EP1768150B1 - High voltage circuit breaker with improved interrupting capacity - Google Patents

High voltage circuit breaker with improved interrupting capacity Download PDF

Info

Publication number
EP1768150B1
EP1768150B1 EP05405556A EP05405556A EP1768150B1 EP 1768150 B1 EP1768150 B1 EP 1768150B1 EP 05405556 A EP05405556 A EP 05405556A EP 05405556 A EP05405556 A EP 05405556A EP 1768150 B1 EP1768150 B1 EP 1768150B1
Authority
EP
European Patent Office
Prior art keywords
gas flow
partial gas
gas
switching
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP05405556A
Other languages
German (de)
French (fr)
Other versions
EP1768150A1 (en
Inventor
Andreas Dahlquist
Christian Franck
Martin Kriegel
Martin Seeger
Henrik Nordborg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Technology AG
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35788070&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1768150(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ABB Technology AG filed Critical ABB Technology AG
Priority to DE502005009041T priority Critical patent/DE502005009041D1/en
Priority to AT05405556T priority patent/ATE458259T1/en
Priority to EP05405556A priority patent/EP1768150B1/en
Priority to US11/520,619 priority patent/US8389886B2/en
Priority to JP2006255278A priority patent/JP2007095680A/en
Priority to CN2006101396232A priority patent/CN1941243B/en
Priority to KR1020060093655A priority patent/KR101320770B1/en
Publication of EP1768150A1 publication Critical patent/EP1768150A1/en
Publication of EP1768150B1 publication Critical patent/EP1768150B1/en
Application granted granted Critical
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/72Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber
    • H01H33/74Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber wherein the break is in gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/57Recuperation of liquid or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/02Housings; Casings; Bases; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H2033/888Deflection of hot gasses and arcing products

Definitions

  • the invention relates to the field of high-voltage technology, in particular the high-voltage circuit breakers in electrical power distribution networks. It is based on a method and a high voltage switch according to the preamble of the independent claims.
  • a flow control device which surrounds the extinguishing gas flow coaxially and has a lateral surface with two outflow openings.
  • the lateral surface of the flow-deflecting device defines an exhaust gas volume. Partial flows of the quenching gas flow out of the outflow openings into the switching chamber volume. The outflow directions of the directly opposite outflow openings are directed so that they intersect each other. It is thereby achieved that the extinguishing gas is favorably mixed after passing through the respective outflow openings.
  • the outlet openings may be associated with additional swirling body or baffles to additionally swirl the leaking from the outlet openings switching gas. By mixing and turbulence, the extinguishing gas flow is braked upon entry into the switching chamber volume, cooled and dielectrically solidified to avoid flashovers on the switching chamber housing.
  • a high voltage circuit breaker is disclosed with an interrupter unit, in which The exhaust gases are deflected twice by 180 °.
  • a concentrically arranged, hollow cylindrical, radially flowed through perforated plate is present on the fixed contact side.
  • the perforated plate serves as a heat sink, which extracts heat from the quenching gas.
  • the perforated plate does not increase the flow resistance for the quenching gas. In the area of the perforated plate, a uniform, laminar quenching gas flow is maintained.
  • a circuit breaker in which exhaust gas is also passed from an arc chamber through a hollow contact in a concentrically arranged exhaust volume and from there into a more external extinguishing chamber volume.
  • at least one intermediate volume and possibly an additional volume are arranged concentrically between the hollow contact and the exhaust volume and separated from one another by intermediate walls which have bores or gas passage openings. Due to the radial outflow of the switching gases from the inner to the outer volumes, the exhaust gases are jet-like directed and vortexed on the partition walls of the volumes. In this way, heat is transferred turbulently convective to the intermediate walls in a highly efficient manner.
  • the passage openings between the hollow contact volume, the intermediate volume and optionally the additional volume are offset from each other on the circumference.
  • the passage openings between the additional volume and the exhaust volume are arranged offset from each other on the circumference and / or in the axial direction.
  • the invention is based on the prior art according to US 4,471,187 , There, a high voltage switch is shown with a special exhaust design, wherein cold gas is present in the outflow volume, the outflow volume is bypassed by a first partial gas flow and only a second partial gas flow displaces the cold gas from the outflow volume.
  • the first and second partial gas flows are flowed together at the open end of the outflow volume into the large-volume switching circuit housing.
  • the invention consists in a method for cooling a switching gas in an electrical switching device for electrical power grids, in particular in a high voltage switch, wherein the switching device comprises a switching chamber which is enclosed by a switching chamber housing, wherein further in a switching process hot switching gas from an arc extinguishing zone to a Cold gas filled exhaust area flows and the hot switching gas is split into at least two partial gas flows, wherein at least a portion of the cold gas is stored in the exhaust area and the first partial gas flow bypasses the cached cold gas and is discharged into the switching chamber and with the help of the second partial gas flow, the cached cold gas displaced from the exhaust area and mixed before flowing into the switching chamber housing with the first partial gas flow, wherein behind the mixing zone and before entering the Scha lthunt housing in a mixing channel, the first partial gas flow is additionally mixed with the cached cold gas.
  • the embodiment according to claim 2 and 10 has the advantage that the first partial gas flow flows out of the exhaust largely at the same time as the stored cold gas, which is displaced from the second partial gas flow from the exhaust area and in particular the intermediate storage volume.
  • the invention also relates to an electrical switching device for an electrical energy supply network, in particular a high-voltage switch.
  • the switching device comprises a switching chamber, which is enclosed by a switching chamber housing and a Arc extinguishing zone and an exhaust volume for cooling of hot switching gas, wherein at the beginning of a switching operation, an exhaust area of the exhaust volume is filled with cold gas, means for splitting the hot switching gas in at least two partial gas flows are present, further in the exhaust area a buffer storage volume for storing cold gas is present, a first means is present, which directs the first partial gas flow, bypassing the intermediate storage volume in the switching chamber housing, and a second means is provided, which directs the second partial gas flow to the stored cold gas and thereby causes the displacement of the stored cold gas from the intermediate storage volume behind the mixing zone and before entering the switching chamber housing a mixing channel is arranged, in which an additional mixing of the first partial gas flow with the displaced from the intermediate storage volume cold gas st attfindet.
  • the embodiments according to claim 15-19 indicate preferred structural embodiments for the buffer storage volume.
  • Fig. 1 shows simplified the exhaust area of a conventional high-voltage switch, which is constructed concentrically around a switch axis 1a and in the hot switching gas 11, 110 from the arc zone 6 along a path, here a meandering path, is discharged from the exhaust volume 4 into the switching chamber 2.
  • the cold gas 111 is forced out of the exhaust area, without contributing to the cooling of the switching gas 11, 110.
  • Fig. 2 shows a simplified embodiment of a switching gas cooling according to the invention.
  • the hot switching gas 11, 110 is split into two partial gas flows 11a, 11b, at least part of the cold gas 111 is temporarily stored in the exhaust area 7, 8, the first partial gas flow 11a is conducted past the cached cold gas 111 and flowed into the switching chamber 2, and with the aid of the second partial gas flow 11b the cached cold gas 111 is removed from the exhaust area 7, 8 displaced and mixed before flowing out into the switching chamber housing 3 with the first partial gas flow 11a.
  • the mixed switching gas 13 has already at the beginning of the switching gas emission a significantly reduced temperature compared to the conventional exhaust according to Fig. 1 where first cold gas 111 and then the relatively little cooled hot gas 110 flows out.
  • further embodiments of the switching gas cooling process in connection with the Fig. 2-9 discussed.
  • the longer path can be divided into at least two paths, namely into the second partial gas flow 11b and a third or further partial gas flow 11c supporting this.
  • an improved mixing of the switching gas 11 can be achieved.
  • the cached portion of the cold gas 111 is temporarily stored in the exhaust area in a cold gas reservoir or intermediate storage volume 7, 8, wherein the intermediate storage volume 7, 8 an inlet opening 70 and an outlet opening 80 for the second 11b and the optional, further supporting partial gas flow 11c and in the region Outlet opening 80 has a mixing zone 12, in which the stored cold gas 111 is mixed with the first partial gas flow 11 a.
  • a negative pressure in the region of the mixing zone 12 is generated by the first partial gas flow 11a, through which the cached cold gas 111 from the intermediate storage volume 7, 8 is sucked.
  • the suction may be effective alone or in support of cold gas displacement.
  • the first partial gas flow 11a may be mixed with the intermediately stored cold gas 111 and in particular with a pre-cooled second partial gas flow 11b and optionally with a third or further partial gas flow 11c.
  • gas jets can also be formed in the first partial gas flow 11a and in the displaced cold gas flow 111 and directed against one another in such a way that they swirl and mix with one another.
  • the switching gas 11 is effectively cooled before or during the outflow into the switching chamber housing 3.
  • switching gas 11 can also be directed to a baffle plate 9b and cooled there ( Fig. 9 ); and / or in the switching gas 11, an extended path, in particular a meandering path, can be predetermined by means of steering means 9c and / or a recirculation area can be formed by means of turbulence means 9c ( Fig. 9 ). Other, not mentioned aids for switching gas cooling can also be used.
  • the contact tulip can also be formed as a hollow exhaust outflow tube with a Hohljorausströmö réelle 5a. Concentric with the arcing contact system 5, the rated current contacts are arranged, which in turn are surrounded by the switching chamber insulator 3a.
  • an exhaust area 7, 8 of the exhaust volume 4 is filled with cold gas 111.
  • a buffer storage volume 7, 8 for storing cold gas 111 is arranged, wherein a first means 71; 101, 102, which directs the first partial gas flow 11a, bypassing the intermediate storage volume 7, 8 into the switching chamber housing 3, and a second means 7a, 7b, 72 is present, which directs the second partial gas flow 11b to the stored cold gas 111 and thereby the displacement of the stored cold gas 111 from the intermediate storage volume 7, 8 causes.
  • Fig. 3-9 show this constructive embodiments.
  • a shorter path for the first partial gas flow 11a and a longer path for the second partial gas flow 11b and optionally for at least one further partial gas flow 11c should be provided between the arc extinguishing zone 6 and the switching chamber housing 3c.
  • a path length difference 2 * 1 between the longer and shorter path through a flow-through length 2 * 1 by the intermediate storage volume 7, 8 predetermined.
  • the path length difference or flow length can also be composed of two or more unequal length partial paths ( Fig. 5-8 ).
  • the intermediate storage volume 7, 8 has an inlet opening 70 and an outlet opening 80, the first means 71 directing the first partial gas flow 11a bypassing the intermediate storage volume 7, 8 to the outlet opening 80 and the second means 7a, 7b, 72 directing the second partial gas flow 11b or optionally further partial gas flows 11c to the inlet opening 70 and through the intermediate storage volume 7 to the outlet opening 80 directs.
  • a mixing zone 12 for mixing the first partial gas flow 11a with the cold gas 111 should be present, which is stored in the intermediate storage volume 7, 8 and which is displaced from the intermediate storage volume 7, 8 by the second partial gas flow 11b.
  • the mixing zone 12 can at the same time be designed as a vacuum zone 12 for sucking the stored cold gas 111 from the intermediate storage volume 7, 8. This can be z. B. by the flow conditions and in particular flow velocities of the partial flows 11a, 11b and optionally 11c in the region of the vacuum zone 12 can be achieved.
  • the mixing zone 12 can also be designed as a turbulence zone 12 for the first partial gas flow 11a and the cold gas 111, in particular of gas jets of the first partial gas flow 11a and the cold gas 111.
  • Diameter D and length L should be dimensioned so that an efficient mixture of the already premixed partial gas flows 11a, 11b, 11c with the cold gas 111 and with each other is realized.
  • the mixing channel 10 can be axially ( Fig. 3-4 . 7-9 ) and / or radially ( Fig. 5-6 ) be aligned.
  • the storage capacity of the intermediate storage volume 7, 8 is dimensioned such that a desired mixing time and mixing temperature of the first partial gas flow 11a with the temporarily stored cold gas 111 can be achieved. Also, the flow-through length, z. 2 * 1 in Fig. 3-4 , be dimensioned by the intermediate storage volume 7, 8 so that a desired time delay of the second partial gas flow 11a in the intermediate storage volume 7, 8 relative to the first partial gas flow 11b can be realized.
  • Fig. 3-9 also show preferred structural designs of the switching device 1.
  • the exhaust volume 4 is enclosed by an exhaust housing 4a having an outflow opening 101 and an exhaust port 102 to the switching chamber housing 2 out.
  • the intermediate storage volume 7, 8 is formed by a permeable body 7 a, 7 b, 8 a, 8 b, which is arranged in the exhaust volume 4.
  • the first opening 71 is close to Outflow opening 101, in particular radially opposite, arranged; and / or to provide a maximum path for the second partial gas flow 11b, the second opening 72 is located far away from the outflow opening 101, in particular axially maximally spaced apart from the outflow opening 101; and / or a third or further opening 73 is arranged between the first and second openings 71, 72 for a further partial gas flow 11c in the axial direction 1a (FIG. Fig. 8 , right side).
  • the further partial gas flow 11c the long path can be divided into at least two paths 11b, 11c. As a result, the mixing of the switching gas 11 in the outer volume 8 can be improved.
  • the second opening 72 cooperates with a deflecting device 7b, 8b, 8a for returning the stored cold gas 111 and the second partial gas flow 11b to the outlet opening 80 of the intermediate storage volume 7, 8; and / or the path length difference between the shorter path 11a for the first partial gas flow and the longer path 11b for the second partial gas flow is given by the axial distance between the first and second openings 71, 72.
  • the openings 71, 72, 73 may be holes or slots in a wall 7a, 7b of the body 7a, 7b, 8a, 8b.
  • the openings 71, 72, 73 may be arranged in a radial wall 7a and / or in an axial wall 7b of the body 7a, 7b, 8a, 8b.
  • a number, size (ie cross-sectional area A 1 , A 2 , A 3 ) and position of the first, second and optionally third openings 71, 72, 73 should be selected so that the first partial gas flow 11 a still largely in the exhaust volume 4 with the stored cold gas 111 is mixable.
  • the outer cylinder 8a, 8b surrounds the inner cylinder 7a, 7b, defines an outer volume V 2 and has an exit opening 80 for the stored cold gas 111 and the second partial gas flow 11b toward the extinguishing arc zone 6.
  • the inner cylinder 7a, 7b and outer cylinder 8a, 8b communicate with each other through the second opening 72 and optionally the third opening 73.
  • the inner and outer volumes V 1 , V 2 should be coordinated so that a desired storage capacity for the cold gas 111 and a desired flow dynamics for the second partial gas flow 11b can be realized.
  • the buffer storage volume 7, 8, the first means 71; 101, 102 and the second means 7a, 7b, 72 may be arranged in the exhaust area 7, 8 of a first and / or a second contact 5 of the switching device 1.
  • the switching device 1 may be a high-voltage circuit breaker 1 or a high-current switch or a circuit breaker o. ⁇ . Act.
  • Fig. 3-8 left side or drive contact side and right side or fixed contact side two partial gas flows 11a, 11b realized through holes 71, 72;
  • Fig. 4 left side with slots 71, 72 instead of holes and right side with large-area second opening 72 in the rear wall 7b of the inner cylinder 7a, 7b;
  • Fig. 5-6 axially aligned first and second openings 71, 72 and inner cylinder 7a, 7b shortened axially (left side) and / or radially reduced (right side); further mixing channel 10 with radial exhaust or gas outlet 102;
  • Fig. 3 left side or drive contact side and right side or fixed contact side two partial gas flows 11a, 11b realized through holes 71, 72
  • Fig. 4 left side with slots 71, 72 instead of holes and right side with large-area second opening 72 in the rear wall 7b of the inner cylinder 7a, 7b
  • Fig. 5-6 axially aligned first and second openings 71, 72 and inner cylinder 7a, 7
  • Slits 72 for the second partial gas flow 11b are dimensioned such that a hot gas jet or jet is built up and impacted against the outer wall 8a of the outer cylinder 8a, 8b, as discussed further below;
  • Fig. 8 Additional volume 9a for building up a hot gas jet or jet (left side) and third openings 73 for splitting off a third partial gas flow 11c;
  • Fig. 9 first partial gas flow 11a or, as shown, second partial gas flow 11b with further cooling mechanisms 9.
  • Aids 9, 9a, 9b, 9c; 74, 75 for pre-cooling of the switching gas 11 may be arranged in the exhaust volume 4 of the switching device 1.
  • the aids 9, 9a, 9b, 9c; 74, 75 may be arranged in the hot gas flow 110 before the splitting into the partial gas flows 11a, 11b, 11 and / or in the first partial gas flow and / or in the second partial gas flow 11a, 11b and possibly in the further partial gas flow 11c.
  • Such aids relate on the one hand jet-forming outflow openings 74 in the intermediate storage volume 7, 8 and / or in an additional volume 9a for the formation of gas jets and a baffle 75 for turbulence and intensive turbulent convective cooling of the gas jets.

Landscapes

  • Circuit Breakers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Electronic Switches (AREA)

Abstract

The method involves flowing switching gas from an arc-discharging zone to an exhaust area filled with cold gas (111). The switching gas is split up into two partial gas flows (11a, 11b). A part of the cold gas is immediately stored in the exhaust area, and one partial flow is guided to the cold gas and flowed into a switching chamber (2). The cold gas is displaced from the exhaust area with the help of another partial flow, where the former partial flow and the cold gas are mixed with one another before flowing into a switching chamber housing (3). An independent claim is also included for an electrical switching circuit for an electrical power grid.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung bezieht sich auf das Gebiet der Hochspannungstechnik, insbesondere der Hochspannungsleistungsschalter in elektrischen Energieverteilnetzen. Sie geht aus von einem Verfahren und einem Hochspannungsschalter gemäss Oberbegriff der unabhängigen Patentansprüche.The invention relates to the field of high-voltage technology, in particular the high-voltage circuit breakers in electrical power distribution networks. It is based on a method and a high voltage switch according to the preamble of the independent claims.

STAND DER TECHNIKSTATE OF THE ART

In der EP 1 444 713 B1 wird für einen Leistungsschalter eine Strömungslenkeinrichtung offenbart, welche die Löschgasströmung koaxial umgibt und eine Mantelfläche mit zwei Ausströmöffnungen aufweist. Die Mantelfläche der Strömungslenkeinrichtung definiert ein Abgasvolumen. Aus den Ausströmöffnungen treten Teilströmungen der Löschgasströmung in das Schaltkammervolumen aus. Die Abströmrichtungen der unmittelbar gegenüberliegenden Ausströmöffnungen sind so gerichtet, dass sie einander schneiden. Dadurch wird erreicht, dass das Löschgas nach dem Hindurchtreten durch die jeweiligen Ausströmöffnungen günstig vermischt wird. Den Austrittsöffnungen können zusätzliche Verwirbelungskörper oder Prallplatten zugeordnet sein, um das aus den Austrittsöffnungen austretende Schaltgas zusätzlich zu verwirbeln. Durch die Vermischung und Verwirbelung wird die Löschgasströmung bei Eintritt in das Schaltkammervolumen gebremst, gekühlt und dielektrisch verfestigt, um Überschläge auf das Schaltkammergehäuse zu vermeiden.In the EP 1 444 713 B1 is disclosed for a circuit breaker, a flow control device which surrounds the extinguishing gas flow coaxially and has a lateral surface with two outflow openings. The lateral surface of the flow-deflecting device defines an exhaust gas volume. Partial flows of the quenching gas flow out of the outflow openings into the switching chamber volume. The outflow directions of the directly opposite outflow openings are directed so that they intersect each other. It is thereby achieved that the extinguishing gas is favorably mixed after passing through the respective outflow openings. The outlet openings may be associated with additional swirling body or baffles to additionally swirl the leaking from the outlet openings switching gas. By mixing and turbulence, the extinguishing gas flow is braked upon entry into the switching chamber volume, cooled and dielectrically solidified to avoid flashovers on the switching chamber housing.

In der DE 102 21 580 B3 wird ein Hochspannungsleistungsschalter mit einer Unterbrechereinheit offenbart, in welcher die Auspuffgase zweimal um 180° umgelenkt werden. Zur Verbesserung der Kühlung der Gase ist auf der Festkontaktseite ein konzentrisch angeordnetes, hohlzylindrisches, radial durchströmtes Lochblech vorhanden. Das Lochblech dient als Kühlkörper, der dem Löschgas Wärme entzieht. Das Lochblech bewirkt keine Erhöhung des Strömungswiderstands für das Löschgas. Im Bereich des Lochblechs wird eine einheitliche, laminare Löschgasströmung beibehalten.In the DE 102 21 580 B3 a high voltage circuit breaker is disclosed with an interrupter unit, in which The exhaust gases are deflected twice by 180 °. To improve the cooling of the gases, a concentrically arranged, hollow cylindrical, radially flowed through perforated plate is present on the fixed contact side. The perforated plate serves as a heat sink, which extracts heat from the quenching gas. The perforated plate does not increase the flow resistance for the quenching gas. In the area of the perforated plate, a uniform, laminar quenching gas flow is maintained.

In dem Gebrauchsmuster DE 1 889 068 U wird ein Lasttrennschalter mit verbesserter Abgaskühlung offenbart. Die Kühlvorrichtung umfasst mehrere, im Gasabströmkanal konzentrisch angeordnete Rohre, die jeweils diametral gegenüberliegende Ausströmöffnungen aufweisen, so dass die Schaltgase beim laminaren Ausströmen einen labyrinthartigen Weg mit zahlreichen Umlenkungen durcheilen und grosse Oberflächen der Kühlrohre bestreichen müssen. Mit dieser Anordnung wird der Ausströmpfad verlängert und die Kühloberfläche im Auspuff vergrössert.In the utility model DE 1 889 068 U discloses a load break switch with improved exhaust gas cooling. The cooling device comprises a plurality of tubes, which are arranged concentrically in the gas discharge channel and each have diametrically opposite outflow openings, so that the switching gases must rush through a labyrinthine path with numerous deflections during laminar outflow and have to coat large surfaces of the cooling tubes. With this arrangement, the Ausströmpfad is extended and enlarged the cooling surface in the exhaust.

In der EP 1 403 891 A1 wird ein Leistungsschalter offenbart, bei dem Auspuffgas ebenfalls von einem Lichtbogenraum durch einen Hohlkontakt in ein konzentrisch angeordnetes Auspuffvolumen und von dort in ein weiter aussen liegendes Löschkammervolumen geleitet wird. Zur Steigerung der Ausschaltleistung sind zwischen dem Hohlkontakt und dem Auspuffvolumen mindestens ein Zwischenvolumen und gegebenenfalls ein Zusatzvolumen konzentrisch angeordnet und durch Zwischenwände, die Bohrungen oder Gasdurchlassöffnungen aufweisen, voneinander separiert. Durch das radiale Ausströmen der Schaltgase von den inneren zu den äusseren Volumina werden die Abgase jetartig auf die Zwischenwände der Volumina gerichtet und verwirbelt. So wird Wärme turbulent konvektiv hocheffizient auf die Zwischenwände übertragen. Die Durchlassöffnungen zwischen dem Hohlkontaktvolumen, dem Zwischenvolumen und gegebenenfalls dem Zusatzvolumen sind zueinander am Umfang versetzt angeordnet. Die Durchlassöffnungen zwischen dem Zusatzvolumen und dem Auspuffvolumen sind zueinander am Umfang und/oder in axialer Richtung versetzt angeordnet. Dadurch werden mäandrierende sowie auch spiralförmige Abgaspfade vorgegeben, die Verweilzeit des Abgases im Auspuffbereich wird erhöht und die Wärmeabgabe des Abgases wird verbessert. Insgesamt benötigt man in dem Leistungsschalter also neben dem Hohlkontaktvolumen, dem Auspuffvolumen und dem Schaltkammervolumen noch mindestens ein weiteres Zwischenvolumen, um die Effizienz der Abgaskühlung zu steigern.In the EP 1 403 891 A1 a circuit breaker is disclosed in which exhaust gas is also passed from an arc chamber through a hollow contact in a concentrically arranged exhaust volume and from there into a more external extinguishing chamber volume. To increase the breaking capacity, at least one intermediate volume and possibly an additional volume are arranged concentrically between the hollow contact and the exhaust volume and separated from one another by intermediate walls which have bores or gas passage openings. Due to the radial outflow of the switching gases from the inner to the outer volumes, the exhaust gases are jet-like directed and vortexed on the partition walls of the volumes. In this way, heat is transferred turbulently convective to the intermediate walls in a highly efficient manner. The passage openings between the hollow contact volume, the intermediate volume and optionally the additional volume are offset from each other on the circumference. The passage openings between the additional volume and the exhaust volume are arranged offset from each other on the circumference and / or in the axial direction. As a result, meandering as well as spiral exhaust paths are predetermined, the residence time of the exhaust gas in the exhaust area is increased and the heat output of the exhaust gas is improved. Overall, in addition to the hollow contact volume, the exhaust volume and the switching chamber volume, at least one further intermediate volume is needed in the circuit breaker in order to increase the efficiency of the exhaust gas cooling.

In den vorbekannten Schaltern wird kaltes Gas, das vor dem Schaltvorgang in der Unterbrechereinheit verweilt, von heissem Abgas, das aus der Lichtbogenzone abströmt, verdrängt und aus dem Auspuff rausgeschoben. Der zu verdrängende Kaltgasanteil behindert das Abströmen der heissen Abgase und geht für Kühlzwecke ungenützt verloren.In the previously known switches, cold gas that remains in the interrupter unit before the switching operation is displaced by hot exhaust gas flowing out of the arc zone and pushed out of the exhaust pipe. The displaced to cold gas content hinders the outflow of hot exhaust gases and is lost for cooling purposes unused.

Bei der Erfindung wird ausgegangen von dem Stand der Technik gemäß US 4,471,187 . Dort wird ein Hochspannungsschalter mit einer speziellen Auspuffgestaltung gezeigt, wobei Kaltgas im Abströmvolumen vorhanden ist, wobei das Abströmvolumen von einer ersten Teilgasströmung umgangen wird und lediglich eine zweite Teilgasströmung das Kaltgas aus dem Abströmvolumen verdrängt. Die ersten und zweiten Teilgasströmungen werden am offenen Ende des Abströmvolumens gemeinsam in das grossvolumige Schaltkamergehäuse abgeströmt. Durch die Abspaltung einer ersten heissen Teilgasströmung mit einem sehr kurzen Abströmweg wird eine schnelle Wegführung von überschüssigem Heissgas aus der Lichtbogenlöschzone erreicht. Die zweite Teilgasströmung strömt zwar verzögert ab, kann aber auf ihrem längeren Weg mit Kaltgas vermischt und dadurch gekühlt werden. Beim gemeinsamen Austritt in das grossvolumige Schaltkammergehäuse strömen die erste und zweite Teilgasströmung ungehindert ab und können daher kaum miteinander vermischt werden.The invention is based on the prior art according to US 4,471,187 , There, a high voltage switch is shown with a special exhaust design, wherein cold gas is present in the outflow volume, the outflow volume is bypassed by a first partial gas flow and only a second partial gas flow displaces the cold gas from the outflow volume. The first and second partial gas flows are flowed together at the open end of the outflow volume into the large-volume switching circuit housing. By splitting off a first hot partial gas flow with a very short outflow, rapid removal of excess hot gas from the arc extinguishing zone is achieved. Although the second partial gas flow flows off delayed, but can be mixed on their longer path with cold gas and thereby cooled. When common exit into the large-volume switching chamber housing, the first and second partial gas flow flow unhindered and therefore can hardly be mixed together.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Kühlung eines Schaltgases in einem elektrischen Schaltgerät und ein zugehöriges elektrisches Schaltgerät mit einer verbesserten Schaltleistung anzugeben. Diese Aufgabe wird erfindungsgemäss durch die Merkmale der unabhängigen Ansprüche gelöst.Object of the present invention is to provide a method for cooling a switching gas in an electrical switching device and an associated electrical switching device with an improved switching performance. This object is achieved according to the invention by the features of the independent claims.

Die Erfindung besteht in einem Verfahren zur Kühlung eines Schaltgases in einem elektrischen Schaltgerät für elektrische Energieversorgungsnetze, insbesondere in einem Hochspannungsschalter, wobei das Schaltgerät eine Schaltkammer umfasst, die von einem Schaltkammergehäuse umschlossen ist, wobei ferner bei einem Schaltvorgang heisses Schaltgas von einer Lichtbogenlöschzone zu einem mit Kaltgas gefüllten Auspuffbereich strömt und das heisse Schaltgas in mindestens zwei Teilgasströmungen aufgespalten wird, wobei zumindest ein Teil des Kaltgases im Auspuffbereich zwischengespeichert wird und die erste Teilgasströmung an dem zwischengespeicherten Kaltgas vorbeigeleitet und in die Schaltkammer abgeströmt wird und mit Hilfe der zweiten Teilgasströmung das zwischengespeicherte Kaltgas aus dem Auspuffbereich verdrängt und vor dem Abströmen in das Schaltkammergehäuse mit der ersten Teilgasströmung durchmischt wird, wobei hinter der Durchmischungszone und vor Eintritt in das Schaltkammergehäuse in einem Durchmischungskanal die erste Teilgasströmung mit dem zwischengespeicherten Kaltgas zusätzlich vermischt wird. Durch die Zwischenspeicherung des Kaltgases und die Vermischung mit dem ersten heissen Teilgasstrom wird dieser effizient gekühlt. Diese Kühlung erfolgt zu einem sehr frühen Zeitpunkt beim Abströmen des ersten Teilgasstroms aus der Lichtbogenlöschzone. Im Auspuffvolumen vorhandenes Kaltgas wird nicht ungenutzt hinausverdrängt, sondern zur Abgaskühlung genutzt. Die Verdrängung des Kaltgases aus dem Zwischenspeichervolumen erfolgt durch den zweiten Teilgasstrom, insbesondere indem dieser durch das Zwischenspeichervolumen geströmt wird, oder indem durch diesen das Zwischenspeichervolumen in seiner Grösse reduziert wird, z. B. durch Ausüben von Gasdruck auf eine beweglich gelagerte Wand des Zwischenspeichervolumens, oder indem dieser einen Unterdruck erzeugt und dadurch das Kaltgas aus dem Zwischenspeichervolumen ansaugt, durch Kombination derartiger Effekte oder auf andere Weise. Durch die verbesserte Kühlung wird das Schaltgas dielektrisch wirkungsvoller als bisher verfestigt, die Schaltleistung kann gesteigert werden und/oder das Schaltkammergehäuse kann kompakter, insbesondere schlanker, dimensioniert werden, ohne elektrische Überschläge zwischen dem abströmenden Schaltgas und dem Schaltkammergehäuse zu riskieren.The invention consists in a method for cooling a switching gas in an electrical switching device for electrical power grids, in particular in a high voltage switch, wherein the switching device comprises a switching chamber which is enclosed by a switching chamber housing, wherein further in a switching process hot switching gas from an arc extinguishing zone to a Cold gas filled exhaust area flows and the hot switching gas is split into at least two partial gas flows, wherein at least a portion of the cold gas is stored in the exhaust area and the first partial gas flow bypasses the cached cold gas and is discharged into the switching chamber and with the help of the second partial gas flow, the cached cold gas displaced from the exhaust area and mixed before flowing into the switching chamber housing with the first partial gas flow, wherein behind the mixing zone and before entering the Scha ltkammer housing in a mixing channel, the first partial gas flow is additionally mixed with the cached cold gas. The intermediate storage of the cold gas and the mixing with the first hot partial gas flow, this is cooled efficiently. This cooling takes place at a very early time when the first partial gas flow out of the arc extinguishing zone. In the exhaust volume existing cold gas is not displaced unused, but used for exhaust gas cooling. The displacement of the cold gas from the intermediate storage volume is effected by the second partial gas flow, in particular by this is passed through the buffer storage volume or by the buffer storage volume is reduced in size, for. B. by applying gas pressure to a movably mounted wall of the intermediate storage volume, or by this generates a negative pressure and thereby sucks the cold gas from the intermediate storage volume, by combining such effects or otherwise. Due to the improved cooling, the switching gas is dielectrically more effective than previously solidified, the switching capacity can be increased and / or the switching chamber housing can be more compact, in particular slimmer, dimensioned without risking electrical flashovers between the outflowing switching gas and the switching chamber housing.

Das Ausführungsbeispiel gemäss Anspruch 2 und 10 hat den Vorteil, dass die erste Teilgasströmung weitgehend zeitgleich aus dem Auspuff ausströmt wie das gespeicherte Kaltgas, das von der zweiten Teilgasströmung aus dem Auspuffbereich und insbesondere dem Zwischenspeichervolumen verdrängt wird.The embodiment according to claim 2 and 10 has the advantage that the first partial gas flow flows out of the exhaust largely at the same time as the stored cold gas, which is displaced from the second partial gas flow from the exhaust area and in particular the intermediate storage volume.

Die Ausführungsbeispiele gemäss Anspruch 3-6 und 11-14 geben vorteilhafte Geometrien und bevorzugte Dimensionierungskriterien für den Auspuffbereich und insbesondere für das Zwischenspeichervolumen, die Durchmischungszone und den Durchmischungskanal an.The embodiments according to claims 3-6 and 11-14 indicate advantageous geometries and preferred dimensioning criteria for the exhaust area and in particular for the intermediate storage volume, the mixing zone and the mixing channel.

Die Ausführungsbeispiele gemäss Anspruch 7-8 und 20-21 geben verschiedene Varianten und Einbauorte für Hilfsmittel an, mit denen das Schaltgas zusätzlich gekühlt werden kann. Mit Vorteil wird der erste und/oder zweite Teilgasstrom durch Gasjetbildung und Gasjetverwirbelung an einer Prallwand zusätzlich gekühlt.The embodiments according to claim 7-8 and 20-21 indicate different variants and installation locations for aids with which the switching gas can be additionally cooled. Advantageously, the first and / or second partial gas stream is additionally cooled by gas jet formation and gas jet turbulence on a baffle wall.

In einem weiteren Aspekt hat die Erfindung auch ein elektrisches Schaltgerät für ein elektrisches Energieversorgungsnetz, insbesondere einen Hochspannungsschalter, zum Gegenstand. Das Schaltgerät umfasst eine Schaltkammer, die von einem Schaltkammergehäuse umschlossen ist und eine Lichtbogenlöschzone sowie ein Auspuffvolumen zur Kühlung von heissem Schaltgas aufweist, wobei zu Beginn einer Schalthandlung ein Auspuffbereich des Auspuffvolumens mit Kaltgas gefüllt ist, wobei Mittel zur Aufspaltung des heissen Schaltgases in mindestens zwei Teilgasströmungen vorhanden sind, wobei ferner in dem Auspuffbereich ein Zwischenspeichervolumen zur Speicherung von Kaltgas vorhanden ist, ein erstes Mittel vorhanden ist, das die erste Teilgasströmung unter Umgehung des Zwischenspeichervolumens in das Schaltkammergehäuse lenkt, und ein zweites Mittel vorhanden ist, das die zweite Teilgasströmung zum gespeicherten Kaltgas lenkt und dadurch die Verdrängung des gespeicherten Kaltgases aus dem Zwischenspeichervolumen bewirkt, wobei hinter der Durchmischungszone und vor Eintritt in das Schaltkammergehäuse ein Durchmischungskanal angeordnet ist, in dem eine zusätzliche Durchmischung der ersten Teilgasströmung mit dem aus dem Zwischenspeichervolumen verdrängten Kaltgas stattfindet.In a further aspect, the invention also relates to an electrical switching device for an electrical energy supply network, in particular a high-voltage switch. The switching device comprises a switching chamber, which is enclosed by a switching chamber housing and a Arc extinguishing zone and an exhaust volume for cooling of hot switching gas, wherein at the beginning of a switching operation, an exhaust area of the exhaust volume is filled with cold gas, means for splitting the hot switching gas in at least two partial gas flows are present, further in the exhaust area a buffer storage volume for storing cold gas is present, a first means is present, which directs the first partial gas flow, bypassing the intermediate storage volume in the switching chamber housing, and a second means is provided, which directs the second partial gas flow to the stored cold gas and thereby causes the displacement of the stored cold gas from the intermediate storage volume behind the mixing zone and before entering the switching chamber housing a mixing channel is arranged, in which an additional mixing of the first partial gas flow with the displaced from the intermediate storage volume cold gas st attfindet.

Die Ausführungsbeispiele gemäss Anspruch 15-19 geben bevorzugte konstruktive Ausführungsformen für das Zwischenspeichervolumen an.The embodiments according to claim 15-19 indicate preferred structural embodiments for the buffer storage volume.

Weitere Ausführungen, Vorteile und Anwendungen der Erfindung ergeben sich aus abhängigen Ansprüchen, aus den Anspruchskombinationen sowie aus der nun folgenden Beschreibung und den Figuren.Further embodiments, advantages and applications of the invention will become apparent from the dependent claims, from the claim combinations and from the following description and the figures.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Es zeigen schematisch

Fig. 1
den Auspuffbereich einer Unterbrechereinheit mit Kaltgasverlust gemäss Stand der Technik;
Fig. 2
erste Ausführungsform eines Auspuffbereichs mit erfindungsgemässer Heissgas-Kaltgas Durchmischung;
Fig. 3
zweite Ausführungsformen mit jeweils zwei Teilströmungen antriebskontaktseitig und festkontaktseitig;
Fig. 4
dritte Ausführungsformen mit Öffnungsschlitzen im Zwischenspeichervolumen;
Fig. 5,6
vierte Ausführungsformen mit axialen Öffnungen im Zwischenspeichervolumen und radialem Gasaustritt aus dem Auspuff;
Fig. 5-8
fünfte Ausführungsformen mit Gasjetverwirbelung zur Vorkühlung des Schaltgases; und
Fig. 9
sechste Ausführungsformen mit anderen Mechanismen zur Vorkühlung der zweiten Teilgasströmung.
It show schematically
Fig. 1
the exhaust area of a breaker unit with cold gas loss according to the prior art;
Fig. 2
first embodiment of an exhaust area with inventive hot gas-cold gas mixing;
Fig. 3
second embodiments with two partial flows drive contact side and fixed contact side;
Fig. 4
third embodiments with opening slots in the buffer storage volume;
Fig. 5.6
fourth embodiments with axial openings in the intermediate storage volume and radial gas outlet from the exhaust;
Fig. 5-8
fifth embodiments with Gasjet Verwirbelung for precooling of the switching gas; and
Fig. 9
sixth embodiments with other mechanisms for pre-cooling the second partial gas flow.

In den Figuren werden für gleiche Teile die gleichen Bezugszeichen verwendet und gegebenenfalls werden sich wiederholende Bezugszeichen weggelassen.In the figures, the same reference numerals are used for the same parts and, if necessary, repeated reference numerals are omitted.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

Fig. 1 zeigt vereinfacht den Auspuffbereich eines herkömmlichen Hochspannungsschalters, der konzentrisch um eine Schalterachse 1a aufgebaut ist und in dem heisses Schaltgas 11, 110 von der Löschbogenzone 6 entlang eines Weges, hier eines mäandrierenden Weges, aus dem Auspuffvolumen 4 in die Schaltkammer 2 ausgeströmt wird. Dabei wird das Kaltgas 111 aus dem Auspuffbereich hinausgedrängt, ohne zur Kühlung des Schaltgases 11, 110 beizutragen. Fig. 1 shows simplified the exhaust area of a conventional high-voltage switch, which is constructed concentrically around a switch axis 1a and in the hot switching gas 11, 110 from the arc zone 6 along a path, here a meandering path, is discharged from the exhaust volume 4 into the switching chamber 2. In this case, the cold gas 111 is forced out of the exhaust area, without contributing to the cooling of the switching gas 11, 110.

Fig. 2 zeigt vereinfacht ein Ausführungsbeispiel zur Schaltgaskühlung gemäss der Erfindung. Das heisse Schaltgas 11, 110 wird in zwei Teilgasströmungen 11a, 11b aufgespalten, zumindest ein Teil des Kaltgases 111 wird im Auspuffbereich 7, 8 zwischengespeichert, die erste Teilgasströmung 11a wird an dem zwischengespeicherten Kaltgas 111 vorbeigeleitet und in die Schaltkammer 2 abgeströmt, und mit Hilfe der zweiten Teilgasströmung 11b wird das zwischengespeicherte Kaltgas 111 aus dem Auspuffbereich 7, 8 verdrängt und vor dem Abströmen in das Schaltkammergehäuse 3 mit der ersten Teilgasströmung 11a durchmischt. Das durchmischte Schaltgas 13 hat schon zu Beginn des Schaltgasausstosses eine deutlich reduzierte Temperatur gegenüber dem herkömmlichen Auspuff gemäss Fig. 1, wo zunächst Kaltgas 111 und dann das relativ wenig gekühlte Heissgas 110 abströmt. Im folgenden werden weitere Ausführungsbeispiele des Schaltgaskühlverfahrens im Zusammenhang mit den Fig. 2-9 besprochen. Fig. 2 shows a simplified embodiment of a switching gas cooling according to the invention. The hot switching gas 11, 110 is split into two partial gas flows 11a, 11b, at least part of the cold gas 111 is temporarily stored in the exhaust area 7, 8, the first partial gas flow 11a is conducted past the cached cold gas 111 and flowed into the switching chamber 2, and with the aid of the second partial gas flow 11b the cached cold gas 111 is removed from the exhaust area 7, 8 displaced and mixed before flowing out into the switching chamber housing 3 with the first partial gas flow 11a. The mixed switching gas 13 has already at the beginning of the switching gas emission a significantly reduced temperature compared to the conventional exhaust according to Fig. 1 where first cold gas 111 and then the relatively little cooled hot gas 110 flows out. In the following, further embodiments of the switching gas cooling process in connection with the Fig. 2-9 discussed.

Beim Schaltgaskühlverfahren wird die zweite Teilgasströmung 11b zum zwischengespeicherten Kaltgas 111 geführt, um dieses direkt oder indirekt aus dem Auspuffvolumen 7, 8 zu verdrängen. In Fig. 2-9 ist jeweils die direkte Verdrängung gezeigt, bei der die zweite Teilgasströmung 11b durch das Zwischenspeichervolumen 7, 8 hindurchströmt und das Kaltgas 111 ersetzt. Genauso ist aber auch eine indirekte Verdrängung, beispielsweise durch Verkleinerung des Zwischenspeichervolumen 7, 8 und/oder durch Ansaugen aus dem Zwischenspeichervolumen 7, 8 möglich. Vorzugsweise wird die erste Teilgasströmung 11a über einen kürzeren Weg und die zweite Teilgasströmung 11b sowie gegebenenfalls eine dritte, vierte usw. Teilgasströmung 11c über einen längeren Weg in das Schaltkammergehäuse 3 abgeströmt. Mit Hilfe der dritten oder weiterer Teilgasströmungen 11c kann der längere Weg in mindestens zwei Pfade aufgeteilt werden, nämlich in die zweite Teilgasströmung 11b und eine diese unterstützende dritte oder weitere Teilgasströmung 11c. Dadurch kann eine verbesserte Durchmischung des Schaltgases 11 erreicht werden.In the switching gas cooling process, the second partial gas flow 11b is led to the temporarily stored cold gas 111 in order to displace it directly or indirectly from the exhaust volume 7, 8. In Fig. 2-9 in each case the direct displacement is shown, in which the second partial gas flow 11b flows through the intermediate storage volume 7, 8 and replaces the cold gas 111. Equally, however, indirect displacement, for example by reducing the intermediate storage volume 7, 8 and / or by suction from the intermediate storage volume 7, 8 is possible. Preferably, the first partial gas flow 11a is flowed over a shorter path and the second partial gas flow 11b and optionally a third, fourth, etc., partial gas flow 11c over a longer path into the switching chamber housing 3. With the aid of the third or further partial gas flows 11c, the longer path can be divided into at least two paths, namely into the second partial gas flow 11b and a third or further partial gas flow 11c supporting this. As a result, an improved mixing of the switching gas 11 can be achieved.

Mit Vorteil wird der zwischengespeicherte Teil des Kaltgases 111 im Auspuffbereich in einem Kaltgasreservoir oder Zwischenspeichervolumen 7, 8 zwischengespeichert, wobei das Zwischenspeichervolumen 7, 8 eine Eintrittsöffnung 70 und eine Austrittsöffnung 80 für die zweite 11b und die optionale, weitere unterstützende Teilgasströmung 11c und im Bereich der Austrittsöffnung 80 eine Durchmischungszone 12 aufweist, in welcher das gespeicherte Kaltgas 111 mit der ersten Teilgasströmung 11a vermischt wird.Advantageously, the cached portion of the cold gas 111 is temporarily stored in the exhaust area in a cold gas reservoir or intermediate storage volume 7, 8, wherein the intermediate storage volume 7, 8 an inlet opening 70 and an outlet opening 80 for the second 11b and the optional, further supporting partial gas flow 11c and in the region Outlet opening 80 has a mixing zone 12, in which the stored cold gas 111 is mixed with the first partial gas flow 11 a.

Bevorzugt wird von der ersten Teilgasströmung 11a ein Unterdruck im Bereich der Durchmischungszone 12 erzeugt, durch den das zwischengespeicherte Kaltgas 111 aus dem Zwischenspeichervolumen 7, 8 angesogen wird. Die Ansaugung kann alleine oder unterstützend zur Kaltgasverdrängung wirksam sein. Zusätzlich kann hinter der Durchmischungszone 12 und vor Eintritt in das Schaltkammergehäuse 3 in einem Durchmischungskanal 10 die erste Teilgasströmung 11a mit dem zwischengespeicherten Kaltgas 111 und insbesondere mit einer vorgekühlten zweiten Teilgasströmung 11b und optional einer dritten oder weiteren Teilgasströmung 11c vermischt werden. Beispielsweise können auch Gasjets in der ersten Teilgasströmung 11a und im verdrängten Kaltgasstrom 111 gebildet und so gegeneinander gerichtet werden, dass sie einander verwirbeln und durchmischen. Dadurch wird zusätzlich zum Durchmischungskanal 10 das Schaltgas 11 vor oder beim Abströmen in das Schaltkammergehäuse 3 wirksam gekühlt.Preferably, a negative pressure in the region of the mixing zone 12 is generated by the first partial gas flow 11a, through which the cached cold gas 111 from the intermediate storage volume 7, 8 is sucked. The suction may be effective alone or in support of cold gas displacement. In addition, behind the mixing zone 12 and before entry into the switching chamber housing 3 in a mixing channel 10, the first partial gas flow 11a may be mixed with the intermediately stored cold gas 111 and in particular with a pre-cooled second partial gas flow 11b and optionally with a third or further partial gas flow 11c. For example, gas jets can also be formed in the first partial gas flow 11a and in the displaced cold gas flow 111 and directed against one another in such a way that they swirl and mix with one another. Thereby, in addition to the mixing channel 10, the switching gas 11 is effectively cooled before or during the outflow into the switching chamber housing 3.

Die Speicherkapazität des Zwischenspeichervolumens 7, 8 soll vorzugsweise nach Massgabe einer gewünschten Mischungsdauer und Mischungstemperatur der ersten Teilgasströmung 11a mit dem zwischengespeicherten Kaltgas 111 gewählt werden. Zudem kann eine Wegdifferenz zwischen dem längeren und dem kürzeren Weg gleich einer Durchströmungslänge durch das Zwischenspeichervolumen 7, 8 gewählt werden. Beispielsweise ist gemäß Fig. 3, 4 die Wegdifferenz 2*1, wobei 1=axiale Erstreckung des Zwischenspeichervolumens 7, 8, welches von der zweiten Teilgasströmung 11b zuerst in der einen axialen Richtung und dann nach einer Umlenkung in der entgegengesetzten axialen Richtung durchströmt wird.The storage capacity of the intermediate storage volume 7, 8 should preferably be selected in accordance with a desired mixing time and mixing temperature of the first partial gas flow 11a with the cached cold gas 111. In addition, a path difference between the longer and the shorter path equal to a flow length through the intermediate storage volume 7, 8 can be selected. For example, according to Fig. 3 . 4 the path difference 2 * 1, wherein 1 = axial extent of the intermediate storage volume 7, 8, which is flowed through by the second partial gas flow 11b first in one axial direction and then after a deflection in the opposite axial direction.

Besonders bevorzugt wird die erste Teilgasströmung 11a unter Umgehung des Zwischenspeichervolumens 7, 8 über einen minimalen Weg in das Schaltkammergehäuse 3 abgeströmt; und/oder die zweite Teilgasströmung 11b wird durch das Zwischenspeichervolumen 7, 8 über einen maximalen Weg in das Schaltkammergehäuse 3 abgeströmt; und/oder eine weitere Teilgasströmung 11c (Fig. 8) wird mindestens streckenweise durch das Zwischenspeichervolumen 7, 8 in das Schaltkammergehäuse 3 abgeströmt.Particularly preferably, the first partial gas flow 11a, bypassing the intermediate storage volume 7, 8, flows through a minimum distance into the switching chamber housing 3; and / or the second partial gas flow 11b is discharged through the intermediate storage volume 7, 8 over a maximum distance in the switching chamber housing 3; and / or another partial gas flow 11c ( Fig. 8 ) is at least partially flowed through the intermediate storage volume 7, 8 in the switching chamber housing 3.

Darüberhinaus kann das Schaltgas 11 mit Hilfsmitteln zur Vorkühlung 9, 9a, 9b, 9c; 74, 75 im Auspuffvolumen 4 des Schaltgeräts 1 vorgekühlt werden (Fig. 5-9). Insbesondere kann das Heissgas 110 vor der Aufspaltung in die Teilgasströmungen 11a, 11b, 11c vorgekühlt werden (Fig. 8, linke Seite); und/oder es kann die erste Teilgasströmung 11a und/oder die zweite Teilgasströmung 11b und gegebenenfalls eine weitere Teilgasstömung 11c vorgekühlt werden. Insbesondere kann im Schaltgas 11 durch eine jetbildende Ausströmöffnung 74 im Zwischenspeichervolumen 7, 8 und/oder in einem Zusatzvolumen 9a ein Gasjet gebildet werden, der auf eine Prallwand 75 gelenkt und dort verwirbelt wird (Fig. 5-8); und/oder das Schaltgas 11 kann auch auf eine Prallplatte 9b gelenkt und dort abgekühlt werden (Fig. 9); und/oder im Schaltgas 11 kann mittels Lenkmitteln 9c ein verlängerter Weg, insbesondere ein mäandrierender Weg, vorgegeben werden und/oder mittels Verwirbelungsmitteln 9c ein Rezirkulationsgebiet gebildet werden (Fig. 9). Auch andere, nicht genannte Hilfsmittel zur Schaltgaskühlung sind zusätzlich einsetzbar.In addition, the switching gas 11 with auxiliary precooling 9, 9a, 9b, 9c; 74, 75 are pre-cooled in the exhaust volume 4 of the switching device 1 ( Fig. 5-9 ). In particular, the hot gas 110 may be pre-cooled prior to the splitting into the partial gas flows 11a, 11b, 11c ( Fig. 8 , left side); and / or the first partial gas flow 11a and / or the second partial gas flow 11b and optionally a further partial gas flow 11c may be precooled. In particular, a gas jet can be formed in the switching gas 11 through a jet-forming outflow opening 74 in the intermediate storage volume 7, 8 and / or in an additional volume 9a, which is directed onto a baffle wall 75 and swirled there ( Fig. 5-8 ); and / or the switching gas 11 can also be directed to a baffle plate 9b and cooled there ( Fig. 9 ); and / or in the switching gas 11, an extended path, in particular a meandering path, can be predetermined by means of steering means 9c and / or a recirculation area can be formed by means of turbulence means 9c ( Fig. 9 ). Other, not mentioned aids for switching gas cooling can also be used.

Gegenstand der Erfindung ist auch ein elektrisches Schaltgerät 1, das zunächst anhand von Fig. 3 näher erläutert wird. Das Schaltgerät 1 umfasst eine Schaltkammer 2, die von einem Schaltkammergehäuse 3 umschlossen ist und eine Lichtbogenlöschzone 6 sowie ein Auspuffvolumen 4 zur Kühlung von heissem Schaltgas 11, 110 aufweist. Die Lichtbogenlöschzone 6 erstreckt sich zwischen den Kontakten 5 des Lichtbogenkontaktsystems 5 und ist von der Isolierstoffdüse 6a seitlich umgeben. Die Lichtbogenkontakte 5 umfassen typischerweise einen Schaltstift und eine Kontakttulpe, von denen mindestens einer durch einen nicht dargestellten Schalterantrieb bewegbar ist. Beispielhaft sind in den Figuren rechts der Schaltstift als Festkontakt und links die Kontakttulpe als Antriebskontakt dargestellt. Die Kontakttulpe kann zugleich als hohles Auspuffabströmrohr mit einer Hohlkontaktausströmöffnung 5a ausgebildet sein. Konzentrisch zum Lichtbogenkontaktsystem 5 sind die Nennstromkontakte angeordnet, die ihrereseits vom Schaltkammerisolator 3a umgeben sind.The invention also provides an electrical switching device 1, which is initially based on Fig. 3 is explained in more detail. The switching device 1 comprises a switching chamber 2, which is enclosed by a switching chamber housing 3 and an arc extinguishing zone 6 and an exhaust volume 4 for cooling of hot switching gas 11, 110 has. The arc extinguishing zone 6 extends between the contacts 5 of the arcing contact system 5 and is of the insulating material 6a laterally surrounded. The arcing contacts 5 typically comprise a switching pin and a contact tulip, at least one of which is movable by a switch drive, not shown. By way of example, in the figures on the right, the contact pin is shown as a fixed contact and on the left, the contact tulip is shown as a drive contact. The contact tulip can also be formed as a hollow exhaust outflow tube with a Hohlkontaktausströmöffnung 5a. Concentric with the arcing contact system 5, the rated current contacts are arranged, which in turn are surrounded by the switching chamber insulator 3a.

Zu Beginn einer Schalthandlung ist ein Auspuffbereich 7, 8 des Auspuffvolumens 4 mit Kaltgas 111 gefüllt. Es sind Mittel 71, 72, 73; 7a, 7b; 8a, 8b zur Aufspaltung des heissen Schaltgases 11, 110 in mindestens zwei Teilgasströmungen 11a, 11b, 11c vorhanden. Im Auspuffbereich 7, 8 ist ein Zwischenspeichervolumen 7, 8 zur Speicherung von Kaltgas 111 angeordnet, wobei ein erstes Mittel 71; 101, 102 vorhanden ist, das die erste Teilgasströmung 11a unter Umgehung des Zwischenspeichervolumens 7, 8 in das Schaltkammergehäuse 3 lenkt, und ein zweites Mittel 7a, 7b, 72 vorhanden ist, das die zweite Teilgasströmung 11b zum gespeicherten Kaltgas 111 lenkt und dadurch die Verdrängung des gespeicherten Kaltgases 111 aus dem Zwischenspeichervolumen 7, 8 bewirkt.At the beginning of a switching operation, an exhaust area 7, 8 of the exhaust volume 4 is filled with cold gas 111. There are means 71, 72, 73; 7a, 7b; 8a, 8b for splitting the hot switching gas 11, 110 in at least two partial gas flows 11a, 11b, 11c present. In the exhaust area 7, 8, a buffer storage volume 7, 8 for storing cold gas 111 is arranged, wherein a first means 71; 101, 102, which directs the first partial gas flow 11a, bypassing the intermediate storage volume 7, 8 into the switching chamber housing 3, and a second means 7a, 7b, 72 is present, which directs the second partial gas flow 11b to the stored cold gas 111 and thereby the displacement of the stored cold gas 111 from the intermediate storage volume 7, 8 causes.

Die Fig. 3-9 zeigen hierzu konstruktive Ausführungsbeispiele. Im Auspuffbereich 7, 8 soll zwischen der Lichtbogenlöschzone 6 und dem Schaltkammergehäuse 3 ein kürzerer Weg für die erste Teilgasströmung 11a und ein längerer Weg für die zweite Teilgasströmung 11b und gegebenenfalls für mindestens eine weitere Teilgasströmung 11c vorgegeben sein. Bevorzugt ist eine Weglängendifferenz 2*1 zwischen dem längeren und kürzeren Weg durch eine Durchströmungslänge 2*1 durch das Zwischenspeichervolumen 7, 8 vorgegeben. Die Weglängendifferenz oder Durchströmungslänge kann sich auch aus zwei oder mehr ungleich langen Teilwegen zusammensetzen (Fig. 5-8).The Fig. 3-9 show this constructive embodiments. In the exhaust area 7, 8, a shorter path for the first partial gas flow 11a and a longer path for the second partial gas flow 11b and optionally for at least one further partial gas flow 11c should be provided between the arc extinguishing zone 6 and the switching chamber housing 3c. Preferably, a path length difference 2 * 1 between the longer and shorter path through a flow-through length 2 * 1 by the intermediate storage volume 7, 8 predetermined. The path length difference or flow length can also be composed of two or more unequal length partial paths ( Fig. 5-8 ).

In Fig. 3-9 weist das Zwischenspeichervolumen 7, 8 eine Eintrittsöffnung 70 und eine Austrittsöffnung 80 auf, wobei das erste Mittel 71 die erste Teilgasströmung 11a unter Umgehung des Zwischenspeichervolumens 7, 8 zur Austrittsöffnung 80 lenkt und das zweite Mittel 7a, 7b, 72 die zweite Teilgasströmung 11b oder gegebenenfalls weitere Teilgasströmungen 11c zur Eintrittsöffnung 70 und durch das Zwischenspeichervolumen 7 zur Austrittsöffnung 80 lenkt.In Fig. 3-9 the intermediate storage volume 7, 8 has an inlet opening 70 and an outlet opening 80, the first means 71 directing the first partial gas flow 11a bypassing the intermediate storage volume 7, 8 to the outlet opening 80 and the second means 7a, 7b, 72 directing the second partial gas flow 11b or optionally further partial gas flows 11c to the inlet opening 70 and through the intermediate storage volume 7 to the outlet opening 80 directs.

Im Bereich der Austrittsöffnung 80 soll eine Durchmischungszone 12 zur Vermischung der ersten Teilgasströmung 11a mit dem Kaltgas 111 vorhanden sein, das im Zwischenspeichervolumen 7, 8 gespeichert ist und das durch die zweite Teilgasströmung 11b aus dem Zwischenspeichervolumen 7, 8 verdrängt wird. Die Durchmischungszone 12 kann zugleich als Unterdruckzone 12 zur Ansaugung des gespeicherten Kaltgases 111 aus dem Zwischenspeichervolumen 7, 8 ausgestaltet sein. Dies kann z. B. durch die Strömungsverhältnisse und insbesondere Strömungsgeschwindigkeiten der Teilströmungen 11a, 11b und gegebenenfalls 11c im Bereich der Unterdruckzone 12 erreicht werden. Zudem kann die Durchmischungszone 12 auch als Verwirbelungszone 12 für die erste Teilgasströmung 11a und das Kaltgas 111, insbesondere von Gasjets der ersten Teilgassströmung 11a und des Kaltgases 111, ausgestaltet sein.In the region of the outlet opening 80, a mixing zone 12 for mixing the first partial gas flow 11a with the cold gas 111 should be present, which is stored in the intermediate storage volume 7, 8 and which is displaced from the intermediate storage volume 7, 8 by the second partial gas flow 11b. The mixing zone 12 can at the same time be designed as a vacuum zone 12 for sucking the stored cold gas 111 from the intermediate storage volume 7, 8. This can be z. B. by the flow conditions and in particular flow velocities of the partial flows 11a, 11b and optionally 11c in the region of the vacuum zone 12 can be achieved. In addition, the mixing zone 12 can also be designed as a turbulence zone 12 for the first partial gas flow 11a and the cold gas 111, in particular of gas jets of the first partial gas flow 11a and the cold gas 111.

Ausserdem ist hinter der Durchmischungszone 12 und vor Eintritt in das Schaltkammergehäuse 3 ein Durchmischungskanal 10 angeordnet, in dem eine zusätzliche Durchmischung der ersten Teilgasströmung 11a mit dem aus dem Zwischenspeichervolumen 7, 8 verdrängten Kaltgas 111 und insbesondere mit einer vorgekühlten zweiten Teilgasströmung 11b und gegebenenfalls einer weiteren Teilgasströmung 11c stattfindet. Der Durchmischungskanal 10 ist z. B. durch eine innenliegende Kanalwand 10a vom Zwischenspeichervolumen 8 separiert und mit diesem über eine Kanaleintrittsöffnung 101 verbunden. Die Kanaleintrittsöffnung 101 wirkt somit als Abströmöffnung aus dem Zwischenspeichervolumen 7, 8 und die Kanalaustrittsöffnung als eigentliche Auspufföffnung 102. Der Durchmischungskanal 10 weist einen Durchmesser D und eine Länge L zwischen der Kanaleintrittsöffnung 101 und Kanalaustrittsöffnung 102 auf. Durchmesser D und Länge L sollen so dimensioniert sein, dass eine effiziente Mischung der bereits vorgemischten Teilgasströmungen 11a, 11b, 11c mit dem Kaltgas 111 und miteinander realisiert wird. Der Durchmischungskanal 10 kann axial (Fig. 3-4, 7-9) und/oder radial (Fig. 5-6) ausgerichtet sein.In addition, behind the mixing zone 12 and before entry into the switching chamber housing 3, a mixing channel 10 is arranged in which an additional mixing of the first partial gas flow 11a with the displaced from the intermediate storage volume 7, 8 cold gas 111 and in particular with a pre-cooled second partial gas flow 11b and optionally another Partial gas flow 11c takes place. The mixing channel 10 is z. B. separated by an inner channel wall 10a from the intermediate storage volume 8 and connected thereto via a channel inlet opening 101. The channel inlet opening 101 thus acts as a discharge opening from the intermediate storage volume 7, 8 and the channel outlet opening as the actual exhaust opening 102. The mixing channel 10 has a diameter D and a length L between the channel inlet opening 101 and the channel outlet opening 102. Diameter D and length L should be dimensioned so that an efficient mixture of the already premixed partial gas flows 11a, 11b, 11c with the cold gas 111 and with each other is realized. The mixing channel 10 can be axially ( Fig. 3-4 . 7-9 ) and / or radially ( Fig. 5-6 ) be aligned.

Die Speicherkapazität des Zwischenspeichervolumens 7, 8 ist so dimensioniert, dass eine gewünschte Mischungsdauer und Mischungstemperatur der ersten Teilgasströmung 11a mit dem zwischengespeicherten Kaltgas 111 erreichbar ist. Auch soll die Durchströmungslänge, z. B. 2*1 in Fig. 3-4, durch das Zwischenspeichervolumen 7, 8 so dimensioniert sein, dass eine gewünschte Zeitverzögerung der zweiten Teilgasströmung 11a im Zwischenspeichervolumen 7, 8 relativ zur ersten Teilgasströmung 11b realisierbar ist.The storage capacity of the intermediate storage volume 7, 8 is dimensioned such that a desired mixing time and mixing temperature of the first partial gas flow 11a with the temporarily stored cold gas 111 can be achieved. Also, the flow-through length, z. 2 * 1 in Fig. 3-4 , be dimensioned by the intermediate storage volume 7, 8 so that a desired time delay of the second partial gas flow 11a in the intermediate storage volume 7, 8 relative to the first partial gas flow 11b can be realized.

Fig. 3-9 zeigen auch bevorzugte konstruktive Auslegungen des Schaltgeräts 1. Das Auspuffvolumen 4 ist von einem Auspuffgehäuse 4a umschlossen, das eine Abströmöffnung 101 und eine Auspufföffnung 102 zum Schaltkammergehäuse 2 hin aufweist. Das Zwischenspeichervolumen 7, 8 ist durch einen durchströmbaren Körper 7a, 7b, 8a, 8b gebildet, der im Auspuffvolumen 4 angeordnet ist. Der durchströmbare Körper 7a, 7b, 8a, 8b weist eine erste Öffnung 71 auf zur Abzweigung der ersten Teilgasströmung 11a in einem der Lichtbogenlöschzone 6 zugewandten Bereich des Körpers 7a, 7b, 8a, 8b und für die zweite Teilgasströmung 11b eine zweite Öffnung 72 und gegebenenfalls für eine weitere unterstützende Teilgasströmung 11c eine dritte oder weitere Öffnung 73 in einem der Lichtbogenlöschzone 6 abgewandten Bereich des Körpers 7a, 7b, 8a, 8b. Fig. 3-9 also show preferred structural designs of the switching device 1. The exhaust volume 4 is enclosed by an exhaust housing 4a having an outflow opening 101 and an exhaust port 102 to the switching chamber housing 2 out. The intermediate storage volume 7, 8 is formed by a permeable body 7 a, 7 b, 8 a, 8 b, which is arranged in the exhaust volume 4. The flow-through body 7a, 7b, 8a, 8b has a first opening 71 for branching off the first partial gas flow 11a in a region of the body 7a, 7b, 8a, 8b facing the arc extinguishing zone 6 and a second opening 72 for the second partial gas flow 11b for a further assisting partial gas flow 11c, a third or further opening 73 in a region of the body 7a, 7b, 8a, 8b facing away from the arc extinguishing zone 6.

Bevorzugt ist zur Schaffung eines minimalen Weges für die erste Teilgasströmung 11a die erste Öffnung 71 nahe der Abströmöffnung 101, insbesondere radial gegenüberliegend, angeordnet; und/oder zur Schaffung eines maximalen Weges für die zweite Teilgasströmung 11b ist die zweite Öffnung 72 weit entfernt von der Abströmöffnung 101, insbesondere axial maximal beabstandet zur Abströmöffnung 101, angeordnet; und/oder eine dritte oder weitere Öffnung 73 ist für eine weitere Teilgasströmung 11c in axialer Richtung 1a zwischen der ersten und zweiten Öffnung 71, 72 angeordnet (Fig. 8, rechte Seite). Mit Hilfe der weiteren Teilgasströmung 11c kann der lange Weg in mindestens zwei Pfade 11b, 11c aufgeteilt werden. Dadurch lässt sich die Durchmischung des Schaltgases 11 im äusseren Volumen 8 verbessern.Preferably, to create a minimum path for the first partial gas flow 11a, the first opening 71 is close to Outflow opening 101, in particular radially opposite, arranged; and / or to provide a maximum path for the second partial gas flow 11b, the second opening 72 is located far away from the outflow opening 101, in particular axially maximally spaced apart from the outflow opening 101; and / or a third or further opening 73 is arranged between the first and second openings 71, 72 for a further partial gas flow 11c in the axial direction 1a (FIG. Fig. 8 , right side). With the help of the further partial gas flow 11c, the long path can be divided into at least two paths 11b, 11c. As a result, the mixing of the switching gas 11 in the outer volume 8 can be improved.

Vorzugsweise wirkt die zweite Öffnung 72 mit einer Umlenkeinrichtung 7b, 8b, 8a zur Rückführung des gespeicherten Kaltgases 111 und der zweiten Teilgasströmung 11b zur Austrittsöffnung 80 des Zwischenspeichervolumens 7, 8 zusammen; und/oder die Weglängendifferenz zwischen dem kürzeren Weg 11a für die erste Teilgasströmung und dem längeren Weg 11b für die zweite Teilgasströmung ist durch den axialen Abstand zwischen der ersten und zweiten Öffnung 71, 72 gegeben. Die Öffnungen 71, 72, 73 können Löcher oder Schlitze in einer Wandung 7a, 7b des Körpers 7a, 7b, 8a, 8b sein. Die Öffnungen 71, 72, 73 können in einer radialen Wandung 7a und/oder in einer axialen Wandung 7b des Körpers 7a, 7b, 8a, 8b angeordnet sein. Eine Anzahl, Grösse (d. h. Querschnittsfläche A1, A2, A3) und Position der ersten, zweiten und gegebenenfalls dritten Öffnungen 71, 72, 73 sollen so gewählt sein, dass die erste Teilgasströmung 11a noch im Auspuffvolumen 4 weitgehend mit dem gespeicherten Kaltgas 111 durchmischbar ist. Insbesondere sollen im durchströmbaren Körper 7a, 7b, 8a, 8b mehrere Löcher oder Schlitze 72 und gegebenenfalls 73 so am Umfang und/oder entlang der axialen Erstreckung angeordnet sein, dass sich im zweiten und gegebenenfalls weiteren Teilgasströmen 11b, 11c eine Heissgasfront ausbildet und keine Kaltgastaschen im Zwischenspeichervolumen 7, 8 bestehen bleiben. Typischerweise wird im Bereich der Öffnungen 71, 72, 73 der gesamte Durchströmungsquerschnitt A0=A1+A2, gegebenenfalls A0=A1+A2+A3, am geringsten und die Durchströmungsgeschwindigkeit am höchsten sein.Preferably, the second opening 72 cooperates with a deflecting device 7b, 8b, 8a for returning the stored cold gas 111 and the second partial gas flow 11b to the outlet opening 80 of the intermediate storage volume 7, 8; and / or the path length difference between the shorter path 11a for the first partial gas flow and the longer path 11b for the second partial gas flow is given by the axial distance between the first and second openings 71, 72. The openings 71, 72, 73 may be holes or slots in a wall 7a, 7b of the body 7a, 7b, 8a, 8b. The openings 71, 72, 73 may be arranged in a radial wall 7a and / or in an axial wall 7b of the body 7a, 7b, 8a, 8b. A number, size (ie cross-sectional area A 1 , A 2 , A 3 ) and position of the first, second and optionally third openings 71, 72, 73 should be selected so that the first partial gas flow 11 a still largely in the exhaust volume 4 with the stored cold gas 111 is mixable. In particular, a plurality of holes or slots 72 and, if appropriate, 73 should be arranged on the circumference and / or along the axial extension in the body 7a, 7b, 8a, 8b which can be flowed through such that a hot gas front is formed in the second and possibly further partial gas flows 11b, 11c and no cold gas pockets in the buffer storage volume 7, 8 exist stay. Typically, in the region of the openings 71, 72, 73, the total flow cross-section A 0 = A 1 + A 2 , optionally A 0 = A 1 + A 2 + A 3 , the lowest and the flow rate will be highest.

Der durchströmbare Körper 7a, 7b, 8a, 8b kann einen Innenzylinder 7a, 7b und einen Aussenzylinder 8a, 8b umfassen. Innen- und Aussenzylinder 7a, 7b, 8a, 8b sind vorzugsweise koaxial zueinander und zur Schalterachse 1a angeordnet. Durch Innen- und Aussenzylinder 7a, 7b, 8a, 8b ist das Zwischenspeichervolumen 7, 8 radial durch mindestens zwei Mantelflächen 7a, 8a und axial endseitig durch zugehörige Bodenflächen 7b, 8b begrenzt. Der Innenzylinder 7a, 7b definiert ein inneres Volumen V1 und weist zur Löschbogenzone 6 hin eine Eintrittsöffnung 70 für die zweite Teilgasströmung 11a auf. Der Aussenzylinder 8a, 8b umgreift den Innenzylinder 7a, 7b, definiert ein äusseres Volumen V2 und weist zur Löschbogenzone 6 hin eine Austrittsöffnung 80 für das gespeicherte Kaltgas 111 und die zweite Teilgasströmung 11b auf. Der Innenzylinder 7a, 7b und Aussenzylinder 8a, 8b stehen durch die zweite Öffnung 72 und gegebenenfalls die dritte Öffnung 73 miteinander in Verbindung. Das innere und äussere Volumen V1, V2 sollen so aufeinander abgestimmt sein, dass eine gewünschte Speicherkapazität für das Kaltgas 111 und eine gewünschte Durchströmungsdynamik für die zweite Teilgasströmung 11b realisierbar sind.The flow-through body 7a, 7b, 8a, 8b may include an inner cylinder 7a, 7b and an outer cylinder 8a, 8b. Inner and outer cylinders 7a, 7b, 8a, 8b are preferably arranged coaxially to one another and to the switch axis 1a. By inner and outer cylinders 7a, 7b, 8a, 8b, the buffer storage volume 7, 8 is limited radially by at least two lateral surfaces 7a, 8a and axially end by associated bottom surfaces 7b, 8b. The inner cylinder 7a, 7b defines an inner volume V 1 and, towards the quenching arc zone 6, has an inlet opening 70 for the second partial gas flow 11a. The outer cylinder 8a, 8b surrounds the inner cylinder 7a, 7b, defines an outer volume V 2 and has an exit opening 80 for the stored cold gas 111 and the second partial gas flow 11b toward the extinguishing arc zone 6. The inner cylinder 7a, 7b and outer cylinder 8a, 8b communicate with each other through the second opening 72 and optionally the third opening 73. The inner and outer volumes V 1 , V 2 should be coordinated so that a desired storage capacity for the cold gas 111 and a desired flow dynamics for the second partial gas flow 11b can be realized.

Das Zwischenspeichervolumen 7, 8, das erste Mittel 71; 101, 102 und das zweite Mittel 7a, 7b, 72 können im Auspuffbereich 7, 8 eines ersten und/oder eines zweiten Kontakts 5 des Schaltgeräts 1 angeordnet sein. Bei dem Schaltgerät 1 kann es sich um einen Hochspannungsleistungsschalter 1 oder einen Hochstromschalter oder einen Trennschalter o. ä. handeln.The buffer storage volume 7, 8, the first means 71; 101, 102 and the second means 7a, 7b, 72 may be arranged in the exhaust area 7, 8 of a first and / or a second contact 5 of the switching device 1. In the switching device 1 may be a high-voltage circuit breaker 1 or a high-current switch or a circuit breaker o. Ä. Act.

Im Detail sind in Fig. 3-8 folgende Varianten gezeigt: Fig. 3: linke Seite oder Antriebskontaktseite und rechte Seite oder Festkontaktseite jeweils zwei Teilgasströmungen 11a, 11b realisiert durch Löcher 71, 72; Fig. 4: linke Seite mit Schlitzen 71, 72 statt Löchern und rechte Seite mit grossflächiger zweiter Öffnung 72 in Rückwand 7b des Innenzylinders 7a, 7b; Fig. 5-6: axial ausgerichtete erste und zweite Öffnungen 71, 72 sowie Innenzylinder 7a, 7b axial verkürzt (linke Seite) und/oder radial verkleinert (rechte Seite); desweiteren Durchmischungskanal 10 mit radialem Auspuff oder Gasaustritt 102; Fig. 7: Schlitze 72 für die zweite Teilgasströmung 11b so dimensioniert, dass ein Heissgasstrahl oder Jet aufgebaut und gegen die Aussenwand 8a des Aussenzylinders 8a, 8b geprallt wird, wie weiter unten diskutiert; Fig. 8: Zusatzvolumen 9a zum Aufbau eines Heissgasstrahls oder Jets (linke Seite) und dritte Öffnungen 73 zur Abspaltung einer dritten Teilgasströmung 11c; und Fig. 9: erste Teilgasströmung 11a oder, wie gezeigt, zweite Teilgasströmung 11b mit weiteren Kühlmechanismen 9.In detail are in Fig. 3-8 the following variants are shown: Fig. 3 : left side or drive contact side and right side or fixed contact side two partial gas flows 11a, 11b realized through holes 71, 72; Fig. 4 left side with slots 71, 72 instead of holes and right side with large-area second opening 72 in the rear wall 7b of the inner cylinder 7a, 7b; Fig. 5-6 axially aligned first and second openings 71, 72 and inner cylinder 7a, 7b shortened axially (left side) and / or radially reduced (right side); further mixing channel 10 with radial exhaust or gas outlet 102; Fig. 7 : Slits 72 for the second partial gas flow 11b are dimensioned such that a hot gas jet or jet is built up and impacted against the outer wall 8a of the outer cylinder 8a, 8b, as discussed further below; Fig. 8 : Additional volume 9a for building up a hot gas jet or jet (left side) and third openings 73 for splitting off a third partial gas flow 11c; and Fig. 9 : first partial gas flow 11a or, as shown, second partial gas flow 11b with further cooling mechanisms 9.

Hilfsmittel 9, 9a, 9b, 9c; 74, 75 zur Vorkühlung des Schaltgases 11 können im Auspuffvolumen 4 des Schaltgeräts 1 angeordnet sein. Die Hilfsmittel 9, 9a, 9b, 9c; 74, 75 können in der Heissgasströmung 110 vor der Aufspaltung in die Teilgasströmungen 11a, 11b, 11 und/oder in der ersten Teilgasströmung und/oder in der zweiten Teilgasströmung 11a, 11b und gegebenenfalls in der weiteren Teilgasströmung 11c angeordnet sein. Solche Hilfsmittel betreffen einerseits jetbildende Ausströmöffnungen 74 im Zwischenspeichervolumen 7, 8 und/oder in einem Zusatzvolumen 9a zur Bildung von Gasjets sowie eine Prallwand 75 zur Verwirbelung und intensiven turbulent konvektiven Kühlung der Gasjets. Weitere Details dieses Kühlmechanismus können der vorveröffentlichten europäischen Patentanmeldung EP 1 403 891 A1 und der nicht vorveröffentlichten internationalen Patentanmeldung PCT/CH2004/000752 entnommen werden, die hiermit durch Bezugnahme mit ihrem gesamten Offenbarungsgehalt in die Beschreibung aufgenommen seien. Insbesondere kann eine Abstrahlcharakteristik der Öffnungen 71, 72, 73 so an einen Abstand zur gegenüberliegenden Prallwand 75, z. B. der Aussenwand 8a oder Rückwand 8b des Aussenzylinders 8a, 8b, angepasst sein, dass die Wirbel an oder im Bereich der Prallwand 75 gebildet werden. Zudem kann das Schaltgas und können insbesondere die Wirbel auf Kreisbahnen, Schraubenbahnen oder auf Spiralbahnen geführt werden. Insbesondere können die Kreisbahnen, Schraubenbahnen oder auf Spiralbahnen entlang der Prallwand 75 um den Innenzylinder 7a, 7b zur Ausströmöffnung 80 des Zwischenspeichervolumens 7, 8 hin verlaufen. Gemäß Fig. 8 kann das Zusatzvolumen 9a beispielsweise als zylindrische Metallhülse 9a gestaltet sein. Die jetbildende Metallhülse 9a kann z. B. tulpenkontaktseitig oder antriebskontaktseitig konzentrisch um die Hohlkontaktausströmöffnung 5a und zudem innerhalb des Zwischenspeichervolumens 7, 8 oder auf dem Schaltgas-Abströmweg 11 vor dem Zwischenspeichervolumen 7, 8 angeordnet sein. Gemäß Fig. 9 können die Hilfsmittel auch eine Prallplatte 9b und/oder Lenkmittel 9c und/oder Verwirbelungsmittel 9c für das Schaltgas 11 umfassen.Aids 9, 9a, 9b, 9c; 74, 75 for pre-cooling of the switching gas 11 may be arranged in the exhaust volume 4 of the switching device 1. The aids 9, 9a, 9b, 9c; 74, 75 may be arranged in the hot gas flow 110 before the splitting into the partial gas flows 11a, 11b, 11 and / or in the first partial gas flow and / or in the second partial gas flow 11a, 11b and possibly in the further partial gas flow 11c. Such aids relate on the one hand jet-forming outflow openings 74 in the intermediate storage volume 7, 8 and / or in an additional volume 9a for the formation of gas jets and a baffle 75 for turbulence and intensive turbulent convective cooling of the gas jets. Further details of this cooling mechanism can be pre-published European patent application EP 1 403 891 A1 and the unpublished international patent application PCT / CH2004 / 000752 are taken from hereby incorporated by reference with their entire disclosure content in the description. In particular, a radiation characteristic of the openings 71, 72, 73 so at a distance to the opposite baffle 75, z. B. the outer wall 8a or rear wall 8b of the outer cylinder 8a, 8b, be adapted to the vortex are formed on or in the region of the baffle 75. In addition, the switching gas and in particular the vortexes can be guided on circular paths, helical paths or on spiral paths. In particular, the circular paths, screw paths or on spiral paths along the baffle 75 around the inner cylinder 7a, 7b to the outflow opening 80 of the intermediate storage volume 7, 8 extend. According to Fig. 8 For example, the additional volume 9a may be designed as a cylindrical metal sleeve 9a. The jet-forming metal sleeve 9a may, for. B. tulpenkontaktseitig or drive contact side concentrically around the Hohlkontaktausströmöffnung 5a and also within the intermediate storage volume 7, 8 or on the Schaltgas-Abströmweg 11 before the intermediate storage volume 7, 8 may be arranged. According to Fig. 9 The aids may also comprise a baffle plate 9b and / or steering means 9c and / or swirling means 9c for the switching gas 11.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
elektrisches Schaltgerät, Unterbrechereinheit; Hochspannungsleistungsschalterelectrical switching device, breaker unit; High voltage circuit breaker
1a1a
Zentrale Achse, SchalterachseCentral axis, switch axis
22
Schaltkammer, SchaltkammervolumenSwitching chamber, switching chamber volume
33
Schaltkammergehäuse, SchaltkammerwandSwitching chamber housing, switching chamber wall
3a3a
SchaltkammerisolatorSwitching chamber insulator
44
Auspuffvolumenexhaust volume
4a4a
Auspuffgehäuse, Auspuffwand; StromanschlussarmaturenExhaust Casing, Exhaust Wall; Electricity fittings
55
Lichtbogenkontaktsystem, erster Kontakt, Schaltstift, Festkontakt; zweiter Kontakt, Kontakttulpe, Hohlkontakt, AntriebskontaktArcing contact system, first contact, switching pin, fixed contact; second contact, contact tulip, hollow contact, drive contact
5a5a
HohlkontaktausströmöffnungHohlkontaktausströmöffnung
66
LichtbogenlöschzoneArc quenching zone
6a6a
Isolierstoffdüseinsulating
7, 87, 8
kaltgasgefüllter Auspuffbereich, Zwischenspeichervolumen, Kaltgasreservoircold gas filled exhaust area, intermediate storage volume, cold gas reservoir
77
erstes Volumen V1, inneres Volumenfirst volume V 1 , inner volume
7a, 7b, 8a, 8b7a, 7b, 8a, 8b
durchströmbarer Körperpermeable body
7a, 7b7a, 7b
Aussenwand, Rückwand des inneren Volumens; durchströmbarer KörperOuter wall, rear wall of the inner volume; permeable body
7070
Eintrittsöffnung in ZwischenspeichervolumenInlet opening in intermediate storage volume
7171
erste Ausströmöffnung(en)first outflow opening (s)
7272
zweite Ausströmöffnung(en), Durchströmöffnung(en)second outflow opening (s), throughflow opening (s)
7373
dritte Ausströmöffnung(en), weitere Ausströmöffnung(en), Durchströmöffnung(en)third outflow opening (s), further outflow opening (s), throughflow opening (s)
7474
jetbildende Ausströmöffnung(en)jet-forming outflow opening (s)
7575
Prallwandbaffle wall
88th
zweites Volumen V2, äusseres Volumensecond volume V 2 , external volume
8080
Austrittsöffnung in ZwischenspeichervolumenOutlet opening in intermediate storage volume
8a, 8b8a, 8b
Aussenwand, Rückwand des Zwischenspeichervolumens oder KaltgasreservoirsOuter wall, rear wall of the intermediate storage volume or cold gas reservoir
99
Hilfsmittel zur VorkühlungAuxiliary for pre-cooling
9a9a
Zusatzvolumen, Vorkühlvolumen, jetbildendes Volumen V3 Additional volume, pre-cooling volume, jet-forming volume V 3
9b9b
Prallplatteflapper
9c9c
Lenkmittel, Verwirbelungsmittel für SchaltgasSteering means, swirling agent for switching gas
1010
Durchmischungskanal, zusätzliche DurchmischungslängeMixing channel, additional mixing length
10a10a
innenliegende Kanalwandinside channel wall
101101
Kanaleintrittsöffnung, AbströmöffnungChannel inlet opening, outflow opening
102102
Kanalaustrittsöffnung, AuspufföffnungDuct outlet opening, exhaust opening
1111
LöschgasströmungQuenching gas flow
11a, 11b11a, 11b
erste, zweite Teilgasströmungfirst, second partial gas flow
11c11c
dritte Teilgasströmung, weitere Teilgasströmungenthird partial gas flow, further partial gas flows
110110
Heissgashot gas
111111
Kaltgascold gas
1212
Durchmischungszone; Unterdruckzone; VerwirbelungszoneMixing zone; Under pressure zone; turbulence
1313
durchmischtes Abgasmixed exhaust gas
A1, A2, A3 A 1 , A 2 , A 3
Querschnittsfläche der ersten, zweiten, dritten Ausströmöffnung(en)Cross-sectional area of the first, second, third outflow opening (s)
A0 A 0
GesamtausströmflächeGesamtausströmfläche
L, DL, D
Länge, Durchmesser des DurchmischungskanalsLength, diameter of the mixing channel
11
Abstand zwischen AusströmöffnungenDistance between outflow openings

Claims (26)

  1. Method for cooling a switching gas (11) in an electrical breaker device (1) for electrical power supply systems, in particular in a high-voltage circuit breaker (1), the breaker device (1) comprising a switching chamber (2) which is surrounded by a switching chamber housing (3), in addition, in the event of a switching operation, hot switching gas (11, 110) flowing from an arc-quenching zone (6) to an exhaust region (7, 8) filled with cold gas (111), the hot switching gas (11, 110) being split up into at least two partial gas flows (11a, 11b, 11c),
    a) at least part of the cold gas (111) being stored intermediately in the exhaust region (7, 8), and the first partial gas flow (11a) being guided past the intermediately stored cold gas (111) and flowing away into the switching chamber (2), and
    b) with the aid of the second partial gas flow (11b), the intermediately stored cold gas (111) being forcibly displaced out of the exhaust region (7, 8) and mixed with the first partial gas flow (11a) before flowing away into the switching chamber housing (3), characterized in that
    c) the first partial gas flow (11a) is additionally mixed with the intermediately stored cold gas (111) downstream of the mixing zone (12) and upstream of the inlet into the switching chamber housing (3) in a mixing channel (10).
  2. Method for cooling a switching gas (11) according to Claim 1, characterized in that
    a) the second partial gas flow (11b) is guided towards the intermediately stored cold gas (111), and/or
    b) the first partial gas flow (11a) flows away into the switching chamber housing (3) over a relatively short path, and the second partial gas flow (11b) and possibly a further or third partial gas flow (11c) assisting it flows away into the switching chamber housing (3) over a relatively long path.
  3. Method for cooling a switching gas (11) according to Claim 2, characterized in that
    a) the intermediately stored part of the cold gas (111) is stored intermediately in the exhaust region in an intermediate storage volume (7, 8), and
    b) the intermediate storage volume (7, 8) has an inlet opening (70) and an outlet opening (80) for the second partial gas flow (11b) and possibly the further partial gas flow (11c) and has, in the region of the outlet opening (80), the mixing zone (12), in which the stored cold gas (111) is mixed with the first partial gas flow (11a).
  4. Method for cooling a switching gas (11) according to Claim 3, characterized in that
    a) a low pressure is produced in the region of the mixing zone (12) by the first partial gas flow (11a), by means of which low pressure the intermediately stored cold gas (111) is sucked out of the intermediate storage volume (7, 8), and/or
    b) gas jets are produced in the region of the mixing zone (12) in the first partial gas flow (11a) and in the cold gas (111) and are directed towards one another and as a result mixed, and/or
    c) the first partial gas flow (11a) is additionally mixed with a precooled second partial gas flow (11b) and possibly a further partial gas flow (11c) in the mixing channel (10).
  5. Method for cooling a switching gas (11) according to one of Claims 3-4, characterized in that
    a) the storage capacity of the intermediate storage volume (7, 8) is selected according to a desired mixing duration and mixing temperature of the first partial gas flow (11a) with the intermediately stored cold gas (111), and/or
    b) a path difference (2*1) between the relatively long path and the relatively short path is selected to be equal to a throughflow length (2*1) through the intermediate storage volume (7, 8).
  6. Method for cooling a switching gas (11) according to one of Claims 3-5, characterized in that
    a) the first partial gas flow (11a) flows away into the switching chamber housing (3) over a minimum path whilst bypassing the intermediate storage volume (7, 8), and/or
    b) the second partial gas flow (11b) flows away into the switching chamber housing (3) over a maximum path through the intermediate storage volume (7, 8), and/or
    c) a further partial gas flow (11c) flows away into the switching chamber housing (3) at least over some sections through the intermediate storage volume (7, 8).
  7. Method for cooling a switching gas (11) according to one of Claims 1-6, characterized in that
    a) the switching gas (11) is precooled using auxiliary means for precooling (9, 9a, 9b, 9c; 74, 75) in the exhaust volume (4) of the breaker device (1),
    b) in particular in that the hot gas (110) is precooled before it is split up into the partial gas flows (11a, 11b, 11c), and/or the first partial gas flow (11a) and/or the second partial gas flow (11b) and possibly a further partial gas flow (11c) is/are precooled.
  8. Method for cooling a switching gas (11) according to one of Claims 1-7, characterized in that
    a) a gas jet is formed in the switching gas (11) by means of a jet-forming outflow opening (74) in the intermediate storage volume (7, 8) and/or in a secondary volume (9a), which gas jet is guided onto a baffle wall (75) and is swirled there, and/or
    b) the switching gas (11) is guided onto a baffle plate (9b), and/or
    c) an extended path, in particular a meandering path, is predetermined in the switching gas (11) by means of guiding means (9c), and/or a recirculation area is formed by means of swirling means (9c).
  9. Method for cooling a switching gas (11) according to Claim 1, characterized in that the mixing channel (10) between its channel inlet opening (101) and channel outlet opening (102) has a diameter (D) and a length (L) which are dimensioned such that efficient mixing of the already premixed partial gas flows (11a, 11b, 11c) with the cold gas (111) and with one another is realized.
  10. Electrical breaker device (1) for an electrical power supply system, in particular a high-voltage circuit breaker (1), comprising a switching chamber (2) which is surrounded by a switching chamber housing (3) and has an arc-quenching zone (6) and an exhaust volume (4) for cooling hot switching gas (11, 110), an exhaust region (7, 8) of the exhaust volume (4) being filled with cold gas (111) at the beginning of a switching operation, in addition means (71, 72, 73; 7a, 7b; 8a, 8b) being provided for splitting the hot switching gas (11, 110) up into at least two partial gas flows (11a, 11b, 11c),
    a) an intermediate storage volume (7, 8) being arranged in the exhaust region (7, 8) for storing cold gas (111),
    b) a first means (71; 101, 102) being provided which guides the first partial gas flow (11a) into the switching chamber housing (3) whilst bypassing the intermediate storage volume (7, 8), and
    c) a second means (7a, 7b, 72) being provided which guides the second partial gas flow (11b) towards the stored cold gas (111) and, as a result, causes the stored cold gas (111) to be forcibly displaced out of the intermediate storage volume (7, 8), characterized in that
    d) a mixing channel (10) is arranged downstream of the mixing zone (12) and upstream of the inlet into the switching chamber housing (3), in which mixing channel (10) additional mixing of the first partial gas flow (11a) with the cold gas (111), which has been forcibly displaced out of the intermediate storage volume (7, 8), takes place.
  11. Electrical breaker device (1) according to Claim 10, characterized in that
    a) a relatively short path for the first partial gas flow (11a) and a relatively long path for the second partial gas flow (11b) and possibly a further partial gas flow (11c) are predetermined in the exhaust region (7, 8) between the arc-quenching zone (6) and the switching chamber housing (3), and
    b) in particular in that a path length difference (2*1) between the relatively long path and the relatively short path is predetermined by a throughflow length (2*1) through the intermediate storage volume (7, 8).
  12. Electrical breaker device (1) according to one of Claims 10-11, characterized in that
    a) the intermediate storage volume (7, 8) has an inlet opening (70) and an outlet opening (80),
    b) the first means (71) guides the first partial gas flow (11a) towards the outlet opening (80) whilst bypassing the intermediate storage volume (7, 8), and
    c) the second means (7a, 7b, 72) guides the second partial gas flow (11b) or possibly further partial gas flows (11c) towards the inlet opening (70) and, through the intermediate storage volume (7, 8), towards the outlet opening (80).
  13. Electrical breaker device (1) according to one of Claims 10-12, characterized in that the mixing zone (12) is provided in the region of an outlet opening (80) of the intermediate storage volume (7, 8) for mixing the first partial gas flow (11a) with the cold gas (111) which is stored in the intermediate storage volume (7, 8) and is forcibly displaced out of the intermediate storage volume (7, 8) by the second partial gas flow (11b).
  14. Electrical breaker device (1) according to one of Claims 10-13, characterized in that
    a) the mixing zone (12) is at the same time in the form of a low pressure zone (12) for sucking the stored cold gas (111) out of the intermediate storage volume (7, 8), and/or
    b) the mixing zone (12) is at the same time in the form of a swirling zone (12) for the first partial gas flow (11a) and the cold gas (111), in particular of gas jets of the first partial gas flow (11a) and the cold gas (111), and/or
    c) additional mixing of the first partial gas flow (11a) with a precooled second partial gas flow (11b) and possibly a further partial gas flow (11c) takes place in the mixing channel (10).
  15. Electrical breaker device (1) according to one of Claims 10-14, characterized in that
    a) the storage capacity of the intermediate storage volume (7, 8) is selected according to a desired mixing duration and mixing temperature of the first partial gas flow (11a) with the intermediately stored cold gas (111), and/or
    b) a throughflow length (2*1) of the intermediate storage volume (7, 8) is selected according to a desired time delay of the second partial gas flow (11b) in the intermediate storage volume (7, 8) in relation to the first partial gas flow (11a).
  16. Electrical breaker device (1) according to one of Claims 10-15, characterized in that
    a) the exhaust volume (4) is surrounded by an exhaust housing (4a), which has an exit-flow opening (101) and an exhaust opening (102) towards the switching chamber housing (3),
    b) the intermediate storage volume (7, 8) is formed by a body (7a, 7b, 8a, 8b) through which a flow can pass and which is arranged in the exhaust volume (4), and
    c) the body (7a, 7b, 8a, 8b) through which a flow can pass has a first opening (71) for branching off the first partial gas flow (11a) in a region of the body (7a, 7b, 8a, 8b) which faces the arc-quenching zone (6) and has a second opening (72) for the second partial gas flow (11b) in a region of the body (7a, 7b, 8a, 8b) which faces away from the arc-quenching zone (6).
  17. Electrical breaker device (1) according to Claim 16, characterized in that
    a) the first opening (71) is arranged close to the exit-flow opening (101), in particular radially opposite, and/or
    b) the second opening (72) is arranged far removed from the exit-flow opening (101), in particular at a maximum axial distance from the exit-flow opening (101), and/or
    c) a third or further opening (73) for a third or further partial gas flow (11c) is arranged in the axial direction (1a) between the first and the second openings (71, 72).
  18. Electrical breaker device (1) according to one of Claims 16-17, characterized in that
    a) the second opening (72) interacts with a deflecting device (7b, 8b, 8a) for guiding the stored cold gas (111) and the second partial gas flow (11b) back towards the outlet opening (80) of the intermediate storage volume (7, 8), and/or
    b) a path length difference (2*1) between the relatively short path for the first partial gas flow (11a) and the relatively long path for the second partial gas flow (11b) is given by the axial distance between the first and the second openings (71, 72).
  19. Electrical breaker device (1) according to one of Claims 16-18, characterized in that
    a) the openings (71, 72, 73) are holes or slots in a wall (7a, 7b) of the body (7a, 7b, 8a, 8b), and/or
    b) the openings (71, 72, 73) are arranged in a radial wall (7a) and/or in an axial wall (7b) of the body (7a, 7b, 8a, 8b), and/or
    c) the number, size and position of the first, second and possibly third openings (71, 72, 73) are selected such that the first partial gas flow (11a) can still largely be mixed with the stored cold gas (111) in the exhaust volume (4).
  20. Electrical breaker device (1) according to one of Claims 16-19, characterized in that
    a) the body (7a, 7b, 8a, 8b) through which a flow can pass comprises a coaxially arranged inner cylinder (7a, 7b), which has an inlet opening (70) for the second partial gas flow (11b) towards the quenching-arc zone (6),
    b) the body (7a, 7b, 8a, 8b) through which a flow can pass comprises an outer cylinder (8a, 8b) which surrounds the inner cylinder (7a, 7b) and has an outlet opening (80) for the stored cold gas (111) and the second partial gas flow (11b) towards the quenching-arc zone (6), and
    c) the inner cylinder (7a, 7b) and the outer cylinder (8a, 8b) are connected to one another by the second opening (72) and possibly the third opening (73).
  21. Electrical breaker device (1) according to one of Claims 10-20, characterized in that
    a) auxiliary means (9, 9a, 9b, 9c; 74, 75) for precooling the switching gas (11) are arranged in the exhaust volume (4) of the breaker device (1),
    b) in particular in that the auxiliary means (9, 9a, 9b, 9c; 74, 75) are arranged in the hot-gas flow (110) before it is split up into the partial gas flows (11a, 11b, 11c) and/or in the first partial gas flow and/or in the second partial gas flow (11a, 11b) and possibly in a further partial gas flow (11c).
  22. Electrical breaker device (1) according to Claim 21, characterized in that
    a) the auxiliary means comprise a jet-forming outflow opening (74) in the intermediate storage volume (7, 8) and/or in a secondary volume (9a) for the purpose of forming gas jets and a baffle wall (75) for the purpose of swirling the gas jets, and/or
    b) the auxiliary means comprise a baffle plate (9b) and/or guiding means (9c) and/or swirling means (9c) for the switching gas (11).
  23. Electrical breaker device (1) according to one of Claims 10-22, characterized in that
    a) the intermediate storage volume (7, 8), the first means (71; 101, 102) and the second means (7a, 7b, 72) are arranged in the exhaust region (7, 8) of a first and/or a second contact (5) of the breaker device (1), and/or
    b) the breaker device (1) is a high-voltage circuit breaker (1) or a high-current circuit breaker or a switch disconnector.
  24. Electrical breaker device (1) according to Claim 10, characterized in that the mixing channel (10) is separated from the intermediate storage volume (7, 8) and connected thereto via a channel inlet opening (101), the channel inlet opening acting as outlet opening (80) from the intermediate volume (7, 8) and the channel outlet opening acting as exhaust opening (102).
  25. Electrical breaker device (1) according to Claim 10, characterized in that the mixing channel (10) between its channel inlet opening (101) and channel outlet opening (102) has a diameter (D) and a length (L) which are dimensioned such that efficient mixing of the already premixed partial gas flows (11a, 11b, 11c) with the cold gas (111) and with one another is realized.
  26. Electrical breaker device (1) according to Claim 10, characterized in that the mixing channel (10) is aligned axially and/or radially.
EP05405556A 2005-09-26 2005-09-26 High voltage circuit breaker with improved interrupting capacity Revoked EP1768150B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE502005009041T DE502005009041D1 (en) 2005-09-26 2005-09-26 High voltage switch with improved switching capacity
AT05405556T ATE458259T1 (en) 2005-09-26 2005-09-26 HIGH VOLTAGE SWITCH WITH IMPROVED SWITCHING PERFORMANCE
EP05405556A EP1768150B1 (en) 2005-09-26 2005-09-26 High voltage circuit breaker with improved interrupting capacity
US11/520,619 US8389886B2 (en) 2005-09-26 2006-09-14 High-voltage circuit breaker with improved circuit breaker rating
JP2006255278A JP2007095680A (en) 2005-09-26 2006-09-21 High voltage circuit breaker with improved circuit breaker rating
CN2006101396232A CN1941243B (en) 2005-09-26 2006-09-26 High voltage circuit breaker with improved interrupting capacity
KR1020060093655A KR101320770B1 (en) 2005-09-26 2006-09-26 High-voltage circuit breaker with improved circuit breaker rating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05405556A EP1768150B1 (en) 2005-09-26 2005-09-26 High voltage circuit breaker with improved interrupting capacity

Publications (2)

Publication Number Publication Date
EP1768150A1 EP1768150A1 (en) 2007-03-28
EP1768150B1 true EP1768150B1 (en) 2010-02-17

Family

ID=35788070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05405556A Revoked EP1768150B1 (en) 2005-09-26 2005-09-26 High voltage circuit breaker with improved interrupting capacity

Country Status (7)

Country Link
US (1) US8389886B2 (en)
EP (1) EP1768150B1 (en)
JP (1) JP2007095680A (en)
KR (1) KR101320770B1 (en)
CN (1) CN1941243B (en)
AT (1) ATE458259T1 (en)
DE (1) DE502005009041D1 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807670A (en) * 1995-08-14 1998-09-15 Abbott Laboratories Detection of hepatitis GB virus genotypes
CN101120423B (en) * 2004-12-24 2010-06-23 Abb技术有限公司 Generator switch having improved switching capacity
EP1835520B2 (en) 2006-03-14 2013-12-18 ABB Technology AG Switching chamber for gasisolated high voltage switch
FR2924267A1 (en) 2007-11-22 2009-05-29 Areva T & D Sa HIGH VOLTAGE CIRCUIT BREAKER WITH IMPROVED GAS EXHAUST
KR101109697B1 (en) * 2007-12-07 2012-01-30 현대중공업 주식회사 Apparatus for Hot Gas Exhaustion of Gas Insulation Switch
KR100934488B1 (en) * 2007-12-31 2009-12-30 주식회사 효성 Fixing part of breaker for gas insulated switchgear
EP2120244A1 (en) 2008-05-15 2009-11-18 ABB Technology AG High voltage output switch
KR101017385B1 (en) * 2008-08-25 2011-02-28 주식회사 효성 Gas Insulation switchgear
DE102009009452A1 (en) * 2009-02-13 2010-08-19 Siemens Aktiengesellschaft Switchgear assembly with a switching path
FR2946181B1 (en) 2009-05-26 2011-07-01 Areva T & D Sa HIGH VOLTAGE CIRCUIT BREAKER WITH IMPROVED GAS EXHAUST.
DE102009057703A1 (en) * 2009-12-04 2011-06-09 Siemens Aktiengesellschaft Circuit breaker arrangement
FR2962847B1 (en) 2010-07-16 2012-08-17 Areva T & D Sas CUTTING CHAMBER EQUIPMENT FOR TWO CONFINED CONTACT ELECTRODES
US8519287B2 (en) * 2010-11-15 2013-08-27 Schneider Electric USA, Inc. Circuit breaker with controlled exhaust
DE102011083588A1 (en) * 2011-09-28 2013-03-28 Siemens Aktiengesellschaft An arrangement comprising a circuit breaker breaker unit
DE102011083593A1 (en) * 2011-09-28 2013-03-28 Siemens Aktiengesellschaft Circuit-breaker interrupter unit
DE102011083594A1 (en) * 2011-09-28 2013-03-28 Siemens Aktiengesellschaft Circuit-breaker interrupter unit
DE102012202408A1 (en) * 2012-02-16 2013-08-22 Siemens Aktiengesellschaft Switchgear arrangement
DE102012202406A1 (en) * 2012-02-16 2013-08-22 Siemens Ag Switchgear arrangement
KR101291789B1 (en) * 2012-03-16 2013-07-31 현대중공업 주식회사 Gas insulated switchgear
KR101291792B1 (en) * 2012-03-16 2013-07-31 현대중공업 주식회사 Gas insulated switchgear
DE102012112202A1 (en) * 2012-12-13 2014-06-18 Eaton Electrical Ip Gmbh & Co. Kg Polarity-independent switching device for conducting and separating direct currents
DE102013209663A1 (en) * 2013-05-24 2014-11-27 Siemens Aktiengesellschaft Switching gas channel and switching device with switching gas channel
DE102013010124A1 (en) * 2013-06-18 2014-12-18 Abb Technology Ag Switching chamber for a gas-insulated circuit breaker
WO2015097143A1 (en) * 2013-12-23 2015-07-02 Abb Technology Ag Electrical switching device
KR101613992B1 (en) * 2014-04-09 2016-04-21 현대중공업 주식회사 Gas insulated circuit breaker
JP6277083B2 (en) * 2014-08-20 2018-02-07 株式会社日立製作所 Gas circuit breaker
US9305726B2 (en) 2014-08-27 2016-04-05 Eaton Corporation Arc extinguishing contact assembly for a circuit breaker assembly
CN104332352B (en) * 2014-10-15 2016-08-24 中国西电电气股份有限公司 A kind of SF6gas-break switch
FR3030868B1 (en) * 2014-12-19 2018-02-16 Alstom Technology Ltd CIRCUIT BREAKER EQUIPPED WITH PRESSURE GAS DRAIN VALVES IN EXHAUST VOLUMES
US9673006B2 (en) * 2015-01-23 2017-06-06 Alstom Technology Ltd Exhaust diffuser for a gas-insulated high voltage circuit breaker
FR3032059B1 (en) 2015-01-28 2017-03-03 Alstom Technology Ltd CIRCUIT BREAKER EQUIPPED WITH AN EXTENDABLE EXHAUST HOOD
JP6478836B2 (en) * 2015-06-29 2019-03-06 株式会社東芝 Gas circuit breaker
CN109196615B (en) * 2016-03-24 2020-12-22 Abb电网瑞士股份公司 Electric circuit breaker device
WO2017162533A1 (en) 2016-03-24 2017-09-28 Abb Schweiz Ag Electrical circuit breaker device with particle trap
KR102214303B1 (en) * 2016-04-06 2021-02-10 에이비비 슈바이쯔 아게 Devices for the generation, transmission, distribution and/or use of electrical energy, in particular electrical switching devices
JP6667370B2 (en) * 2016-05-31 2020-03-18 株式会社日立製作所 Gas circuit breaker
EP3252793B1 (en) * 2016-06-03 2021-01-27 ABB Schweiz AG Switching device with dual conductive housing
EP3261107A1 (en) * 2016-06-20 2017-12-27 ABB Schweiz AG Gas-insulated low- or medium-voltage switch with swirling device
DE102016214196B4 (en) * 2016-08-02 2019-11-21 Siemens Aktiengesellschaft Interrupter unit for a circuit breaker
CN109496342A (en) * 2016-10-06 2019-03-19 株式会社东芝 Gas circuit breaker
ES2929798T3 (en) * 2017-06-29 2022-12-01 Abb Schweiz Ag Gas-insulated load-break switch and switchgear comprising a gas-insulated load-break switch
JP6794327B2 (en) * 2017-09-15 2020-12-02 株式会社東芝 Gas circuit breaker
CN107464708B (en) * 2017-09-27 2021-06-18 湖南长高电气有限公司 High-voltage circuit breaker with gas cooling channel
JP6921988B2 (en) * 2017-12-01 2021-08-18 株式会社東芝 Gas circuit breaker
EP3503153B1 (en) * 2017-12-22 2021-09-01 ABB Power Grids Switzerland AG Gas-insulated high or medium voltage circuit breaker
RU186667U1 (en) * 2018-08-27 2019-01-29 Закрытое акционерное общество "Завод электротехнического оборудования" (ЗАО "ЗЭТО") GAS ISOLATION SWITCH
KR102135381B1 (en) 2018-10-30 2020-07-17 엘에스일렉트릭(주) High Speed Earthing Switch of Gas Insulated Switchgear
DE102018219832A1 (en) * 2018-11-20 2020-05-20 Siemens Aktiengesellschaft Circuit breaker interrupter unit
EP3951822B1 (en) * 2019-04-02 2024-08-28 Kabushiki Kaisha Toshiba Gas circuit breaker
CN112017904B (en) * 2019-05-28 2022-08-12 河南平芝高压开关有限公司 Circuit breaker and quiet side afterbody air current channel structure thereof
EP3828909B1 (en) * 2019-11-29 2023-09-13 General Electric Technology GmbH Circuit breaker with simplified non-linear double motion
KR102363010B1 (en) 2020-03-20 2022-02-15 엘에스일렉트릭(주) Blocking element and molded-case circuit breaker including the same
CA3140003A1 (en) * 2020-11-20 2022-05-20 Technologies Mindcore Inc. System for controlling and cooling gas of circuit breaker and method thereof
EP4125108B1 (en) * 2021-07-26 2024-01-31 Hitachi Energy Ltd Gas-insulated high or medium voltage circuit breaker
CN114420482B (en) * 2022-01-06 2023-12-08 平高集团有限公司 Isolation moving contact assembly and high-voltage switch equipment with isolation fracture

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293513A (en) * 1939-10-11 1942-08-18 Gen Electric Electric air circuit breaker
US2272214A (en) 1939-12-22 1942-02-10 Gen Electric Air blast circuit breaker
US2292158A (en) * 1941-05-28 1942-08-04 Gen Electric Gas blast circuit breaker
US2345375A (en) * 1942-12-19 1944-03-28 Gen Electric Electric circuit breaker
US3005892A (en) * 1957-03-19 1961-10-24 Ite Circuit Breaker Ltd Arc chute design for circuit breakers
US3025376A (en) * 1958-05-13 1962-03-13 Ite Circuit Breaker Ltd Arc chute for circuit breakers
DE1889068U (en) 1964-01-18 1964-03-12 Concordia Maschinen Und Elek Z PIPE SLOT CHAMBER WITH COOLING DEVICE.
DE2642693A1 (en) * 1976-09-20 1978-03-23 Siemens Ag HV power switch for outdoor mounting - has hollow contact for gas flow, and by=pass connecting low pressure gas space with ambient air
US4328403A (en) * 1977-02-15 1982-05-04 Westinghouse Electric Corp. Single barrel puffer circuit interrupter
US4144426A (en) * 1977-02-15 1979-03-13 Westinghouse Electric Corp. Single barrel puffer circuit interrupter with downstream gas coolers
CH645753A5 (en) 1979-05-22 1984-10-15 Sprecher & Schuh Ag Gas-blast circuit breaker
DE3065760D1 (en) 1979-05-25 1984-01-05 Mitsubishi Electric Corp Power circuit interrupter with arc-extinguishing means
JPS5671223A (en) 1979-11-13 1981-06-13 Mitsubishi Electric Corp Switch
CH643087A5 (en) 1979-11-30 1984-05-15 Sprecher & Schuh Ag Gas-blast circuit breaker
JPS56104031A (en) 1980-01-24 1981-08-19 Matsushita Electric Ind Co Ltd Pipe for guiding linear body and manufacture thereof
DE3275041D1 (en) * 1981-09-30 1987-02-12 Sprecher Energie Ag Compressed-gas circuit breaker
EP0076668B1 (en) 1981-10-06 1986-08-27 A/S Kongsberg Väpenfabrikk Turbo-machines with bleed-off means
FR2520928A1 (en) * 1982-02-04 1983-08-05 Alsthom Atlantique PNEUMATIC SELF-BLOWING CIRCUIT BREAKER
JPH0797467B2 (en) * 1984-12-20 1995-10-18 三菱電機株式会社 Ground tank type gas shield and disconnector
NO855379L (en) * 1985-02-27 1986-08-28 Bbc Brown Boveri & Cie PRESSURE GAS SWITCH.
DE3666521D1 (en) * 1985-05-15 1989-11-23 Alsthom Switch with sulfur hexafluoride operating in a very low temperature environment
FR2638564B1 (en) 1988-11-02 1990-11-30 Alsthom Gec HIGH VOLTAGE CIRCUIT BREAKER WITH DIELECTRIC GAS UNDER PRESSURE
DE3915700C3 (en) 1989-05-13 1997-06-19 Aeg Energietechnik Gmbh Compressed gas switch with evaporative cooling
DE9314779U1 (en) 1993-09-24 1993-11-25 Siemens AG, 80333 München High-voltage circuit breaker with a cooling device for cooling the extinguishing gas
TW280920B (en) * 1995-01-20 1996-07-11 Hitachi Seisakusyo Kk
DE19547522C1 (en) 1995-12-08 1997-01-16 Siemens Ag HV line circuit breaker with gas-storage space - has gas-storage space divided by partition into heating space and cold gas space
DE19720090C2 (en) 1997-05-14 2003-08-14 Abb Patent Gmbh High voltage circuit breaker
JP4174094B2 (en) 1998-01-29 2008-10-29 株式会社東芝 Gas circuit breaker
DE19832709C5 (en) * 1998-07-14 2006-05-11 Siemens Ag High voltage circuit breaker with one interrupter unit
JP3833839B2 (en) 1999-01-28 2006-10-18 三菱電機株式会社 Puffer type gas circuit breaker
DE19928080C5 (en) 1999-06-11 2006-11-16 Siemens Ag High voltage circuit breaker with a discharge channel
JP4218216B2 (en) * 2001-02-22 2009-02-04 株式会社日立製作所 Gas circuit breaker
US6682619B2 (en) * 2001-07-17 2004-01-27 Sikorsky Aircraft Corporation Composite pre-preg ply having tailored dielectrical properties and method of fabrication thereof
DE10156535C1 (en) 2001-11-14 2003-06-26 Siemens Ag breakers
FR2837321B1 (en) 2002-03-18 2004-08-06 Alstom HIGH VOLTAGE CIRCUIT BREAKER INCLUDING A DECOMPRESSION VALVE
DE10221576B4 (en) * 2002-05-08 2006-06-01 Siemens Ag Electrical switching device with a cooling device
DE10221580B3 (en) * 2002-05-08 2004-01-22 Siemens Ag Circuit breaker unit of a high voltage circuit breaker
EP1403891B2 (en) * 2002-09-24 2016-09-28 ABB Schweiz AG Circuit breaker
JP2004119344A (en) 2002-09-30 2004-04-15 Mitsubishi Electric Corp Gas blast circuit breaker
DE502004004571D1 (en) 2004-06-07 2007-09-20 Abb Technology Ag breakers
CN101120423B (en) 2004-12-24 2010-06-23 Abb技术有限公司 Generator switch having improved switching capacity

Also Published As

Publication number Publication date
ATE458259T1 (en) 2010-03-15
US20070068904A1 (en) 2007-03-29
CN1941243B (en) 2012-07-11
KR20070034972A (en) 2007-03-29
JP2007095680A (en) 2007-04-12
DE502005009041D1 (en) 2010-04-01
KR101320770B1 (en) 2013-10-21
CN1941243A (en) 2007-04-04
US8389886B2 (en) 2013-03-05
EP1768150A1 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
EP1768150B1 (en) High voltage circuit breaker with improved interrupting capacity
EP1403891B2 (en) Circuit breaker
EP1829077B1 (en) Generator switch having an improved switching capacity
EP1826792B1 (en) Arcing chamber of a high voltage circuit breaker with a heating volume receiving the arc extinguishing gases generated by the arc
WO2005122201A1 (en) Power switch
EP2396800B1 (en) Switchgear arrangement with a switch path
DE19928080C5 (en) High voltage circuit breaker with a discharge channel
DE2215656B2 (en) Electric pressure gas switch
DE19832709C5 (en) High voltage circuit breaker with one interrupter unit
DE3247121A1 (en) GAS BUFFER TYPE CIRCUIT BREAKER
EP2316122B1 (en) High-voltage power switch with a switch gap
EP1306868A1 (en) High voltage power circuit breaker with insulating nozzle
EP1226597B1 (en) Compressed gas-blast circuit breaker
EP1835520B1 (en) Switching chamber for gasisolated high voltage switch
DE4333277C2 (en) High-voltage circuit breaker with a cooling device for cooling the extinguishing gas
DE2647643C2 (en) Gas switch
WO2011035781A1 (en) Burn-off element to be arranged on a switch contact of a power circuit breaker
WO2010091943A1 (en) Switchgear arrangement
EP2099047B1 (en) Combustion contact device and output switch
DE19720090C2 (en) High voltage circuit breaker
DE3816811C2 (en)
DE19928077B4 (en) High voltage circuit breaker
EP1780741B2 (en) Chambre d'interruption d'un interrupteur très haute tension avec un volume de chauffage pour l'admission de gaz sous pression
DE3430306C3 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070928

17Q First examination report despatched

Effective date: 20071102

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005009041

Country of ref document: DE

Date of ref document: 20100401

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100217

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100528

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100518

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PLAZ Examination of admissibility of opposition: despatch of communication + time limit

Free format text: ORIGINAL CODE: EPIDOSNOPE2

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100517

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PLBA Examination of admissibility of opposition: reply received

Free format text: ORIGINAL CODE: EPIDOSNOPE4

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: AREVA ENERGIETECHNIK GMBH

Effective date: 20101117

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

BERE Be: lapsed

Owner name: ABB TECHNOLOGY A.G.

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100926

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100926

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20101110

Opponent name: ALSTOM GRID GMBH

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALSTOM GRID GMBH

Effective date: 20101117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502005009041

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502005009041

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160921

Year of fee payment: 12

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160921

Year of fee payment: 12

27W Patent revoked

Effective date: 20161020

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 458259

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161020