides the second partial gas flow (11b) or possibly further partial gas flows (11c) towards the inlet opening (70) and, through the intermediate storage volume (7, 8), towards the outlet opening (80).
- Electrical breaker device (1) according to one of Claims 10-12, characterized in that the mixing zone (12) is provided in the region of an outlet opening (80) of the intermediate storage volume (7, 8) for mixing the first partial gas flow (11a) with the cold gas (111) which is stored in the intermediate storage volume (7, 8) and is forcibly displaced out of the intermediate storage volume (7, 8) by the second partial gas flow (11b).
- Electrical breaker device (1) according to one of Claims 10-13, characterized in thata) the mixing zone (12) is at the same time in the form of a low pressure zone (12) for sucking the stored cold gas (111) out of the intermediate storage volume (7, 8), and/orb) the mixing zone (12) is at the same time in the form of a swirling zone (12) for the first partial gas flow (11a) and the cold gas (111), in particular of gas jets of the first partial gas flow (11a) and the cold gas (111), and/orc) additional mixing of the first partial gas flow (11a) with a precooled second partial gas flow (11b) and possibly a further partial gas flow (11c) takes place in the mixing channel (10).
- Electrical breaker device (1) according to one of Claims 10-14, characterized in thata) the storage capacity of the intermediate storage volume (7, 8) is selected according to a desired mixing duration and mixing temperature of the first partial gas flow (11a) with the intermediately stored cold gas (111), and/orb) a throughflow length (2*1) of the intermediate storage volume (7, 8) is selected according to a desired time delay of the second partial gas flow (11b) in the intermediate storage volume (7, 8) in relation to the first partial gas flow (11a).
- Electrical breaker device (1) according to one of Claims 10-15, characterized in thata) the exhaust volume (4) is surrounded by an exhaust housing (4a), which has an exit-flow opening (101) and an exhaust opening (102) towards the switching chamber housing (3),b) the intermediate storage volume (7, 8) is formed by a body (7a, 7b, 8a, 8b) through which a flow can pass and which is arranged in the exhaust volume (4), andc) the body (7a, 7b, 8a, 8b) through which a flow can pass has a first opening (71) for branching off the first partial gas flow (11a) in a region of the body (7a, 7b, 8a, 8b) which faces the arc-quenching zone (6) and has a second opening (72) for the second partial gas flow (11b) in a region of the body (7a, 7b, 8a, 8b) which faces away from the arc-quenching zone (6).
- Electrical breaker device (1) according to Claim 16, characterized in thata) the first opening (71) is arranged close to the exit-flow opening (101), in particular radially opposite, and/orb) the second opening (72) is arranged far removed from the exit-flow opening (101), in particular at a maximum axial distance from the exit-flow opening (101), and/orc) a third or further opening (73) for a third or further partial gas flow (11c) is arranged in the axial direction (1a) between the first and the second openings (71, 72).
- Electrical breaker device (1) according to one of Claims 16-17, characterized in thata) the second opening (72) interacts with a deflecting device (7b, 8b, 8a) for guiding the stored cold gas (111) and the second partial gas flow (11b) back towards the outlet opening (80) of the intermediate storage volume (7, 8), and/orb) a path length difference (2*1) between the relatively short path for the first partial gas flow (11a) and the relatively long path for the second partial gas flow (11b) is given by the axial distance between the first and the second openings (71, 72).
- Electrical breaker device (1) according to one of Claims 16-18, characterized in thata) the openings (71, 72, 73) are holes or slots in a wall (7a, 7b) of the body (7a, 7b, 8a, 8b), and/orb) the openings (71, 72, 73) are arranged in a radial wall (7a) and/or in an axial wall (7b) of the body (7a, 7b, 8a, 8b), and/orc) the number, size and position of the first, second and possibly third openings (71, 72, 73) are selected such that the first partial gas flow (11a) can still largely be mixed with the stored cold gas (111) in the exhaust volume (4).
- Electrical breaker device (1) according to one of Claims 16-19, characterized in thata) the body (7a, 7b, 8a, 8b) through which a flow can pass comprises a coaxially arranged inner cylinder (7a, 7b), which has an inlet opening (70) for the second partial gas flow (11b) towards the quenching-arc zone (6),b) the body (7a, 7b, 8a, 8b) through which a flow can pass comprises an outer cylinder (8a, 8b) which surrounds the inner cylinder (7a, 7b) and has an outlet opening (80) for the stored cold gas (111) and the second partial gas flow (11b) towards the quenching-arc zone (6), andc) the inner cylinder (7a, 7b) and the outer cylinder (8a, 8b) are connected to one another by the second opening (72) and possibly the third opening (73).
- Electrical breaker device (1) according to one of Claims 10-20, characterized in thata) auxiliary means (9, 9a, 9b, 9c; 74, 75) for precooling the switching gas (11) are arranged in the exhaust volume (4) of the breaker device (1),b) in particular in that the auxiliary means (9, 9a, 9b, 9c; 74, 75) are arranged in the hot-gas flow (110) before it is split up into the partial gas flows (11a, 11b, 11c) and/or in the first partial gas flow and/or in the second partial gas flow (11a, 11b) and possibly in a further partial gas flow (11c).
- Electrical breaker device (1) according to Claim 21, characterized in thata) the auxiliary means comprise a jet-forming outflow opening (74) in the intermediate storage volume (7, 8) and/or in a secondary volume (9a) for the purpose of forming gas jets and a baffle wall (75) for the purpose of swirling the gas jets, and/orb) the auxiliary means comprise a baffle plate (9b) and/or guiding means (9c) and/or swirling means (9c) for the switching gas (11).
- Electrical breaker device (1) according to one of Claims 10-22, characterized in thata) the intermediate storage volume (7, 8), the first means (71; 101, 102) and the second means (7a, 7b, 72) are arranged in the exhaust region (7, 8) of a first and/or a second contact (5) of the breaker device (1), and/orb) the breaker device (1) is a high-voltage circuit breaker (1) or a high-current circuit breaker or a switch disconnector.
- Electrical breaker device (1) according to Claim 10, characterized in that the mixing channel (10) is separated from the intermediate storage volume (7, 8) and connected thereto via a channel inlet opening (101), the channel inlet opening acting as outlet opening (80) from the intermediate volume (7, 8) and the channel outlet opening acting as exhaust opening (102).
- Electrical breaker device (1) according to Claim 10, characterized in that the mixing channel (10) between its channel inlet opening (101) and channel outlet opening (102) has a diameter (D) and a length (L) which are dimensioned such that efficient mixing of the already premixed partial gas flows (11a, 11b, 11c) with the cold gas (111) and with one another is realized.
- Electrical breaker device (1) according to Claim 10, characterized in that the mixing channel (10) is aligned axially and/or radially.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE502005009041T DE502005009041D1 (en) | 2005-09-26 | 2005-09-26 | High voltage switch with improved switching capacity |
AT05405556T ATE458259T1 (en) | 2005-09-26 | 2005-09-26 | HIGH VOLTAGE SWITCH WITH IMPROVED SWITCHING PERFORMANCE |
EP05405556A EP1768150B1 (en) | 2005-09-26 | 2005-09-26 | High voltage circuit breaker with improved interrupting capacity |
US11/520,619 US8389886B2 (en) | 2005-09-26 | 2006-09-14 | High-voltage circuit breaker with improved circuit breaker rating |
JP2006255278A JP2007095680A (en) | 2005-09-26 | 2006-09-21 | High voltage circuit breaker with improved circuit breaker rating |
CN2006101396232A CN1941243B (en) | 2005-09-26 | 2006-09-26 | High voltage circuit breaker with improved interrupting capacity |
KR1020060093655A KR101320770B1 (en) | 2005-09-26 | 2006-09-26 | High-voltage circuit breaker with improved circuit breaker rating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05405556A EP1768150B1 (en) | 2005-09-26 | 2005-09-26 | High voltage circuit breaker with improved interrupting capacity |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1768150A1 EP1768150A1 (en) | 2007-03-28 |
EP1768150B1 true EP1768150B1 (en) | 2010-02-17 |
Family
ID=35788070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05405556A Revoked EP1768150B1 (en) | 2005-09-26 | 2005-09-26 | High voltage circuit breaker with improved interrupting capacity |
Country Status (7)
Country | Link |
---|---|
US (1) | US8389886B2 (en) |
EP (1) | EP1768150B1 (en) |
JP (1) | JP2007095680A (en) |
KR (1) | KR101320770B1 (en) |
CN (1) | CN1941243B (en) |
AT (1) | ATE458259T1 (en) |
DE (1) | DE502005009041D1 (en) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5807670A (en) * | 1995-08-14 | 1998-09-15 | Abbott Laboratories | Detection of hepatitis GB virus genotypes |
CN101120423B (en) * | 2004-12-24 | 2010-06-23 | Abb技术有限公司 | Generator switch having improved switching capacity |
EP1835520B2 (en) | 2006-03-14 | 2013-12-18 | ABB Technology AG | Switching chamber for gasisolated high voltage switch |
FR2924267A1 (en) | 2007-11-22 | 2009-05-29 | Areva T & D Sa | HIGH VOLTAGE CIRCUIT BREAKER WITH IMPROVED GAS EXHAUST |
KR101109697B1 (en) * | 2007-12-07 | 2012-01-30 | 현대중공업 주식회사 | Apparatus for Hot Gas Exhaustion of Gas Insulation Switch |
KR100934488B1 (en) * | 2007-12-31 | 2009-12-30 | 주식회사 효성 | Fixing part of breaker for gas insulated switchgear |
EP2120244A1 (en) | 2008-05-15 | 2009-11-18 | ABB Technology AG | High voltage output switch |
KR101017385B1 (en) * | 2008-08-25 | 2011-02-28 | 주식회사 효성 | Gas Insulation switchgear |
DE102009009452A1 (en) * | 2009-02-13 | 2010-08-19 | Siemens Aktiengesellschaft | Switchgear assembly with a switching path |
FR2946181B1 (en) | 2009-05-26 | 2011-07-01 | Areva T & D Sa | HIGH VOLTAGE CIRCUIT BREAKER WITH IMPROVED GAS EXHAUST. |
DE102009057703A1 (en) * | 2009-12-04 | 2011-06-09 | Siemens Aktiengesellschaft | Circuit breaker arrangement |
FR2962847B1 (en) | 2010-07-16 | 2012-08-17 | Areva T & D Sas | CUTTING CHAMBER EQUIPMENT FOR TWO CONFINED CONTACT ELECTRODES |
US8519287B2 (en) * | 2010-11-15 | 2013-08-27 | Schneider Electric USA, Inc. | Circuit breaker with controlled exhaust |
DE102011083588A1 (en) * | 2011-09-28 | 2013-03-28 | Siemens Aktiengesellschaft | An arrangement comprising a circuit breaker breaker unit |
DE102011083593A1 (en) * | 2011-09-28 | 2013-03-28 | Siemens Aktiengesellschaft | Circuit-breaker interrupter unit |
DE102011083594A1 (en) * | 2011-09-28 | 2013-03-28 | Siemens Aktiengesellschaft | Circuit-breaker interrupter unit |
DE102012202408A1 (en) * | 2012-02-16 | 2013-08-22 | Siemens Aktiengesellschaft | Switchgear arrangement |
DE102012202406A1 (en) * | 2012-02-16 | 2013-08-22 | Siemens Ag | Switchgear arrangement |
KR101291789B1 (en) * | 2012-03-16 | 2013-07-31 | 현대중공업 주식회사 | Gas insulated switchgear |
KR101291792B1 (en) * | 2012-03-16 | 2013-07-31 | 현대중공업 주식회사 | Gas insulated switchgear |
DE102012112202A1 (en) * | 2012-12-13 | 2014-06-18 | Eaton Electrical Ip Gmbh & Co. Kg | Polarity-independent switching device for conducting and separating direct currents |
DE102013209663A1 (en) * | 2013-05-24 | 2014-11-27 | Siemens Aktiengesellschaft | Switching gas channel and switching device with switching gas channel |
DE102013010124A1 (en) * | 2013-06-18 | 2014-12-18 | Abb Technology Ag | Switching chamber for a gas-insulated circuit breaker |
WO2015097143A1 (en) * | 2013-12-23 | 2015-07-02 | Abb Technology Ag | Electrical switching device |
KR101613992B1 (en) * | 2014-04-09 | 2016-04-21 | 현대중공업 주식회사 | Gas insulated circuit breaker |
JP6277083B2 (en) * | 2014-08-20 | 2018-02-07 | 株式会社日立製作所 | Gas circuit breaker |
US9305726B2 (en) | 2014-08-27 | 2016-04-05 | Eaton Corporation | Arc extinguishing contact assembly for a circuit breaker assembly |
CN104332352B (en) * | 2014-10-15 | 2016-08-24 | 中国西电电气股份有限公司 | A kind of SF6gas-break switch |
FR3030868B1 (en) * | 2014-12-19 | 2018-02-16 | Alstom Technology Ltd | CIRCUIT BREAKER EQUIPPED WITH PRESSURE GAS DRAIN VALVES IN EXHAUST VOLUMES |
US9673006B2 (en) * | 2015-01-23 | 2017-06-06 | Alstom Technology Ltd | Exhaust diffuser for a gas-insulated high voltage circuit breaker |
FR3032059B1 (en) | 2015-01-28 | 2017-03-03 | Alstom Technology Ltd | CIRCUIT BREAKER EQUIPPED WITH AN EXTENDABLE EXHAUST HOOD |
JP6478836B2 (en) * | 2015-06-29 | 2019-03-06 | 株式会社東芝 | Gas circuit breaker |
CN109196615B (en) * | 2016-03-24 | 2020-12-22 | Abb电网瑞士股份公司 | Electric circuit breaker device |
WO2017162533A1 (en) | 2016-03-24 | 2017-09-28 | Abb Schweiz Ag | Electrical circuit breaker device with particle trap |
KR102214303B1 (en) * | 2016-04-06 | 2021-02-10 | 에이비비 슈바이쯔 아게 | Devices for the generation, transmission, distribution and/or use of electrical energy, in particular electrical switching devices |
JP6667370B2 (en) * | 2016-05-31 | 2020-03-18 | 株式会社日立製作所 | Gas circuit breaker |
EP3252793B1 (en) * | 2016-06-03 | 2021-01-27 | ABB Schweiz AG | Switching device with dual conductive housing |
EP3261107A1 (en) * | 2016-06-20 | 2017-12-27 | ABB Schweiz AG | Gas-insulated low- or medium-voltage switch with swirling device |
DE102016214196B4 (en) * | 2016-08-02 | 2019-11-21 | Siemens Aktiengesellschaft | Interrupter unit for a circuit breaker |
CN109496342A (en) * | 2016-10-06 | 2019-03-19 | 株式会社东芝 | Gas circuit breaker |
ES2929798T3 (en) * | 2017-06-29 | 2022-12-01 | Abb Schweiz Ag | Gas-insulated load-break switch and switchgear comprising a gas-insulated load-break switch |
JP6794327B2 (en) * | 2017-09-15 | 2020-12-02 | 株式会社東芝 | Gas circuit breaker |
CN107464708B (en) * | 2017-09-27 | 2021-06-18 | 湖南长高电气有限公司 | High-voltage circuit breaker with gas cooling channel |
JP6921988B2 (en) * | 2017-12-01 | 2021-08-18 | 株式会社東芝 | Gas circuit breaker |
EP3503153B1 (en) * | 2017-12-22 | 2021-09-01 | ABB Power Grids Switzerland AG | Gas-insulated high or medium voltage circuit breaker |
RU186667U1 (en) * | 2018-08-27 | 2019-01-29 | Закрытое акционерное общество "Завод электротехнического оборудования" (ЗАО "ЗЭТО") | GAS ISOLATION SWITCH |
KR102135381B1 (en) | 2018-10-30 | 2020-07-17 | 엘에스일렉트릭(주) | High Speed Earthing Switch of Gas Insulated Switchgear |
DE102018219832A1 (en) * | 2018-11-20 | 2020-05-20 | Siemens Aktiengesellschaft | Circuit breaker interrupter unit |
EP3951822B1 (en) * | 2019-04-02 | 2024-08-28 | Kabushiki Kaisha Toshiba | Gas circuit breaker |
CN112017904B (en) * | 2019-05-28 | 2022-08-12 | 河南平芝高压开关有限公司 | Circuit breaker and quiet side afterbody air current channel structure thereof |
EP3828909B1 (en) * | 2019-11-29 | 2023-09-13 | General Electric Technology GmbH | Circuit breaker with simplified non-linear double motion |
KR102363010B1 (en) | 2020-03-20 | 2022-02-15 | 엘에스일렉트릭(주) | Blocking element and molded-case circuit breaker including the same |
CA3140003A1 (en) * | 2020-11-20 | 2022-05-20 | Technologies Mindcore Inc. | System for controlling and cooling gas of circuit breaker and method thereof |
EP4125108B1 (en) * | 2021-07-26 | 2024-01-31 | Hitachi Energy Ltd | Gas-insulated high or medium voltage circuit breaker |
CN114420482B (en) * | 2022-01-06 | 2023-12-08 | 平高集团有限公司 | Isolation moving contact assembly and high-voltage switch equipment with isolation fracture |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2293513A (en) * | 1939-10-11 | 1942-08-18 | Gen Electric | Electric air circuit breaker |
US2272214A (en) | 1939-12-22 | 1942-02-10 | Gen Electric | Air blast circuit breaker |
US2292158A (en) * | 1941-05-28 | 1942-08-04 | Gen Electric | Gas blast circuit breaker |
US2345375A (en) * | 1942-12-19 | 1944-03-28 | Gen Electric | Electric circuit breaker |
US3005892A (en) * | 1957-03-19 | 1961-10-24 | Ite Circuit Breaker Ltd | Arc chute design for circuit breakers |
US3025376A (en) * | 1958-05-13 | 1962-03-13 | Ite Circuit Breaker Ltd | Arc chute for circuit breakers |
DE1889068U (en) | 1964-01-18 | 1964-03-12 | Concordia Maschinen Und Elek Z | PIPE SLOT CHAMBER WITH COOLING DEVICE. |
DE2642693A1 (en) * | 1976-09-20 | 1978-03-23 | Siemens Ag | HV power switch for outdoor mounting - has hollow contact for gas flow, and by=pass connecting low pressure gas space with ambient air |
US4328403A (en) * | 1977-02-15 | 1982-05-04 | Westinghouse Electric Corp. | Single barrel puffer circuit interrupter |
US4144426A (en) * | 1977-02-15 | 1979-03-13 | Westinghouse Electric Corp. | Single barrel puffer circuit interrupter with downstream gas coolers |
CH645753A5 (en) | 1979-05-22 | 1984-10-15 | Sprecher & Schuh Ag | Gas-blast circuit breaker |
DE3065760D1 (en) | 1979-05-25 | 1984-01-05 | Mitsubishi Electric Corp | Power circuit interrupter with arc-extinguishing means |
JPS5671223A (en) | 1979-11-13 | 1981-06-13 | Mitsubishi Electric Corp | Switch |
CH643087A5 (en) | 1979-11-30 | 1984-05-15 | Sprecher & Schuh Ag | Gas-blast circuit breaker |
JPS56104031A (en) | 1980-01-24 | 1981-08-19 | Matsushita Electric Ind Co Ltd | Pipe for guiding linear body and manufacture thereof |
DE3275041D1 (en) * | 1981-09-30 | 1987-02-12 | Sprecher Energie Ag | Compressed-gas circuit breaker |
EP0076668B1 (en) | 1981-10-06 | 1986-08-27 | A/S Kongsberg Väpenfabrikk | Turbo-machines with bleed-off means |
FR2520928A1 (en) * | 1982-02-04 | 1983-08-05 | Alsthom Atlantique | PNEUMATIC SELF-BLOWING CIRCUIT BREAKER |
JPH0797467B2 (en) * | 1984-12-20 | 1995-10-18 | 三菱電機株式会社 | Ground tank type gas shield and disconnector |
NO855379L (en) * | 1985-02-27 | 1986-08-28 | Bbc Brown Boveri & Cie | PRESSURE GAS SWITCH. |
DE3666521D1 (en) * | 1985-05-15 | 1989-11-23 | Alsthom | Switch with sulfur hexafluoride operating in a very low temperature environment |
FR2638564B1 (en) | 1988-11-02 | 1990-11-30 | Alsthom Gec | HIGH VOLTAGE CIRCUIT BREAKER WITH DIELECTRIC GAS UNDER PRESSURE |
DE3915700C3 (en) | 1989-05-13 | 1997-06-19 | Aeg Energietechnik Gmbh | Compressed gas switch with evaporative cooling |
DE9314779U1 (en) | 1993-09-24 | 1993-11-25 | Siemens AG, 80333 München | High-voltage circuit breaker with a cooling device for cooling the extinguishing gas |
TW280920B (en) * | 1995-01-20 | 1996-07-11 | Hitachi Seisakusyo Kk | |
DE19547522C1 (en) | 1995-12-08 | 1997-01-16 | Siemens Ag | HV line circuit breaker with gas-storage space - has gas-storage space divided by partition into heating space and cold gas space |
DE19720090C2 (en) | 1997-05-14 | 2003-08-14 | Abb Patent Gmbh | High voltage circuit breaker |
JP4174094B2 (en) | 1998-01-29 | 2008-10-29 | 株式会社東芝 | Gas circuit breaker |
DE19832709C5 (en) * | 1998-07-14 | 2006-05-11 | Siemens Ag | High voltage circuit breaker with one interrupter unit |
JP3833839B2 (en) | 1999-01-28 | 2006-10-18 | 三菱電機株式会社 | Puffer type gas circuit breaker |
DE19928080C5 (en) | 1999-06-11 | 2006-11-16 | Siemens Ag | High voltage circuit breaker with a discharge channel |
JP4218216B2 (en) * | 2001-02-22 | 2009-02-04 | 株式会社日立製作所 | Gas circuit breaker |
US6682619B2 (en) * | 2001-07-17 | 2004-01-27 | Sikorsky Aircraft Corporation | Composite pre-preg ply having tailored dielectrical properties and method of fabrication thereof |
DE10156535C1 (en) | 2001-11-14 | 2003-06-26 | Siemens Ag | breakers |
FR2837321B1 (en) | 2002-03-18 | 2004-08-06 | Alstom | HIGH VOLTAGE CIRCUIT BREAKER INCLUDING A DECOMPRESSION VALVE |
DE10221576B4 (en) * | 2002-05-08 | 2006-06-01 | Siemens Ag | Electrical switching device with a cooling device |
DE10221580B3 (en) * | 2002-05-08 | 2004-01-22 | Siemens Ag | Circuit breaker unit of a high voltage circuit breaker |
EP1403891B2 (en) * | 2002-09-24 | 2016-09-28 | ABB Schweiz AG | Circuit breaker |
JP2004119344A (en) | 2002-09-30 | 2004-04-15 | Mitsubishi Electric Corp | Gas blast circuit breaker |
DE502004004571D1 (en) | 2004-06-07 | 2007-09-20 | Abb Technology Ag | breakers |
CN101120423B (en) | 2004-12-24 | 2010-06-23 | Abb技术有限公司 | Generator switch having improved switching capacity |
-
2005
- 2005-09-26 AT AT05405556T patent/ATE458259T1/en not_active IP Right Cessation
- 2005-09-26 EP EP05405556A patent/EP1768150B1/en not_active Revoked
- 2005-09-26 DE DE502005009041T patent/DE502005009041D1/en active Active
-
2006
- 2006-09-14 US US11/520,619 patent/US8389886B2/en active Active
- 2006-09-21 JP JP2006255278A patent/JP2007095680A/en not_active Withdrawn
- 2006-09-26 CN CN2006101396232A patent/CN1941243B/en not_active Expired - Fee Related
- 2006-09-26 KR KR1020060093655A patent/KR101320770B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
ATE458259T1 (en) | 2010-03-15 |
US20070068904A1 (en) | 2007-03-29 |
CN1941243B (en) | 2012-07-11 |
KR20070034972A (en) | 2007-03-29 |
JP2007095680A (en) | 2007-04-12 |
DE502005009041D1 (en) | 2010-04-01 |
KR101320770B1 (en) | 2013-10-21 |
CN1941243A (en) | 2007-04-04 |
US8389886B2 (en) | 2013-03-05 |
EP1768150A1 (en) | 2007-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1768150B1 (en) | High voltage circuit breaker with improved interrupting capacity | |
EP1403891B2 (en) | Circuit breaker | |
EP1829077B1 (en) | Generator switch having an improved switching capacity | |
EP1826792B1 (en) | Arcing chamber of a high voltage circuit breaker with a heating volume receiving the arc extinguishing gases generated by the arc | |
WO2005122201A1 (en) | Power switch | |
EP2396800B1 (en) | Switchgear arrangement with a switch path | |
DE19928080C5 (en) | High voltage circuit breaker with a discharge channel | |
DE2215656B2 (en) | Electric pressure gas switch | |
DE19832709C5 (en) | High voltage circuit breaker with one interrupter unit | |
DE3247121A1 (en) | GAS BUFFER TYPE CIRCUIT BREAKER | |
EP2316122B1 (en) | High-voltage power switch with a switch gap | |
EP1306868A1 (en) | High voltage power circuit breaker with insulating nozzle | |
EP1226597B1 (en) | Compressed gas-blast circuit breaker | |
EP1835520B1 (en) | Switching chamber for gasisolated high voltage switch | |
DE4333277C2 (en) | High-voltage circuit breaker with a cooling device for cooling the extinguishing gas | |
DE2647643C2 (en) | Gas switch | |
WO2011035781A1 (en) | Burn-off element to be arranged on a switch contact of a power circuit breaker | |
WO2010091943A1 (en) | Switchgear arrangement | |
EP2099047B1 (en) | Combustion contact device and output switch | |
DE19720090C2 (en) | High voltage circuit breaker | |
DE3816811C2 (en) | ||
DE19928077B4 (en) | High voltage circuit breaker | |
EP1780741B2 (en) | Chambre d'interruption d'un interrupteur très haute tension avec un volume de chauffage pour l'admission de gaz sous pression | |
DE3430306C3 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20070928 |
|
17Q | First examination report despatched |
Effective date: 20071102 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502005009041 Country of ref document: DE Date of ref document: 20100401 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100217 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100617 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100528 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100518 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
PLAZ | Examination of admissibility of opposition: despatch of communication + time limit |
Free format text: ORIGINAL CODE: EPIDOSNOPE2 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100517 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
PLBA | Examination of admissibility of opposition: reply received |
Free format text: ORIGINAL CODE: EPIDOSNOPE4 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: AREVA ENERGIETECHNIK GMBH Effective date: 20101117 Opponent name: SIEMENS AKTIENGESELLSCHAFT Effective date: 20101110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
BERE | Be: lapsed |
Owner name: ABB TECHNOLOGY A.G. Effective date: 20100930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100926 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100926 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: SIEMENS AKTIENGESELLSCHAFT Effective date: 20101110 Opponent name: ALSTOM GRID GMBH Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100818 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: ALSTOM GRID GMBH Effective date: 20101117 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R064 Ref document number: 502005009041 Country of ref document: DE Ref country code: DE Ref legal event code: R103 Ref document number: 502005009041 Country of ref document: DE |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160921 Year of fee payment: 12 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160921 Year of fee payment: 12 |
|
27W | Patent revoked |
Effective date: 20161020 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MA03 Ref document number: 458259 Country of ref document: AT Kind code of ref document: T Effective date: 20161020 |