JPH11156413A - Method for estimating deformation resistance concerning plastic working of metallic material - Google Patents

Method for estimating deformation resistance concerning plastic working of metallic material

Info

Publication number
JPH11156413A
JPH11156413A JP9336563A JP33656397A JPH11156413A JP H11156413 A JPH11156413 A JP H11156413A JP 9336563 A JP9336563 A JP 9336563A JP 33656397 A JP33656397 A JP 33656397A JP H11156413 A JPH11156413 A JP H11156413A
Authority
JP
Japan
Prior art keywords
strain
deformation resistance
particle size
temperature
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9336563A
Other languages
Japanese (ja)
Inventor
Masamichi Kono
正道 河野
Mitsuaki Shoji
光明 庄司
Yukihiro Isogawa
幸宏 五十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP9336563A priority Critical patent/JPH11156413A/en
Publication of JPH11156413A publication Critical patent/JPH11156413A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correctly estimate deformation resistance, i.e., forming load and constitutional change, by introducing residual strain, particle size and effect of chemical composition into expressions of deformation resistance for numerical calculation concerning plastic working of metallic material. SOLUTION: In the method for estimating deformation resistance concerning plastic working of metallic material, the deformation resistance is obtained by applying among the following general expressions in which not less than two items out of residual strain, particle size and chemical composition in addition to working temperature, strain velocity and strain are added as variables. General expressions: Deformation resistance = f(temperature, strain velocity, strain, residual strain, particle size), Deformation resistance = f(temperature, strain velocity, strain, residual strain, chemical composition), Deformation resistance = f(temperature, strain velocity, strain, particle size, chemical composition), Deformation resistance = f(temperature, strain velocity, strain, residual strain, particle size, chemical composition).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料の塑性加
工に関する変形抵抗を予測する方法、詳細には導入する
塑性加工装置の能力の決定、導入された該装置での加工
が可能が否かなどを判断するために必要な荷重を求める
ためなどの変形抵抗を予測する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting the deformation resistance of plastic working of a metal material, and more particularly, to the determination of the capability of a plastic working machine to be introduced, and whether or not the introduced machine is capable of working. The present invention relates to a method for predicting a deformation resistance, for example, for obtaining a load necessary for determining a load.

【0002】[0002]

【従来の技術】従来から圧延や鍛造といった塑性加工プ
ロセスに必要な成形荷重を予測することは、導入する塑
性加工装置の能力を決定するうえで不可欠である。ある
いは、すでに導入された塑性加工装置での加工が可能が
否かを判断するためにも成形荷重の正確な予測が必要と
なる。この成形荷重は変形抵抗に大きく依存するため、
理論式、経験式を含めて様々な変形抵抗式が提案されて
いる。変形抵抗とは材料が外力に対して示す単位面積あ
たりの抵抗のことであり、加工に必要な最低限の力に相
当する。呼称としては、変形抵抗の他にも流動応力、流
れ応力、変形応力などがあるが、これらの意味する内容
は同じである。
2. Description of the Related Art Conventionally, it has been indispensable to predict a forming load necessary for a plastic working process such as rolling or forging in determining the capability of a plastic working apparatus to be introduced. Alternatively, it is necessary to accurately predict the forming load in order to determine whether or not it is possible to perform processing with the already introduced plastic working apparatus. Since this forming load greatly depends on the deformation resistance,
Various deformation resistance formulas have been proposed, including theoretical formulas and empirical formulas. Deformation resistance is the resistance per unit area that a material exhibits against external force, and corresponds to the minimum force required for processing. The names include flow stress, flow stress, deformation stress, and the like in addition to the deformation resistance, but these have the same meaning.

【0003】成形荷重の予測精度は、複数回の加工が付
与される工程おいて低くなる傾向がある。この現象は、
変形抵抗式に及ぼす残留歪みの影響が考慮されていない
ために起こる。つまり、付与されてきた歪の残留分を定
量化してないことが原因である。図1は、この様子を模
式的に示す。化学成分Aで、初期粒doである金属材料の
焼鈍材に対して2回の加工を付与する工程が例示されて
いる。簡単のため第1工程と第2工程では温度および歪
速度は共通とした。従来の変形抵抗式は一般に以下の式
(1)で表現される。 変形抵抗σ=f(T、 dε/dt 、ε)・・・・・・式(1) ここで、Tは加工温度、 dε/dt (図面ではεの上に黒
丸が付いたもの)は歪速度、εは歪である。式(1)を
用いれば、第1工程および第2工程の変形抵抗 σ1=f(T、 dε/dt 、ε1) σ2=f(T、 dε/dt 、ε2) によって与えられる。各工程の成形荷重はσ1およびσ
2から計算される。
[0003] The accuracy of predicting the forming load tends to be lower in a process in which a plurality of processes are applied. This phenomenon is
This occurs because the effect of residual strain on the deformation resistance equation is not taken into account. That is, the reason is that the residual amount of the applied strain is not quantified. FIG. 1 schematically shows this state. An example is given of a process in which the chemical component A is applied twice to the annealed material of the metal material that is the initial grain do. For simplicity, the temperature and strain rate were common in the first and second steps. The conventional deformation resistance formula is generally expressed by the following formula (1). Deformation resistance σ = f (T, dε / dt, ε) ··· Equation (1) where T is the processing temperature, and dε / dt (the black circle on ε in the drawing) is the strain. The velocity, ε, is the strain. Using the equation (1), the deformation resistance in the first step and the second step is given by σ1 = f (T, dε / dt, ε1) σ2 = f (T, dε / dt, ε2). The forming load of each process is σ1 and σ
Calculated from 2.

【0004】しかし、実際には残留歪みεr が存在する
ため第2工程の変形抵抗はσ2と異なる。実際に材料が
示す変形抵抗を、第1工程および第2工程の変形抵抗に
ついてそれぞれσ1Rおよびσ2Rとすれば、 σ1R=f(T、 dε/dt 、ε1) σ2R=f(T、 dε/dt 、εr +ε2) によって与えられる。そして、σ1=σ1R、σ2≦σ
2Rであることは明らかである。εr がゼロの場合に限
ってσ2=σ2Rとなるが、一般には歪が残留するため
両者は一致しない。図1から推測されるとおり、変形抵
抗の計算値と実際の値との値は工程数が多いほど大きく
なる。成形荷重の予測精度が複数回の加工が付与される
工程において低くなる原因は以上のとおりである。当
然、第1工程および第2工程の温度および歪速度が異な
る場合も同様の現象が起こる。このように、残留歪の影
響が導入されていない従来の変形抵抗式では正確な荷重
予測が不可能である。
However, in practice, the deformation resistance in the second step is different from σ2 due to the presence of residual strain εr. Assuming that the deformation resistance actually shown by the material is σ1R and σ2R for the deformation resistances of the first step and the second step, respectively, σ1R = f (T, dε / dt, ε1) σ2R = f (T, dε / dt, εr + ε2). Then, σ1 = σ1R, σ2 ≦ σ
Obviously it is 2R. σ2 = σ2R only when εr is zero, but generally they do not match because distortion remains. As can be inferred from FIG. 1, the value of the calculated value of the deformation resistance and the actual value increases as the number of steps increases. The reason why the prediction accuracy of the molding load is reduced in the process in which the processing is performed a plurality of times is as described above. Naturally, the same phenomenon occurs when the temperature and strain rate of the first step and the second step are different. As described above, it is impossible to accurately predict the load by the conventional deformation resistance formula in which the influence of the residual strain is not introduced.

【0005】以上述べたとおり、変形抵抗は残留歪みの
抵抗を大きく受けるが、仮に残留歪みの影響が変形抵抗
式に導入されていたとしても、それだけでは精度的が十
分とはいえない。変形抵抗式の高精度化には粒径の影響
の導入が必要である。図2は変形抵抗に及ぼす粒径の影
響を示す。表1に示す化学成分を有するNi基耐熱合金
インコネル718が対象である。いずれの水準も、熱処
理によって残留歪の存在しない初期状態に調整され、加
工温度は1253K〜1393Kおよび歪速度は0.0
25S-1である。図3から明らかなように、この粒径の
範囲では、同一加工条件の場合に最大で約20%の差異
が認められる。このように、粒径の影響が導入されてい
ない従来の変形抵抗式では正確な荷重予測が不可能であ
る。
As described above, the deformation resistance is greatly affected by the residual strain. However, even if the influence of the residual strain is introduced into the deformation resistance formula, it cannot be said that the accuracy alone is sufficient. In order to improve the accuracy of the deformation resistance type, it is necessary to introduce the influence of the particle size. FIG. 2 shows the effect of particle size on deformation resistance. The target is Ni-based heat-resistant alloy Inconel 718 having the chemical components shown in Table 1. Both levels were adjusted by heat treatment to an initial state in which no residual strain was present, the processing temperature was 1253K to 1393K, and the strain rate was 0.0
25S -1 . As is apparent from FIG. 3, a difference of up to about 20% is recognized in the range of the particle diameter under the same processing conditions. As described above, it is impossible to accurately predict the load by the conventional deformation resistance formula in which the influence of the particle size is not introduced.

【0006】一方、塑性加工の分野においては、成形荷
重を予測すると同時に加工工程中の被加工材内部の組織
変化や組織分布を数値計算によって予測する技術が注目
されている。複数の工程から成る塑性加工プロセスにお
いては、混合組織(再結晶部と未再結晶部が混在する組
織)の加工となる場合が生じる。再結晶部と未再結晶部
では、粒径や残留歪量が異なる。したがって、加工直前
の混合組織状態が正確に予測されていても、粒径と残留
歪の影響が導入されていない従来の変形抵抗式では混合
組織のは変形抵抗を正確に予測できない。詳細な内容を
図3を用いて説明する。
On the other hand, in the field of plastic working, a technique of predicting a forming load and simultaneously predicting a structural change and a structure distribution inside a workpiece during a working process by numerical calculation has attracted attention. In a plastic working process including a plurality of steps, a mixed structure (a structure in which recrystallized portions and unrecrystallized portions are mixed) may be processed. The grain size and the amount of residual strain are different between the recrystallized portion and the non-recrystallized portion. Therefore, even if the state of the mixed structure immediately before processing is accurately predicted, the deformation resistance of the mixed structure cannot be accurately predicted by the conventional deformation resistance formula in which the influence of the grain size and the residual strain is not introduced. Detailed contents will be described with reference to FIG.

【0007】図3は、化学成分Aである金属材料の焼鈍
材に対して2回の加工を付与する工程を示し、第1工程
直前が粒径doの再結晶組織であり、第2工程直前が粒径
dsの再結晶領域(残留歪みなし)と粒径dnで残留歪εr
の未結晶領域からなる混合組織(再結晶率X)を例示し
ている。簡単のため第1工程と第2工程では温度および
歪速度は共通とした。従来の変形抵抗式は式(1)で表
現されたため、第1工程の変形抵抗σ1および第2工程
の変形抵抗σ2は、 σ1=f(T、 dε/dt 、ε1 ) σ2=f(T、 dε/dt 、ε2 ) によって与えられる。各工程の成形荷重はσ1およびσ
2 から計算される。
FIG. 3 shows a process in which an annealed material of a metal material which is a chemical component A is subjected to processing twice, in which a recrystallization structure having a grain diameter do is obtained immediately before the first process, Is the particle size
Residual strain εr with ds recrystallization region (no residual strain) and grain size dn
Of a mixed structure (recrystallization rate X) composed of an uncrystallized region. For simplicity, the temperature and strain rate were common in the first and second steps. Since the conventional deformation resistance equation is expressed by the equation (1), the deformation resistance σ1 in the first step and the deformation resistance σ2 in the second step are σ1 = f (T, dε / dt, ε1) σ2 = f (T, dε / dt, ε2). The forming load of each process is σ1 and σ
Calculated from 2.

【0008】しかし、実際には変形抵抗が粒径と残留歪
の影響を受ける。実際に材料が示す変形抵抗を、σ1R
Rおよびσ2RRとすれば、 σ1RR=f(do、T、 dε/dt 、ε1 ) σ2RR=X*f(ds、T、 dε/dt 、ε2 )+(1−
X)*f(dn、T、 dε/dt 、εr +ε2 ) 但し、式中のXは再結晶率のことである。なお、式中の
*は×(掛ける)のことである(以下同じ。)によって
与えられる。σ1とσ1RRの大小関係は粒径によって
異なる。粒径の値は無数にあるため、両者の一致は期待
できない。σ2とσ2RRの大小関係も、再結晶率、再
結晶粒径ds、未結晶粒径dn、残留歪によって異なる。こ
れらの組合せは無数にあるので、両者の一致は期待でき
ない。つまり、成形荷重の正確な予測は不可能である。
当然、第1工程と第2工程で温度および歪速度が異なる
場合も同様の現象が起こる。さらに、コンピュータを用
いた数値計算による組織予測においては、組織に最も大
きな影響を及ぼす因子の1つである温度が変形抵抗から
算出される。したがって、不正確な変形抵抗を用いれば
発熱量も不正確となり組織の予測精度も低下する。この
ように、粒径や残留歪の影響が導入されていない従来の
変形抵抗式では、成形荷重と組織の正確な予測が不可能
である。
However, actually, the deformation resistance is affected by the grain size and the residual strain. The deformation resistance actually exhibited by the material is represented by σ1R
If R and σ2RR, σ1RR = f (do, T, dε / dt, ε1) σ2RR = X * f (ds, T, dε / dt, ε2) + (1−
X) * f (dn, T, dε / dt, εr + ε2) where X is the recrystallization rate. Note that * in the formula means x (multiply) (the same applies hereinafter). The magnitude relationship between σ1 and σ1RR differs depending on the particle size. Since the value of the particle size is innumerable, it cannot be expected that the two values agree with each other. The magnitude relationship between σ2 and σ2RR also depends on the recrystallization rate, recrystallized grain size ds, uncrystallized grain size dn, and residual strain. Since these combinations are innumerable, they cannot be expected to match. That is, accurate prediction of the molding load is impossible.
Naturally, the same phenomenon occurs when the temperature and the strain rate are different between the first step and the second step. Further, in tissue prediction by numerical calculation using a computer, temperature, which is one of the most influential factors on tissue, is calculated from deformation resistance. Therefore, if an incorrect deformation resistance is used, the calorific value will be inaccurate, and the accuracy of tissue prediction will decrease. As described above, it is impossible to accurately predict the forming load and the structure by the conventional deformation resistance formula in which the influence of the particle size and the residual strain is not introduced.

【0009】また、仮に残留歪みと粒径の影響が変形抵
抗式に導入されていたとしても、精度が十分とは言えな
い。変形抵抗式の高精度化には化学成分の影響の導入が
必要である。図4は、変形抵抗に及ぼす化学成分の影響
を示す。表2に示す化学成分を有するNi基耐熱合金イ
ンコネル718が対象である。3種の材料は化学成分に
ついてJIS規格の上限材、中間材、下限材に相当す
る。いずれの水準も、熱処理によって残留歪の存在しな
い初期状態に調整され、初期粒径は180.2μm、加
工温度は1253K〜1393K、歪速度は0.008
s−1である。図から明らかなように、同一加工条件に
おいても上限材と下限材では約20%の差異が認められ
た。つまり、計算される成形荷重と発熱量も約20%異
なる。以上のように、成分の影響が導入されていない従
来の変形抵抗式では成形荷重と組織の正確な予測が不可
能である。以上に述べたとおり、式(1)の形式によっ
て表現される従来の変形抵抗式では、成形荷重および組
織変化への正確な予測はできないのが現状である。
Further, even if the effects of the residual strain and the grain size are introduced into the deformation resistance equation, the accuracy is not sufficient. In order to improve the accuracy of the deformation resistance type, it is necessary to introduce the influence of chemical components. FIG. 4 shows the effect of chemical components on deformation resistance. The target is Ni-based heat-resistant alloy Inconel 718 having the chemical components shown in Table 2. The three materials correspond to the upper limit material, the intermediate material, and the lower limit material of the JIS standard for the chemical components. Each level was adjusted to an initial state without residual strain by heat treatment, the initial grain size was 180.2 μm, the processing temperature was 1253K to 1393K, and the strain rate was 0.008.
s-1. As is clear from the figure, a difference of about 20% was recognized between the upper limit material and the lower limit material even under the same processing conditions. That is, the calculated molding load and the calorific value also differ by about 20%. As described above, it is impossible to accurately predict the forming load and the structure by the conventional deformation resistance formula in which the influence of the component is not introduced. As described above, at present, it is impossible to accurately predict the forming load and the structural change by the conventional deformation resistance formula expressed by the formula (1).

【0010】[0010]

【発明が解決しようとする課題】本発明は、塑性加工に
関する数値計算用の変形抵抗式へ残留歪、粒径、化学成
分の影響を導入し、変形抵抗、すなわち成形荷重および
組織変化を正確に予測することが課題である。
SUMMARY OF THE INVENTION The present invention introduces the effects of residual strain, grain size, and chemical composition into a deformation resistance formula for numerical calculation relating to plastic working, and accurately detects deformation resistance, that is, forming load and structural change. The challenge is to predict.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明の金属材料の塑性加工に関する変形抵抗を予
測する方法においては、変形抵抗を加工温度、歪速度、
歪に加えて、残留歪、粒径、化学成分のうちの2項目以
上を変数として加えた下記一般式のいずれかを用いて求
めることである。 一般式: 変形抵抗=f(温度、歪速度、歪、残留歪、粒径) 変形抵抗=f(温度、歪速度、歪、残留歪、化学成分) 変形抵抗=f(温度、歪速度、歪、粒径、化学成分) 変形抵抗=f(温度、歪速度、歪、残留歪、粒径、化学
成分)
In order to solve the above problems, the present invention provides a method for predicting deformation resistance relating to plastic working of a metal material.
It is determined using any one of the following general formulas in which two or more of residual strain, particle size, and chemical component in addition to strain are added as variables. General formula: Deformation resistance = f (temperature, strain rate, strain, residual strain, particle size) Deformation resistance = f (temperature, strain rate, strain, residual strain, chemical component) Deformation resistance = f (temperature, strain rate, strain) , Particle size, chemical component) Deformation resistance = f (temperature, strain rate, strain, residual strain, particle size, chemical component)

【0012】また、上記課題を解決するため、本発明の
Ni合金の塑性加工に関する変形抵抗を予測する方法に
おいては、変形抵抗σを下記式によって求めることであ
る。 式:σ=f(粒径、温度、歪速度、有効歪、成分) =σP ×((εEF/εP)×exp(1−(εEF/εP)))C 但し、式中の σP ( 極大応力)=5.422E-2×(do5.796E-2×Z
2.222E-19.852E-1 εP ( σP における歪) =1.881E-3×do3.049E-1×Z
1.087E-1 C(応力指数)=0.7 ×(1-exp(-1.821E-3× (do
-5.006E-1 ×Z2.271E-1))) Z(パラメータ)=(dε/dt)×exp(Q/(8.31*
T)) Q(活性化エネルギー)=389.5 +3.63×(Cr-17)
0.6664+13.02 ×(Mo-2.8)0.6004+12.94 ×(Al-0.2)
0.6678+14.90 ×(Ti-0.65)0.5972 +10.8×(Nb-4.7)
0.6569 εEF(有効歪)=εr +ε εr (残留歪)=(1−0.4 ×(1−exp(−(t/t
s)2.456 ))) ×ε ts(回復飽和時間)=5.924 ×((T−273 )/1000)
-12.004 do( 粒径) =10μm〜800μm T(温度)=1123K〜1423K dε/dt (歪速度)=0.001S-1〜100S-1 ε(歪)=0.05〜1.50 t(工程間時間)=0.2〜4000sec である。なお、式中のE−1は×10-1、E−2は×1
-2、E−3は×10 -3のこと、およびS-1とは/s
ecのことである。(以下同じ)
Further, in order to solve the above-mentioned problem, in the method of the present invention for predicting deformation resistance related to plastic working of a Ni alloy, the deformation resistance σ is determined by the following equation. Formula: σ = f (particle size, temperature, strain rate, effective strain, component) = σP × ((εEF / εP) × exp (1- (εEF / εP))) C, where σP (maximum stress) ) = 5.422E-2 × (do 5.796E-2 × Z
2.222E-1 ) 9.852E-1 εP (strain at σP) = 1.881E-3 × do 3.049E-1 × Z
1.087E-1 C (stress index) = 0.7 x (1-exp (-1.821E-3 x (do
-5.006E-1 × Z 2.271E-1 ))) Z (parameter) = (dε / dt) × exp (Q / (8.31 *
T)) Q (activation energy) = 389.5 + 3.63 x (Cr-17)
0.6664 + 13.02 × (Mo-2.8) 0.6004 + 12.94 × (Al-0.2)
0.6678 + 14.90 × (Ti-0.65) 0.5972 +10.8 × (Nb-4.7)
0.6569 εEF (effective strain) = εr + εεr (residual strain) = (1−0.4 × (1-exp (− (t / t
s) 2.456 ))) × ε ts (recovery saturation time) = 5.924 × ((T-273) / 1000)
-12.004 do (particle size) = 10 μm to 800 μm T (temperature) = 1123 K to 1423 K dε / dt (strain rate) = 0.001 S −1 to 100 S −1 ε (strain) = 0.05 to 1.50 t ( (Inter-process time) = 0.2 to 4000 sec. In the formula, E-1 is × 10 −1 , E-2 is × 1
0 -2 , E-3 is × 10 -3 , and S -1 is / s
ec. (same as below)

【0013】以下に本発明を詳細に説明する。残留歪、
粒径、化学成分が変形抵抗に影響を及ぼすことは古くか
ら知られていたが、これらの影響を定量化して変形抵抗
式に取り入れた例は皆無であった。本発明は、塑性加工
に関する数値計算用として理想的な変形抵抗式を求め、
塑性加工プロセスに必要な荷重を予測する方法であり、
粒径、残留歪、化学成分が変形抵抗に及ぼす影響を定量
化し、塑性加工プロセスに必要な荷重を予測する方法で
ある。以下、Ni基耐熱合金インコネル718を例にと
って本発明を詳細に説明する。下記表1に示す化学成分
を有するNi基耐熱合金インコネル718を対象とし
て、変形抵抗に及ぼす粒径の影響を調査した。粒径の影
響を正確に評価するため、残留歪の存在しない初期状態
に調整し、加工中の温度および歪速度が一定の実験を行
った。
Hereinafter, the present invention will be described in detail. Residual strain,
It has long been known that the particle size and chemical composition affect the deformation resistance, but there has been no example of quantifying these effects and incorporating them into the deformation resistance formula. The present invention seeks an ideal deformation resistance formula for numerical calculation relating to plastic working,
It is a method to predict the load required for the plastic working process,
This method quantifies the effects of grain size, residual strain, and chemical composition on deformation resistance and predicts the load required for the plastic working process. Hereinafter, the present invention will be described in detail using the Ni-based heat-resistant alloy Inconel 718 as an example. The effect of the particle size on the deformation resistance was investigated for the Ni-based heat-resistant alloy Inconel 718 having the chemical components shown in Table 1 below. In order to accurately evaluate the effect of the grain size, an experiment was performed in which the temperature was adjusted to an initial state in which no residual strain was present, and the strain rate was constant during processing.

【0014】[0014]

【表1】 [Table 1]

【0015】変形抵抗σを表現する関係式としてCIN
GARAの式(シンガラの式)と呼ばれる以下の式
(2)を用いた。 σ=σP *((ε/εP)*exp(1−(ε/εP)))C ・・・式(2) ここで、σPおよびεP は特性値で、変形抵抗曲線上に
おける関係は図5に示されたとおりである。すなわち、
σP は変形抵抗の極大値、εP はσP における歪を意味
する。Cは応力指数である。図6は粒径doとパラメータ
UがσP に及ぼす影響を示す。パラメータUとZとの関
係はU=do0.05796 *Z0.2222であるので、図6よりZ
を求めることができる。Zは温度補償歪速度と呼ばれ、
以下の式(3)によって表現される。 Z=(dε/dt)*exp(Q/(8.31*T))・・・・式(3) ここで、Tは絶対温度、Qは変形の活性化エネルギーで
あり、表1に示す化学成分を有するNi基耐熱合金イン
コネル718の場合はQ=427.3KJ/mol であることは確
認済である。
As a relational expression expressing the deformation resistance σ, CIN
The following equation (2) called GARA equation (Singara equation) was used. .sigma. =. sigma.P * ((. epsilon./.epsilon.P)*exp(1-(.epsilon./.epsilon.P))) C Equation (2) where .sigma.P and .epsilon.P are characteristic values, and the relationship on the deformation resistance curve is shown in FIG. As shown in FIG. That is,
σP is the maximum value of the deformation resistance, and εP is the strain at σP. C is a stress index. FIG. 6 shows the effect of the particle size do and the parameter U on .sigma.p. Since the relationship between the parameters U and Z is U = do 0.05796 * Z 0.2222 , FIG.
Can be requested. Z is called the temperature compensation strain rate,
It is expressed by the following equation (3). Z = (dε / dt) * exp (Q / (8.31 * T)) (3) where T is the absolute temperature, Q is the activation energy of deformation, and the chemical components shown in Table 1. In the case of Ni-base heat-resistant alloy Inconel 718 having the following formula, it has been confirmed that Q = 427.3 KJ / mol.

【0016】図6から明らかなとおり、変形抵抗に及ぼ
す粒径の影響が的確に定量化されている。得られた相関
は、σP =5.422E-2*(do5.796E-2×Z2.222E-1
9.852E-1・・・式(4)となった。一方、図7はdoとパ
ラメータSがεP に及ぼす影響を示す。パラメータSと
Zとの関係はS=do0.3049*Z0.1087 であるので、図
7よりσP の場合と同様に、粒径の影響が的確に定量化
されている。得られた相関は、 εP =1.881E-3*do3.049E-1*Z1.87E-1 ・・・・式(5) となった。
As is clear from FIG. 6, the effect of the particle size on the deformation resistance is accurately quantified. The obtained correlation is σP = 5.422E-2 * (do 5.796E-2 × Z2.222E-1 )
9.852E-1 ... Equation (4) is obtained. On the other hand, FIG. 7 shows the effect of do and parameter S on εP. Since the relationship between the parameters S and Z is S = do 0.3049 * Z 0.1087 , the effect of the particle size is accurately quantified as in the case of σP from FIG. The obtained correlation was as follows: ε P = 1.881E-3 * do 3.049E-1 * Z 1.87E-1 ... Equation (5)

【0017】さらに、図8はdoとLがCに及ぼす影響を
示す。パラメータLとZとの関係はL=do-5.006E-1
2.271E-1であるので、図8よりσP の場合と同様に、
粒径の影響が的確に定量化されている。得られた相関
は、 C=0.7 *(1-exp(-1.821E-3 *(do -5.006E-1*Z2.271E-1))) ・・・・式(6) となった。以上により、変形抵抗に及ぼす粒径の影響が
定量化された。なお、変形抵抗式中の特性値や係数を粒
径の関数とすることが本発明の特徴であり、変形抵抗と
して志田の式などの他の関数系を用いた場合も同様の手
法によって粒径の影響をできるため、何ら問題はない。
FIG. 8 shows the influence of do and L on C. The relation between parameter L and Z is L = do -5.006E-1 *
Since it is Z 2.271E-1 , as in the case of σP from FIG.
The effect of particle size has been accurately quantified. The obtained correlation was as follows: C = 0.7 * (1-exp (-1.821E-3 * (do- 5.006E-1 * Z2.271E-1 )))) Equation (6) As described above, the influence of the particle size on the deformation resistance was quantified. It is a feature of the present invention that the characteristic value or coefficient in the deformation resistance formula is a function of the particle diameter, and the same method can be used when another function system such as Shida's equation is used as the deformation resistance. There is no problem.

【0018】残留歪は、多段加工工程における変形抵抗
の変化によって評価した。残留歪の定義は図1に示され
たとおりである。材料は表1の成分を有する粒径18
0.2μmのNi基耐熱合金インコネル718である。
残留歪の影響を正確に評価するため、残留歪の存在しな
い初期状態に調節し、加工中の温度および歪速度は一定
とした。そして、再結晶の起こらない条件において加工
を行った。一般に、残留歪の存在しない素材に2段加工
を与える場合の第2工程における残留歪εr は以下の式
(7)によって表現される。 εr =f(do、T、 dε/dt 、ε、t)・・・・・式(7) ここで、doは粒径、Tは加工温度、 dε/dt は歪速度、
εは第1工程の歪、tは工程間の時間である。調査の結
果、簡易的に以下の式群(8)〜(13)によって表現
できることが分かった。
The residual strain was evaluated based on the change in deformation resistance in the multi-stage processing step. The definition of the residual strain is as shown in FIG. The material has a particle size of 18 with the components in Table 1.
0.2 μm Ni-based heat-resistant alloy Inconel 718.
In order to accurately evaluate the influence of the residual strain, the temperature was adjusted to an initial state in which no residual strain was present, and the temperature and strain rate during processing were constant. Then, processing was performed under the condition that recrystallization does not occur. In general, the residual strain εr in the second step in the case where the material having no residual strain is subjected to two-step processing is expressed by the following equation (7). εr = f (do, T, dε / dt, ε, t) Equation (7) where do is the grain size, T is the processing temperature, dε / dt is the strain rate,
ε is the distortion of the first step, and t is the time between steps. As a result of the investigation, it was found that the expressions can be simply expressed by the following formula groups (8) to (13).

【0019】 残留歪εr =f(T、ε1 、t) ・・・・・・・・・式(8) =RR*ε1・・・・・・・・・・・・・・式(9) 残留率RR=1−R ・・・・・・・・・・・・・・・式(10) 回復率R =0.4 *(1−exp(−(t/ts)2.456 ))・・・式(11) 回復飽和時間ts=5.924 *((T−273 )/1000)-12.004 ・・・式(12) 式(9)、(10)、(11)は、残留歪の最大値は付
与された歪の60%であること、逆に言えば、回復の最
大値は付与された歪の40%であることを意味する。式
(11)、(12)は、回復の影響が飽和し残留歪が6
0%に達する時間は高温ほど短いことを意味する。変形
抵抗σを表現する関数系としては上記のCINGARA
の式を用いた。 σ=σP *((ε/εP)*exp(1−(ε/εP)))C ・・・式(2) σP 、εP 、Cは、すでに温度、歪速度、粒径の関数と
して定式化されている。
Residual strain εr = f (T, ε1, t) Equation (8) = RR * ε1 Equation (9) Residual rate RR = 1−R Equation (10) Recovery rate R = 0.4 * (1-exp (− (t / ts) 2.456 )) Equation (11) Recovery saturation time ts = 5.924 * ((T-273) / 1000) -12.004 Expression (12) In Expressions (9), (10), and (11), the maximum value of the residual strain is given. 60% of the applied strain, or conversely, the maximum value of the recovery is 40% of the applied strain. Equations (11) and (12) show that the effect of the recovery is saturated and the residual strain is 6
The time to reach 0% means shorter at higher temperatures. As a function system expressing the deformation resistance σ, the above CINGARA
Was used. σ = σP * ((ε / εP) * exp (1− (ε / εP))) C Equation (2) σP, εP, and C have already been formulated as functions of temperature, strain rate, and particle size. Have been.

【0020】第1工程でε1の歪が付与された場合の変
形抵抗σ1は、 σ1=σP*((ε1/εP)*exp(1−(ε1/ε
P)))C によって与えられる。一方、第2工程でε2の歪が付与
された場合の変形抵抗σ2は、 σ2=σP *((εEF/εP)*exp(1−(εEF/εP)))C 有効歪εEF=εr +ε2・・・・・・・式(13) によって表現できる。また、第3工程直前の残留歪は式
(9)から推測されるとおりRR*εEFで与えられ、第3
工程でε3の歪が付与される場合の変形抵抗σ3は、 σ3=σP *((( RR*εEF+ε3/εP)*exp((1−
(RR +ε3) /εP)))C となる。RR*εEF+ε3は第3工程の有効歪で、式(1
3)と同形である。
The deformation resistance σ1 when a strain of ε1 is applied in the first step is as follows: σ1 = σP * ((ε1 / εP) * exp (1- (ε1 / ε
P))) given by C. On the other hand, when the strain of ε2 is applied in the second step, the deformation resistance σ2 is σ2 = σP * ((εEF / εP) * exp (1- (εEF / εP))) C effective strain εEF = εr + ε2 · ... It can be expressed by equation (13). Further, the residual strain immediately before the third step is given by RR * εEF as estimated from the equation (9).
The deformation resistance σ3 when a strain of ε3 is applied in the process is as follows: σ3 = σP * (((RR * εEF + ε3 / εP) * exp ((1-
(RR + ε3) / εP))) C RR * εEF + ε3 is the effective strain in the third step, which is expressed by the equation (1)
It is the same as 3).

【0021】第4工程以降も同様な手法によって有効歪
を考慮でき、残留歪が存在する場合の変形抵抗を正確に
評価できる。加工条件や材料によって粒径と歪速度の影
響の導入が高精度化に有効である。また、第1工程と第
2工程で温度が異なる場合も、回復飽和時間に温度変化
の影響を導入することで残留歪を表現できるため何ら問
題はない。第1工程と第2工程で温度や歪速度が異なる
場合についても、変形抵抗式が温度と歪速度を変数に含
むため計算上の問題はない。なお、変形抵抗式中の歪の
項を有効歪に置換することが本発明の特徴であり、変形
抵抗として志田の式などの他の関数系を用いた場合も同
様の手法によって残留歪の影響を導入できるため、何ら
問題はない。さらに、残留歪あるいは有効歪として別の
関数系を用いても何ら問題ない。
In the fourth and subsequent steps, the effective strain can be taken into account by the same method, and the deformation resistance in the presence of residual strain can be accurately evaluated. The introduction of the influence of the grain size and the strain rate depending on the processing conditions and the material is effective for improving the accuracy. Also, when the temperature is different between the first step and the second step, there is no problem because the residual strain can be expressed by introducing the effect of the temperature change into the recovery saturation time. Even when the temperature and the strain rate are different between the first step and the second step, there is no problem in calculation because the deformation resistance equation includes the temperature and the strain rate as variables. It is a feature of the present invention that the distortion term in the deformation resistance equation is replaced with an effective strain. In the case where another function system such as Shida's equation is used as the deformation resistance, the effect of the residual strain is obtained by the same method. There is no problem. Further, there is no problem even if another function system is used as the residual strain or the effective strain.

【0022】下記表2に示す化学成分を有するNi基耐
熱合金インコネル718を対象とし、変形抵抗に及ぼす
化学成分の影響を調査した。化学成分の影響を正確に評
価するため、残留歪の存在しない初期状態に調節し、粒
径は180.2μmで共通とした。さらに、加工中の温
度および歪速度は一定とした。変形抵抗σを表現する関
数系としては上記のCINGARAの式を用いた。 σ=σP *((ε/εP)*exp(1−(ε/εP)))C ・・・式(2) σP 、εP 、Cは、すでにZと粒径の関数として定式化
されており、εの項を有効歪に置換することによって残
留歪の影響も考慮できる。式(3)が示すとおり、Zは
活性化エネルギーQを含むため、Qを成分の関数とする
ことによって変形抵抗に及ぼす化学成分の影響を導入で
きる。
The influence of the chemical components on the deformation resistance was investigated for the Ni-base heat-resistant alloy Inconel 718 having the chemical components shown in Table 2 below. In order to accurately evaluate the influence of the chemical components, the particle size was adjusted to an initial state in which no residual strain was present, and the particle size was set to 180.2 μm. Further, the temperature and the strain rate during processing were constant. As the function system expressing the deformation resistance σ, the above-mentioned CINGARA equation was used. σ = σP * ((ε / εP) * exp (1- (ε / εP))) C Equation (2) σP, εP, and C have already been formulated as a function of Z and particle size. , Ε by the effective strain, the influence of the residual strain can be considered. As shown in equation (3), since Z includes the activation energy Q, the influence of chemical components on deformation resistance can be introduced by making Q a function of components.

【0023】[0023]

【表2】 [Table 2]

【0024】一般的な方法によって算出された活性化エ
ネルギーは、表2の下限材が389.5KJ/mol、中間材
が418.3KJ/mol、上限材が435.2KJ/molであ
る。下限材の活性化エネルギー基準として、適当な方法
を用いてNi基耐熱合金インコネル718の活性化エネ
ルギーを成分の関数とした。得られた相関は、 Q=389.5 +3.63*(Cr-17)0.6664 +13.02 *(Mo-2.8)0.6004 +12.94 *(Al-0.2)0.6678+14.90 *(Ti-0.65)0.5972 +10.8*(Nb-4.7)0.6569 ・・・・・式(14) ここで、Crなどの各元素は材料に含有される重量%を意
味する。以上により、変形抵抗に及ぼす成分の影響が定
量化された。複数のNi基耐熱合金を対象として同様の
処理を実施すれば、より広い範囲で成分の影響を考慮で
き、全てのNi基耐熱合金の変形抵抗を正確に評価する
ことも可能である。さらに、鉄鋼材料においても活性化
エネルギーを成分の関数とすることによって、幅広い鋼
種系の変形抵抗を正確に評価することも可能である。な
お、変形抵抗式として活性化エネルギーの項を含まない
関数系を用いた場合も、同様な手法によって特性値や係
数を成分の関数とすれば成分の影響を導入できるため、
何ら問題はない。
The activation energies calculated by a general method are 389.5 KJ / mol for the lower limit material, 418.3 KJ / mol for the intermediate material, and 435.2 KJ / mol for the upper limit material in Table 2. The activation energy of the Ni-based heat-resistant alloy Inconel 718 was used as a function of the component as a standard for the activation energy of the lower limit material by using an appropriate method. The resulting correlation, Q = 389.5 + 3.63 * ( Cr-17) 0.6664 +13.02 * (Mo-2.8) 0.6004 +12.94 * (Al-0.2) 0.6678 +14.90 * (Ti-0.65) 0.5972 +10 .8 * (Nb-4.7) 0.6569 Expression (14) Here, each element such as Cr means the weight% contained in the material. As described above, the effect of the component on the deformation resistance was quantified. If the same processing is performed on a plurality of Ni-based heat-resistant alloys, the influence of the components can be considered in a wider range, and the deformation resistance of all Ni-based heat-resistant alloys can be accurately evaluated. Further, even in steel materials, it is possible to accurately evaluate the deformation resistance of a wide range of steel types by using the activation energy as a function of the component. Even when a function system that does not include the term of the activation energy is used as the deformation resistance equation, the influence of the component can be introduced by making the characteristic value or coefficient a function of the component by the same method.
There is no problem at all.

【0025】表3に示すとおり、加工中の温度および歪
速度の状態によって変形抵抗は4種に分類される。グル
ープ1および3は加工中の温度変化を計算によって補正
した場合も含む。また、グループ1および2は加工中の
歪速度を計算によって補正した場合も含む。各グループ
に属する変形抵抗式として多くの関数系が提案されてい
る。本発明は、変形抵抗式中の特性値や係数を粒径の関
数とすること、変形抵抗式中の歪の項を有効歪に置換す
ること、変形抵抗式中の特性値や係数を成分の関数とす
ることを特徴としているため、これらすべての関数系に
適用可能である。
As shown in Table 3, the deformation resistance is classified into four types depending on the temperature and strain rate during processing. Groups 1 and 3 also include cases where the temperature change during processing is corrected by calculation. Groups 1 and 2 also include cases where the strain rate during processing is corrected by calculation. Many functional systems have been proposed as deformation resistance equations belonging to each group. The present invention is to make the characteristic values and coefficients in the deformation resistance equation a function of the particle diameter, replace the strain term in the deformation resistance equation with effective strain, and convert the characteristic values and coefficients in the deformation resistance equation to components. Since it is characterized by being a function, it can be applied to all these functional systems.

【0026】[0026]

【表3】 [Table 3]

【0027】本発明の変形抵抗式群の1例を式群Aとし
て以下に示す。素材はNi基耐熱合金インコネル718
である。 式群A 変形抵抗σ=f(粒径、温度、歪速度、有効歪、成分) =σP *((εEF/εP)*exp(1−(εEF/εP)))C σP ( 極大応力)=5.422E-2*(do5.796E-2*Z
2.222E-19.852E-1 εP ( σP における歪) =1.881E-3*do3.049E-1*Z
1.087E-1 C(応力指数)=0.7 *(1-exp(-1.821E-3* (do
-5.006E-1 *Z2.271E-1))) Z(パラメータ)=(dε/dt)*exp(Q/(8.31*
T)) Q(活性化エネルギー)=389.5 +3.63*(Cr-17)
0.6664 +13.02 *(Mo-2.8)0.6004 +12.94 *(Al-0.2)0.6678
14.90 *(Ti-0.65)0.5972 +10.8*(Nb-4.7)0.6569 εEF(有効歪)=εr +ε εr (残留歪)=(1−0.4 *(1−exp(−(t/t
s)2.456 ))) * ε ts(回復飽和時間)=5.924 *((T−273 )/1000)
-12.004
One example of the deformation resistance formula group of the present invention is shown below as Formula Group A. The material is Ni-based heat-resistant alloy Inconel 718
It is. Equation group A Deformation resistance σ = f (particle size, temperature, strain rate, effective strain, component) = σP * ((εEF / εP) * exp (1- (εEF / εP))) C σP (maximum stress) = 5.422E-2 * (do 5.796E-2 * Z
2.222E-1 ) 9.852E-1 εP (strain at σP) = 1.881E-3 * do 3.049E-1 * Z
1.087E-1 C (stress index) = 0.7 * (1-exp (-1.821E-3 * (do
-5.006E-1 * Z 2.271E-1 ))) Z (parameter) = (dε / dt) * exp (Q / (8.31 *
T)) Q (activation energy) = 389.5 + 3.63 * (Cr-17)
0.6664 +13.02 * (Mo-2.8) 0.6004 +12.94 * (Al-0.2) 0.6678 +
14.90 * (Ti-0.65) 0.5972 +10.8 * (Nb-4.7) 0.6569 εEF (effective strain) = εr + εr (residual strain) = (1-0.4 * (1-exp (-(t / t
s) 2.456 ))) * ε ts (recovery saturation time) = 5.924 * ((T-273) / 1000)
-12.004

【0028】変域は、以下のとおりである。 do( 粒径) =10μm〜800μm T(温度)=1123K〜1423K dε/dt (歪速度)=0.001S-1〜100S-1 ε(歪)=0.05〜1.50 t(工程間時間)=0.2〜4000secThe domain is as follows. do (particle size) = 10 μm to 800 μm T (temperature) = 1123 K to 1423 K dε / dt (strain rate) = 0.001 S −1 to 100 S −1 ε (strain) = 0.05 to 1.50 t (interprocess Time) = 0.2-4000sec

【0029】一方、従来の定式化手法によって得られた
変形抵抗式群の1例を式群Bとして以下に示す。素材は
表1の成分を有するNi基耐熱合金インコネル718で
ある。式群B 変形抵抗σ=f(温度、歪速度、歪) =σP *((ε/εP)*exp(1-(ε/εP)))C σP ( 極大応力)=5.422E-2*Z2.222E-1 εP ( σP における歪) =1.881E-3*Z1.087E-1 C(応力指数)=0.7 *(1-exp(-1.821E-1*
2.271E-1)) Z(パラメータ)=(dε/dt)*exp(Q/(8.31*
T)) Q(活性化エネルギー)=427300 Qとしては、表1に示す化学成分を有するNi基耐熱合
金インコネル718について確認された値を用いた。変
域は式群Aの場合と共通である。
On the other hand, an example of a group of deformation resistance formulas obtained by a conventional formulation method is shown below as a formula group B. The material is Ni-based heat-resistant alloy Inconel 718 having the components shown in Table 1. Formula group B Deformation resistance σ = f (temperature, strain rate, strain) = σP * ((ε / εP) * exp (1- (ε / εP))) C σP (maximum stress) = 5.422E-2 * Z 2.222E-1 εP (strain at σP) = 1.818E-3 * Z 1.087E-1 C (stress index) = 0.7 * (1-exp (-1.821E-1 *
Z 2.271E-1 )) Z (parameter) = (dε / dt) * exp (Q / (8.31 *
T)) Q (activation energy) = 427300 As Q, the value confirmed for the Ni-based heat-resistant alloy Inconel 718 having the chemical components shown in Table 1 was used. The domain is common to the case of the formula group A.

【0030】[0030]

【発明の実施の形態】以下、本発明の実施例を説明す
る。 実施例1 粒径の異なるものの成形荷重について 上記表1に示した化学成分を有するNi基耐熱合金イン
コネル718の円柱状素材を据え込み鍛造した場合の荷
重を測定し、計算から予測される値と比較した。素材
は、残留歪のない初期状態に調整した。初期粒径は4
9.6μm〜655.1μmの範囲に変化させた。素材
の初期形状は直径300mm×高さ400mmである。
加工によって高さ200mmまで圧縮する。加工温度は
1123Kおよび1393K、歪速度は0.01S
-1(0.01/sec)である。変形抵抗としては、上記式群A
(本発明に用いるもの)とB群(従来の変形抵抗式)を
用いる。結果を下記表4に示す。
Embodiments of the present invention will be described below. Example 1 Molding load of particles having different particle diameters The load in the case of upsetting and forging a columnar material of Ni-base heat-resistant alloy Inconel 718 having the chemical components shown in Table 1 above was measured, and a value predicted from the calculation was obtained. Compared. The material was adjusted to an initial state without residual strain. Initial particle size is 4
The range was changed from 9.6 μm to 655.1 μm. The initial shape of the material is 300 mm in diameter × 400 mm in height.
It is compressed to a height of 200 mm by processing. Processing temperature is 1123K and 1393K, strain rate is 0.01S
-1 (0.01 / sec). As the deformation resistance, the above formula group A
(Used in the present invention) and Group B (conventional deformation resistance type) are used. The results are shown in Table 4 below.

【0031】[0031]

【表4】 [Table 4]

【0032】定量化されていない従来の式を用いた場
合、当然ながら、粒径によらず予測される成形荷重は同
一である。しかし図2が示すとおり、実際には変形抵抗
が粒径の影響を受けるため成形荷重も粒径によって変化
する。従来の変形抵抗式では、成形荷重の正確な予測は
できない。本発明に用いる変形抵抗式を適用した場合、
このような実際の現象を的確に表現できるため、非常に
精度よく成形荷重を予測できた。
When a conventional formula that has not been quantified is used, the predicted molding load is, of course, the same regardless of the particle size. However, as shown in FIG. 2, since the deformation resistance is actually affected by the particle size, the forming load also changes according to the particle size. With the conventional deformation resistance formula, it is not possible to accurately predict the forming load. When the deformation resistance formula used in the present invention is applied,
Since such actual phenomena can be accurately expressed, the molding load can be predicted with high accuracy.

【0033】実施例2 多段加工における成形荷重について 上記表1示した化学成分を有するNi基耐熱合金インコ
ネル718の直径300mm×高さ400mmの円柱状
体を素材とし、残留歪のない初期状態に調節した。初期
粒径は97.8μmである。工程は下記円柱状素材の4
段据え込み鍛造であり、各工程の加工条件は加工温度1
123K、歪速度0.01S-1、歪0.2、工程間の時
間10秒で共通である。各工程の歪は以下の式(15)
によって定義した。 ε=In( 加工前の素材の高さ/加工後の素材の高さ) ・・・・式(15) 変形抵抗としては、上記式群A(本発明に用いるもの)
とB群(従来の変形抵抗式)を用いる。結果を下記表5
に示す。
Example 2 Molding load in multi-stage processing A Ni-base heat-resistant alloy Inconel 718 having the chemical components shown in Table 1 above was used as a columnar body having a diameter of 300 mm and a height of 400 mm, and was adjusted to an initial state without residual strain. did. The initial particle size is 97.8 μm. The process is the following 4 of cylindrical material
It is a step upset forging, and the processing conditions in each step are processing temperature 1
123K, a strain rate of 0.01 S −1 , a strain of 0.2, and a time between processes of 10 seconds are common. The distortion of each process is given by the following equation (15).
Defined by ε = In (the height of the material before processing / the height of the material after processing) Expression (15) As the deformation resistance, the above-mentioned expression group A (used in the present invention)
And group B (conventional deformation resistance type). The results are shown in Table 5 below.
Shown in

【0034】[0034]

【表5】 [Table 5]

【0035】残留歪の影響が定量化されていない従来の
式を用いた場合、当然ながら工程によらず、予測される
成形荷重は同一である。しかし図1が示すとおり、実際
には変形抵抗が残留歪の影響を受けるため成形荷重も工
程によって変化する。したがって、従来の変形抵抗式で
は成形荷重の正確な予測ができない。本発明に用いる変
形抵抗式を適用した場合、このような実際の現象を的確
に表現できるため、非常に精度よく成形荷重を予測でき
た。
When a conventional equation in which the effect of residual strain is not quantified is used, the predicted forming load is the same regardless of the process. However, as shown in FIG. 1, since the deformation resistance is actually affected by the residual strain, the forming load also changes depending on the process. Therefore, accurate prediction of the forming load cannot be performed by the conventional deformation resistance method. When the deformation resistance formula used in the present invention is applied, such actual phenomena can be accurately expressed, so that the forming load can be predicted with extremely high accuracy.

【0036】実施例3 混合組織を加工した場合の荷重について 上記表1示した化学成分を有するNi基耐熱合金インコ
ネル718の厚さ50mm×幅さ200mm×長さ40
0mmの板状体を素材とし、残留歪のない初期状態に調
節した。初期粒径は275.4μmである。工程は板状
素材の2段圧延であり、各工程の加工条件は加工温度1
273K、歪速度0.1S-1、歪0.2、工程間の時間
5秒で共通である。各工程の歪は上記式(15)によっ
て定義される。組織予測式から得られる第2工程の直前
の組織は、再結晶率28%、再結晶領域の粒径37μ
m、未結晶結晶領域の粒径222.3μm、未結晶結晶
領域の残留歪0.136である。変形抵抗としては、上
記式群A(本発明に用いるもの)とB群(従来の変形抵
抗式)を用いる。結果を下記表6に示す。
Example 3 Load when a mixed structure was processed The thickness of the Ni-based heat-resistant alloy Inconel 718 having the chemical components shown in Table 1 above was 50 mm in thickness, 200 mm in width, and 40 in length.
A 0 mm plate was used as a raw material and adjusted to an initial state without residual strain. The initial particle size is 275.4 μm. The process is a two-stage rolling of a plate-shaped material, and the processing conditions in each process are a processing temperature of 1
273 K, a strain rate of 0.1 S −1 , a strain of 0.2, and a time between processes of 5 seconds are common. The distortion in each step is defined by the above equation (15). The microstructure immediately before the second step obtained from the microstructure prediction formula has a recrystallization ratio of 28% and a particle size of 37 μm in the recrystallization region.
m, the grain size of the amorphous region is 222.3 μm, and the residual strain of the amorphous region is 0.136. As the deformation resistance, the above formula group A (used in the present invention) and group B (conventional deformation resistance formula) are used. The results are shown in Table 6 below.

【0037】[0037]

【表6】 [Table 6]

【0038】残留歪と粒径の影響が定量化されていない
従来の変形抵抗式を用いた場合、当然ながら工程によら
ず予測される成形荷重は同一でなる。しかし図3が示す
とおり、実際には変形抵抗が残留歪と粒径の影響を受け
るため成形荷重も工程によって変化する。従来の変形抵
抗式では成形荷重の正確な予測はできない。本発明に用
いる変形抵抗式を適用した場合、28%の領域が37μ
mの粒径を有する再結晶部(残留歪なし)であり、72
%の領域が222.3μmの粒径と0.136の残留歪
を有する未結晶部という組織状態の変形抵抗を的確に表
現できるため、非常に精度よく予測できた。
When a conventional deformation resistance formula in which the effects of the residual strain and the particle size are not quantified is used, the predicted forming load is the same regardless of the process. However, as shown in FIG. 3, since the deformation resistance is actually affected by the residual strain and the particle size, the forming load also changes depending on the process. The conventional deformation resistance method cannot accurately predict the forming load. When the deformation resistance formula used in the present invention is applied, the area of 28% is 37 μm.
a recrystallized portion having a particle size of m (no residual strain);
% Region can accurately represent the deformation resistance of the structure state of an amorphous portion having a particle size of 222.3 μm and a residual strain of 0.136, so that the prediction could be made very accurately.

【0039】実施例4 再結晶率について 上記表1に示した化学成分を有するNi基耐熱合金の厚
さ50mm×幅200mm×長さ400mmの板状素材
を残留歪のない初期状態に調節した。工程は板状素材の
2段圧延であり、第2工程直後に急冷された材料の組織
を調査した。加工条件は表7および表8に示した。計算
には上記式群A(本発明に用いるもの)とB群(従来の
変形抵抗式)を用いる。結果を下記表7、8に示す。
Example 4 Recrystallization rate A Ni-based heat-resistant alloy having the chemical components shown in Table 1 and having a thickness of 50 mm × 200 mm × 400 mm was adjusted to an initial state without residual strain. The process was a two-stage rolling of a plate-shaped material, and the structure of the material quenched immediately after the second process was investigated. The processing conditions are shown in Tables 7 and 8. For the calculation, the above formula group A (used in the present invention) and group B (conventional deformation resistance formula) are used. The results are shown in Tables 7 and 8 below.

【0040】[0040]

【表7】 [Table 7]

【0041】[0041]

【表8】 [Table 8]

【0042】本発明に用いる変形抵抗式を適用した場合
の組織の予測精度は非常に高い。これは、変形抵抗を正
確に表現できるため加工発熱も正確に計算されることが
理由と考えられる。
The accuracy of tissue prediction when the deformation resistance formula used in the present invention is applied is very high. This is probably because the deformation resistance can be accurately expressed, and the heat generated during processing is also accurately calculated.

【0043】実施例5 多段加工における荷重、再結晶率および粒径について 上記表2に示した化学成分を有するNi基耐熱合金の初
期形状が厚さ50mm×幅さ200mm×長さ400m
mの板状体を素材とし、残留歪のない初期状態に調節し
た。初期粒径は275.4μmである。工程は板状素材
の4段圧延であり、各工程の加工条件は加工温度127
3K、歪速度0.1S-1、歪0.2、工程間の時間10
秒で共通である。各工程の歪は上記式(15)によって
定義される。再結晶率や再結晶粒径としては、第4工程
直後に急冷された素材の組織を対象とした。変形抵抗と
しては、上記式群A(本発明に用いるもの)とB群(従
来の変形抵抗式)を用いる。結果を下記表9(荷重)、
10(再結晶率)、11(再結晶粒径)に示す。
Example 5 Load, Recrystallization Ratio and Particle Size in Multi-stage Processing The initial shape of the Ni-base heat-resistant alloy having the chemical components shown in Table 2 was 50 mm thick × 200 mm wide × 400 m long.
m was used as a material and adjusted to an initial state without residual strain. The initial particle size is 275.4 μm. The process is four-stage rolling of a plate-like material, and the processing conditions in each process are a processing temperature of 127.
3K, strain rate 0.1S -1 , strain 0.2, time between processes 10
Common in seconds. The distortion in each step is defined by the above equation (15). Regarding the recrystallization rate and the recrystallized grain size, the structure of the material quenched immediately after the fourth step was used. As the deformation resistance, the above formula group A (used in the present invention) and group B (conventional deformation resistance formula) are used. The results are shown in Table 9 below (load),
The results are shown in 10 (recrystallization rate) and 11 (recrystallized particle size).

【0044】[0044]

【表9】 [Table 9]

【0045】[0045]

【表10】 [Table 10]

【0046】[0046]

【表11】 [Table 11]

【0047】これらの結果より、本発明に用いる変形抵
抗式を適用した場合、従来の変形抵抗式を用いたものよ
り変形抵抗を正確に予測することができるため、再結晶
率および再結晶粒径も正確に予測することができること
が分かる。
From these results, when the deformation resistance equation used in the present invention is applied, the deformation resistance can be more accurately predicted than that obtained by using the conventional deformation resistance equation. It can be seen that can also be accurately predicted.

【0048】[0048]

【発明の効果】本発明の金属材料の塑性加工に関する変
形抵抗を予測する方法は、素材の物性並びに素材に加え
る物理条件全ての関数として求めるので、変形抵抗を正
確に予測することができ、またその結果として正確な再
結晶率、再結晶粒径および加工力を予測することができ
るという優れた効果を奏する。
According to the method of the present invention for predicting the deformation resistance relating to plastic working of a metal material, since the deformation resistance is obtained as a function of all the physical properties of the material and the physical conditions applied to the material, the deformation resistance can be accurately predicted. As a result, an excellent effect of being able to accurately predict the recrystallization rate, the recrystallized grain size, and the processing power is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】変形抵抗に及ぼす残留歪みの影響を説明するた
めの図で、aは2段圧延の模式図であり、bは従来の考
え方を説明するための図であり、cは実際の現象を説明
するための図である。
FIG. 1 is a diagram for explaining the effect of residual strain on deformation resistance, where a is a schematic diagram of two-stage rolling, b is a diagram for explaining a conventional concept, and c is an actual phenomenon. FIG.

【図2】変形抵抗に及ぼす粒径の影響を説明するための
グラフである。
FIG. 2 is a graph for explaining the effect of the particle size on the deformation resistance.

【図3】混合組織の加工における変形抵抗を説明するた
めの図で、aは2段圧延の模式図であり、bは従来の考
え方を説明するための図であり、cは実際の現象を説明
するための図である。
FIG. 3 is a diagram for explaining deformation resistance in the processing of a mixed structure, where a is a schematic diagram of two-stage rolling, b is a diagram for explaining a conventional concept, and c is an actual phenomenon. It is a figure for explaining.

【図4】変形抵抗に及ぼす化学成分の影響を説明するた
めのグラフである。
FIG. 4 is a graph for explaining the effect of a chemical component on deformation resistance.

【図5】Ni基耐熱合金の応力(STRESS) と歪み(STRAI
N)の関係を示すグラフである。
Fig. 5 Stress (STRESS) and strain (STRAI) of Ni-base heat-resistant alloy
9 is a graph showing the relationship of N).

【図6】Ni基耐熱合金のσP(ピーク応力)に及ぼす
粒径と歪速度と温度の影響を示すグラフである。
FIG. 6 is a graph showing the influence of grain size, strain rate and temperature on σP (peak stress) of a Ni-base heat-resistant alloy.

【図7】Ni基耐熱合金のεP (σPのときの歪み)に
及ぼす粒径と歪速度と温度の影響を示すグラフである。
FIG. 7 is a graph showing the effects of grain size, strain rate, and temperature on εP (strain at σP) of a Ni-base heat-resistant alloy.

【図8】Ni基耐熱合金のC(応力指数)に及ぼす粒径
と歪速度と温度の影響を示すグラフである。
FIG. 8 is a graph showing the influence of grain size, strain rate and temperature on C (stress index) of a Ni-base heat-resistant alloy.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属材料の塑性加工に関する変形抵抗を
予測する方法において、変形抵抗を加工温度、歪速度、
歪に加えて、残留歪、粒径、化学成分のうちの2項目以
上を変数として加えた下記一般式のいずれかを用いて求
めることを特徴とする金属材料の塑性加工に関する変形
抵抗を予測する方法。 一般式: 変形抵抗=f(温度、歪速度、歪、残留歪、粒径) 変形抵抗=f(温度、歪速度、歪、残留歪、化学成分) 変形抵抗=f(温度、歪速度、歪、粒径、化学成分) 変形抵抗=f(温度、歪速度、歪、残留歪、粒径、化学
成分)
In a method for predicting deformation resistance related to plastic working of a metal material, the deformation resistance is determined by a processing temperature, a strain rate,
The deformation resistance related to plastic working of a metal material, which is obtained by using one of the following general formulas in which two or more items of residual strain, particle size, and chemical component in addition to strain are added as variables, is predicted. Method. General formula: Deformation resistance = f (temperature, strain rate, strain, residual strain, particle size) Deformation resistance = f (temperature, strain rate, strain, residual strain, chemical component) Deformation resistance = f (temperature, strain rate, strain) , Particle size, chemical component) Deformation resistance = f (temperature, strain rate, strain, residual strain, particle size, chemical component)
【請求項2】 Ni合金の塑性加工に関する変形抵抗を
予測する方法において、変形抵抗σを下記式によって求
めることを特徴とするNi合金の塑性加工に関する変形
抵抗を予測する方法。 式:σ=σP ×((εEF/εP)×exp(1−(εEF/ε
P)))C 但し、式中の σP ( 極大応力)=5.422 E-2 ×(do5.796E-2×Z
2.222E-19.852E-1 εP ( σP における歪) =1.881E-3×do3.049E-1×Z
1.087E-1 C(応力指数)=0.7 ×(1-exp(-1.821E-3× (do
-5.006E-1 ×Z2.271E-1))) Z(パラメータ)=(dε/dt)×exp(Q/(8.31×
T)) Q(活性化エネルギー)=389.5 +3.63×(Cr-17)
0.6664 +13.02 ×(Mo-2.8)0.6004+12.94 ×(Al-0.2)0.6678 +14.90 ×(Ti-0.65)0.5972 +10.8×(Nb-4.7)0.6569 εEF(有効歪)=εr +ε εr (残留歪)=(1−0.4 ×(1−exp(−(t/t
s)2.456 ))) ×ε ts(回復飽和時間)=5.924 ×((T−273 )/1000)
-12.004 do( 粒径) =10μm〜800μm T(温度)=1123K〜1423K dε/dt (歪速度)=0.001S-1〜100S-1 ε(歪)=0.05〜1.50 t(工程間時間)=0.2〜4000sec である。なお、式中のE−1は×10-1、E−2は×1
-2、およびE−3は×10-3のことである。
2. A method for predicting the deformation resistance of a Ni alloy according to the plastic working, wherein the deformation resistance is determined by the following equation. Formula: σ = σP × ((εEF / εP) × exp (1- (εEF / ε
P))) C where σP (maximum stress) in the formula = 5.422 E-2 × (do 5.796E-2 × Z
2.222E-1 ) 9.852E-1 εP (strain at σP) = 1.881E-3 × do 3.049E-1 × Z
1.087E-1 C (stress index) = 0.7 x (1-exp (-1.821E-3 x (do
-5.006E-1 × Z 2.271E-1 ))) Z (parameter) = (dε / dt) × exp (Q / (8.31 ×
T)) Q (activation energy) = 389.5 + 3.63 x (Cr-17)
0.6664 +13.02 × (Mo-2.8) 0.6004 +12.94 × (Al-0.2) 0.6678 +14.90 × (Ti-0.65) 0.5972 + 10.8 × (Nb-4.7) 0.6569 εEF ( effective strain) = εr + ε εr (Residual strain) = (1-0.4 × (1-exp (-(t / t
s) 2.456 ))) × ε ts (recovery saturation time) = 5.924 × ((T-273) / 1000)
-12.004 do (particle size) = 10 μm to 800 μm T (temperature) = 1123 K to 1423 K dε / dt (strain rate) = 0.001 S −1 to 100 S −1 ε (strain) = 0.05 to 1.50 t ( (Inter-process time) = 0.2 to 4000 sec. In the formula, E-1 is × 10 −1 , E-2 is × 1
0 −2 and E−3 are × 10 −3 .
JP9336563A 1997-11-21 1997-11-21 Method for estimating deformation resistance concerning plastic working of metallic material Pending JPH11156413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9336563A JPH11156413A (en) 1997-11-21 1997-11-21 Method for estimating deformation resistance concerning plastic working of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9336563A JPH11156413A (en) 1997-11-21 1997-11-21 Method for estimating deformation resistance concerning plastic working of metallic material

Publications (1)

Publication Number Publication Date
JPH11156413A true JPH11156413A (en) 1999-06-15

Family

ID=18300444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9336563A Pending JPH11156413A (en) 1997-11-21 1997-11-21 Method for estimating deformation resistance concerning plastic working of metallic material

Country Status (1)

Country Link
JP (1) JPH11156413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328472A1 (en) * 2003-06-25 2005-01-27 Abb Patent Gmbh Method for cold rolling metallic strip
JP2007534493A (en) * 2004-01-23 2007-11-29 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method for improving process stability in hot rolling of steel plate or NE steel plate, especially absolute thickness accuracy and equipment stability
JP2010160028A (en) * 2009-01-07 2010-07-22 Toshiba Corp Method for evaluating breaking strength of different material joint part
JP2017062205A (en) * 2015-09-25 2017-03-30 新日鐵住金株式会社 Calculation method of deformation resistance curve in weld zone, manufacturing method of component including weld zone, program, and computer readable-recording medium having program recorded thereon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328472A1 (en) * 2003-06-25 2005-01-27 Abb Patent Gmbh Method for cold rolling metallic strip
JP2007534493A (en) * 2004-01-23 2007-11-29 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method for improving process stability in hot rolling of steel plate or NE steel plate, especially absolute thickness accuracy and equipment stability
KR101140577B1 (en) 2004-01-23 2012-05-02 에스엠에스 지마크 악티엔게젤샤프트 Method for increasing the process stability, particularly the absolute thickness precision and the installation safety during hot rolling of steel or nonferrous materials
JP2010160028A (en) * 2009-01-07 2010-07-22 Toshiba Corp Method for evaluating breaking strength of different material joint part
JP2017062205A (en) * 2015-09-25 2017-03-30 新日鐵住金株式会社 Calculation method of deformation resistance curve in weld zone, manufacturing method of component including weld zone, program, and computer readable-recording medium having program recorded thereon

Similar Documents

Publication Publication Date Title
Park et al. Hot forging of a nickel-base superalloy
Lin et al. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate
Medeiros et al. Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy
Chan et al. Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy
US5124121A (en) Titanium base alloy for excellent formability
Kim et al. Study on constitutive relation of AISI 4140 steel subject to large strain at elevated temperatures
Kim et al. Modeling of AGS and recrystallized fraction of microalloyed medium carbon steel during hot deformation
Pu et al. Development of constitutive relationships for the hot deformation of boron microalloying TiAl Cr V alloys
Ayres SHAPESET: a process to reduce sidewall curl springback in high-strength steel rails
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
US5328530A (en) Hot forging of coarse grain alloys
Chunlei et al. Prediction of the flow stress of Al6061 at hot deformation conditions
Li et al. The effect of prestrain and subsequent annealing on the mechanical behavior of AA5182-O
Chan et al. Fundamental aspects of fatigue and fracture in a TiAl sheet alloy
Xu et al. Modeling of flow behavior and microstructure evolution for Mg-6Gd-5Y-0.3 Zr alloy during hot deformation using a unified internal state variable method
CN107567506A (en) Beta-titanium alloy plate for high temperature application
JP5776850B2 (en) Titanium sheet
US5662749A (en) Supersolvus processing for tantalum-containing nickel base superalloys
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
JPH11156413A (en) Method for estimating deformation resistance concerning plastic working of metallic material
Aliakbari Sani et al. Development of processing map for InX-750 superalloy using hyperbolic sinus equation and ANN model
Jackson et al. Application of novel technique to examine thermomechanical processing of near β alloy Ti–10V–2Fe–3Al
EP1733065A1 (en) Refractory metal pots
US4375375A (en) Constant energy rate forming
Lee et al. Comparison of prediction methods for low-cycle fatigue life of HIP superalloys at elevated temperatures for turbopump reliability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205