EP1826792B1 - Arcing chamber of a high voltage circuit breaker with a heating volume receiving the arc extinguishing gases generated by the arc - Google Patents

Arcing chamber of a high voltage circuit breaker with a heating volume receiving the arc extinguishing gases generated by the arc Download PDF

Info

Publication number
EP1826792B1
EP1826792B1 EP06405084A EP06405084A EP1826792B1 EP 1826792 B1 EP1826792 B1 EP 1826792B1 EP 06405084 A EP06405084 A EP 06405084A EP 06405084 A EP06405084 A EP 06405084A EP 1826792 B1 EP1826792 B1 EP 1826792B1
Authority
EP
European Patent Office
Prior art keywords
switching chamber
heating volume
heating
chamber according
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06405084A
Other languages
German (de)
French (fr)
Other versions
EP1826792A1 (en
Inventor
Andreas Dahlquist
Christian Franck
Martin Seeger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36636668&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1826792(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to DE502006001492T priority Critical patent/DE502006001492D1/en
Priority to EP06405084A priority patent/EP1826792B1/en
Priority to AT06405084T priority patent/ATE407442T1/en
Priority to PCT/CH2007/000056 priority patent/WO2007098619A1/en
Priority to CN2007800068816A priority patent/CN101390179B/en
Priority to JP2008556627A priority patent/JP2009528653A/en
Publication of EP1826792A1 publication Critical patent/EP1826792A1/en
Priority to US12/200,379 priority patent/US20080314873A1/en
Publication of EP1826792B1 publication Critical patent/EP1826792B1/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/901Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism making use of the energy of the arc or an auxiliary arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H2033/888Deflection of hot gasses and arcing products

Definitions

  • the present invention relates to a switching chamber of a high voltage switch with a heating volume according to the preamble of claim 1.
  • the invention also relates to a switch with such a switching chamber.
  • the switching chamber of the type mentioned allows the switching off of short-circuit currents in the range of 50 and more kA in the voltage range of up to a few hundred kV. It contains an axially symmetrical contact arrangement with two along a axis relative to each other movable arcing contacts, an insulating, a lsolierangesdüse, a heating volume and between the insulating and Isolierangesdüse partially axially guided and an arc zone with the heating volume connecting heating channel.
  • a high-power arc receiving arc zone When switching off a short-circuit current, a high-power arc receiving arc zone is limited when switching off a short-circuit current in the axial direction of the two arcing contacts and in the radial direction of the insulating and the Isolierangesdüse.
  • Hot gas formed by the switching arc is guided by the arc zone via a heating channel into a heating volume coaxial with the contact pieces.
  • the supplied hot gas is mixed with already existing cold gas and performed on approaching the current to be disconnected to a zero crossing as quenching gas for blowing the switching arc in the arc zone.
  • the breaking capacity of a high-voltage switch equipped with this switching chamber which is determined by the dielectric strength of the switching chamber, depends on the density of the extinguishing gas, ie on the pressure and the temperature of the extinguishing gas. If hot and cold gas are mixed only incompletely with each other, then, after the zero crossing of the short-circuit current in the heating volume, hot gas bubbles may still be present, which return to the arc zone with the extinguishing gas and may possibly lead to undesirable restrike.
  • Embodiments of a switching chamber of the type mentioned are described in DE 39 15 700 A1 and DE 199 36 987 C1 ,
  • this switch chamber opens an axially symmetric and designed as a hollow body heating channel with an inwardly inclined to the symmetry axis outer surface in a heating volume.
  • an in Fig.1 from DE 199 36 987 C1 illustrated embodiment of the switching chamber of the heating channel opens with an inwardly inclined to an axis of symmetry of the switching chamber and in the manner of a hollow truncated cone tapered section into the heating volume.
  • Another switching chamber is in DE 199 10 166 A1 described.
  • This switching chamber communicates formed during switching off and two arc contacts axially limited arc zone via an axisymmetric heating channel with a formed in the manner of a torus heating volume.
  • the heating channel opens into the heating volume with a section inclined outwards relative to the axis of symmetry. Hot gas formed by a switching arc in the arc zone therefore enters the heating volume with a velocity component guided outwards away from the axis.
  • the object is to provide a switching chamber of the type mentioned in the cold gas and generated when switching off hot gas to form a high quality extinguishing gas are mixed with simple means effectively and so a good breaking performance the switching chamber and a switch equipped with this switching chamber is ensured.
  • the heating channel opening into the heating volume with a portion inclined inwardly against an axis has a largely constant cross-section over its entire length.
  • the flow rate of the hot gas is kept constant while maintaining an inwardly directed velocity component throughout the mouth portion. The likelihood of undesirable premature vortex formation in the heating channel due to flow inhomogeneities is thus reduced.
  • hot gas flowing into the heating volume has an inwardly directed velocity component and is guided along an axially aligned inner wall of the heating volume to a rear wall which limits the heating volume axially in the flow direction.
  • the inward velocity component prevents detachment of the hot gas flow from the inner wall and therefore allows deep penetration of the hot gas into the heating volume in areas near the axis.
  • cool quenching gas to the incoming hot gas only a relatively small flow resistance, so that the speed of the incoming hot gas is not significantly reduced.
  • a vortex formation which promotes the mixing of the hot gas with cool quenching gas therefore only takes place in a relatively large distance from the mouth of the heating channel into the heating volume.
  • the formed vortex Due to the low viscosity of the hot gas, the formed vortex remains largely stable over a comparatively large period of several milliseconds, so that cool gas is obtained over this period at the mouth of the heating channel into the heating volume.
  • cool gas is obtained over this period at the mouth of the heating channel into the heating volume.
  • the inwardly inclined course of the mouth portion allows a reduction of the dimensions of the heating volume in the radial direction.
  • An insulating auxiliary nozzle delimiting the heating channel on its inside can be attached to the Opening point of the heating channel are bevelled into the heating volume, so that the inner wall of the heating volume is then formed by a small diameter having contact carrier of an arcing contact of the switching chamber.
  • the outer diameter of the heating volume can therefore be reduced and thus the manufacturing costs of the switching chamber can be reduced.
  • this edge facilitates the detachment of the hot gas flow from the lateral surface and at the same time additionally favors the formation of the vortex on the rear wall of the heating volume.
  • a vortex promoting the mixing of hot gas and cold gas is thus reliably formed downstream of the edge, which leads to an extinguishing gas of good quality even in the case of low-power switching arcs.
  • a further improvement of the leadership of the hot gas flow and thus also the dielectric properties of the quenching gas is achieved in that the sharp edge is arranged on a projecting in the manner of a nose into the heating volume ring.
  • the advantageous effects of the inclined heating channel are largely retained if the mouth section has at least two partial channels extending in the direction of inclination and arranged offset from one another in the circumferential direction. This is especially true when the sub-channels each have a running in the manner of a banana cross-sectional profile.
  • the flow rate of the hot gas can also be kept constant while maintaining an inwardly directed velocity component in the entire mouth section. The likelihood of undesirable premature vortex formation in the heating channel due to flow inhomogeneities is thus reduced.
  • the mouth section is formed as a hollow truncated cone tapering in the direction of inclination, then the constant cross section in the mouth section is achieved in that the inner surface of the hollow Truncated cone is more inclined than the lateral surface.
  • Such a sizing of the heating volume favors the formation and stabilization of the vortex in a portion of the heating volume downstream of the orifice.
  • the heating volume is designed in the manner of a torus and has a predominantly rectangular cross-section in the circumferential direction, then it is advantageous for the formation and stabilization of the hot gas vortex and thus also for the quality of the extinguishing gas obtained by mixing hot and cold gas the ratio of the length of the torus in the axial direction to the height of the torus in the radial direction is between 1 and 3.
  • FIGS. 1 and 2 illustrated switching chamber of a high voltage circuit breaker contains a with a compressed insulating gas, such as based on sulfur hexafluoride, nitrogen, oxygen or carbon dioxide or mixtures of these gases with each other, for example, air, filled and largely axially symmetric designed housing 1 and a recorded from the switching chamber housing 1 and also largely axially symmetrical designed contact assembly 2.
  • a compressed insulating gas such as based on sulfur hexafluoride, nitrogen, oxygen or carbon dioxide or mixtures of these gases with each other, for example, air
  • a compressed insulating gas such as based on sulfur hexafluoride, nitrogen, oxygen or carbon dioxide or mixtures of these gases with each other, for example, air
  • a compressed insulating gas such as based on sulfur hexafluoride, nitrogen, oxygen or carbon dioxide or mixtures of these gases with each other, for example, air
  • a compressed insulating gas such as based on sulfur hexafluoride, nitrogen,
  • the arcing contact 4 does not necessarily have to be fixed, it can also be designed to be movable.
  • the two arcing contacts 3, 4 are coaxially covered by an insulating nozzle 6 and a heating volume 7 for storing quenching gas.
  • the heating volume 7 is designed in the manner of a torus with a rectangular cross-section in the circumferential direction. With a switch designed for nominal voltages of typically 200 to 300 kV and for a nominal short-circuit breaking current of typically 50 to 70 kA, the heating volume 7 can generally accommodate approximately 1 to 2 liters of pressurized extinguishing gas.
  • the left end of the arcing contact 4 is inserted in an electrically conductive manner in the right end of the tubular arc contact 3.
  • the - like Fig.1 is removable - burns in an arc zone 9.
  • the arc zone 9 is axially bounded by the two arc contacts 3, 4 and axially by the insulating nozzle 6 and an insulating auxiliary nozzle 11.
  • the arc zone 9 communicates with a heating channel 10.
  • the heating channel 10 is partially axially guided between the insulating nozzle 6 and the insulating auxiliary nozzle 11 and opens into the heating volume 7 with an inwardly inclined portion 5 against the axis 5.
  • the angle of inclination is ⁇ .
  • the insulating auxiliary nozzle 11 comprises the free end of the arcing contact 3 formed by contact fingers in the circumferential direction.
  • the pressure in the arc zone 9 is generally greater than in the heating volume 7.
  • the heating channel 10 then leads from the arc 8 formed hot gas in the heating volume 7. Leaves the heating effect of the arc 8 as it approaches the zero crossing of the current , so there is a flow reversal. Gas stored in the heating volume 7 flows as quenching gas via the heating channel 10 into the arc zone 9 and there blows the arc 8 at least until it is extinguished in the current zero crossing.
  • the quality of the extinguishing gas stored in the heating volume 7 for arc blowing and thus also the breaking capacity of the switching chamber depend on the gas density determined by the pressure and temperature of the extinguishing gas. Pressure and temperature are determined primarily by current intensity and duration of the switching arc, but also by the shape and volume of the heating volume 7. While the size of the heating volume 7 only affects the pressure build-up, the shape of the heating volume, the gas mixing and thus the quenching gas temperature are affected , However, the quality of the extinguishing gas also depends substantially on the flow behavior of the hot gas on the way from the arc zone 9 into the heating volume 7.
  • the mouth portion 12 inclined inwardly into the heating chamber 7 receives the indicated by a double arrow 13 hot gas an inwardly directed velocity component and is guided along a tubular contact carrier 14 of the arcing contact 3 to a heating volume in the flow direction axially limiting the rear wall 15.
  • the inward velocity component prevents detachment of the hot gas flow 13 from the contact carrier 14, which forms the axially aligned inner wall of the heating volume 7, and thus allows deep penetration of the hot gas flow 13 into the heating volume in areas near the axis.
  • a mixing of the hot gas 13 with cold gas 16 promoting swirling therefore takes place only far from the junction of the heating channel 10 in the heating volume 7 away.
  • a hot gas vortex 17 formed during the turbulence remains largely stable over a comparatively large period of several milliseconds, so that over this Period at the mouth of the heating channel into the heating volume of cold gas 18 is maintained.
  • the cold gas 18 As a particularly high-quality quenching gas for blowing the switching arc available. Also, a later-acting portion of the extinguishing gas, which was formed by intensive mixing of the hot gas vortex 17 in the rear part of the heating volume 7 with the cold gas 16 is of high quality and thus ensures that short-circuit currents of different levels and duration can be successfully interrupted.
  • the inclination angle ⁇ can be up to 45 °. At larger angles, the hot gas flow tends to prematurely detach from the contact carrier 14.
  • a well-trained axial guidance of the hot gas 13 into the interior of the heating volume 7 at the same time kept small outside diameter of the heating volume is achieved with inclination angles ⁇ , which are between 10 ° and 30 °.
  • the mouth portion 12 is designed in the manner of a tapering in the direction of inclination, hollow truncated cone.
  • the hollow truncated cone can be formed by conically tapering the Isolierwhisdüse 11 to form an inner surface 19 of the hollow truncated cone acting conical surface molding a acting as a lateral surface 20 of the truncated cone conical surface in the insulating nozzle 6 and then setting the Isolieragisdüse 11 on the contact carrier 14 and the insulating nozzle 6 at the marked with the reference numeral 21 outer wall of the heating volume 7 can be achieved.
  • the heating channel 10 has over its entire length largely constant cross-section.
  • the flow rate of the hot gas is therefore largely constant in the entire heating channel, in particular in the mouth section 12.
  • the probability of undesirable premature vortex formation in the heating channel 10 due to flow inhomogeneities is kept so low.
  • the constant cross section in the mouth section 12 is achieved in that the surface 19 is inclined more than the surface 20.
  • the lateral surface 20 is delimited at the transition from the mouth section 12 into the heating volume 7 by a sharp edge 22 designed as a ring. This edge facilitates the detachment of the hot gas flow 13 from the lateral surface 20 and therefore favors the formation of the vortex 17 only at the rear wall 15 of the heating volume.
  • the radius of the edge 22 is typically 0.1 to 1 mm.
  • the edge 22 is arranged on a ring 23 protruding into the heating volume in the manner of a nose.
  • the ring 23 provides improved guidance of the hot gas flow 13 in the mouth region.
  • the mouth portion 12 may also be shaped differently. From the FIGS. 3 and 4 it can be seen that the mouth portion circumferentially offset from each other arranged sub-channels 12 '( Figure 3 ) and 12 "( Figure 4 ), which, as in Figure 3 represented approximately circular cross-section or as out Figure 4 can be seen in the form of a banana cross-sectional profile.
  • the ratio of the length of the torus in the axial direction to the height of the torus in the radial volume is between 1 and 3 in the radial direction.

Abstract

The chamber (1) comprises contact arrangement (2), two arcing contacts (3,4) mobile along an axle (5), an insulating nozzle (6), an insulating secondary nozzle (11), a heating volume (7) and a heating channel (10). A section (12) of the heating channel flowing into the heating volume is bent inward against the axle. The angle of inclination (alpha ) lies between 10 degrees and 30 degrees. An independent claim is also included for the high voltage switch.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf eine Schaltkammer eines Hochspannungsschalters mit einem Heizvolumen nach dem Oberbegriff von Patentanspruch 1. Die Erfindung betrifft auch einen Schalter mit einer solchen Schaltkammer.The present invention relates to a switching chamber of a high voltage switch with a heating volume according to the preamble of claim 1. The invention also relates to a switch with such a switching chamber.

Die Schaltkammer der eingangs genannten Art ermöglicht im Spannungsbereich von bis zu einigen hundert kV das Abschalten von Kurzschlusströmen im Bereich von 50 und mehr kA. Sie enthält eine axialsymmetrisch ausgeführte Kontaktanordnung mit zwei längs einer Achse relativ zueinander beweglichen Lichtbogenkontakten, eine Isolierdüse, eine lsolierhilfsdüse, ein Heizvolumen und einen zwischen Isolierdüse und Isolierhilfsdüse teilweise axial geführten und eine Lichtbogenzone mit dem Heizvolumen verbindenden Heizkanal. Die beim Abschalten eines Kurzschlusstrom einen leistungsstarken Schaltlichtbogen aufnehmende Lichtbogenzone ist beim Abschalten eines Kurzschlussstroms in axialer Richtung von den beiden Lichtbogenkontakten und in radialer Richtung von der Isolierdüse und der Isolierhilfsdüse begrenzt. Durch den Schaltlichtbogen gebildetes heisses Gas wird von der Lichtbogenzone über einen Heizkanal in ein die Schaltstücke koaxial umfassendes Heizvolumen geführt. Im Heizvolumen wird das zugeführte heisse Gas mit bereits vorhandenem kalten Gas gemischt und bei Annäherung des abzuschaltenden Stroms an einen Nulldurchgang als Löschgas zur Beblasung des Schaltlichtbogens in die Lichtbogenzone geführt.The switching chamber of the type mentioned allows the switching off of short-circuit currents in the range of 50 and more kA in the voltage range of up to a few hundred kV. It contains an axially symmetrical contact arrangement with two along a axis relative to each other movable arcing contacts, an insulating, a lsolierhilfsdüse, a heating volume and between the insulating and Isolierhilfsdüse partially axially guided and an arc zone with the heating volume connecting heating channel. When switching off a short-circuit current, a high-power arc receiving arc zone is limited when switching off a short-circuit current in the axial direction of the two arcing contacts and in the radial direction of the insulating and the Isolierhilfsdüse. Hot gas formed by the switching arc is guided by the arc zone via a heating channel into a heating volume coaxial with the contact pieces. In the heating volume, the supplied hot gas is mixed with already existing cold gas and performed on approaching the current to be disconnected to a zero crossing as quenching gas for blowing the switching arc in the arc zone.

Die von der dielektrischen Festigkeit der Schaltkammer bestimmte Ausschaltleistung eines mit dieser Schaltkammer ausgerüsteten Hochspannungsschalters hängt von der Dichte des Löschgases, d.h. vom Druck und der Temperatur des Löschgases, ab. Werden heisses und kaltes Gas nur unvollständig miteinander vermischt, so können nach dem Nulldurchgang des Kurzschlussstroms im Heizvolumen noch Heissgasblasen vorhanden sein, die mit dem Löschgas in die Lichtbogenzone zurückkehren und gegebenenfalls zu einer unerwünschten Rückzündung führen können.The breaking capacity of a high-voltage switch equipped with this switching chamber, which is determined by the dielectric strength of the switching chamber, depends on the density of the extinguishing gas, ie on the pressure and the temperature of the extinguishing gas. If hot and cold gas are mixed only incompletely with each other, then, after the zero crossing of the short-circuit current in the heating volume, hot gas bubbles may still be present, which return to the arc zone with the extinguishing gas and may possibly lead to undesirable restrike.

STAND DER TECHNIKSTATE OF THE ART

Ausführungsformen einer Schaltkammer der eingangs genannten Art sind beschrieben in DE 39 15 700 A1 und DE 199 36 987 C1 . Bei einer aus Fig.3 von DE 39 15 700 A1 ersichtlichen Ausführungsform dieser Schalterkammer mündet ein axialsymmetrischer und als Hohlkörper ausgeführter Heizkanal mit einer nach innen gegen die Symmetrieachse geneigten Aussenfläche in ein Heizvolumen. Bei einer in Fig.1 von DE 199 36 987 C1 dargestellten Ausführungsform der Schaltkammer mündet der Heizkanal mit einem nach innen gegen eine Symmetrieachse der Schaltkammer geneigten und nach Art eines hohlen Kegelstumpfes sich verjüngenden Abschnitt ins Heizvolumen.Embodiments of a switching chamber of the type mentioned are described in DE 39 15 700 A1 and DE 199 36 987 C1 , At one off Figure 3 from DE 39 15 700 A1 apparent embodiment of this switch chamber opens an axially symmetric and designed as a hollow body heating channel with an inwardly inclined to the symmetry axis outer surface in a heating volume. At an in Fig.1 from DE 199 36 987 C1 illustrated embodiment of the switching chamber of the heating channel opens with an inwardly inclined to an axis of symmetry of the switching chamber and in the manner of a hollow truncated cone tapered section into the heating volume.

In US 4 716 266 A und US 4 774 388 A sind Schaltkammern beschrieben, bei denen der Heizkanal jeweils einen ins Heizvolumen mündenden Abschnitt aufweist, der mehrere in Umfangsrichtung des Mündungsabschnitts gegeneinander versetzt angeordnete Teilkanäle enthält. Bei einer aus Fig.8 von US 4 474 388 A ersichtlichen Ausführungsform dieser Schaltkammern weisen die Teilkanäle ein nach Art einer Banane ausgeführtes Querschnittsprofil auf.In US 4 716 266 A and US 4,774,388 A Switching chambers are described in which the heating channel in each case has a section opening into the heating volume, which contains a plurality of subchannels arranged offset from one another in the circumferential direction of the mouth section. In one of Fig.8 of US 4,474,388 A apparent embodiment of this switching chambers, the sub-channels on a run in the manner of a banana cross-sectional profile.

Eine weitere Schaltkammer ist in DE 199 10 166 A1 beschrieben. Bei dieser Schaltkammer kommuniziert eine beim Ausschalten gebildete und von zwei Lichtbogenkontakten axial begrenzte Lichtbogenzone über einen axialsymmetrischen Heizkanal mit einem nach Art eines Torus ausgebildeten Heizvolumen. Der Heizkanal mündet mit einem gegenüber der Symmetrieachse nach aussen geneigten Abschnitt ins Heizvolumen. Von einem Schaltlichtbogen in der Lichtbogenzone gebildetes heisses Gas tritt daher mit einer von der Achse weg nach aussen geführten Geschwindigkeitskomponente ins Heizvolumen.Another switching chamber is in DE 199 10 166 A1 described. In this switching chamber communicates formed during switching off and two arc contacts axially limited arc zone via an axisymmetric heating channel with a formed in the manner of a torus heating volume. The heating channel opens into the heating volume with a section inclined outwards relative to the axis of symmetry. Hot gas formed by a switching arc in the arc zone therefore enters the heating volume with a velocity component guided outwards away from the axis.

In dem von D.Yoshida, H.lto, H.Kohyama, T.Sawadä, K.Kamei und M.Hidaka verfassten Bericht "Evaluation of Current Interrupting Capability of SF6 Gas Blast Circuit Breakers", Proceedings of the XIV International Conference on Gas Discharge and their Applications (Liverpool, 2 - 6 Sept.2002), wird gezeigt, dass es für eine gute Durchmischung eines axial mit Heissgas angeströmten und Kaltgas enthaltenden torusförmigen Heizvolumens einer Schaltkammer vorteilhaft ist, wenn das Verhältnis der Länge L dieses Volumens in axialer Richtung zur Quadratwurzel des Querschnitts A senkrecht zur Achse etwa 0,5 beträgt.In the written by D.Yoshida, H.lto, H.Kohyama, T.Sawadä, K.Kamei and M.Hidaka report "Evaluation of Current Interrupting Capability of SF6 gas blast circuit breakers", Proceedings of the XIV International Conference on Gas Discharge and their Applications (Liverpool, 2-6 Sept.2002), it is shown that it is advantageous for a good mixing of an axially fed with hot gas and cold gas containing toroidal heating volume of a switching chamber when the ratio of the length L of this volume in the axial Direction to the square root of the cross section A perpendicular to the axis is about 0.5.

Ferner beschreiben Georges Gaudart, Pierre Chévrier, Vicenzo Girlando und Antonio Lubello im Bericht "New Circuit Breaker 245 kV 50 kA 50 Hz and 60 HZ with a very low operating energy", 2nd European Conference on HV & MV Substation Equipment (Lyon, France, 20-21 November, 2003), eine Schaltkammer für einen Hochspannungsleistungsschalter, bei der zur Antriebsunterstützung ein torusförmig ausgebildetes Heizvolumen vorgesehen ist, in das der Heizkanal axial einmündet. Zur Verbesserung der Durchmischung von einströmendem Heissgas und bereits vorhandenem kaltem Gas sind an der Mündung des Heizvolumens als Rohr ausgebildete und axial ins Heizvolumen geführte Führungselemente für das Heissgas angeordnet.Georges Gaudart, Pierre Chévrier, Vicenzo Girlando and Antonio Lubello also describe in the report "New Circuit Breaker 245 kV 50 kA 50 Hz and 60 Hz with a very low operating energy", 2nd European Conference on HV & MV Substation Equipment (Lyon, France, 20-21 November, 2003), a switching chamber for a high-voltage circuit breaker, in which a torus-shaped heating volume is provided for driving support, in which the heating channel opens axially. To improve the mixing of inflowing hot gas and already existing cold gas formed at the mouth of the heating volume as a pipe and axially guided in the heating volume guide elements for the hot gas.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Der Erfindung, wie sie in den Patentansprüchen angegeben ist, liegt die Aufgabe zugrunde, eine Schaltkammer der eingangs genannten Art zu schaffen, in der Kaltgas und beim Ausschalten erzeugtes Heissgas zur Bildung eines qualitativ hochwertigen Löschgases mit einfachen Mitteln wirksam durchmischt werden und so eine gute Ausschaltleistung der Schaltkammer und eines mit dieser Schaltkammer ausgerüsteten Schalters gewährleistet ist.The invention, as indicated in the claims, the object is to provide a switching chamber of the type mentioned in the cold gas and generated when switching off hot gas to form a high quality extinguishing gas are mixed with simple means effectively and so a good breaking performance the switching chamber and a switch equipped with this switching chamber is ensured.

Bei der Schaltkammer und dem Schalter nach der Erfindung weist der mit einem gegen eine Achse nach innen geneigten Abschnitt ins Heizvolumen mündende Heizkanal über seine gesamte Länge einen weitgehend konstanten Querschnitt auf.In the switching chamber and the switch according to the invention, the heating channel opening into the heating volume with a portion inclined inwardly against an axis has a largely constant cross-section over its entire length.

Durch diese Massnahme wird die Strömungsgeschwindigkeit des Heissgases unter Beibehalt einer nach innen gerichteten Geschwindigkeitskomponente im gesamten Mündungsabschnitt konstant gehalten. Die Wahrscheinlichkeit einer unerwünschten vorzeitigen Wirbelbildung im Heizkanal infolge von Strömungsinhomogenitäten wird so reduziert.By this measure, the flow rate of the hot gas is kept constant while maintaining an inwardly directed velocity component throughout the mouth portion. The likelihood of undesirable premature vortex formation in the heating channel due to flow inhomogeneities is thus reduced.

Darüber hinaus weist ins Heizvolumen einströmendes Heissgas eine nach innen gerichtete Geschwindigkeitskomponente auf und wird längs einer axial ausgerichteten Innenwand des Heizvolumens an eine das Heizvolumen in Strömungsrichtung axial begrenzende Rückwand geführt wird. Die nach innen gerichtete Geschwindigkeitskomponente verhindert ein Ablösen der Heissgasströmung von der Innenwand und ermöglicht daher in achsennahen Bereichen ein tiefes Eindringen des heissen Gases ins Heizvolumen. Zugleich setzt dann im Heizvolumen vorhandenes kühles Löschgas dem einströmenden Heissgas nur einen verhältnismässig kleinen Strömungswiderstand entgegen, so dass das die Geschwindigkeit des einströmenden Heissgases nicht wesentlich reduziert wird. Eine die Vermischung des Heissgases mit kühlem Löschgas fördernde Wirbelbildung findet daher erst in einem relativ grossen Abstand von der Mündung des Heizkanals ins Heizvolumen statt. Der gebildete Wirbel bleibt wegen der geringen Viskosität des Heissgases über einen vergleichsweise grossen Zeitraum von mehreren Millisekunden weitgehend stabil, so dass über diesen Zeitraum an der Mündung des Heizkanals ins Heizvolumen kühles Gas erhalten bliebt. Bei Annäherung des abzuschaltenden Stroms an einen Nulldurchgang und Einsetzen einer Löschgasströmung aus dem Heizvolumen in die Lichtbogenzone steht dann schon zu Beginn eines Lichtbogenlöschvorganges kühles Löschgas zur Beblasung des Schaltlichtbogens zur Verfügung. Dadurch und durch nachfolgen ausströmendes Löschgas mit guten Löscheigenschaften, das durch intensives Vermischen infolge des lange wirkenden Wirbel in einem von der Mündung abgewandten Teil des Heizvolumens gebildet wird, ist sichergestellt, dass Kurzschlussströme unterschiedlicher Höhe und Dauer erfolgreich unterbrochen werden können.In addition, hot gas flowing into the heating volume has an inwardly directed velocity component and is guided along an axially aligned inner wall of the heating volume to a rear wall which limits the heating volume axially in the flow direction. The inward velocity component prevents detachment of the hot gas flow from the inner wall and therefore allows deep penetration of the hot gas into the heating volume in areas near the axis. At the same time then present in the heating volume existing cool quenching gas to the incoming hot gas only a relatively small flow resistance, so that the speed of the incoming hot gas is not significantly reduced. A vortex formation which promotes the mixing of the hot gas with cool quenching gas therefore only takes place in a relatively large distance from the mouth of the heating channel into the heating volume. Due to the low viscosity of the hot gas, the formed vortex remains largely stable over a comparatively large period of several milliseconds, so that cool gas is obtained over this period at the mouth of the heating channel into the heating volume. When approaching the current to be disconnected to a zero crossing and inserting a quenching gas flow from the heating volume in the arc zone is then already at the beginning of an arc extinguishing cool quenching gas for blowing the switching arc available. Thereby and by subsequent outflowing extinguishing gas with good extinguishing properties, which is formed by intensive mixing as a result of the long-acting vortex in a remote from the mouth part of the heating volume, it is ensured that short-circuit currents of different height and duration can be successfully interrupted.

Zudem ermöglicht der nach innen geneigte Verlauf des Mündungsabschnitts eine Reduktion der Abmessungen des Heizvolumens in radialer Richtung. Eine den Heizkanal auf seiner Innenseite begrenzende Isolierhilfsdüse kann an der Mündungsstelle des Heizkanals ins Heizvolumen abgeschrägt werden, so dass die Innenwand des Heizvolumens dann von einem einen geringen Durchmesser aufweisenden Kontaktträger eines Lichtbogenkontakts der Schaltkammer gebildet wird. Der Aussendurchmesser des Heizvolumens kann daher reduziert und so die Fertigungskosten der Schaltkammer herabgesetzt werden.In addition, the inwardly inclined course of the mouth portion allows a reduction of the dimensions of the heating volume in the radial direction. An insulating auxiliary nozzle delimiting the heating channel on its inside can be attached to the Opening point of the heating channel are bevelled into the heating volume, so that the inner wall of the heating volume is then formed by a small diameter having contact carrier of an arcing contact of the switching chamber. The outer diameter of the heating volume can therefore be reduced and thus the manufacturing costs of the switching chamber can be reduced.

Grosse Neigungswinkel ermöglichen zwar eine wirtschaftlich vorteilhafte Reduktion des Aussendurchmessers des Heizvolumens, jedoch weist die Heissgasströmung mit wachsenden grossen Neigungswinkeln zunehmend die Tendenz auf, sich vorzeitig von der Innenwand abzulösen. Oberhalb eines Neigungswinkels von 45° ist diese Ablösetendenz bei bestimmten Strömungsgeschwindigkeiten gegebenenfalls schon relativ stark ausgeprägt. Eine besonders gute axial orientierte Führung des Heissgases ins Innere des Heizvolumens bei gleichzeitig klein gehaltenem Aussendurchmesser des Heizvolumens wurde mit einem zwischen 10° und 30° liegenden Neigungswinkel erreicht.Although large angles of inclination allow an economically advantageous reduction of the outside diameter of the heating volume, but the hot gas flow with increasing large angles of inclination increasingly the tendency to prematurely detach from the inner wall. Above an angle of inclination of 45 °, this tendency to detach at certain flow velocities may already be relatively pronounced. A particularly good axially oriented guidance of the hot gas into the interior of the heating volume at the same time kept small outside diameter of the heating volume was achieved with a lying between 10 ° and 30 ° tilt angle.

Mit Vorteil ist der Mündungsabschnitt nach Art eines sich in Neigungsrichtung verjüngenden, hohlen Kegelstumpfs ausgeführt. Ein solcher Mündungabschnitt kann durch Ausführen folgender Massnahmen erreicht werden:

  • Abschrägen einer Isolierhilfsdüse, Festsetzen der Isolierhilfsdüse am Kontaktträger des vorgenannten Lichtbogenkontakts, Einformen einer den Mündungsabschnitt nach aussen begrenzenden und eine Mantelfläche des hohlem Kegelstumpfs bildenden konischen Fläche in die Isolierdüse und Festsetzen der Isolierdüse.
Advantageously, the mouth portion is designed in the manner of a tapering in the direction of inclination, hollow truncated cone. Such a mouth section can be achieved by performing the following measures:
  • Beveling of a Isolierhilfsdüse, setting the Isolierhilfsdüse on the contact carrier of the aforementioned arcing contact, forming a the mouth portion outwardly limiting and a lateral surface of the hollow truncated cone forming conical surface in the insulating and setting the insulating.

Ist diese Mantelfläche am Übergang vom Mündungsabschnitt zum Heizvolumen von einer als Ring ausgebildeten, scharfen Kante begrenzt, so erleichert diese Kante die Ablösung der Heissgasströmung von der Mantelfläche und begünstigt zugleich zusätzlich die Bildung des Wirbels an der Rückwand des Heizvolumens. Bei einer von einem Schaltlichtbogen geringer Leistung erzeugten, schwachen Heissgasströmung wird so mit Sicherheit stromabwärts der Kante ein die Vermischung von Heissgas und Kaltgas fördernder Wirbel gebildet, welcher auch bei leistungsschwachen Schaltlichtbögen zu einem Löschgas guter Qualität führt. Eine weitere Verbesserung der Führung der Heissgasströmung und damit auch der dielektrischen Eigenschaften des Löschgases wird dadurch erreicht, dass die scharfe Kante an einem nach Art einer Nase ins Heizvolumen ragenden Ring angeordnet ist.If this lateral surface at the transition from the mouth section to the heating volume is delimited by a sharp edge formed as a ring, this edge facilitates the detachment of the hot gas flow from the lateral surface and at the same time additionally favors the formation of the vortex on the rear wall of the heating volume. In a weak hot gas flow generated by a low power switching arc, a vortex promoting the mixing of hot gas and cold gas is thus reliably formed downstream of the edge, which leads to an extinguishing gas of good quality even in the case of low-power switching arcs. A further improvement of the leadership of the hot gas flow and thus also the dielectric properties of the quenching gas is achieved in that the sharp edge is arranged on a projecting in the manner of a nose into the heating volume ring.

Die vorteilhaften Wirkungen des geneigten Heizkanals bleiben weitgehend erhalten, wenn der Mündungsabschnitt mindestens zwei in Neigungsrichtung erstreckte und in Umfangsrichtung gegeneinander versetzt angeordnete Teilkanäle aufweist. Dies gilt vor allem dann, wenn die Teilkanäle jeweils ein nach Art einer Banane ausgeführtes Querschnittsprofil aufweisen.The advantageous effects of the inclined heating channel are largely retained if the mouth section has at least two partial channels extending in the direction of inclination and arranged offset from one another in the circumferential direction. This is especially true when the sub-channels each have a running in the manner of a banana cross-sectional profile.

Weist der Heizkanal über seine gesamte Länge einen weitgehend konstanten Querschnitt auf, so kann auch die Strömungsgeschwindigkeit des Heissgases unter Beibehalt einer nach innen gerichteten Geschwindigkeitskomponente im gesamten Mündungsabschnitt konstant gehalten werden. Die Wahrscheinlichkeit einer unerwünschten vorzeitigen Wirbelbildung im Heizkanal infolge von Strömungsinhomogenitäten wird so reduziert.If the heating channel has a substantially constant cross section over its entire length, the flow rate of the hot gas can also be kept constant while maintaining an inwardly directed velocity component in the entire mouth section. The likelihood of undesirable premature vortex formation in the heating channel due to flow inhomogeneities is thus reduced.

Ist der Mündungsabschnitts als sich in Neigungsrichtung verjüngender, hohler Kegelstumpf ausgebildet, so wird der konstante Querschnitt im Mündungsabschnitt dadurch erreicht, dass die Innenfläche des hohlen Kegelstumpfs stärker geneigt ist als dessen Mantelfläche. Eine solche Bemessung des Heizvolumens begünstigt die Bildung und Stabilisierung des Wirbels in einem stromabwärts der Mündung gelegenen Teil des Heizvolumens.If the mouth section is formed as a hollow truncated cone tapering in the direction of inclination, then the constant cross section in the mouth section is achieved in that the inner surface of the hollow Truncated cone is more inclined than the lateral surface. Such a sizing of the heating volume favors the formation and stabilization of the vortex in a portion of the heating volume downstream of the orifice.

Ist das Heizvolumen nach Art eines Torus ausgebildet ist und weist es in Umfangsrichtung einen vorwiegend rechteckigen Querschnitt auf, so ist es für die Bildung und Stabilisierung des Heissgaswirbels und damit auch für die Qualität des durch Mischen von Heiss- und Kaltgas erzielten Löschgases von Vorteil, wenn das Verhältnis von Länge des Torus in axialer Richtung zu Höhe des Torus in radialer Richtung zwischen 1 und 3 liegt.If the heating volume is designed in the manner of a torus and has a predominantly rectangular cross-section in the circumferential direction, then it is advantageous for the formation and stabilization of the hot gas vortex and thus also for the quality of the extinguishing gas obtained by mixing hot and cold gas the ratio of the length of the torus in the axial direction to the height of the torus in the radial direction is between 1 and 3.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Anhand von-Zeichnungen werden nachfolgend Ausführungsbeispiele der Erfindung näher erläutert. Hierbei zeigt:

Fig.1
eine Aufsicht auf einen axial geführten Schnitt auf einen oberhalb einer Achse gelegenen Teil einer ersten Ausführungsform einer Schaltkammer nach der Erfindung,
Fig.2
eine Aufsicht auf einen längs II-II geführten Schnitt durch die Schaltkammer nach Fig.1,
Fig.3
eine Aufsicht auf einen entsprechend Fig.2 geführten Schnitt durch eine zweite Ausführungsform der Schaltkammer nach der Erfindung,
Fig. 4
eine Aufsicht auf einen entsprechend Fig.2 geführten Schnitt durch eine dritte Ausführungsform der Schaltkammer nach der Erfindung, und
Fig.5
eine Aufsicht auf einen axial geführten Schnitt auf einen oberhalb einer Achse gelegenen Teil einer vierten Ausführungsform einer Schaltkammer nach der Erfindung.
Reference to drawings, embodiments of the invention are explained in more detail below. Hereby shows:
Fig.1
a plan view of an axially guided section on an above-axis part of a first embodiment of a switching chamber according to the invention,
Fig.2
a view of a longitudinal II-II guided section through the switching chamber after Fig.1 .
Figure 3
a supervision on one accordingly Fig.2 Guided section through a second embodiment of the switching chamber according to the invention,
Fig. 4
a supervision on one accordingly Fig.2 guided section through a third embodiment of the switching chamber according to the invention, and
Figure 5
a plan view of an axially guided section on an above-axis part of a fourth embodiment of a switching chamber according to the invention.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

In allen Figuren beziehen sich gleiche Bezugszeichen auf gleichwirkende Teile. Die in den Figuren 1 und 2 dargestellte Schaltkammer eines Hochspannungsleistungsschalters enthält ein mit einem komprimierten Isoliergas, etwa auf der Basis von Schwefelhexafluorid, Stickstoff, Sauerstoff oder Kohlendioxid oder von Mischungen dieser Gase untereinander, beispielsweise Luft, gefülltes und weitgehend axialsymmetrisch gestaltetes Gehäuse 1 sowie eine vom Schaltkammergehäuse 1 aufgenommene und ebenfalls weitgehend axialsymmetrisch gestaltete Kontaktanordnung 2. Von der während eines Abschaltvorgangs dargestellte Kontaktanordnung 2 sind zwei Lichtbogenkontakte 3, 4 dargestellt, von denen der Lichtbogenkontakt 3 längs einer Achse 5 bewegbar angeordnet und der Lichtbogenkontakt 4 feststehend im Gehäuse 1 gehalten ist. Der Lichtbogenkontakt 4 muss nicht notwendigerweise feststehend, er kann auch beweglich ausgebildet sein. Die beiden Lichtbogenkontakte 3, 4 sind von einer Isolierdüse 6 und einem Heizvolumen 7 zum Speichern von Löschgas koaxial umfasst. Das Heizvolumen 7 ist nach Art eines Torus mit einem rechteckigen Querschnitt in Umfangsrichtung ausgeführt. Bei einem für Nennspannungen von typischerweise 200 bis 300 kV und für einen Nenn-Kurzschlussausschaltstrom von typischerweise 50 bis 70 kA bestimmten Schalter kann das Heizvolumen 7 im allgemeinen ca. 1 bis 2 Liter unter Druck stehendes Löschgas aufnehmen.In all figures, like reference numerals refer to like-acting parts. The in the FIGS. 1 and 2 illustrated switching chamber of a high voltage circuit breaker contains a with a compressed insulating gas, such as based on sulfur hexafluoride, nitrogen, oxygen or carbon dioxide or mixtures of these gases with each other, for example, air, filled and largely axially symmetric designed housing 1 and a recorded from the switching chamber housing 1 and also largely axially symmetrical designed contact assembly 2. From the illustrated during a shutdown contact assembly 2, two arcing contacts 3, 4 are shown, of which the arcing contact 3 arranged along an axis 5 movable and the arcing contact 4 is held stationary in the housing 1. The arcing contact 4 does not necessarily have to be fixed, it can also be designed to be movable. The two arcing contacts 3, 4 are coaxially covered by an insulating nozzle 6 and a heating volume 7 for storing quenching gas. The heating volume 7 is designed in the manner of a torus with a rectangular cross-section in the circumferential direction. With a switch designed for nominal voltages of typically 200 to 300 kV and for a nominal short-circuit breaking current of typically 50 to 70 kA, the heating volume 7 can generally accommodate approximately 1 to 2 liters of pressurized extinguishing gas.

In der nicht dargestellten Einschaltposition der Kammer ist das linke Ende des Lichtbogenkontakts 4 in stromleitender Weise in das rechte Ende des rohrförmig ausgebildeten Lichtbogenkontakts 3 eingeschoben. Beim Ausschalten trennen sich die beiden Lichtbogenkontakte 3, 4 voneinander und bildet sich hierbei ein auf den beiden Enden der Lichtbogenkontakte fussender Lichtbogen 8, der - wie Fig.1 entnehmbar ist - in einer Lichtbogenzone 9 brennt. Die Lichtbogenzone 9 ist von den beiden Lichtbogenkontakten 3, 4 axial und von der Isolierdüse 6 und einer Isolierhilfsdüse 11 radial begrenzt. Die Lichtbogenzone 9 kommuniziert mit einem Heizkanal 10. Der Heizkanal 10 ist zwischen der Isolierdüse 6 und der lsolierhilfsdüse 11 teilweise axial geführt und mündet mit einem nach innen gegen die Achse 5 geneigten Abschnitt 12 ins Heizvolumen 7. Der Neigungswinkel beträgt α. Die Isolierhilfsdüse 11 umfasst das von Kontaktfingern gebildete freie Ende des Lichtbogenkontakts 3 in Umfangsrichtung.In the closed position of the chamber, not shown, the left end of the arcing contact 4 is inserted in an electrically conductive manner in the right end of the tubular arc contact 3. When you turn off the two arc contacts 3, 4 separate from each other and this forms a footing on the two ends of the arcing contacts arc 8, the - like Fig.1 is removable - burns in an arc zone 9. The arc zone 9 is axially bounded by the two arc contacts 3, 4 and axially by the insulating nozzle 6 and an insulating auxiliary nozzle 11. The arc zone 9 communicates with a heating channel 10. The heating channel 10 is partially axially guided between the insulating nozzle 6 and the insulating auxiliary nozzle 11 and opens into the heating volume 7 with an inwardly inclined portion 5 against the axis 5. The angle of inclination is α. The insulating auxiliary nozzle 11 comprises the free end of the arcing contact 3 formed by contact fingers in the circumferential direction.

In einer Halbwelle des abzuschaltenden Stroms ist der Druck in der Lichtbogenzone 9 im allgemeinen grösser als im Heizvolumen 7. Der Heizkanal 10 führt dann vom Lichtbogen 8 gebildetes heisses Gas ins Heizvolumen 7. Lässt die Heizwirkung des Lichtbogens 8 bei Annäherung an den Nulldurchgang des Stroms nach, so erfolgt eine Strömungsumkehr. Im Heizvolumen 7 gespeichertes Gas strömt als Löschgas über den Heizkanal 10 in die Lichtbogenzone 9 und bebläst dort den Lichtbogen 8 mindestens solange bis dieser im Stromnulldurchgang gelöscht ist.In a half-wave of the current to be disconnected, the pressure in the arc zone 9 is generally greater than in the heating volume 7. The heating channel 10 then leads from the arc 8 formed hot gas in the heating volume 7. Leaves the heating effect of the arc 8 as it approaches the zero crossing of the current , so there is a flow reversal. Gas stored in the heating volume 7 flows as quenching gas via the heating channel 10 into the arc zone 9 and there blows the arc 8 at least until it is extinguished in the current zero crossing.

Die Qualität des zur Lichtbogenbeblasung im Heizvolumen 7 gespeicherten Löschgases und damit auch die Ausschaltleistung der Schaltkammer hängen von der durch Druck und Temperatur des Löschgases bestimmten Gasdichte ab. Druck und Temperatur werden vor allem durch Stromstärke und Dauer des Schaltlichtbogens bestimmt, unter anderem aber auch durch Form und Rauminhalt des Heizvolumens 7. Während die Grösse des Heizvolumens 7 nur den Druckaufbau beeinflusst, werden durch die Form des Heizvolumens die Gasdurchmischung und damit die Löschgastemperatur beeinflusst. Die Qualität des Löschgases hängt aber auch wesentlich vom Strömungsverhalten des heissen Gases auf dem Weg von der Lichtbogenzone 9 ins Heizvolumen 7 ab. Dadurch, dass der Mündungsabschnitt 12 nach innen geneigt in die Heizkammer 7 einläuft, erhält das durch einen Doppelpfeil 13 gekennzeichnete Heissgas eine nach innen gerichtete Geschwindigkeitskomponente und wird längs eines rohrförmigen Kontaktträgers 14 des Lichtbogenkontakts 3 an eine das Heizvolumen in Strömungsrichtung axial begrenzende Rückwand 15 geführt. Die nach innen gerichtete Geschwindigkeitskomponente verhindert ein Ablösen der Heissgasströmung 13 vom Kontaktträger 14, welche die axial ausgerichtete Innenwand des Heizvolumens 7 bildet, und ermöglicht so in achsennahen Bereichen tiefes Eindringen der Heissgasströmung 13 ins Heizvolumen. Eine die Vermischung des Heissgases 13 mit Kaltgas 16 fördernde Verwirbelung findet daher erst weit von der Einmündung des Heizkanals 10 ins Heizvolumen 7 entfernt statt. Ein bei der Verwirbelung gebildeter Heissgaswirbel 17 bleibt wegen der geringen Viskosität des Heissgases über einen vergleichsweise grossen Zeitraum von mehreren Millisekunden weitgehend stabil, so dass über diesen Zeitraum an der Mündung des Heizkanals ins Heizvolumen Kaltgas 18 erhalten bleibt.The quality of the extinguishing gas stored in the heating volume 7 for arc blowing and thus also the breaking capacity of the switching chamber depend on the gas density determined by the pressure and temperature of the extinguishing gas. Pressure and temperature are determined primarily by current intensity and duration of the switching arc, but also by the shape and volume of the heating volume 7. While the size of the heating volume 7 only affects the pressure build-up, the shape of the heating volume, the gas mixing and thus the quenching gas temperature are affected , However, the quality of the extinguishing gas also depends substantially on the flow behavior of the hot gas on the way from the arc zone 9 into the heating volume 7. Characterized in that the mouth portion 12 inclined inwardly into the heating chamber 7, receives the indicated by a double arrow 13 hot gas an inwardly directed velocity component and is guided along a tubular contact carrier 14 of the arcing contact 3 to a heating volume in the flow direction axially limiting the rear wall 15. The inward velocity component prevents detachment of the hot gas flow 13 from the contact carrier 14, which forms the axially aligned inner wall of the heating volume 7, and thus allows deep penetration of the hot gas flow 13 into the heating volume in areas near the axis. A mixing of the hot gas 13 with cold gas 16 promoting swirling therefore takes place only far from the junction of the heating channel 10 in the heating volume 7 away. Due to the low viscosity of the hot gas, a hot gas vortex 17 formed during the turbulence remains largely stable over a comparatively large period of several milliseconds, so that over this Period at the mouth of the heating channel into the heating volume of cold gas 18 is maintained.

Bei Annäherung des abzuschaltenden Stroms an einen Nulldurchgang und Einsetzen einer Löschgasströmung aus dem Heizvolumen 7 in die Lichtbogenzone 9 steht dann schon zu Beginn eines Lichtbogenlöschvorgangs das Kaltgas 18 als besonders hochwertiges Löschgas zur Beblasung des Schaltlichtbogens zur Verfügung. Auch ein später wirkender Anteil des Löschgas, der durch intensives Vermischen des Heissgaswirbels 17 im hinteren Teil des Heizvolumens 7 mit dem Kaltgas 16 gebildet wurde, ist qualitativ hochwertig und stellt so sicher, dass Kurzschlussströme unterschiedlicher Höhe und Dauer erfolgreich unterbrochen werden können.When approaching the current to be disconnected to a zero crossing and inserting a quenching gas flow from the heating volume 7 in the arc zone 9 is then already at the beginning of an arc extinguishing operation, the cold gas 18 as a particularly high-quality quenching gas for blowing the switching arc available. Also, a later-acting portion of the extinguishing gas, which was formed by intensive mixing of the hot gas vortex 17 in the rear part of the heating volume 7 with the cold gas 16 is of high quality and thus ensures that short-circuit currents of different levels and duration can be successfully interrupted.

Aus Fig.1 ist ersichtlich, dass der nach innen geneigte Verlauf des Mündungsabschnitts 12 die Abmessungen des Heizvolumens 7 in radialer Richtung reduziert. Ersichtlich ist die Isolierhilfsdüse 11 im Mündungsabschnitt 12 abgeschrägt ausgebildet. Die Innenwand des Heizvolumens 7 wird daher von dem einen geringeren Durchmesser als die lsolierhilfsdüse 11 aufweisenden Kontakträger 14 des Lichtbogenkontakts 3 gebildet, so dass der den Rauminhalt des Heizvolumens 7 bestimmende Aussendurchmesser dieses Volumens reduziert werden kann.Out Fig.1 it can be seen that the inwardly inclined course of the mouth portion 12 reduces the dimensions of the heating volume 7 in the radial direction. As can be seen, the Isolierhilfsdüse 11 is chamfered in the mouth portion 12. The inner wall of the heating volume 7 is therefore formed by the contact carrier 14 of the arcing contact 3 having a smaller diameter than the insulating auxiliary nozzle 11, so that the outside diameter of this volume determining the volume of the heating volume 7 can be reduced.

Der Neigungswinkels α kann bis zu 45° betragen. Bei grösseren Winkeln tendiert die Heissgasströmung dazu, sich vorzeitig vom Kontaktträger 14 abzulösen. Eine gut ausgebildete axiale Führung des Heissgases 13 ins Innere des Heizvolumens 7 bei gleichzeitig klein gehaltenem Aussendurchmesser des Heizvolumens wird mit Neigungswinkeln α erreicht, die zwischen 10° und 30° liegen.The inclination angle α can be up to 45 °. At larger angles, the hot gas flow tends to prematurely detach from the contact carrier 14. A well-trained axial guidance of the hot gas 13 into the interior of the heating volume 7 at the same time kept small outside diameter of the heating volume is achieved with inclination angles α, which are between 10 ° and 30 °.

In der in den Figuren 1 und 2 dargestellten Ausführungsform der Schaltkammer nach der Erfindung ist der Mündungsabschnitt 12 nach Art eines sich in Neigungsrichtung verjüngenden, hohlen Kegelstumpfs ausgeführt. Der hohle Kegelstumpf kann durch konisches Abschrägen der Isolierhilfsdüse 11 unter Bildung einer als Innenfläche 19 des hohlen Kegelstumpfs wirkenden konischen Fläche, Einformen einer als Mantelfläche 20 des Kegelstumpfs wirkenden konischen Fläche in die Isolierdüse 6 und nachfolgendes Festsetzen der Isolierhilfsdüse 11 am Kontaktträger 14 und der Isolierdüse 6 an der mit dem Bezugszeichen 21 gekennzeichneten Aussenwand des Heizvolumens 7 erreicht werden.In the in the FIGS. 1 and 2 illustrated embodiment of the switching chamber according to the invention, the mouth portion 12 is designed in the manner of a tapering in the direction of inclination, hollow truncated cone. The hollow truncated cone can be formed by conically tapering the Isolierhilfsdüse 11 to form an inner surface 19 of the hollow truncated cone acting conical surface molding a acting as a lateral surface 20 of the truncated cone conical surface in the insulating nozzle 6 and then setting the Isolierhilfsdüse 11 on the contact carrier 14 and the insulating nozzle 6 at the marked with the reference numeral 21 outer wall of the heating volume 7 can be achieved.

Der Heizkanal 10 weist über seine gesamte Länge weitgehend konstanten Querschnitt auf. Die Strömungsgeschwindigkeit des Heissgases ist daher im gesamten Heizkanal, insbesondere auch im Mündungsabschnitt 12, weitgehend konstant. Die Wahrscheinlichkeit einer unerwünschten vorzeitigen Wirbelbildung im Heizkanal 10 infolge von Strömungsinhomogenitäten wird so gering gehalten. Der konstante Querschnitt im Mündungsabschnitt 12 wird dadurch erreicht, dass die Fläche 19 stärker geneigt ist als die Fläche 20.The heating channel 10 has over its entire length largely constant cross-section. The flow rate of the hot gas is therefore largely constant in the entire heating channel, in particular in the mouth section 12. The probability of undesirable premature vortex formation in the heating channel 10 due to flow inhomogeneities is kept so low. The constant cross section in the mouth section 12 is achieved in that the surface 19 is inclined more than the surface 20.

Aus Fig.1 ist ersichtlich, dass die Mantelfläche 20 am Übergang vom Mündungsabschnitt 12 ins Heizvolumen 7 von einer als Ring ausgebildeten, scharfen Kante 22 begrenzt ist. Diese Kante erleichtert das Ablösen der Heissgasströmung 13 von der Mantelfläche 20 und begünstigt daher die Bildung des Wirbels 17 erst an der Rückwand 15 des Heizvolumens. Der Radius der Kante 22 beträgt typischerweise 0,1 bis 1 mm.Out Fig.1 It can be seen that the lateral surface 20 is delimited at the transition from the mouth section 12 into the heating volume 7 by a sharp edge 22 designed as a ring. This edge facilitates the detachment of the hot gas flow 13 from the lateral surface 20 and therefore favors the formation of the vortex 17 only at the rear wall 15 of the heating volume. The radius of the edge 22 is typically 0.1 to 1 mm.

Bei der Ausführungsform der Schaltkammer gemäss Fig.5 ist die Kante 22 an einem nach Art einer Nase ins Heizvolumen ragenden Ring 23 angeordnet. Der Ring 23 sorgt für eine verbesserte Führung der Heissgasströmung 13 im Mündungsbereich.In the embodiment of the switching chamber according to Figure 5 the edge 22 is arranged on a ring 23 protruding into the heating volume in the manner of a nose. The ring 23 provides improved guidance of the hot gas flow 13 in the mouth region.

Anstelle als hohler Kegelstumpf kann der Mündungsabschnitt 12 auch anders geformt sein. Aus den Figuren 3 und 4 ist ersichtlich, dass der Mündungsabschnitt in Umfangsrichtung gegeneinander versetzt angeordnete Teilkanäle 12' (Fig.3) und 12" (Fig.4) aufweisen kann, welche wie in Fig.3 dargestellt etwa kreisförmigen Querschnitt oder wie aus Fig.4 ersichtlich ein nach Art einer Banane ausgeführtes Querschnittsprofil aufweisen können.Instead of a hollow truncated cone, the mouth portion 12 may also be shaped differently. From the FIGS. 3 and 4 it can be seen that the mouth portion circumferentially offset from each other arranged sub-channels 12 '( Figure 3 ) and 12 "( Figure 4 ), which, as in Figure 3 represented approximately circular cross-section or as out Figure 4 can be seen in the form of a banana cross-sectional profile.

Für die Qualität des durch Mischen von Heiss- und Kaltgas erzielten Löschgases ist es günstig, wenn beim Heizvolumen 7 das Verhältnis von Länge des Torus in axialer Richtung zu Höhe des Torus in radialer Richtung zwischen 1 und 3 liegt.For the quality of the extinguishing gas obtained by mixing hot and cold gas, it is favorable if the ratio of the length of the torus in the axial direction to the height of the torus in the radial volume is between 1 and 3 in the radial direction.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Gehäusecasing
22
KontaktanordnungContact arrangement
3, 43, 4
Kontaktstückecontacts
55
Achseaxis
66
Isolierdüseinsulating
77
Heizvolumenheating volume
88th
LichtbogenElectric arc
99
LichtbogenzoneArc zone
1010
Heizkanalheating duct
1111
Isolierhilfsdüseinsulating auxiliary
1212
Mündungsabschnittmouth portion
12', 12"12 ', 12 "
Teilkanälesubchannels
1313
Heissgas(strömung)Hot gas (fluid)
1414
Kontaktträgercontact support
1515
Rückwandrear wall
16, 1816, 18
Kaltgascold gas
1717
(Heissgas)wirbel(Hot gas) swirls
1919
Innenflächepalm
2020
Mantelflächelateral surface
2121
Aussenwandouter wall
2222
Kanteedge
2323
Ringring

Claims (11)

  1. Switching chamber for a gas-insulated high-voltage switch having a contact arrangement (2), containing two arcing contacts (3, 4) which move relative to one another along an axis (5), an insulating nozzle (6), an insulating auxiliary nozzle (11), a heating volume (7) and a heating channel (10) which is routed partially axially between the insulating nozzle (6) and the insulating auxiliary nozzle (11) and connects an arcing zone (9) to the heating volume (7), which heating channel (10) has a section (12) which is inclined inward with respect to the axis (5) and opens into the heating volume, characterized in that the heating channel has a largely constant cross section over its entire length.
  2. Switching chamber according to Claim 1, characterized in that the inclination angle (α) is at most 45°.
  3. Switching chamber according to Claim 2, characterized in that the inclination angle (α) is between 0° and 30°.
  4. Switching chamber according to one of Claims 1 to 3, characterized in that the mouth section (12) is in the form of a hollow truncated cone which tapers in the inclination direction.
  5. Switching chamber according to Claim 4, characterized in that a conical surface of the insulating auxiliary nozzle (11) which acts as the inner surface (19) of the truncated cone is more sharply inclined than a conical surface of the insulating nozzle (6) which acts as the casing surface (20) of the truncated cone.
  6. Switching chamber according to Claim 5, characterized in that the casing surface (20) is bounded by a sharp edge (22), in the form of a ring, at the junction from the mouth section (12) into the heating volume (7).
  7. Switching chamber according to Claim 6, characterized in that the sharp edge (22) is arranged on a ring (23) which projects into the heating volume (7) in the form of a tab.
  8. Switching chamber according to one of Claims 1 to 3, characterized in that the mouth section (12) has at least two channel elements (12', 12'') which extend in the inclination direction and are arranged offset with respect to one another in the circumferential direction.
  9. Switching chamber according to Claim 8, characterized in that the channel elements (12'') each have a cross-sectional profile in the form of a banana.
  10. Switching chamber according to one of Claims 1 to 9, characterized in that the heating volume (7) is in the form of a torus and has a predominantly rectangular cross section in the circumferential direction, with the ratio of the length of the torus in the axial direction to the height of the torus in the radial direction being between 1 and 3.
  11. High-voltage switch having a switching chamber according to one of Claims 1 to 10.
EP06405084A 2006-02-28 2006-02-28 Arcing chamber of a high voltage circuit breaker with a heating volume receiving the arc extinguishing gases generated by the arc Active EP1826792B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE502006001492T DE502006001492D1 (en) 2006-02-28 2006-02-28 Switching chamber of a high-voltage switch with a heating volume for receiving arc-generated extinguishing gas
EP06405084A EP1826792B1 (en) 2006-02-28 2006-02-28 Arcing chamber of a high voltage circuit breaker with a heating volume receiving the arc extinguishing gases generated by the arc
AT06405084T ATE407442T1 (en) 2006-02-28 2006-02-28 SWITCHING CHAMBER OF A HIGH VOLTAGE SWITCH WITH A HEATING VOLUME FOR ACCOMMODATION OF EXTINGUISHING GAS GENERATED BY SWITCHING ARC
CN2007800068816A CN101390179B (en) 2006-02-28 2007-02-06 Arcing chamber of a high voltage circuit breaker with a heating volume receiving the arc extinguishing gases generated by the arc
PCT/CH2007/000056 WO2007098619A1 (en) 2006-02-28 2007-02-06 Interrupter chamber of a high-voltage switch with a heating volume for accommodating quenching gas produced by switching arcs
JP2008556627A JP2009528653A (en) 2006-02-28 2007-02-06 Switching chamber for a high voltage switch having a heating volume to hold the quenching gas created by the switching arc
US12/200,379 US20080314873A1 (en) 2006-02-28 2008-08-28 Switching chamber for a high-voltage switch having a heating volume for holding quenching gas produced by switching arcs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06405084A EP1826792B1 (en) 2006-02-28 2006-02-28 Arcing chamber of a high voltage circuit breaker with a heating volume receiving the arc extinguishing gases generated by the arc

Publications (2)

Publication Number Publication Date
EP1826792A1 EP1826792A1 (en) 2007-08-29
EP1826792B1 true EP1826792B1 (en) 2008-09-03

Family

ID=36636668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06405084A Active EP1826792B1 (en) 2006-02-28 2006-02-28 Arcing chamber of a high voltage circuit breaker with a heating volume receiving the arc extinguishing gases generated by the arc

Country Status (7)

Country Link
US (1) US20080314873A1 (en)
EP (1) EP1826792B1 (en)
JP (1) JP2009528653A (en)
CN (1) CN101390179B (en)
AT (1) ATE407442T1 (en)
DE (1) DE502006001492D1 (en)
WO (1) WO2007098619A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009451A1 (en) * 2009-02-13 2010-08-19 Siemens Aktiengesellschaft Switchgear assembly with a switching path
DE102010020979A1 (en) * 2010-05-12 2011-11-17 Siemens Aktiengesellschaft Compressed gas circuit breakers
FR2962847B1 (en) * 2010-07-16 2012-08-17 Areva T & D Sas CUTTING CHAMBER EQUIPMENT FOR TWO CONFINED CONTACT ELECTRODES
WO2012093507A1 (en) * 2011-01-07 2012-07-12 三菱電機株式会社 Switching apparatus
US9362071B2 (en) 2011-03-02 2016-06-07 Franklin Fueling Systems, Inc. Gas density monitoring system
DE102011007103A1 (en) * 2011-04-11 2012-10-11 Siemens Aktiengesellschaft Electrical switching device
CN104380419A (en) 2012-02-20 2015-02-25 富兰克林加油系统公司 Moisture monitoring system
DE112013002015T5 (en) * 2012-04-11 2015-04-23 Abb Technology Ag breakers
AU2013347028B2 (en) * 2012-11-13 2017-05-18 Hitachi Energy Ltd Contact system
CN105359242B (en) * 2013-07-19 2017-08-18 株式会社日立制作所 Gas-break switch
KR101667638B1 (en) * 2014-10-06 2016-10-19 엘에스산전 주식회사 Gas circuit breaker
JP2016131061A (en) * 2015-01-13 2016-07-21 株式会社日立製作所 Puffer type gas circuit breaker
DE102015101622A1 (en) * 2015-02-04 2016-08-04 Rwth Aachen breakers
EP3488458B1 (en) 2016-07-21 2020-09-02 ABB Power Grids Switzerland AG Gas-insulated high-voltage switching device with improved main nozzle
EP3407370B1 (en) * 2017-05-24 2020-04-01 General Electric Technology GmbH A gas blast switch comprising an optimized gas storage chamber
EP3503151B1 (en) * 2017-12-20 2022-04-13 Hitachi Energy Switzerland AG Circuit breaker and method of performing a current breaking operation
EP3576125B1 (en) * 2018-05-30 2021-02-17 ABB Power Grids Switzerland AG High voltage circuit breaker
EP4246548A1 (en) * 2022-03-15 2023-09-20 Hitachi Energy Switzerland AG Interrupter unit for gas-insulated high or medium voltage device and gas-insulated high or medium voltage device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108624A (en) * 1981-12-22 1983-06-28 三菱電機株式会社 Buffer type gas breaker
IT1186140B (en) * 1985-12-03 1987-11-18 Sace Spa ELECTRIC ARC SWITCH CHAMBER, IN PARTICULAR FOR FLUID SWITCHES
FR2596575B1 (en) * 1986-03-26 1988-05-20 Alsthom DIELECTRIC GAS CIRCUIT BREAKER UNDER PRESSURE
DE3915700C3 (en) * 1989-05-13 1997-06-19 Aeg Energietechnik Gmbh Compressed gas switch with evaporative cooling
DE19832709C5 (en) * 1998-07-14 2006-05-11 Siemens Ag High voltage circuit breaker with one interrupter unit
DE19910166C2 (en) 1999-02-24 2001-01-25 Siemens Ag High-voltage circuit breaker with a compression device
DE19928080C5 (en) * 1999-06-11 2006-11-16 Siemens Ag High voltage circuit breaker with a discharge channel
DE19936987C1 (en) * 1999-07-30 2001-01-25 Siemens Ag High-voltage (HV) switch with arcing contacts and single electrode
DE10125100A1 (en) * 2001-05-23 2002-11-28 Abb Patent Gmbh High voltage power switch quenching chamber has piston displaced to give additional heating volume if force resulting from heating volume gas pressure, piston area exceeds bias force

Also Published As

Publication number Publication date
US20080314873A1 (en) 2008-12-25
DE502006001492D1 (en) 2008-10-16
WO2007098619A1 (en) 2007-09-07
EP1826792A1 (en) 2007-08-29
CN101390179A (en) 2009-03-18
CN101390179B (en) 2011-12-14
ATE407442T1 (en) 2008-09-15
JP2009528653A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
EP1826792B1 (en) Arcing chamber of a high voltage circuit breaker with a heating volume receiving the arc extinguishing gases generated by the arc
EP2325859B1 (en) Gas-isolated high voltage switch
EP2198443B1 (en) Gas-insulated high-voltage circuit breaker with a relief duct which is controlled by an overflow valve
EP2343721A1 (en) Gas-isolated high voltage switch
EP2396800B1 (en) Switchgear arrangement with a switch path
EP1691389B1 (en) Interrupting chamber for a gas insulated high voltage circuit breaker
EP1930929B2 (en) High-tension circuit breaker with a metal tank filled with dielectric gas
DE2441561B2 (en) Gas switch
EP2316122B1 (en) High-voltage power switch with a switch gap
EP1835520B1 (en) Switching chamber for gasisolated high voltage switch
EP1226597B1 (en) Compressed gas-blast circuit breaker
EP1605485B1 (en) Circuit breaker
WO2016151002A1 (en) Insulating nozzle and electrical switching device comprising the insulating nozzle
DE3341930C2 (en) Gas pressure switch
DE2404721A1 (en) Cct breaker with closed quenching chamber system - has insulating partition dividing chamber into two nozzle connected compartments
WO2009124582A1 (en) Gas-insulated high voltage switch
DE102009009450A1 (en) Switchgear arrangement
EP3039703B1 (en) Gas-insulated high-voltage circuit-breaker
DE202015106610U1 (en) Contact tulip for a gas-insulated high-voltage switch and high-voltage switch with this contact tulip
DE102011007103A1 (en) Electrical switching device
EP1780741B1 (en) Chambre d'interruption d'un interrupteur très haute tension avec un volume de chauffage pour l'admission de gaz sous pression
EP0817228A2 (en) Power switch
EP2278604B1 (en) High voltage switch
WO2016124175A1 (en) Power switch
DE3405122C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071217

17Q First examination report despatched

Effective date: 20080111

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006001492

Country of ref document: DE

Date of ref document: 20081016

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB SCHWEIZ AG INTELLECTUAL PROPERTY (CH-LC/IP)

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090203

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 20090513

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

BERE Be: lapsed

Owner name: ABB RESEARCH LTD

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090228

Year of fee payment: 4

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081204

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

27O Opposition rejected

Effective date: 20101005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130220

Year of fee payment: 8

Ref country code: SE

Payment date: 20130219

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001492

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., ZUERICH, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006001492

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001492

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001492

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., ZUERICH, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006001492

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001492

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001492

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006001492

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001492

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001492

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001492

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230220

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230216

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006001492

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001492

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: HITACHI ENERGY SWITZERLAND AG, BADEN, CH