EP1761346A1 - Method for increasing the process stability, particularly the absolute thickness precision and the installation safety during the hot rolling of steel or nonferrous materials - Google Patents

Method for increasing the process stability, particularly the absolute thickness precision and the installation safety during the hot rolling of steel or nonferrous materials

Info

Publication number
EP1761346A1
EP1761346A1 EP05700942A EP05700942A EP1761346A1 EP 1761346 A1 EP1761346 A1 EP 1761346A1 EP 05700942 A EP05700942 A EP 05700942A EP 05700942 A EP05700942 A EP 05700942A EP 1761346 A1 EP1761346 A1 EP 1761346A1
Authority
EP
European Patent Office
Prior art keywords
sub
rolling force
phip
forming
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05700942A
Other languages
German (de)
French (fr)
Other versions
EP1761346B1 (en
Inventor
Peter Lixfeld
Ulrich Skoda-Dopp
Harald Wehage
Wolfgang Grimm
Alexander Borowikow
Holger Blei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gmt-Gesellschaft fur Metallurgische Technologie- und Softwareentwicklung Mbh
SMS Siemag AG
Ilsenburger Grobblech GmbH
Original Assignee
Gmt-Gesellschaft fur Metallurgische Technologie- und Softwareentwicklung Mbh
SMS Demag AG
Ilsenburger Grobblech GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gmt-Gesellschaft fur Metallurgische Technologie- und Softwareentwicklung Mbh, SMS Demag AG, Ilsenburger Grobblech GmbH filed Critical Gmt-Gesellschaft fur Metallurgische Technologie- und Softwareentwicklung Mbh
Publication of EP1761346A1 publication Critical patent/EP1761346A1/en
Application granted granted Critical
Publication of EP1761346B1 publication Critical patent/EP1761346B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions

Definitions

  • the invention relates to a method for increasing the process stability, in particular the absolute thickness accuracy and the plant safety, when hot-rolling steel or non-ferrous materials with small degrees of deformation or small decreases, taking into account the hot stretching limit when calculating the target rolling force and the respective position of employment.
  • thermodynamic coefficients were determined for different material groups; The differentiation of materials within a group is based on the respective basic km values.
  • the disadvantage of the multiplicative approach to determining the yield stress is that the function tends to become smaller with degrees of deformation ⁇ ⁇ 0.04 or decreases against a yield stress of zero MPa, i.e. the function has a zero crossing (shown in FIG. 1 for the prior art).
  • this theory contradicts the actual facts.
  • the flow stress values which are too low, and thus the target rolling forces are too low, are determined for small decreases.
  • the setting of the nominal roll gap by the thickness control is dependent on the rolling force and is therefore subject to errors.
  • the hot-rolled products have a larger actual thickness compared to the desired target thickness.
  • the erroneous target rolling force calculation with small degrees of deformation or acceptance poses a permanent system risk when rolling with high rolling forces and / or rolling torques close to the maximum permissible system parameters, such as occur, for example, when rolling with reduced temperatures or also at high temperatures and rolling stock widths close to the maximum possible in terms of plant technology.
  • the faulty target rolling force calculation also negatively affects the overall process stability, since downstream automation models and controls, such as profile and flatness models and controls, determine their target values with the aid of the target rolling force.
  • a rolling plan calculation method for setting the target rolling force and target rolling gap of a rolling stand which uses stand-specific and / or material-specific rolling force adjustment elements. Disadvantages are stand-specific adjustments in the calculation of the nominal rolling force for transferability to other systems.
  • WO 99/02 282 A1 discloses a known method for controlling or presetting the rolling stand as a function of at least one of the variables rolling force, rolling moment and advance, in which the influences are modeled by means of information processing based on neural networks or by means of an inverted rolling model by back calculation of the material hardness in the stitch using a regression model.
  • Such errors as arise in the calculation of the nominal rolling force using the multiplicative approach in the area of small degrees of deformation or decreases, can be avoided.
  • the invention has for its object to provide a method for increasing the process stability, in particular the absolute thickness accuracy and the plant safety when hot rolling steel and non-ferrous materials, in which the accuracy of the yield stress and the target rolling force are increased with small degrees of deformation or small decreases can.
  • the advantage of using a new approach to the calculation of the yield stress is to determine the hot stretching limits for the materials to be rolled from measurement data of rolling with degrees of deformation less than a material-specific limit degree of deformation, by the yield stresses of the relevant passes depending on the forming temperature and the forming speed calculated from measured rolling forces and equated to a hot yield strength if they are equal to the hot yield strengths measured from hot tensile tests.
  • the dependency found The hot stretching limit of the forming temperature and the forming speed represents the starting point of the approximated hot flow curve.
  • the hot stretching limit according to the invention is dependent on the forming temperature and the forming speed, the method achieves correct values even for the smallest degrees of forming.
  • the starting value is the respective hot stretching limit of the material to be rolled depending on the forming temperature and speed.
  • a material module is calculated taking into account the hot stretching limit depending on the forming temperature and forming speed for degrees of forming less than a material-specific limit forming degree, according to the formula (5)
  • C M (F w - F m ) / dhi
  • CM material module
  • Fw nominal rolling force
  • the invention is then designed in such a way that the conventional gage meter equation is in one form
  • the position of the electromechanical and / or hydraulic adjustment to ensure the runout thickness of the rolling stock is determined.
  • the drawing shows diagrams for the yield stress as a function of the degree of deformation according to the prior art and according to the invention and are explained in more detail below.
  • Fig. 1 shows schematically the course of the yield stress k f , over the degree of deformation ⁇ in the conventional multiplicative approach (prior art) and
  • Fig. 2 shows schematically the course of the yield stress kf R over the degree of deformation ⁇ according to the invention, wherein the multiplicative approach is additively expanded by the hot stretching limit below the limit circumference degree ⁇ Q.
  • the disadvantage of the multiplicative approach to determining the yield stress (Fig. 1) is that the function tends to small degrees of deformation ⁇ ⁇ 0.04 or small decreases against a yield stress k f of zero MPa, ie the function has a zero crossing, such as drawn.
  • the starting value is the respective hot stretching limit R e of the material to be rolled, depending on the forming temperature T and the forming speed phip.

Abstract

The invention relates to a method for increasing the process stability, particularly the absolute thickness precision and the installation safety during the hot rolling of steel of nonferrous materials, with small degrees of deformation (f) or no reductions while taking the high-temperature limit of elasticity (R<SUB>e</SUB>) into account when calculating the set rolling force (F<SUB>w</SUB>) and the respective setting position (s). The process stability can be increased with regard to the precision of the yield stress (k<SUB>f,R</SUB>) and the set rolling force (F<SUB>w</SUB>) at small degrees of deformation (f) or small reductions, during which the high temperature limit of elasticity (R<SUB>e</SUB>) is determined according to the deformation temperature (T) and/or the deformation speed (phip) and is integrated into the function of the yield stress (k<SUB>f</SUB>) for determining the set rolling force (F<SUB>w</SUB>) via the relation (2) R<SUB>e</SUB>=a+e<SUP>b1+b2.T</SUP>.phip<SUP>c</SUP>, in which: R<SUB>e </SUB>represents the high temperature; phip represents the deformation speed, and; a, b, c represent coefficients.

Description

Verfahren zum Erhöhen der Prozessstabilität, insbesondere der absoluten Dickengenauigkeit und der Anlagensicherheit, beim Warmwalzen von Stahl- oder NE-WerkstoffenProcess for increasing the process stability, in particular the absolute thickness accuracy and the plant safety, when hot rolling steel or non-ferrous materials
Die Erfindung betrifft ein Verfahren zum Erhöhen der Prozessstabilität, insbe- sondere der absoluten Dickengenauigkeit und der Anlagensicherheit, beim Warmwalzen von Stahl- oder NE-Werkstoffen mit kleinen Umformgraden oder kleinen Abnahmen unter Berücksichtigung der Warmstreckgrenze bei der Berechnung der Sollwalzkraft und der jeweiligen Anstellungsposition.The invention relates to a method for increasing the process stability, in particular the absolute thickness accuracy and the plant safety, when hot-rolling steel or non-ferrous materials with small degrees of deformation or small decreases, taking into account the hot stretching limit when calculating the target rolling force and the respective position of employment.
In einer Vorveröffentlichung „Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren" von A. Hensel und T. Spittel, Leipzig 1978, und in einer weiteren Vorveröffentlichung „Rationeller Energieeinsatz bei Umformprozessen" von T. Spittel und A. Hensel, Leipzig 1981 , werden verschiedene Verfahren zur Ermittlung der Sollwalzkraft beim Warmwalzen als Produkt aus Umformwiderstand und gedrückter Fläche beschrieben. Der Umformwiderstand selbst wird als Produkt aus der Fließspannung und einem Faktor zur Berücksichtigung der Walzspaltgeometrie und / oder von Reibungsverhältnissen bestimmt. Die am häufigsten verwendete Methode zur Ermittlung der Fließspannung ist deren Bestimmung über einen Ansatz mit Einflussfaktoren zur Berücksichtigung von Umform-Temperatur, Umformgrad und Umformgeschwindigkeit, die multiplikativ miteinander verbunden werden, bspw. in folgender Form: (1) kf = kf0 ' A1 » e ml T • Az ' hi m2 • A3 » phip m3 In a pre-publication "Power and Labor Required Forming Process" by A. Hensel and T. Spittel, Leipzig 1978, and in another pre-publication "Rational Use of Energy in Forming Processes" by T. Spittel and A. Hensel, Leipzig 1981, various methods are available Determination of the target rolling force during hot rolling is described as the product of the forming resistance and the pressed area. The forming resistance itself is determined as the product of the yield stress and a factor to take into account the roll gap geometry and / or the friction conditions. The most frequently used method for determining the yield stress is its determination using an approach with influencing factors to take into account the forming temperature, the degree of forming and the forming speed, which are linked together in a multiplicative manner, e.g. in the following form: (1) k f = k f0 'A 1 » e ml T • Az 'hi m2 • A 3 » phip m3
worin bedeuten: kf = Fließspannung km = Grundwert der Fließspannung T = Umformtemperatur φ = Umformgrad phip = Umform-Geschwindigkeit A;, m,- = thermodynamische Koeffizienten.where mean: k f = yield stress km = basic value of yield stress T = forming temperature φ = degree of forming phip = forming speed A ;, m, - = thermodynamic coefficients.
Für unterschiedliche Materialgruppen wurden die thermodynamischen Koeffizienten ermittelt; die Unterscheidung der Materialien innerhalb einer Gruppe erfolgt über die jeweiligen km -Grundwerte.The thermodynamic coefficients were determined for different material groups; The differentiation of materials within a group is based on the respective basic km values.
In dem weiteren Aufsatz „Modellierung des Einflusses der chemischen Zusammensetzung und der Umformbedingungen auf die Fließspannung von Stählen bei der Warmumformung" von M. Spittel und T. Spittel, Freiberg 1996, wird zu- sätzlich vorgeschlagen, den Grundwert der Fließspannung eines Materials in Abhängigkeit von dessen chemischer Analyse zu ermitteln und die übrigen Parameter zur Berücksichtigung der Temperatur, des Umformgrades und der Umformgeschwindigkeit entsprechend der Materialgruppe zu nutzen. Grundsätzlich jedoch bleibt der multiplikative Charakter des Ansatzes gemäß Gleichung (1) bestehen.In the further essay "Modeling the Influence of the Chemical Composition and the Forming Conditions on the Yield Stress of Steels in Hot Forming" by M. Spittel and T. Spittel, Freiberg 1996, the basic value of the yield stress of a material depending on to determine its chemical analysis and to use the other parameters to take into account the temperature, the degree of deformation and the speed of deformation according to the material group, but basically the multiplicative character of the approach according to equation (1) remains.
Der Nachteil des multiplikativen Ansatzes zur Ermittlung der Fließspannung besteht darin, dass die Funktion mit kleiner werdenden Umformgraden φ < 0,04 oder Abnahmen gegen eine Fließspannung von Null MPa strebt, d.h. die Funk- tion hat einen Nulldurchgang (in Fig. 1 zum Stand der Technik gezeigt). Diese Theorie widerspricht jedoch den tatsächlichen Gegebenheiten. Als Folge werden bei kleinen Abnahmen zu geringe Fließspannungswerte und somit zu geringe Sollwalzkräfte bestimmt. Die Setzung des Sollwalzspaltes durch die Dickenregelung ist walzkraftabhängig und somit fehlerbehaftet. Die warmgewalz- ten Produkte weisen eine größere Istdicke im Vergleich zur gewünschten Zieldicke auf.The disadvantage of the multiplicative approach to determining the yield stress is that the function tends to become smaller with degrees of deformation φ <0.04 or decreases against a yield stress of zero MPa, i.e. the function has a zero crossing (shown in FIG. 1 for the prior art). However, this theory contradicts the actual facts. As a result, the flow stress values, which are too low, and thus the target rolling forces are too low, are determined for small decreases. The setting of the nominal roll gap by the thickness control is dependent on the rolling force and is therefore subject to errors. The hot-rolled products have a larger actual thickness compared to the desired target thickness.
Die fehlerbehaftete Sollwalzkraft-Berechnung bei kleinen Umformgraden bzw. Abnahmen stellt eine permanente Anlagengefährdung beim Walzen mit hohen Walzkräften und / oder Walzmomenten nahe den maximal zulässigen Anlagen- parametern dar, wie sie bspw. beim Walzen mit abgesenkten Temperaturen oder aber auch bei hohen Temperaturen und Walzgutbreiten nahe der anlagentechnisch maximal möglichen Breite auftreten.The erroneous target rolling force calculation with small degrees of deformation or acceptance poses a permanent system risk when rolling with high rolling forces and / or rolling torques close to the maximum permissible system parameters, such as occur, for example, when rolling with reduced temperatures or also at high temperatures and rolling stock widths close to the maximum possible in terms of plant technology.
Die fehlerbehaftete Sollwalzkraft-Berechnung beeinträchtigt auch die Prozess- Stabilität insgesamt negativ, da nachgeschaltete Automations-Modelle und - regelungen wie bspw. Profil- und Planheitsmodelle bzw. -regelungen ihre Sollwerte mit Hilfe der Sollwalzkraft ermitteln.The faulty target rolling force calculation also negatively affects the overall process stability, since downstream automation models and controls, such as profile and flatness models and controls, determine their target values with the aid of the target rolling force.
Aus der WO 93 / 11 886 A1 ist ein Walzplan-Berechnungsverfahren zur Einstel- lung von Sollwalzkraft und Sollwalzspalt eines Walzgerüstes bekannt, das gerüstspezifische und / oder materialspezifische Walzkraft-Anpassungsglieder nutzt. Nachteilig sind gerüstspezifische Anpassungen bei der Sollwalzkraft- Berechnung für die Übertragbarkeit auf andere Anlagen.From WO 93/11886 A1, a rolling plan calculation method for setting the target rolling force and target rolling gap of a rolling stand is known, which uses stand-specific and / or material-specific rolling force adjustment elements. Disadvantages are stand-specific adjustments in the calculation of the nominal rolling force for transferability to other systems.
Aus der WO 99 / 02 282 A1 geht ein bekanntes Verfahren hervor zur Steuerung bzw. Voreinstellung des Walzgerüstes in Abhängigkeit zumindest einer der Größen Walzkraft, Walzmoment und Voreilung, bei dem die Modellierung der Einflüsse mittels einer auf neuronalen Netzen basierenden Informationsverarbeitung oder mittels eines invertierten Walzmodells über Rückrechnung der Ma- terialhärte im Stich mit Hilfe eines Regressionsmodells erfolgt. Solche Fehler, wie sie bei der Sollwalzkraft-Berechnung nach dem multiplikativen Ansatz im Bereich kleiner Umformgrade oder Abnahmen entstehen, können vermieden werden. Nachteilig ist jedoch, dass zum Trainieren eines neuronalen Netzes bzw. für ein invertiertes Walzmodell erst Walzergebnisse vorliegen müssen. Eine Anwendung des vorgeschlagenen Verfahrens auf noch nicht gewalzte Materialien oder auf Anlagen mit anderen Parametern ist somit nicht ohne weiteres gewährleistet.WO 99/02 282 A1 discloses a known method for controlling or presetting the rolling stand as a function of at least one of the variables rolling force, rolling moment and advance, in which the influences are modeled by means of information processing based on neural networks or by means of an inverted rolling model by back calculation of the material hardness in the stitch using a regression model. Such errors, as arise in the calculation of the nominal rolling force using the multiplicative approach in the area of small degrees of deformation or decreases, can be avoided. However, it is disadvantageous that in order to train a neural network or for an inverted rolling model, rolling results must first be available. An application of the proposed method to materials that have not yet been rolled or to plants with other parameters is therefore not easily guaranteed.
Dem geschilderten Stand der Technik ist gemeinsam, dass die Wirkung kleiner Umformgrade oder kleiner Abnahmen auf die Fließspannung beim Warmwalzen von Stahl und NE-Werkstoffen im Rahmen der bekannten Verfahren zur Soll- walzkraft-Berech-nung und zur Dickenregelung nicht korrekt oder nur unzureichend berücksichtigt wird oder die Übertragbarkeit auf andere Anlagen eingeschränkt ist und somit Risiken für die Prozessstabilität, insbesondere der absoluten Dickengenauigkeit und der Anlagensicherheit bestehen.The state of the art described has in common that the effect of small degrees of deformation or small decreases on the yield stress during hot rolling of steel and non-ferrous materials within the scope of the known methods for Rolling force calculation and for thickness control is not taken into account correctly or only insufficiently, or the transferability to other systems is limited and thus there are risks for process stability, in particular the absolute thickness accuracy and system safety.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Erhöhung der Prozessstabilität, insbesondere der absoluten Dickengenauigkeit und der Anlagensicherheit beim Warmwalzen von Stahl- und NE-Werkstoffen zu schaffen, bei dem die Genauigkeit der Fließspannung und der Sollwalzkraft bei kleinen Umformgraden oder kleinen Abnahmen gesteigert werden kann.The invention has for its object to provide a method for increasing the process stability, in particular the absolute thickness accuracy and the plant safety when hot rolling steel and non-ferrous materials, in which the accuracy of the yield stress and the target rolling force are increased with small degrees of deformation or small decreases can.
Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Warmstreckgrenze in Abhängigkeit von Umformtemperatur und / oder Umformgeschwindigkeit ermittelt und in die Funktion der Fließspannung für die Bestimmung der Sollwalzkraft über die Beziehung (2) Re = a + e b1 + b2 ' τ . phip c The object is achieved according to the invention in that the hot stretching limit is determined as a function of the forming temperature and / or the forming speed and is converted into the function of the yield stress for determining the desired rolling force using the relationship (2) R e = a + e b1 + b2 ' τ . phip c
integriert wird, wobei bedeuten:is integrated, meaning:
Re = Warmstreckgrenze T = Umform-Temperatur phip = Umform-Geschwindigkeit a; b; c = KoeffizientenR e = hot stretch T = forming temperature phip = forming speed a; b; c = coefficients
Der Vorteil bei der Nutzung eines neuen Ansatzes zur Berechnung der Fließ- Spannung liegt darin, die Warmstreckgrenzen für die zu walzenden Materialien aus Messdaten von Walzungen mit Umformgraden kleiner als einem materialspezifischen Grenzumformgrad zu ermitteln, indem die Fließspannungen der betreffenden Stiche in Abhängigkeit von Umformtemperatur und Umformgeschwindigkeit aus gemessenen Walzkräften rückgerechnet und einer Warm- Streckgrenze gleichgesetzt werden, wenn sie den aus Warmzugversuchen gemessenen Warmstreckgrenzen gleichen. Die gefundene Abhängigkeit der Warmstreckgrenze von Umformtemperatur und Umformgeschwindigkeit stellt den Startpunkt der approximierten Warmfließkurve dar.The advantage of using a new approach to the calculation of the yield stress is to determine the hot stretching limits for the materials to be rolled from measurement data of rolling with degrees of deformation less than a material-specific limit degree of deformation, by the yield stresses of the relevant passes depending on the forming temperature and the forming speed calculated from measured rolling forces and equated to a hot yield strength if they are equal to the hot yield strengths measured from hot tensile tests. The dependency found The hot stretching limit of the forming temperature and the forming speed represents the starting point of the approximated hot flow curve.
Nach der weiteren Erfindung wird vorgeschlagen, dass ein multiplikativer Fließkurvenansatz um die Warmstreckgrenze in Abhängigkeit von Umformtempera- tur und Umformgeschwindigkeit gemäß der FormelAccording to the further invention, it is proposed that a multiplicative flow curve approach around the hot stretch limit depending on the forming temperature and the forming speed according to the formula
(3) kfιR = a + e b1 'b2 ' τ » phip c + km • A1 * em1 ' τ Α2 • <p m2 Α3 - phip m3 (3) k fιR = a + e b1 'b2' τ » phip c + k m • A 1 * e m1 'τ Α 2 • <p m2 Α 3 - phip m3
bestimmt wird.is determined.
Aufgrund der erfindungsgemäßen Berücksichtigung der Warmstreckgrenze in Abhängigkeit von Umformtemperatur und Umformgeschwindigkeit erzielt das Verfahren selbst zu kleinsten Umformgraden hin korrekte Werte. Startwert ist die jeweilige Warmstreckgrenze des zu walzenden Materials in Abhängigkeit von Umformtempe-ratur und Umformgeschwindigkeit.Due to the fact that the hot stretching limit according to the invention is dependent on the forming temperature and the forming speed, the method achieves correct values even for the smallest degrees of forming. The starting value is the respective hot stretching limit of the material to be rolled depending on the forming temperature and speed.
Nach der weiteren Erfindung wird vorgeschlagen, dass die Fließspannung in die herkömmliche Walzkraftgleichung zur Ermittlung der Sollwalzkraft für die Dickenregelung und auch für Rechen-Modelle und Regelungsverfahren gemäß folgender GleichungAccording to the further invention, it is proposed that the yield stress in the conventional rolling force equation for determining the target rolling force for the thickness control and also for computing models and control methods according to the following equation
(4) FW = QP • kf)R • B • (Rw - (hQ - h,)) vz (4) F W = Q P • k f) R • B • (R w - (h Q - h,)) vz
bestimmt wird, wobei bedeuten:is determined, where mean:
Fw = Sollwalzkraft Qp = Funktion zur Berücksichtigung von Walzspaltgeometrie und Reibungsverhältnissen kf;R = Fließspannung, unter Berücksichtigung der Streckgrenze B - Walzgutbreite Rw = Walzenradius ho = Dicke vor dem Stich hi = Dicke nach dem StichF w = nominal rolling force Q p = function to take into account the roll gap geometry and friction conditions k f ; R = yield stress, taking into account the yield point B - rolling stock width Rw = roller radius ho = thickness before the stitch hi = thickness after the stitch
In Ausgestaltung der Erfindung ist ferner vorgesehen, dass aufgrund der Soll- walzkraft ein Materialmodul unter Berücksichtigung der Warmstreckgrenze in Abhängigkeit der Umformtemperatur und Umformgeschwindigkeit für Umformgrade kleiner einem materialspezifischen Grenzumformgrad berechnet wird, gemäß der Formel (5) CM = (Fw- Fm) / dhiIn an embodiment of the invention it is further provided that, based on the desired rolling force, a material module is calculated taking into account the hot stretching limit depending on the forming temperature and forming speed for degrees of forming less than a material-specific limit forming degree, according to the formula (5) C M = (F w - F m ) / dhi
worin bedei iten:in which:
CM = Materialmodul Fw = Sollwalzkraft Fm = gemessene Walzkraft dhi = Änderung der AuslaufdickeCM = material module Fw = nominal rolling force F m = measured rolling force dhi = change in outlet thickness
Die Erfindung ist sodann dahingehend ausgestaltet, dass die herkömmliche Gaugemeter-Gleichung in eine FormThe invention is then designed in such a way that the conventional gage meter equation is in one form
(6) dSAGc = (1 + CM/ CG) d - (1 + CM/ CG) ((Fw - Fm) / CG + s - sso„)(6) dSAGc = (1 + C M / C G ) d - (1 + C M / C G ) ((Fw - F m ) / C G + s - s so ")
erweitert wird, wobei bedeuten:is expanded, meaning:
CIS AGC = Änderung der Walzspalteinstellung CM = Materialmodul CG = Walzgerüstmodul dhi = Änderung der Auslaufdicke Fw = Sollwalzkraft Fm = gemessene Walzkraft s = Anstellung des Walzspaltes Ssoii = Sollanstellung des WalzspaltesCIS AGC = change of the roll gap setting CM = material module CG = roll stand module dhi = change of the outlet thickness Fw = nominal rolling force F m = measured rolling force s = setting of the roll gap Ssoii = target setting of the roll gap
Dadurch wird nun auch das Materialfließverhalten bei kleinen Umformgraden oder Abnahmen richtig abgebildet.As a result, the material flow behavior with small degrees of deformation or decreases is now correctly mapped.
Auf der Grundlage der Gaugemetergleichung und berechneter Sollwalzkraft wird die Anstellposition der elektromechanischen und / oder der hydraulischen Anstellung zur Gewährleistung der Auslaufdicke des Walzgutes ermittelt.On the basis of the gauge meter equation and the calculated target rolling force, the position of the electromechanical and / or hydraulic adjustment to ensure the runout thickness of the rolling stock is determined.
In der Zeichnung sind Diagramme für die Fließspannung in Abhängigkeit des Umformgrades nach dem Stand der Technik und gemäß der Erfindung gezeigt und werden nachstehend näher erläutert.The drawing shows diagrams for the yield stress as a function of the degree of deformation according to the prior art and according to the invention and are explained in more detail below.
Es zeigen:Show it:
Fig. 1 schematisch den Verlauf der Fließspannung kf, über dem Umformgrad φ beim herkömmlichen multiplikativen Ansatz (Stand der Technik) undFig. 1 shows schematically the course of the yield stress k f , over the degree of deformation φ in the conventional multiplicative approach (prior art) and
Fig. 2 schematisch den Verlauf der Fließspannung kfR über dem Umformgrad φ gemäß der Erfindung, wobei unterhalb des Grenzumfanggrades ψQ der multiplikative Ansatz um die Warmstreckgrenze additiv erweitert ist.Fig. 2 shows schematically the course of the yield stress kf R over the degree of deformation φ according to the invention, wherein the multiplicative approach is additively expanded by the hot stretching limit below the limit circumference degree ψQ.
Der Nachteil des multiplikativen Ansatzes zur Ermittlung der Fließspannung (Fig. 1 ) besteht darin, dass die Funktion zu kleinen Umformgraden φ < 0,04 oder kleinen Abnahmen hin gegen eine Fließspannung kf von Null MPa strebt, d.h. die Funktion hat einen Nulldurchgang, wie gezeichnet. Die erfindungsgemäße Berücksichtigung (Fig. 2) der Warmstreckgrenze Re in Abhängigkeit von Umformtemperatur T und Umformgeschwindigkeit phip erzielt das erfindungsgemäße Verfahren selbst zu kleinsten Umformgraden φ hin korrekte Werte. Startwert ist die jeweilige Warmstreckgrenze Re des zu walzenden Materials in Abhängigkeit von Umformtemperatur T und Umformgeschwindig- keit phip. The disadvantage of the multiplicative approach to determining the yield stress (Fig. 1) is that the function tends to small degrees of deformation φ <0.04 or small decreases against a yield stress k f of zero MPa, ie the function has a zero crossing, such as drawn. The consideration (FIG. 2) of the hot stretching limit R e according to the invention as a function of the forming temperature T and the forming speed phip, the method according to the invention achieves correct values even for the smallest degrees of forming φ. The starting value is the respective hot stretching limit R e of the material to be rolled, depending on the forming temperature T and the forming speed phip.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
A, thermodynamische Koeffizienten aι bt, c KoeffizientenA, thermodynamic coefficients aι b t , c coefficients
B WalzgutbreiteB Roll width
CG GerüstmodulC G scaffolding module
CM Materialmodul dhi Änderung der Auslaufdicke dSAGC Änderung der WalzspalteinstellungCM material module dhi change of the outlet thickness dS A GC change of the roll gap setting
Fm gemessene WalzkraftF m measured rolling force
Fw Sollwalzkraft ho Dicke vor dem Stich hi Dicke nach dem Stich kf Fließspannung km Grundwert der Fließspannung kf, R Fließspannung, unter Berücksichtigung der Streckgrenze thermodynamische Koeffizienten φ Umformgrad ψG Grenzumformgrad phip UmformgeschwindigkeitFw nominal rolling force ho thickness before the pass hi thickness after the pass kf yield stress km basic value of yield stress kf, R yield stress, taking into account the yield point thermodynamic coefficients φ degree of deformation ψG limit degree of deformation phip forming speed
QP Funktion zur Berücksichtigung von Walzspaltgeometrie und ReibungsverhältnissenQ P Function to take into account the roll gap geometry and friction conditions
Re WarmstreckgrenzeRe hot stretch limit
Rw Walzenradius s Anstellung des WalzspaltesRw roll radius s adjustment of the roll gap
Ssoll Sollanstellung des WalzspaltesSsoll target adjustment of the roll gap
T Umformtemperatur T forming temperature

Claims

Patentansprüche Patent claims
1 . Verfahren zum Erhöhen der Prozessstabilität, insbesondere der absolu- ten Dickengenauigkeit und der Anlagensicherheit, beim Warmwalzen von Stahl- oder NE-Werkstoffen, mit kleinen Umformgraden (φ ) oder kleinen Abnahmen unter Berücksichtigung der Warmstreckgrenze (Re) bei der Berechnung der Sollwalzkraft (Fw) und der jeweiligen Anstellungsposition (s), dadurch gekennzeichnet, dass die Warmstreckgrenze (Re) in Abhängigkeit von Umformtemperatur (7) und / oder Umformgeschwindigkeit (phip) ermittelt und in die Funktion der Fließspannung ( ? ) für die Bestimmung der Sollwalzkraft (Fw) über die Beziehung1 . Method for increasing the process stability, in particular the absolute thickness accuracy and system safety, when hot rolling steel or non-ferrous materials, with small degrees of deformation (φ ) or small decreases, taking into account the hot yield point (R e ) when calculating the target rolling force (Fw ) and the respective position (s), characterized in that the hot yield point (R e ) is determined as a function of the forming temperature (7) and / or forming speed (phip) and is converted into the function of the flow stress ( ? ) for determining the target rolling force (Fw ) about the relationship
(2) Re = a + e M +b2 - T phip integriert wird, wobei bedeuten: Re = Warmstreckgrenze T = Umformtemperatur phip = Umformgeschwindigkeit a,; b, c = Koeffizienten(2) R e = a + e M +b2 - T phip is integrated, where: R e = hot yield strength T = forming temperature phip = forming speed a,; b, c = coefficients
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein multiplikativer Fließkurvenansatz um die Warmstreckgrenze (Re) in Abhängigkeit von Umformtemperatur (T) und Umformgeschwindigkeit (phip) gemäß der FormelMethod according to claim 1, characterized in that a multiplicative flow curve approach around the hot yield point (R e ) depending on the forming temperature (T) and forming speed (phip) according to the formula
(3) kt;R = a + e b1 ' b2 ' τ • phip c + km • Ai • em1 ' τ • A2 • φ m2 Α3 * phip m3 bestimmt wird.(3) k t;R = a + e b1 ' b2 ' τ • phip c + k m • Ai • e m1 ' τ • A 2 • φ m2 Α 3 * phip m3 is determined.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die Fließspannung ( > ) in die herkömmliche Walzkraftgleichung zur Ermittlung der Sollwalzkraft (Fw) für die Dickenregelung und auch für Rechen-Modelle und Regelungsverfahren gemäß folgender Gleichung3. Method according to claims 1 and 2, characterized in that the flow stress (>) is incorporated into the conventional rolling force equation for determining the target rolling force (Fw) for the thickness control and also for calculation models and control methods according to the following equation
(4) FW = QP • kf,R • ß • (Rw » (h0 - hι)) 1/2 bestimmt wird, wobei bedeuten:(4) F W = Q P • k f , R • ß • (R w » (h 0 - hι)) 1/2 is determined, where means:
Fw = Sollwalzkraft Qp = Funktion zur Berücksichtigung von Walzspaltgeome- trie und Reibungsverhältnissen kfιR = Fließspannung, unter Berücksichtigung der Streckgrenze B = Walzgutbreite Rw = Walzenradius ho - Dicke vor dem Stich h = Dicke nach dem StichFw = target rolling force Q p = function for taking into account roll gap geometry and friction conditions k fιR = flow stress, taking into account the yield point B = rolling stock width R w = roll radius ho - thickness before the pass h = thickness after the pass
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass aufgrund der Sollwalzkraft (Fw) ein Materialmodul (CM) unter Berücksichtigung der Warmstreckgrenze (Re) in Abhängigkeit der Umformtemperatur (T) und Umformgeschwindigkeit (phip) für Umformgrade kleiner einem materialspezifischen Grenzumformgrad (φG) berechnet wird, gemäß der Formel4. Method according to one of claims 1 to 3, characterized in that based on the target rolling force (Fw), a material modulus (CM) is calculated taking into account the hot yield point (R e ) depending on the forming temperature (T) and forming speed (phip) for degrees of forming less than a material-specific limiting degree of forming (φG), according to the formula
(5) CM = (Fw - Fm) / dh1} worin bedeuten: CM = Materialmodul Fw = Sollwalzkraft Fm = gemessene Walzkraft d i - Änderung der Auslaufdicke(5) C M = (F w - F m ) / dh 1} where: CM = material modulus Fw = target rolling force F m = measured rolling force di - change in the exit thickness
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die herkömmliche Gaugemeter-Gleichung in eine Form (6) dSA c = (1 + CM / CG) dhi = (1 + CM / CG) ((Fw - Fm) / CG + s - sso„) erweitert wird, wobei bedeuten: dsAβc = Änderung der Walzspalteinstellung CM = Materialmodul CG = Walzgerüstmodul dhi - Änderung der Auslaufdicke Fw = Sollwalzkraft Fm = gemessene Walzkraft s = Anstellung des Walzspaltes5. The method according to claim 4, characterized in that the conventional gaugemeter equation is converted into a form (6) dSA c = (1 + C M / C G ) dhi = (1 + C M / C G ) ((F w - F m ) / C G + s - s so "), whereby: dsAβc = change in the roll gap setting CM = material module CG = roll stand module dhi - change in the exit thickness Fw = target rolling force F m = measured rolling force s = setting of the roll gap
Ssoii = Sollanstellung des Walzspaltes Ssoii = target setting of the roll gap
EP05700942A 2004-01-23 2005-01-14 Method for increasing the process stability, particularly the absolute thickness precision and the installation safety during the hot rolling of steel or nonferrous materials Active EP1761346B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004003514A DE102004003514A1 (en) 2004-01-23 2004-01-23 Process for increasing process stability, in particular absolute thickness accuracy and plant safety, during hot rolling of steel or non-ferrous materials
PCT/EP2005/000348 WO2005070575A1 (en) 2004-01-23 2005-01-14 Method for increasing the process stability, particularly the absolute thickness precision and the installation safety during the hot rolling of steel or nonferrous materials

Publications (2)

Publication Number Publication Date
EP1761346A1 true EP1761346A1 (en) 2007-03-14
EP1761346B1 EP1761346B1 (en) 2007-10-31

Family

ID=34745039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05700942A Active EP1761346B1 (en) 2004-01-23 2005-01-14 Method for increasing the process stability, particularly the absolute thickness precision and the installation safety during the hot rolling of steel or nonferrous materials

Country Status (15)

Country Link
US (1) US7444847B2 (en)
EP (1) EP1761346B1 (en)
JP (1) JP2007534493A (en)
KR (1) KR101140577B1 (en)
CN (1) CN100479942C (en)
AT (1) ATE376896T1 (en)
AU (1) AU2005205889B2 (en)
BR (1) BRPI0507045A (en)
CA (1) CA2554131C (en)
DE (2) DE102004003514A1 (en)
ES (1) ES2298994T3 (en)
RU (1) RU2408445C2 (en)
TW (1) TWI323197B (en)
UA (1) UA86220C2 (en)
WO (1) WO2005070575A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101890434B (en) * 2010-07-06 2012-05-23 东北大学 Control method for periodic variable-thickness strip rolling speed
IT201700035735A1 (en) * 2017-03-31 2018-10-01 Marcegaglia Carbon Steel S P A Evaluation apparatus of mechanical and microstructural properties of a metallic material, in particular a steel, and relative method
CN111475917A (en) * 2020-03-10 2020-07-31 江阴兴澄特种钢铁有限公司 Method for calculating deformation resistance of common steel grades GCr15, 60Si2Mn and 42CrMo
CN113996660B (en) * 2021-09-28 2023-06-27 大冶特殊钢有限公司 Pipe jacking deformation method of large pipe jacking machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226510B2 (en) * 1973-05-10 1977-07-14
JPS54131555A (en) * 1978-04-03 1979-10-12 Fuji Electric Co Ltd Mimic device for rolling machine
JPH0569021A (en) * 1991-09-09 1993-03-23 Toshiba Corp Method and device for controlling rolling mill
DE4141230A1 (en) 1991-12-13 1993-06-24 Siemens Ag ROLLING PLAN CALCULATION METHOD
DE19728979A1 (en) 1997-07-07 1998-09-10 Siemens Ag Controlling or presetting roll stand
JP3681283B2 (en) * 1997-07-31 2005-08-10 株式会社神戸製鋼所 Rolling mill setup equipment
JPH11123432A (en) * 1997-10-22 1999-05-11 Nkk Corp Method for estimating rolling load in cold rolling
JPH11156413A (en) * 1997-11-21 1999-06-15 Daido Steel Co Ltd Method for estimating deformation resistance concerning plastic working of metallic material
JP3302930B2 (en) * 1998-08-17 2002-07-15 川崎製鉄株式会社 How to change the setting of the running distance of the rolling mill

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005070575A1 *

Also Published As

Publication number Publication date
BRPI0507045A (en) 2007-06-12
KR20060126755A (en) 2006-12-08
TWI323197B (en) 2010-04-11
RU2408445C2 (en) 2011-01-10
US20070256464A1 (en) 2007-11-08
KR101140577B1 (en) 2012-05-02
ES2298994T3 (en) 2008-05-16
CA2554131A1 (en) 2005-08-04
WO2005070575A1 (en) 2005-08-04
DE102004003514A1 (en) 2005-08-11
EP1761346B1 (en) 2007-10-31
RU2006130369A (en) 2008-02-27
TW200600215A (en) 2006-01-01
DE502005001843D1 (en) 2007-12-13
AU2005205889B2 (en) 2010-03-25
CA2554131C (en) 2011-09-27
AU2005205889A1 (en) 2005-08-04
ATE376896T1 (en) 2007-11-15
US7444847B2 (en) 2008-11-04
UA86220C2 (en) 2009-04-10
JP2007534493A (en) 2007-11-29
CN100479942C (en) 2009-04-22
CN1909986A (en) 2007-02-07

Similar Documents

Publication Publication Date Title
DE112013000350B4 (en) Method for carrying out feed thickness control in a tandem cold rolling mill
EP2170535B1 (en) Method for adjusting a state of a rolling stock, particularly a near-net strip
EP1485216B1 (en) Computer-aided method for determining desired values for controlling elements of profile and surface evenness
EP2548665B1 (en) Method for determining the wear on a roller dependent on relative movement
AT414316B (en) METHOD AND DEVICE FOR CONTROLLING A HÜTTENTECHNISCHEN ANLAGE
DE102016116076B4 (en) Plant control device, rolling control device, plant control method and plant control program
EP2691188B1 (en) Operating method for a rolling train
EP2162245B1 (en) Rolling of a strip in a rolling train using the last stand of the rolling train as a tension reducer
EP1761346B1 (en) Method for increasing the process stability, particularly the absolute thickness precision and the installation safety during the hot rolling of steel or nonferrous materials
DE10324679A1 (en) Control computer and computer-aided determination procedure for a profile and flatness control for a rolling mill
WO2004080628A1 (en) Continuous casting and rolling installation for producing a steel strip
EP1812181B1 (en) Method and computer program for controlling a rolling process
DE102009043400A1 (en) Method for the model-based determination of actuator setpoints for the asymmetric actuators of the rolling mills of a hot strip mill
EP2268427B1 (en) Operating method for a cold-rolling line with improved dynamics
EP2188074B1 (en) Method for operating a rolling mill train with curvature recognition
EP3642372A1 (en) Method for operating an annealing surface
EP1481742B1 (en) Control computer and computer-aided determination method for a profile and flatness control for a rolling mill
DE102017122073B4 (en) Process and control of a bending machine
EP3494239A1 (en) Method for operating an annealing furnace for annealing a metal strip
EP2228148A1 (en) Method for operating a mill train, in particular of a cold mill train
DE19728979A1 (en) Controlling or presetting roll stand
DE10159608A1 (en) Computer-controlled cold rolling process for steel strip involves using tension regulation assembly which calculates tension in accordance with weld seam width
DE102009060828A1 (en) Rolling mill for continuous rolling of strip-shaped rolling stock
DE10301762A1 (en) Rolling steels and non-ferrous metals, takes additional factor into account to represent change in strength of rolled material, when calculating a given rolling force
DE102019214640A1 (en) CONTROL DEVICE AND CONTROL METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005001843

Country of ref document: DE

Date of ref document: 20071213

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080211

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2298994

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080331

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080131

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080201

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080501

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20130108

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130128

Year of fee payment: 9

BERE Be: lapsed

Owner name: GMT-GESELLSCHAFT FUR METALLURGISCHE TECHNOLOGIE-

Effective date: 20140131

Owner name: SMS DEMAG A.G.

Effective date: 20140131

Owner name: ILSENBURGER GROBBLECH G.M.B.H.

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005001843

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNERS: GMT GESELLSCHAFT FUER METALLURGISCHE TECHNOLOGIE- UND SOFTWAREENTWICKLUNG MBH, 13086 BERLIN, DE; ILSENBURGER GROBBLECH GMBH, 38871 ILSENBURG, DE; SMS SIEMAG AKTIENGESELLSCHAFT, 40237 DUESSELDORF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005001843

Country of ref document: DE

Owner name: GMT GESELLSCHAFT FUER METALLURGISCHE TECHNOLOG, DE

Free format text: FORMER OWNERS: GMT GESELLSCHAFT FUER METALLURGISCHE TECHNOLOGIE- UND SOFTWAREENTWICKLUNG MBH, 13086 BERLIN, DE; ILSENBURGER GROBBLECH GMBH, 38871 ILSENBURG, DE; SMS SIEMAG AKTIENGESELLSCHAFT, 40237 DUESSELDORF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005001843

Country of ref document: DE

Owner name: ILSENBURGER GROBBLECH GMBH, DE

Free format text: FORMER OWNERS: GMT GESELLSCHAFT FUER METALLURGISCHE TECHNOLOGIE- UND SOFTWAREENTWICKLUNG MBH, 13086 BERLIN, DE; ILSENBURGER GROBBLECH GMBH, 38871 ILSENBURG, DE; SMS SIEMAG AKTIENGESELLSCHAFT, 40237 DUESSELDORF, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005001843

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170119

Year of fee payment: 13

Ref country code: FI

Payment date: 20170111

Year of fee payment: 13

Ref country code: FR

Payment date: 20170120

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170123

Year of fee payment: 13

Ref country code: GB

Payment date: 20170119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170124

Year of fee payment: 13

Ref country code: ES

Payment date: 20170113

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 376896

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180114

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180115

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180114

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180114

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 19