EP1744831B1 - Verfahren und vorrichtung zur sammlung von suspendierten partikeln - Google Patents

Verfahren und vorrichtung zur sammlung von suspendierten partikeln Download PDF

Info

Publication number
EP1744831B1
EP1744831B1 EP05747443A EP05747443A EP1744831B1 EP 1744831 B1 EP1744831 B1 EP 1744831B1 EP 05747443 A EP05747443 A EP 05747443A EP 05747443 A EP05747443 A EP 05747443A EP 1744831 B1 EP1744831 B1 EP 1744831B1
Authority
EP
European Patent Office
Prior art keywords
particles
compartment
electrodes
electrode
collecting area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05747443A
Other languages
English (en)
French (fr)
Other versions
EP1744831A1 (de
EP1744831B8 (de
Inventor
Thomas Schnelle
Torsten Müller
Jörg KENTSCH
Frank Grom
Martin Stelzle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NMI Naturwissenschaftliches und Medizinisches Institut
Original Assignee
PerkinElmer Cellular Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PerkinElmer Cellular Technologies Germany GmbH filed Critical PerkinElmer Cellular Technologies Germany GmbH
Publication of EP1744831A1 publication Critical patent/EP1744831A1/de
Application granted granted Critical
Publication of EP1744831B1 publication Critical patent/EP1744831B1/de
Publication of EP1744831B8 publication Critical patent/EP1744831B8/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]

Definitions

  • the invention relates to a method for collecting particles suspended in a liquid, in particular for collecting suspended biological objects, such as biological cells, in a fluidic microsystem, having the features of the preamble of claim 1.
  • the invention also relates to a device for implementation such a method and its applications.
  • Electro-hydrodynamic flows can be generated in a liquid-filled compartment by electro-osmosis using planar electrodes, which are exposed to high-frequency alternating voltages.
  • KF Hoettges et. al. describe in the publication "Optimizing Particle Collection for enhanced surface-based biosensors" (see IEEE ENGINEE-RING IN MEDICINE AND BIOLOGY MAGAZINE “, November / December 2003, p. 68 ) the use of circulating electrohydrodynamic flows to collect in the liquid suspended particles.
  • a vortex flow 30 ' is formed, which rotates about an axis 31' parallel to the orientation of the side surface 11 '.
  • a flow-calmed region is formed, which represents a collection region 40' for the particles brought in between the electrodes 21 'by the turbulence 30'.
  • the by K. F. Hoettges et. al. described technique has in particular for the application in biology, biochemistry and medicine several disadvantages.
  • the circulating vortex flow has a relatively small catchment area for the particles to be collected.
  • the particles can only be collected directly adjacent to the electrodes.
  • contact with the electrodes may be detrimental to the particles, especially if the particles comprise biological materials.
  • relatively large electrodes are required to form correspondingly large collection areas. At large-area electrodes, however, occurs an undesirable heating.
  • Hoettges et al. This technique is based on electroosmosis and positive electrophoresis and is thus limited to low frequencies and low conductivities of the solutions used. Therefore, it is not possible with this method to investigate cells in physiological solutions.
  • the object of the invention is to provide improved methods for collecting suspended in a liquid particles, in particular for the collection of suspended biological objects, which overcomes the disadvantages of conventional methods and in particular a collection of an enlarged catchment area and without damage to allow the collected particles.
  • Another object of the invention is to provide improved devices for Collection of particles suspended in a liquid, in particular for implementing the method according to the invention.
  • the invention is based in particular on the technical teaching of collecting suspended particles in at least one collection area in a compartment with circulating flows which extend at least partially along a longitudinal extent of at least one electrode on a side surface of the compartment.
  • the collection area is the volume into which the flow carries the particles and in which the particles can collect in particular by a local flow reduction.
  • the circulating flows generated according to the invention by an interaction of the liquid with high-frequency electric fields at the electrodes run in a plane parallel to the respective side face.
  • the inventors have found that the limitation on the collection efficiency of the conventional techniques can be overcome and the catchment area of the flows circulating at the electrodes can be increased if the flows do not revolve about an axis parallel to the orientation of the side face as before, but a local axis of rotation perpendicular to this Have side surface.
  • Another important advantage of the invention is that with the flows even the smallest particles, such as viruses can be effectively collected.
  • the particles according to a preferred embodiment of the invention are collected in the collection area without mechanical contact with a wall or other part of the compartment, there may be advantages for the manipulation of biological particles, such as biological cells, which respond to mechanical contact with undesirable state changes would.
  • the particles may be placed in the collection area with a touch of a side surface of the compartment. This can advantageously be simplified by a Kompartimentwand a measurement. Even if the collection takes place with a contact of the side surface, in contrast to the conventional electro-osmotic techniques, an electrode contact and thus an undesired electrode reaction can be avoided.
  • the collection area may be formed by a part of the side surface in which the wall material of the compartment is exposed and no electrodes are present.
  • a plurality of locally circulating flows are generated at least one electrode, of which at least one branch of the local circulation is directed to the at least one collection area. Run along the electrode for example, two currents.
  • this increases the effectiveness of the collection.
  • a further enlargement of the catchment area of the collection can advantageously be achieved if, according to the method according to the invention, a plurality of locally circulating flows are generated at a plurality of electrodes. This allows in particular that the particles are guided from several directions to the at least one collection area. If the flows relative to each other are formed so symmetrically, in particular point-symmetrical to the collection area that this flow-calmed or substantially flow-free, can be advantageously achieved that the particles conveyed from one side to the collection area the collection area in another direction, for. B. on the opposite side not leave again.
  • the catchment area can advantageously be widened with elongate, band or strip-shaped electrodes which preferably extend radially from the collection area in different directions.
  • the particles are collected from a catchment area of the compartment whose volume is 10 2 to 10 9 times greater than the volume of the collection area.
  • This ratio shows that with the method according to the invention particles can not only be collected, but concentrated or enriched with a high factor.
  • the collection area of a single vertebra may have a volume of up to 10 ⁇ l and the collection area a volume of 1 femtoliter up to 50 picoliters, so that the invention can be advantageously implemented with fluidic microsystems.
  • high-frequency electric fields are also utilized for directly exerting a predetermined dielectrophoretic driving force on the particles.
  • the particles are moved by negative dielectrophoresis to the collection area.
  • this further enhances the indirect hydrodynamic force effect. It is particularly preferred if, according to the invention, high-frequency electric fields are generated which are used for the electrodynamic flow generation and simultaneously for the dielectrophoretic manipulation of the particles.
  • the collection efficiency can be further increased if at least one dielectrophoretic field cage with a potential minimum, which is located in the collection area, is generated with the high-frequency electric fields.
  • the dielectrophoretic forces in the field cage depend on the particle size.
  • particles that are so small that the capture forces of the field cage would be too weak for effective collection can be connected to the electrohydrodynamic flows to larger aggregates so that field forces are sufficient, which are sufficient for a safe catch in the field cage.
  • the field cage is closed in two (funnel-shaped field cage) or three (all-sided field cage) spatial directions.
  • the field cage can be formed with 6, 8 or more electrodes.
  • electrodes are arranged and with high-frequency electrical Are applied voltages that several field cages are formed, advantageously the catchment area of the particle collection according to the invention can be further increased.
  • an inner and an outer field cage are provided whose potential minima have the same position in the collection area.
  • the field cages are arranged concentrically to each other, wherein the respective outer field cage moves particles by negative dielectrophoresis towards the inner field cage.
  • At least one further force acts on the particles in the collection area.
  • This can advantageously be achieved additional support and / or manipulation of the particles in the collection area.
  • the generation of an optically effective force may have advantages in the combination of the inventive technique with an optical measurement in the collection area and for a selective particle manipulation.
  • the generation of a dielectrophoretic force may have advantages for effective interaction with a dielectrophoretic barrier of the field cage.
  • An additional magnetic force offers advantages in the manipulation of magnetic particles.
  • the at least one additional force may be a force mediated by ultrasound, for example, nodes of an ultrasound field may be formed in the collection area.
  • a start object is located in the collection area, eg a bead, which can also be functionalized.
  • the particles are not only influenced by dielectric interactions, but also possibly by a specific binding to the bead or caused by the starting object hydrodynamic foreclosure.
  • at least one measurement of the collected particles takes place in the collection area. This may in particular result in advantages in the manipulation or evaluation of collected biological particles.
  • the measurement preferably comprises an electrical, electrochemical and / or optical measurement known per se from the art of fluidic microsystems.
  • the measurement is directed to the detection of a receptor-ligand binding event.
  • the side area of the compartment in the region of the at least one collection area can be functionalized with detection spots in the form of receptor molecules (eg proteins, antibodies, DNA, viruses (for transfection experiments), etc.), as is conventional microarrays or biochips is known, so that a specific receptor - ligand interaction takes place with particles or molecules accumulated in the collection area.
  • the interaction can then be determined in a known manner e.g. can be detected by electrical, electrochemical or optical readout.
  • the concentration of analyte particles or molecules in the vicinity of the detection spots can be increased (increase in sensitivity) and the detection process can be accelerated compared to purely diffusive transport of analyte particles or molecules to the detection spots.
  • the functionalized receptor array can e.g. B. be applied to a flat electrode and together with a Forming electrodes containing second substrate form a micro-chamber. After enrichment of the analyte particles or molecules by the method according to the invention and the binding of the same to the immobilized receptors on the array, the collection structure can then be removed again. It can also be used several times accordingly.
  • the particles are collected in several collection areas in the compartment, there may be advantages for parallel enrichment of the particles from multiple catchment areas in the compartment and parallel manipulation or evaluation of the collected particles.
  • the collection can take place not only from a catchment area with a stationary suspension liquid, but even dynamically from a moving suspension liquid out.
  • the compartment can be penetrated, for example, by a laminar flow, which is superimposed on the electrodes according to the invention with the locally circulating flow.
  • a mutual superimposition of several locally circulating flows can be provided in the compartment.
  • a first circulating flow may just direct the particles into a collection area that is part of another downstream circulating flow. This makes it possible to arrange a multiplicity of cascade-like circulations in which particles are led out of an extended catchment area into a single collection area.
  • the inventive method is particularly well suited for the collection of particles with a diameter below 1 micron.
  • it is thus advantageously possible in particular to use cells, viruses, bacteria, proteins, cell components and / or biological macromolecules, eg. B. DNS are collected.
  • the currents circulating locally at the electrodes are intensified by a local temperature gradient in the liquid.
  • the temperature gradient can be formed by local heating of the liquid, which is preferably carried out by irradiation of the liquid and / or side surfaces of the compartment with light and its corresponding absorption and / or embedded ("buried") thermocouples in the walls.
  • the temperature gradient can alternatively or additionally be formed by a local, targeted cooling of the liquid.
  • the local heating of the liquid may advantageously be used in addition to excitation of chemical reactions. Due to the high local temperatures in the collection area can be targeted z. Thermally activated reactions, e.g. an aggregation or precipitation.
  • a collection device for collecting suspended particles which, in particular in a compartment for receiving a liquid on a side surface, has electrodes for generating a plurality of locally circulating flows in the liquid with which suspended particles are at least one predetermined collection area can be performed in the compartment, wherein the collection device is adapted to at least creating a flow such that a portion of the flow extends along the longitudinal extent of the electrode and the flow circulates about an axis perpendicular to the respective adjacent side surface aligned with the electrode.
  • the collection area may be arranged at a distance from the side surfaces of the compartment or so that the collection area is in contact with one of the side surfaces.
  • the electrode on each of which a circulating flow can be generated, connected to a voltage source for providing predetermined high-frequency electrical voltages.
  • the at least one electrode used to generate the circulating flow is also referred to as a collecting electrode.
  • the collection device when generating a plurality of circulating flows directed to one or more collection areas, respectively includes a plurality of collection electrodes forming a collection electrode array.
  • the collection device is adapted to exert on the particles to be collected not only electrohydrodynamic but also dielectrophoretic forces, the collection efficiency can be improved by the additional force effect.
  • the dielectrophoretic force action is exerted by the interaction of the particles with high-frequency electric fields generated in the compartment with at least one electrode, which is referred to below as the cage electrode.
  • the cage electrode If the aforementioned one-sided or all-around field cages are to be generated, the compartment is equipped with a cage electrode array.
  • the collecting and cage electrodes are identical.
  • the collecting electrode and cage electrode arrays are formed by a common electrode arrangement. In this case, the structure of the collecting device and the driving of the electrodes are simplified.
  • a particular advantage of the collection device according to the invention is its miniaturization.
  • the compartment of the collection device is preferably part of a fluidic microsystem.
  • the collection function according to the invention can be combined with collection, sorting, evaluation or measurement functions of the microsystem.
  • the collection device is, for example, arranged in the channel of a fluidic microsystem which forms the said compartment with the flow generator.
  • the collecting device according to the invention can also be used to collect particles in the throughflow channel.
  • a plurality of collection areas along a longitudinal direction of the channel are arranged in rows.
  • the collection device is equipped with a magnetic field device for exerting a magnetic holding force in said collection region and / or a measuring device for detecting electrical, electrochemical or optical properties of particles in the collection region.
  • the flow generator may additionally comprise a heating device and / or a light source.
  • the application of the invention is not limited to the fluidic microsystems for dielectrophoretic particle manipulation, but also in other cases, in which in particular for biochemical tasks suspended particles in liquid-filled compartments, for. As laboratory vessels to be collected, are applied.
  • FIG. 1 11 illustrates, in an enlarged schematic sectional view, a part of a channel or another section of a fluidic microsystem through which the compartment 10 of the collection device according to the invention is formed.
  • an electrode arrangement 20 with eight electrodes 21 is arranged on the channel walls, which represent side surfaces 11 of the compartment 10. It is on the lower side surface (Bottom surface) and on the upper side surface (top surface) each have four electrodes 21 arranged (see also FIGS. 2, 3 ).
  • the electrode assembly 20 is formed as it is known per se from electrode arrangements for generating dielectrophoretic field cages.
  • Each electrohydrodynamic flow generating electrode is in the form of a strip or ribbon of a length (see also US Pat FIGS. 2, 3 ), which is much larger than the electrode width.
  • the aspect ratio electrode width: electrode length is selected in the range of 1:10 to 1: 100.
  • the dimensions of the electrode 21 are, for example, 10 .mu.m.times.500 .mu.m.
  • the elongate electrode shape defines a longitudinal orientation of the electrode 21.
  • Each electrode 21 is arranged so that the longitudinal orientation to a collection area 40 in the middle between the side surfaces 11 or the vertical projection from the collection area to the respective side surface 11 has.
  • the electrodes 21 are electrically connected in a known manner with a voltage source for generating high-frequency electrical voltages, preferably with predeterminable amplitudes, frequencies and phase ratios.
  • a voltage source for generating high-frequency electrical voltages, preferably with predeterminable amplitudes, frequencies and phase ratios.
  • Reference numeral 50 refers to a measuring device, for example a microscope with a CCD camera, with which, for example, fluorescence-marked particles in the collection region can be optically measured and evaluated.
  • a measuring device for example a microscope with a CCD camera, with which, for example, fluorescence-marked particles in the collection region can be optically measured and evaluated.
  • at least one optically transparent window is provided in the side surface 21 of the channel (see FIG. 5 ).
  • a measuring device may alternatively or additionally at least one more Electrode be provided for impedance measurements in the collection area 40.
  • FIG. 2 the state of the collection device is illustrated just before the start of an electrohydrodynamic collection.
  • particles 1 are randomly distributed as long as the electrodes 21 are de-energized or subjected to a relatively low voltage ( ⁇ 1 V).
  • the flows 30 (for illustrative purposes also in FIG FIG. 2 shown).
  • one or two locally circulating flows 32, 33 are generated.
  • a first flow branch of each flow runs along the longitudinal direction of the electrode 21 and parallel to the side surface 11 through the compartment 10 substantially in the direction of the collection area 40, as shown in FIGS FIGS. 2 and 3 is illustrated.
  • Another branch of the circulating flow 30 leads back over the electrode 21 in the opposite direction.
  • the circulation takes place about an axis 31, which is perpendicular to the plane in which the electrodes are arranged. With the flows 30, the particles 1 are led out of the outer space outside the electrode arrangement 20 into the inner collection area 40, where they form an aggregate ( FIG. 3 ).
  • the cause of the electrohydrodynamic flow 30 is in FIG. 4A illustrated.
  • FIG. 4A In the left part of FIG. 4A are the temperatures in the xz plane (according to FIG. 1 ) and in the xy-plane (according to FIG. 2 ).
  • a temperature profile results such that the collection area 40 between the electrodes 21 is warmer than the ambient solution.
  • the electrical conductivity and the dielectric constant are temperature-dependent, the medium becomes dielectrically inhomogeneous in the collection region. Thereby The electric field exerts on the liquid polarization forces, which lead to the formation of the desired flow vortex. Since the flow vortices are formed on all electrodes, a symmetrical inflow to the center of the cage takes place into the collection area 40.
  • FIG. 4A (left part), the temperature conditions are shown in a liquid initially residing in the compartment. Surprisingly, the formation of the circulating flows indicative of the collection area also occurs if the liquid flows in the compartment. The liquid forms a carrier stream at a velocity which is less than the liquid velocity in the circulating streams.
  • the selection of the voltage amplitude required for generating the electrohydrodynamic flow takes place as a function of the dielectric properties of the suspension fluid and the geometric properties of the electrode arrangement. An empirical selection by experiment may also be provided.
  • the high-frequency electric fields are selected so that only negative dielectrophoresis acts on the particles.
  • the in the FIGS. 2 and 3 shown collection can be realized for the collection of 1 micron particles, for example, with the following operating parameters.
  • the particles are suspended in KCl (concentration: 12.5 mM).
  • the electrodes 21 are subjected to a high-frequency electrical voltage (frequency: 8 MHz, amplitude: 3.5 V).
  • the distance between the electrodes (tip-to-tip), which are opposite one another in a plane, is 40 ⁇ m.
  • hepatitis A viruses Under the following operating conditions, an accumulation of hepatitis A viruses (diameter about 30 nm) could be achieved within 10 minutes. High-frequency alternating voltages with frequency: 7.4 MHz, amplitude: 4 V rms ), electrode spacing: 5 ⁇ m. The starting concentration of the viruses in the compartment was approx. 10 9 to 10 10 / ml. Enrichment of the fluorescently labeled hepatitis A virus is observed at various observation times FIG. 4B shown. After 2 minutes, a first small aggregate was formed from the viruses, which had a diameter of approx. 4 ⁇ m (9 min.) Growth. In a catchment area of approx. 100 ⁇ m * 100 ⁇ m * 10 ⁇ m (channel height) this corresponds to a concentration of approx. 10 3 .
  • FIG. 5 schematically illustrates the formation of a series of collection areas 41, 42, 43,... in the channel of a fluidic microsystem, with only the electrodes 21 of the electrode arrangements on one of the side surfaces of the channel and the associated connection lines being shown for clarity, via which the electrodes 21 are connected to a voltage source.
  • the left part of the opposite phase control of each adjacent electrodes in a single field cage 20 is symbolically illustrated, with the the desired flow vortices can be generated at each collection area 41, 42, 43,.
  • a measuring device outside the fluidic microsystem is a measuring device (not shown), with which the particles in the collection areas 41, 42, 43, ... are measured through a window 51 along a scanning line 52.
  • a fluorescence correlation measurement FCS is performed to detect receptor-ligand binding events in the collected particles.
  • FIG. 6 A cascade-shaped combination of a plurality of circulating flows is schematically shown in FIG FIG. 6 illustrated.
  • a flux directed towards the collection area 40 is generated with the electrode assembly 20 over a relatively large area.
  • a plurality of collecting electrodes 21, 22 pointing radially to the collecting area 40 are provided.
  • the innermost electrodes 23 at the same time form collecting and cage electrodes, correspondingly FIG. 2 form a field cage.
  • particles are transported, for example. With the vortex 34 at the first collecting electrode 21 in the vortex 35 of the second collecting electrode 22, from which the further transport to the vortex 36 of the collecting and cage electrode 23 takes place. With this, the particles are conveyed into the central collection area 40.
  • FIG. 6 illustrates that each two vortices are formed on a strip-shaped electrode, wherein the axis 31 (offset drawn) of the flow circulation is aligned perpendicular to the adjacent side surface with the electrodes.
  • the electrodes can be used in the FIG. 6 shown embodiment of the invention or in the embodiments described above have a conical shape, in which the width of the electrode strip widened with increasing radial distance from the collection area to the outside. By this design, the catchment area of the collecting currents can be extended. It is alternatively possible for the electrodes to have a straight strip shape and for the electrodes to become larger at a radial distance from the collection area to the outside. For example, inside narrow, small electrodes and outside wide, large electrodes are provided, wherein outwardly z. B. the aspect ratio of the electrodes increases.
  • FIG. 7 illustrates an embodiment of the collection device according to the invention with an electrode assembly 20 having an outer cage 20.1, in the capture area an inner cage 20.2 is formed.
  • Each of the inner and outer field cages 20.1 and 20.2 is a closed 8-electrode field cage.
  • the associated electrode arrangements are offset relative to each other by 45 °, whereby the interaction of the two field cages is improved.
  • FIG. 8 illustrated in the embodiment according to FIG. 7 resulting flow profiles (numerical simulation).
  • the flow profiles are shaped so that the catchment area of the electrode arrangement 20 is increased and also the central rest or particle collection zone is widened.
  • the outer field cage 20.1 alone would provide less flow and hence less effective particle transport, whereas the inner field cage 20.2 alone would have a smaller catchment area and a smaller quiet zone.
  • the individual electrodes and their connection lines to the voltage sources are electrically isolated from each other.
  • the insulation is achieved by a multi-level structure of electrode and insulation layers.
  • the collection device may be provided with a cooling device, e.g. B. a Peltier element to avoid unwanted total heating of the collection device.
  • a cooling device e.g. B. a Peltier element to avoid unwanted total heating of the collection device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrostatic Separation (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Sammlung von in einer Flüssigkeit suspendierten Partikeln, insbesondere zur Sammlung von suspendierten biologischen Objekten, wie zum Beispiel biologischen Zellen, in einem fluidischen Mikrosystem, mit den Merkmalen des Oberbegriffs von Anspruch 1. Die Erfindung betrifft auch eine Vorrichtung zur Umsetzung eines derartigen Verfahrens und deren Anwendungen.
  • Es ist bekannt, in einer Flüssigkeit suspendierte Partikel in fluidischen Mikrosystemen in einem dielektrophoretischen Feldkäfig zu fangen oder zu sammeln (siehe zum Beispiel Publikation "Trapping in AC octopole field cages" von T. Schnelle et al. in "Journal of Electrostatics", Bd. 50, 2000, S. 17 bis 29). Diese Technik besitzt den Nachteil, dass nur relativ große Partikel mit typischen Dimensionen > 500 nm sicher gefangen werden können. Bei kleineren Partikeln, wie zum Beispiel Viren, können die dielektrophoretischen Fangkräfte zu gering sein oder durch thermische Störungen überlagert werden.
  • Mit planaren Elektroden, die mit hochfrequenten Wechselspannungen beaufschlagt werden, können in einem flüssigkeitsgefüllten Kompartiment durch Elektroosmose elektrohydrodynamische Strömungen erzeugt werden. K. F. Hoettges et. al. beschreiben in der Publikation "Optimizing Particle Collection for enhanced surface-based biosensors" (siehe "IEEE ENGINEE-RING IN MEDICINE AND BIOLOGY MAGAZINE", November/Dezember 2003, S. 68) die Verwendung zirkulierender elektrohydrodynamischer Strömungen zur Sammlung von in der Flüssigkeit suspendierten Partikeln. Bei diesem Verfahren werden gemäß Figur 9 suspendierte Partikel 1', 2' in einem Kompartiment 10' mit einer Seitenfläche 11' gesammelt. An den Kanten von Elektroden 21' (teilweise dargestellt), die auf der Seitenfläche 11' angeordnet sind, entsteht eine Wirbelströmung 30', die um eine Achse 31' parallel zur Ausrichtung der Seitenfläche 11' umläuft. In der Mitte der Elektroden 21' wird ein strömungsberuhigter Bereich gebildet, der für die zwischen den Elektroden 21' durch die Wirbelströmung 30' herangeführten Partikel einen Sammlungsbereich 40' repräsentiert.
  • Die von K. F. Hoettges et. al. beschriebene Technik besitzt insbesondere für die Anwendung in der Biologie, Biochemie und Medizin mehrere Nachteile. Die zirkulierende Wirbelströmung besitzt einen relativ geringen Einzugsbereich für die zu sammelnden Partikel. Des Weiteren können die Partikel ausschließlich unmittelbar an die Elektroden angrenzend gesammelt werden. Der Kontakt mit den Elektroden kann für die Partikel jedoch schädlich sein, insbesondere wenn die Partikel biologische Materialien umfassen. Außerdem sind relativ großflächige Elektroden erforderlich, um entsprechend große Sammlungsbereiche zu bilden. An großflächigen Elektroden tritt jedoch eine unerwünschte Erwärmung auf. Schließlich besteht ein wesentlicher Nachteil der von Hoettges et al. beschriebenen Technik darin, dass diese auf Elektroosmose und positiver Elektrophorese beruht und somit auf niedrige Frequenzen und niedrige Leitfähigkeiten der verwendeten Lösungen beschränkt ist. Daher ist es nicht möglich mit diesem Verfahren Zellen in physiologischen Lösungen zu untersuchen.
  • Es ist des Weiteren bekannt, Viren 1' unter Verwendung von elektrohydrodynamischen Strömungen 30' in den Fangbereich eines trichterförmigen, dielektrischen Feldkäfigs 50' zu führen, wie es in Figur 10 gezeigt ist (siehe Publikation "Trapping of Viruses in High Frequency Electric Field Cages" von T. Schnelle et al. in "Naturwissenschaften" Bd. 83, 1996, S. 172 bis 176; Publikation "High Frequency Electric Fields for Trapping of Viruses" von T. Müller et al. in "Biotechnology Techniques" Bd. 10, 1996, S. 221 bis 226; und Publikation "Trapping of micrometre and sub-micrometre particles by high frequency electric fields and hydrodynamic forces" von T. Müller et al. in "J. Phys. D: Appl. Phys." Bd. 29, 1996, S. 340 bis 349). Auch bei dieser Technik besteht der Nachteil, dass die sammelnde Strömung nur Viren in unmittelbarer Umgebung der zur Bildung des Feldkäfigs 50' verwendeten Elektroden 21' erfasst und daher einen relativ geringen Einzugsbereiches besitzt. Des Weiteren ist das genannte Verfahren auf niedrige Leitfähigkeiten oder salzarme Lösungen beschränkt und daher für die Untersuchung von Zellen in physiologischen Lösungen auch nicht geeignet.
  • Weitere fluidische Mikrosysteme zur Manipulation und Vermessung suspendierter Partikel unter der Wirkung hochfrequenter elektrischer Felder sind in WO 00/45147 , US 2004/0063196 A1 und EP 1 413 911 A1 beschrieben.
  • Strömungen in fluidischen Mikrosystemen können auch durch hohe elektrische Feldstärken induziert werden (elektrisches Heizen). Dieses Prinzip, das z. B. bei Wanderwellenpumpen in Mikrochips genutzt wird (siehe Publikation "A travelling-wave micropump for aqueous solutions: Comparison of 1 g and µg results" von T. Müller et al. in "Electrophoresis", Bd. 14, 1993, S. 764 bis 772), kann jedoch wegen der Wärmeumwandlung insbesondere für biologische Partikel nachteilig sein.
  • Die Aufgabe der Erfindung ist es, verbesserte Verfahren zur Sammlung von in einer Flüssigkeit suspendierten Partikeln, insbesondere zur Sammlung von suspendierten biologischen Objekten, bereitzustellen, mit denen die Nachteile der herkömmlichen Verfahren überwunden werden und die insbesondere eine Sammlung aus einem vergrößerten Einzugsbereich und ohne Schäden für die gesammelten Partikel ermöglichen. Eine weitere Aufgabe der Erfindung ist es, verbesserte Vorrichtungen zur Sammlung von in einer Flüssigkeit suspendierten Partikeln, insbesondere zur Umsetzung der erfindungsgemäßen Verfahren bereitzustellen.
  • Diese Aufgabe wird mit Verfahren und Vorrichtungen mit den Merkmalen der Patentansprüche 1 und 23 gelöst. Vorteilhafte Ausführungsformen und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Verfahrensbezogen beruht die Erfindung insbesondere auf der technischen Lehre, suspendierte Partikel in mindestens einem Sammlungsbereich in einem Kompartiment mit zirkulierenden Strömungen zu sammeln, die wenigstens teilweise entlang einer Längsausdehnung mindestens einer Elektrode auf einer Seitenfläche des Kompartiments verlaufen. Der Sammlungsbereich ist das Volumen, in das die Strömung die Partikel führt und in dem sich die Partikel insbesondere durch eine lokale Strömungsverminderung sammeln können. Vorteilhafterweise verlaufen die erfindungsgemäß durch eine Wechselwirkung der Flüssigkeit mit hochfrequenten elektrischen Feldern an den Elektroden erzeugten, zirkulierenden Strömungen in einer Ebene parallel zur jeweiligen Seitenfläche. Die Erfinder haben festgestellt, dass die Beschränkung der Sammlungseffektivität der herkömmlichen Techniken überwunden und der Einzugsbereich der an den Elektroden zirkulierenden Strömungen vergrößert werden können, wenn die Strömungen nicht wie bisher um eine Achse parallel zur Ausrichtung der Seitenfläche umlaufen, sondern eine lokale Drehachse senkrecht zu dieser Seitenfläche aufweisen. Ein weiterer wichtiger Vorteil der Erfindung besteht darin, dass mit den Strömungen auch kleinste Partikel, wie zum Beispiel Viren effektiv gesammelt werden können.
  • Der Netto-Flüssigkeitsstrom in den zirkulierenden Strömungen ist null, da im Sammlungsbereich keine Quelle oder Senke existiert und die Flüssigkeit inkompressibel ist. Dennoch wird ein Netto-Teilchenstrom von außen nach innen beobachtet. Dies kann damit erklärt werden, dass durch negative Dielektrophorese die Teilchenkonzentration zwischen den Elektroden (Flüssigkeitsstrom nach außen gerichtet) kleiner ist, als in der Umgebung der Elektroden (Flüssigkeitsstrom nach innen gerichtet).
  • Wenn die Partikel gemäß einer bevorzugten Ausführungsform der Erfindung im Sammlungsbereich ohne eine mechanische Berührung einer Wand oder eines anderen Teils des Kompartiments gesammelt werden, können sich Vorteile für die Manipulation biologischer Partikel, wie zum Beispiel biologischer Zellen ergeben, die auf mechanische Berührungen mit unerwünschten Zustandsänderungen reagieren würden. Falls ein mechanischer Kontakt jedoch gerade gewünscht ist, können die Partikel gemäß einer alternativen Ausführungsform der Erfindung im Sammlungsbereich mit einer Berührung einer Seitenfläche des Kompartiments angeordnet werden. Damit kann vorteilhafterweise eine Messung durch eine Kompartimentwand vereinfacht werden. Auch wenn die Sammlung mit einer Berührung der Seitenfläche erfolgt, kann im Unterschied zu den herkömmlichen elektroosmotischen Techniken eine Elektrodenberührung und damit eine unerwünschte Elektrodenreaktion vermieden werden. In diesem Fall kann der Sammlungsbereich durch einen Teil der Seitenfläche gebildet werden, in dem das Wandmaterial des Kompartiments freiliegt und keine Elektroden vorhanden sind.
  • Gemäß einer besonders bevorzugten Ausführungsform der Erfindung werden an mindestens einer Elektrode mehrere lokal zirkulierende Strömungen erzeugt, von denen jeweils mindestens ein Zweig der lokalen Zirkulation auf den mindestens einen Sammlungsbereich gerichtet ist. Entlang der Elektrode verlaufen zum Beispiel zwei Strömungen. Vorteilhafterweise wird dadurch die Effektivität der Sammlung erhöht.
  • Eine weitere Vergrößerung des Einzugsbereiches der Sammlung kann vorteilhafterweise erzielt werden, wenn gemäß dem erfindungsgemäßen Verfahrens an mehreren Elektroden eine Vielzahl von lokal zirkulierenden Strömungen erzeugt werden. Dies ermöglicht insbesondere, dass die Partikel von mehreren Richtungen zu dem mindestens einen Sammlungsbereich geführt werden. Wenn die Strömungen relativ zueinander derart symmetrisch, insbesondere punktsymmetrisch zum Sammlungsbereich ausgebildet werden, dass dieser strömungsberuhigt oder im Wesentlichen strömungsfrei ist, kann vorteilhafterweise erreicht werden, dass die von einer Seite zum Sammlungsbereich geförderten Partikel den Sammlungsbereich in einer anderen Richtung, z. B. auf der gegenüberliegenden Seite nicht wieder verlassen.
  • Da gemäß der Erfindung die Strömung entlang der Längsausdehnung der jeweiligen Elektrode erzeugt wird, kann der Einzugsbereich vorteilhafterweise mit langgestreckten, band- oder streifenförmigen Elektroden erweitert werden, die sich vorzugsweise vom Sammlungsbereich radial in verschiedene Richtungen erstrecken.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung werden die Partikel aus einem Einzugsbereich des Kompartiment gesammelt, dessen Volumen 102 bis 109 -fach größer als das Volumen des Sammlungsbereiches ist. Dieses Verhältnis zeigt, dass mit dem erfindungsgemäßen Verfahren Partikel nicht nur gesammelt, sondern mit einem hohen Faktor konzentriert oder angereichert werden können. Beispielsweise können der Einzugsbereich eines einzelnen Wirbels ein Volumen von bis zu 10 µl und der Sammlungsbereich ein Volumen von 1 Femtoliter bis zu 50 Picoliter besitzen, so dass die Erfindung vorteilhafterweise mit fluidischen Mikrosystemen implementierbar ist.
  • Gemäß einer besonders bevorzugten Ausführungsform der Erfindung werden hochfrequente elektrischen Felder auch zur direkten Ausübung einer vorbestimmten dielektrophoretischen Vortriebskraft auf die Partikel ausgenutzt. Unter der Wirkung der hochfrequenten elektrischen Felder werden die Partikel durch negative Dielektrophorese zum Sammlungsbereich bewegt. Vorteilhafterweise wird dadurch die indirekte hydrodynamische Kraftwirkung noch verstärkt. Besonders bevorzugt ist, wenn erfindungsgemäß hochfrequente elektrische Felder erzeugt werden, die zur elektrodynamischen Strömungserzeugung und simultan zur dielektrophoretischen Manipulation der Partikel verwendet werden.
  • Die Sammlungseffektivität kann weiter gesteigert werden, wenn mit den hochfrequenten elektrischen Feldern mindestens ein dielektrophoretischer Feldkäfig mit einem Potentialminimum erzeugt wird, das sich im Sammlungsbereich befindet. Die dielektrophoretischen Fangkräfte im Feldkäfig sind abhängig von der Partikelgröße. Vorteilhafterweise können Partikel, die so klein sind, dass die Fangkräfte des Feldkäfigs für ein effektives Sammeln zu schwach wären, mit den elektrohydrodynamischen Strömungen so zu größeren Aggregaten verbunden werden, dass Feldkräfte erreicht werden, die für ein sicheres Fangen im Feldkäfig ausreichend sind. Erfindungsgemäß ist der Feldkäfig in zwei (trichterförmiger Feldkäfig) oder drei (allseitiger Feldkäfig) Raumrichtungen geschlossen. Der Feldkäfig kann mit 6, 8 oder mehr Elektroden gebildet werden.
  • Wenn gemäß einer vorteilhaften Variante der Erfindung Elektroden so angeordnet und mit hochfrequenten elektrischen Spannungen beaufschlagt werden, dass mehrere Feldkäfige gebildet werden, kann vorteilhafterweise der Einzugsbereich der erfindungsgemäßen Partikelsammlung noch vergrößert werden. Es sind vorzugsweise ein innerer und ein äußerer Feldkäfig vorgesehen, deren Potentialminima die gleiche Position im Sammlungsbereich aufweisen. Die Feldkäfige sind konzentrisch zueinander angeordnet, wobei der jeweils äußere Feldkäfig Partikel durch negative Dielektrophorese hin zum inneren Feldkäfig bewegt.
  • Erfindungsgemäß kann vorgesehen sein, dass im Sammlungsbereich mindestens eine weitere Kraft auf die Partikel wirkt. Damit kann vorteilhafterweise eine zusätzliche Halterung und/oder Manipulation der Partikel im Sammlungsbereich erzielt werden. Die Erzeugung einer optisch wirksamen Kraft kann Vorteile bei der Kombination der erfindungsgemäßen Technik mit einer optischen Messung im Sammlungsbereich und für eine selektive Partikelmanipulation besitzen. Die Erzeugung einer dielektrophoretischen Kraft kann Vorteile für ein effektives Zusammenwirken mit einer dielektrophoretischen Barriere des Feldkäfigs besitzen. Eine zusätzliche magnetische Kraft bietet Vorteile bei der Manipulation magnetischer Partikel. Schließlich kann die mindestens eine weitere Kraft eine durch Ultraschall vermittelte Kraft sein, beispielsweise können Knoten eines Ultraschallfeldes im Sammlungsbereich gebildet werden.
  • Zur Ausübung einer weiteren Kraft besteht ferner die Möglichkeit, dass sich im Sammlungsbereich ein Startobjekt befindet, z.B. ein Bead, welches auch funktionalisiert werden kann. Durch dieses Startobjekt werden die Partikel nicht nur durch dielektrische Wechselwirkungen beeinflusst, sondern auch ggf. durch eine spezifische Bindung an das Bead oder eine durch das Startobjekt hervorgerufene hydrodynamische Abschottung. Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung erfolgt im Sammlungsbereich mindestens eine Messung an den gesammelten Partikeln. Damit können sich insbesondere Vorteile bei der Manipulation oder Evaluierung gesammelter biologischer Partikel ergeben. Die Messung umfasst vorzugsweise eine zum Beispiel aus der Technik fluidischer Mikrosysteme an sich bekannte elektrische, elektrochemische und/oder optische Messung.
  • Gemäß einer bevorzugten Anwendung der Erfindung ist die Messung auf die Detektion eines Rezeptor-Ligand-Bindungs-Ereignisses gerichtet. Für diese Messung kann erfindungsgemäß die Seitenfläche des Kompartiments im Bereich des mindestens einen Sammlungsbereiches mit Detektionsspots in Form von Rezeptormolekülen (z.B. Proteinen, Antikörpern, DNA, Viren (für Transfektionsexperimente), usw.) funktionalisiert sein, wie es an sich von konventionellen Mikroarrays oder Biochips bekannt ist, so dass eine spezifische Rezeptor - Ligand - Interaktion mit im Sammlungsbereich akkumulierten Partikeln oder Molekülen stattfindet. Die Interaktion kann dann in bekannter Weise z.B. über elektrische, elektrochemische oder optische Ausleseverfahren nachgewiesen werden kann.
  • Vorteilhafterweise können mit dem erfindungsgemäßen Verfahren die Konzentration von Analytpartikeln oder -molekülen in der Nähe der Detektionsspots erhöht (Sensitivitätssteigerung) und der Detektionsprozeß im Vergleich zu rein diffusivem Antransport von Analytpartikeln oder -molekülen an die Detektionsspots beschleunigen werden.
  • Das funktionalisierte Rezeptorarray kann z. B. auf einer flächigen Elektrode aufgebracht sein und zusammen mit einem die Sammelelektroden enthaltenden zweiten Substrat eine Mikrokammer bilden. Nach Anreicherung der Analytpartikel oder -moleküle durch das erfindungsgemäße Verfahren und die Bindung derselben an die immobilisierten Rezeptoren auf dem Array kann die Sammelstruktur dann wieder entfernt werden. Sie kann entsprechend auch mehrfach verwendet werden.
  • Wenn gemäß einer weiteren Modifizierung der Erfindung die Partikel in mehreren Sammlungsbereichen im Kompartiment gesammelt werden, können sich Vorteile für eine parallele Anreicherung.der Partikel aus mehreren Einzugsgebieten im Kompartiment und eine parallele Manipulation oder Evaluierung der gesammelten Partikel ergeben.
  • Für die Anwendung in fluidischen Mikrosystemen ist es von besonderem Vorteil der Erfindung, dass die Sammlung nicht nur aus einem Einzugsbereich mit einer ruhenden Suspensionsflüssigkeit, sondern sogar dynamisch aus einer bewegten Suspensionsflüssigkeit heraus erfolgen kann. Das Kompartiment kann zum Beispiel von einer laminaren Strömung durchsetzt werden, die an den Elektroden erfindungsgemäß mit der lokal zirkulierenden Strömung überlagert wird.
  • Des Weiteren kann im Kompartiment eine gegenseitige Überlagerung von mehreren lokal zirkulierenden Strömungen vorgesehen sein. Eine erste zirkulierende Strömung kann die Partikel gerade in einen Sammlungsbereich führen, der Teil einer weiteren, nachgeordneten zirkulierenden Strömung ist. Dies ermöglicht eine Anordnung einer Vielzahl von Zirkulationen nach Art einer Kaskade, bei der aus einem ausgedehnten Einzugsbereich Partikel in einen einzigen Sammlungsbereich geführt werden.
  • Das erfindungsgemäße Verfahren eignet sich besonders gut zur Sammlung von Partikeln mit einem Durchmesser unterhalb von 1 µm. Für biologische Anwendungen können somit vorteilhafterweise insbesondere Zellen, Viren, Bakterien, Proteine, Zellbestandteile und/oder biologische Makromoleküle, z. B. DNS gesammelt werden.
  • Gemäß weiteren Varianten der Erfindung kann vorgesehen sein, dass die an den Elektroden lokal zirkulierenden Strömungen durch einen lokalen Temperaturgradienten in der Flüssigkeit verstärkt werden. Der Temperaturgradient kann durch eine lokale Aufheizung der Flüssigkeit gebildet werden, die vorzugsweise durch eine Bestrahlung der Flüssigkeit und/oder von Seitenflächen des Kompartiments mit Licht und dessen entsprechende Absorption und/oder durch in die Wände eingebettete ("vergrabene") Thermoelemente erfolgt. Der Temperaturgradient kann alternativ oder zusätzlich durch eine lokale, gezielte Abkühlung der Flüssigkeit gebildet werden.
  • Die lokale Aufheizung der Flüssigkeit kann vorteilhafterweise zusätzlich zu Anregung von chemischen Reaktionen verwendet werden. Durch die lokal hohen Temperaturen im Sammlungsbereich können hier gezielt z. B. thermisch aktivierte Reaktionen ablaufen, z.B. ein Aggregation oder eine Fällung.
  • Vorrichtungsbezogen wird die oben genannte Aufgabe der Erfindung durch eine Sammlungsvorrichtung zur Sammlung von suspendierten Partikeln gelöst, die insbesondere in einem Kompartiment zur Aufnahme einer Flüssigkeit an einer Seitenfläche Elektroden zur Erzeugung von mehreren lokal zirkulierenden Strömungen in der Flüssigkeit aufweist, mit der suspendierte Partikel zu mindestens einem vorbestimmten Sammlungsbereich im Kompartiment geführt werden können, wobei die Sammlungsvorrichtung dazu eingerichtet ist, die mindestens eine Strömung so zu erzeugen, dass sich ein Teil der Strömung entlang der Längsausdehnung der Elektrode erstreckt und die Strömung um eine Achse umläuft, die senkrecht zu der jeweils angrenzenden Seitenfläche mit der Elektrode ausgerichtet ist.
  • Gemäß vorteilhaften Varianten der Erfindung kann der Sammlungsbereich mit einem Abstand von den Seitenflächen des Kompartiments oder so angeordnet sein, dass der Sammlungsbereich in Kontakt mit einer der Seitenflächen steht.
  • Vorzugsweise ist die Elektrode, an der jeweils eine zirkulierende Strömung erzeugt werden kann, mit einer Spannungsquelle zur Bereitstellung von vorbestimmten hochfrequenten elektrischen Spannungen verbunden. Die mindestens eine Elektrode, die zur Erzeugung der zirkulierenden Strömung verwendet wird, wird auch als Sammelelektrode bezeichnet. Die Sammlungsvorrichtung umfasst bei der Erzeugung einer Vielzahl zirkulierender Strömungen, die auf einen oder mehrere Sammlungsbereiche gerichtet sind, entsprechend eine Vielzahl von Sammelelektroden, die ein Sammelelektroden-Array bilden.
  • Wenn die Sammlungsvorrichtung gemäß einer bevorzugten Ausführungsform der Erfindung dazu eingerichtet ist, auf die zu sammelnden Partikel nicht nur elektrohydrodynamische, sondern auch dielektrophoretische Kräfte auszuüben, kann durch die zusätzliche Kraftwirkung die Sammlungseffektivität verbessert werden. Die dielektrophoretische Kraftwirkung wird durch die Wechselwirkung der Partikel mit hochfrequenten elektrischen Feldern ausgeübt, die im Kompartiment mit mindestens einer Elektrode erzeugt werden, die im Folgenden als Käfigelektrode bezeichnet wird. Wenn die oben genannten ein- oder allseitig geschlossenen Feldkäfige erzeugt werden sollen, ist das Kompartiment mit einem Käfigelektroden-Array ausgestattet. Gemäß einer besonders bevorzugten Variante der Erfindung sind die Sammel- und Käfigelektroden identisch. Die Sammelelektroden- und Käfigelektroden-Arrays werden durch eine gemeinsame Elektrodenanordnung gebildet. In diesem Fall wird der Aufbau der Sammlungsvorrichtung und die Ansteuerung der Elektroden vereinfacht.
  • Ein besonderer Vorteil der erfindungsgemäßen Sammlungsvorrichtung besteht in deren Miniaturisierbarkeit. Das Kompartiment der Sammlungsvorrichtung ist vorzugsweise Teil eines fluidischen Mikrosystems. Vorteilhafterweise kann die erfindungsgemäße Sammlungsfunktion mit Sammlungs-, Sortier-, Evaluierungs- oder Messfunktionen des Mikrosystems kombiniert werden. Die Sammlungsvorrichtung ist bspw. im Kanal eines fluidischen Mikrosystems angeordnet, der das genannte Kompartiment mit dem Strömungsgenerator bildet. Überraschenderweise kann mit der erfindungsgemäßen Sammlungsvorrichtung auch im durchströmten Kanal eine Sammlung von Partikeln erfolgen.
  • Zur Erhöhung der Sammlungsaktivität kann gemäß einer Abwandlung der Erfindung vorgesehen sein, dass mehrere Sammlungsbereiche entlang einer Längsrichtung des Kanals reihenförmig angeordnet sind.
  • Besondere Vorteile für einen erweiterten Anwendungsbereich der Sammlungsvorrichtung ergeben sich, wenn diese mit einer Magnetfeldeinrichtung zur Ausübung einer magnetischen Haltekraft im genannten Sammlungsbereich und/oder einer Messeinrichtung zur Erfassung von elektrischen, elektrochemischen oder optischen Eigenschaften von Partikeln im Sammlungsbereich ausgestattet ist.
  • Gemäß weiteren Varianten der Erfindung kann der Strömungsgenerator zusätzlich eine Heizeinrichtung und/oder eine Lichtquelle umfassen.
  • Weitere Einzelheiten und Vorteile der Erfindung werden aus der folgenden Beschreibung von Ausführungsbeispielen und den beigefügten Zeichnungen ersichtlich. Es zeigen:
    • Figur 1: eine schematische Schnittansicht einer Ausführungsform einer erfindungsgemäßen Sammlungsvorrichtung,
    • Figuren 2, 3: verschiedene Phasen der Sammlung von Partikeln mit dem erfindungsgemäßen Verfahren,
    • Figuren 4A, 4B: Illustrationen von Feld- und Temperaturbedingungen in einer erfindungsgemäßen Sammlungsvorrichtung und von experimentellen Ergebnissen, die mit einer erfindungsgemäßen Sammlungsvorrichtung erzielt wurden,
    • Figur 5: eine Ausführungsform einer erfindungsgemäßen Sammlungsvorrichtung mit einer Reihe von Sammlungsbereichen,
    • Figur 6: eine weitere Ausführungsform einer erfindungsgemäßen Sammlungsvorrichtung mit einer Kaskade von Sammlungsbereichen,
    • Figur 7: eine weitere Ausführungsform einer erfindungsgemäßen Sammlungsvorrichtung mit einer Kaskade von Sammlungsbereichen,
    • Figur 8: eine Illustration der Strömungsbedingungen in einer Sammlungsvorrichtung gemäß Figur 7, und
    • Figuren 9, 10: Illustrationen herkömmlicher Sammlungstechniken (Stand der Technik).
  • Die Ausführungsbeispiele der Erfindung werden im Folgenden unter Bezug auf die Anwendung der Erfindung in fluidischen Mikrosystemen zur dielektrophoretischen Partikelmanipulation beschrieben. Derartige fluidische Mikrosysteme, ihre Komponenten und ihre Betriebsverfahren sind an sich bekannt und werden daher im Folgenden nicht beschrieben. Die Erfindung wird im Folgenden beispielhaft unter Bezug auf eine Gestaltung erörtert, bei der Elektroden sowohl zum Sammeln als auch zur Ausübung einer dielektrophoretischen Vortriebskraft verwendet werden, bei der also die Sammel- und Käfigelektroden identisch sind. Es wird betont, dass die Umsetzung der Erfindung nicht auf diese Ausführungsform beschränkt ist. Vielmehr können erfindungsgemäß Sammelelektroden ausschließlich zur Erzeugung einer elektrohydrodynamischen Strömung vorgesehen sein und nicht Teil eines dielektrischen Feldkäfigs bilden, wie dies bspw. in den Figuren 6 oder 7 illustriert ist (siehe unten). Des Weiteren wird betont, dass die Anwendung der Erfindung nicht auf die fluidischen Mikrosysteme zur dielektrophoretischen Partikelmanipulation beschränkt ist, sondern auch in anderen Fällen, bei denen insbesondere für biochemische Aufgaben suspendierte Partikel in flüssigkeitsgefüllten Kompartimenten, z. B. Laborgefäßen, gesammelt werden sollen, angewendet werden.
  • Figur 1 illustriert in vergrößerter schematischer Schnittansicht einen Teil eines Kanals oder eines anderen Abschnitts eines fluidischen Mikrosystems, durch den das Kompartiment 10 der erfindungsgemäßen Sammlungsvorrichtung gebildet wird. An den Kanalwänden, die Seitenflächen 11 des Kompartiments 10 darstellen, befindet sich eine Elektrodenanordnung 20 mit acht Elektroden 21 angeordnet. Es sind auf der unteren Seitenfläche (Bodenfläche) und auf der oberen Seitenfläche (Deckfläche) jeweils vier Elektroden 21 angeordnet (siehe auch Figuren 2, 3). Die Elektrodenanordnung 20 ist so gebildet, wie es an sich von Elektrodenanordnungen zur Erzeugung dielektrophoretischer Feldkäfige bekannt ist.
  • Jede Elektrode zur elektrohydrodynamischen Strömungserzeugung besitzt die Form eines Streifens oder Bandes mit einer Länge (siehe auch Figuren 2, 3), die wesentlich größer als die Elektrodenbreite ist. Das Aspektverhältnis Elektrodenbreite : Elektrodenlänge ist im Bereich von 1 : 10 bis 1 : 100 gewählt. Die Maße der Elektrode 21 betragen bspw. 10 µm · 500 µm. Durch die langgestreckte Elektrodenform wird eine Längsausrichtung der Elektrode 21 definiert. Jede Elektrode 21 ist so angeordnet, dass die Längsausrichtung zu einem Sammlungsbereich 40 in der Mitte zwischen den Seitenflächen 11 oder die senkrechte Projektion vom Sammlungsbereich auf die jeweilige Seitenfläche 11 weist. Die Elektroden 21 sind in an sich bekannter Weise elektrisch mit einer Spannungsquelle zur Erzeugung hochfrequenter elektrischer Spannungen, vorzugsweise mit vorgebbaren Amplituden, Frequenzen und Phasenverhältnissen verbunden. Bei Beaufschlagung der Elektroden 21 mit den hochfrequenten elektrischen Spannungen bilden sich parallel zu den Seitenflächen 11 Strömungen 30, mit denen Partikel 1 zum Sammlungsbereich 40 bewegt werden.
  • Das Bezugszeichen 50 bezieht sich auf eine Messeinrichtung, zum Beispiel ein Mikroskop mit einer CCD-Kamera, mit der zum Beispiel fluoreszenzmarkierte Partikel im Sammlungsbereich optisch gemessen und ausgewertet werden können. Hierzu ist in der Seitenfläche 21 des Kanals wenigstens ein optisch transparentes Fenster vorgesehen (siehe Figur 5). Als Messeinrichtung kann alternativ oder zusätzlich mindestens eine weitere Elektrode für Impedanzmessungen im Sammlungsbereich 40 vorgesehen sein.
  • In Figur 2 ist der Zustand der Sammlungsvorrichtung unmittelbar vor Beginn einer elektrohydrodynamischen Sammlung illustriert. Im..Kompartiment 10 sind Partikel 1 zufällig verteilt, solange die Elektroden 21 spannungsfrei sind oder mit einer relativ geringen Spannung (< 1 V) beaufschlagt werden. Wenn die Elektroden mit hochfrequenten Spannungen ausreichend hoher Amplitude beaufschlagt werden, bilden sich die Strömungen 30 (zu Illustrationszwecken auch in Figur 2 gezeigt). An jeder Elektrode werden eine oder zwei lokal zirkulierende Strömungen 32, 33 erzeugt. Ein erster Strömungszweig jeder Strömung verläuft entlang der Längsausrichtung der Elektrode 21 und parallel zur Seitenfläche 11 durch das Kompartiment 10 im Wesentlichen in Richtung des Sammlungsbereichs 40, wie dies in den Figuren 2 und 3 illustriert ist. Ein weiterer Zweig der zirkulierenden Strömung 30 führt über der Elektrode 21 zurück in entgegengesetzter Richtung. Der Umlauf erfolgt um eine Achse 31, die senkrecht auf der Ebene steht, in der die Elektroden angeordnet sind. Mit den Strömungen 30 werden die Partikel 1 aus dem Außenraum außerhalb der Elektrodenanordnung 20 in den inneren Sammlungsbereich 40 geführt, wo sie ein Aggregat bilden (Figur 3).
  • Die Ursache der elektrohydrodynamischen Strömung 30 ist in Figur 4A illustriert. Im linken Teil von Figur 4A sind die Temperaturen in der x-z-Ebene (gemäß Figur 1) und in der x-y-Ebene (gemäß Figur 2) gezeigt. Ohne eine externe Strömung ergibt sich ein Temperaturprofil derart, dass der Sammlungsbereich 40 zwischen den Elektroden 21 wärmer als die Umgebungslösung ist. Da die elektrische Leitfähigkeit und die Dielektrizitätskonstante temperaturabhängig sind, wird das Medium im Sammlungsbereich dielektrisch inhomogen. Dadurch übt das elektrische Feld auf die Flüssigkeit Polarisierungskräfte aus, die zu der Ausbildung der gewünschten Strömungswirbel führen. Da die Strömungswirbel an allen Elektroden gebildet werden, erfolgt ein symmetrischer Zustrom hin zur Käfigmitte in den Sammlungsbereich 40.
  • In Figur 4A (linker Teil) sind die Temperaturverhältnisse bei einer zunächst im Kompartiment ruhenden Flüssigkeit gezeigt. Überraschenderweise erfolgt die Bildung der zum Sammlungsbereich hinweisenden zirkulierenden Strömungen auch, falls die Flüssigkeit im Kompartiment strömt. Die Flüssigkeit bildet einen Trägerstrom mit einer Geschwindigkeit, die geringer als die Flüssigkeitsgeschwindigkeit in den zirkulierenden Strömungen ist.
  • Unter der Wirkung der hochfrequenten Felder im Kompartiment 10 werden auf die Partikel auch dielektrophoretischen Kräfte ausgeübt. Im rechten Teil von Figur 4A sind entsprechend die elektrischen Feldbedingungen illustriert. Es ist das Quadrat der elektrischen Feldstärke (E2) jeweils in der x-z-Ebene (gemäß Figur 1) und in der x-y-Ebene (gemäß Figur 2) gezeigt. Partikel, die in das Innere des Feldkäfigs transportiert werden sollen, müssen in x- oder y-Richtung eine relativ hohe dielektrische Barriere überwinden. Nach Durchlaufen der Barriere unter der Wirkung von Strömungskräften erfahren die Partikel eine in die Mitte des Feldkäfigs wirkende dielektrophoretische Kraft, so dass in der Käfigmitte die Sammlung zu Aggregaten verstärkt wird, die einer dimensionsabhängig größeren Volumenkraft unterliegen.
  • Die Auswahl der zur Erzeugung der elektrohydrodynamischen Strömung erforderlichen Spannungsamplitude erfolgt in Abhängigkeit von den dielektrischen Eigenschaften der Suspensionsflüssigkeit und den geometrischen Eigenschaften der Elektrodenanordnung. Es kann auch eine empirische Auswahl durch Experimente vorgesehen sein. Vorzugsweise werden die hochfrequenten elektrischen Felder so gewählt, dass auf die Partikel ausschließlich negative Dielektrophorese wirkt. Die in den Figuren 2 und 3 gezeigte Sammlung kann zur Sammlung von 1 µm-Partikeln bspw. mit den folgenden Betriebsparametern realisiert werden. Die Partikel sind in KCl (Konzentration: 12.5 mM) suspendiert. Die Elektroden 21 werden mit einer hochfrequenten elektrischen Spannung (Frequenz: 8 MHz, Amplitude: 3.5 V) beaufschlagt. Der Abstand der in einer Ebene einander gegenüberliegenden Elektroden (Spitze-Spitze) beträgt 40 µm.
  • Unter den folgenden Betriebsbedingungen konnte eine Anreicherung von Hepatitis-A-Viren (Durchmesser rd. 30 nm) innerhalb von 10 Minuten erreicht werden. Hochfrequente Wechselspannungen mit Frequenz: 7.4 MHz, Amplitude: 4 Vrms), Elektrodenabstand: 5 µm. Die Startkonzentration der Viren im Kompartiment betrug rd. 109 bis 1010/ml. Die Anreicherung der fluoreszenzmarkierten Hepatitis-A-Viren ist für verschiedene Beobachtungszeiten in Figur 4B gezeigt. Nach 2 Minuten wurde aus den Viren ein zuerst kleines Aggregat geformt, das zu einem Durchmesser von rd. 4 µm (9 min.) anwuchs. Bei einem Einzugsbereich von rd. 100 µm * 100 µm * 10 µm (Kanalhöhe) entspricht dies einer Konzentrierung von rd. 103.
  • Figur 5 illustriert schematisch die Bildung einer Reihe von Sammlungsbereichen 41, 42, 43, ... im Kanal eines fluidischen Mikrosystems, wobei aus Übersichtlichkeitsgründen lediglich die Elektroden 21 der Elektrodenanordnungen auf einer der Seitenflächen des Kanals und die zugehörigen Verbindungsleitungen gezeigt sind, über die die Elektroden 21 mit einer Spannungsquelle verbunden sind. Im linken Teil ist die gegenphasige Ansteuerung jeweils benachbarter Elektroden in einem einzelnen Feldkäfig 20 symbolisch illustriert, mit der die gewünschten Strömungswirbel an jedem Sammlungsbereich 41, 42, 43, .... erzeugt werden können.
  • Außerhalb des fluidischen Mikrosystems befindet sich eine Messeinrichtung (nicht dargestellt), mit der die Partikel in den Sammlungsbereichen 41, 42, 43, ... durch ein Fenster 51 entlang einer Abtastzeile 52 gemessen werden. Zur Detektion von Rezeptor-Ligand-Bindungsereignissen in den gesammelten Partikeln erfolgt beispielsweise eine Fluoreszenz-Korrelations-Messung (FCS).
  • Eine kaskadenförmige Kombination einer Vielzahl von zirkulierenden Strömungen ist schematisch in Figur 6 illustriert. Bei dieser Ausführungsform der Erfindung wird mit der Elektrodenanordnung 20 über eine relativ große Fläche ein zu dem Sammlungsbereich 40 gerichteter Fluss erzeugt. Es sind bspw. mehrere radial zu dem Sammlungsbereich 40 weisende Sammelelektroden 21, 22 vorgesehen. Die innersten Elektroden 23 bilden gleichzeitig Sammel- und Käfigelektroden, die entsprechend Figur 2 einen Feldkäfig bilden. Im Außenbereich befindliche Partikel werden bspw. mit dem Wirbel 34 an der ersten Sammelelektrode 21 in den Wirbel 35 der zweiten Sammelelektrode 22 befördert, von dem der weitere Transport zum Wirbel 36 der Sammel- und Käfigelektrode 23 erfolgt. Mit diesem werden die Partikel in den zentralen Sammlungsbereich 40 befördert.
  • Figur 6 illustriert, dass jeweils an einer streifenförmigen Elektrode zwei Wirbel gebildet werden, wobei die Achse 31 (versetzt eingezeichnet) des Strömungsumlaufes senkrecht zur angrenzenden Seitenfläche mit den Elektroden ausgerichtet ist. Abweichend von der illustrierten geraden Streifenform können die Elektroden bei der in Figur 6 gezeigten Ausführungsform der Erfindung oder auch bei den oben beschriebenen Ausführungsbeispielen eine konische Form besitzen, bei der sich die Breite des Elektrodenstreifens mit zunehmendem radialen Abstand vom Sammlungsbereich nach außen verbreitert. Durch diese Gestaltung kann der Einzugsbereich der sammelnden Strömungen noch erweitert werden. Es ist alternativ möglich, dass die Elektroden eine gerade Streifenform aufweisen und die Elektroden mit radialem Abstand vom Sammlungsbereich nach außen größer werden. Beispielsweise sind innen schmale, kleine Elektroden und außen breite, große Elektroden vorgesehen, wobei nach außen z. B. das Aspektverhältnis der Elektroden zunimmt.
  • Figur 7 illustriert eine Ausführungsform der erfindungsgemäßen Sammlungsvorrichtung mit einer Elektrodenanordnung 20, die einen äußeren Käfig 20.1 aufweist, in dessen Fangbereich ein innerer Käfig 20.2 gebildet ist. Jeder der inneren und äußeren Feldkäfige 20.1 und 20.2 ist ein geschlossener 8-Elektroden-Feldkäfig. Die zugehörigen Elektrodenanordnungen sind relativ zueinander um 45° versetzt angeordnet, wodurch die Zusammenwirkung beider Feldkäfige verbessert wird.
  • Figur 8 illustriert die bei der Ausführungsform gemäß Figur 7 resultierenden Strömungsprofile (numerische Simulation). Die Strömungsprofile sind so geformt, dass der Einzugsbereich der Elektrodenanordnung 20 vergrößert und auch die zentrale Ruhe- oder Partikelsammelzone erweitert werden. Im Unterschied zu der konzentrischen Doppelanordnung würde der äußere Feldkäfig 20.1 allein eine geringere Strömung und damit einen weniger effektiven Partikeltransport liefern, während der innere Feldkäfig 20.2 allein ein geringeres Einzugsgebiet und eine kleinere Ruhezone hätte.
  • Bei den in den Figuren 5, 6 und 7 gezeigten Elektrodenanordnungen sind die einzelnen Elektroden und ihre Verbindungsleitungen zu den Spannungsquellen elektrisch voneinander isoliert. Die Isolation erfolgt durch einen Mehrebenenaufbau aus Elektroden- und Isolationsschichten.
  • Gemäß einer weiteren Modifizierung der Erfindung kann die Sammlungsvorrichtung mit einer Kühleinrichtung, z. B. einem Peltier-Element ausgestattet sein, um eine unerwünschte Gesamterwärmung der Sammlungsvorrichtung zu vermeiden.
  • Die in der vorstehenden Beschreibung, den Zeichnungen und den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausgestaltungen von Bedeutung sein.

Claims (36)

  1. Verfahren zur Sammlung von Partikeln (1, 2), die in einer Flüssigkeit suspendiert sind, mit den Schritten:
    - Bereitstellung der Flüssigkeit mit den suspendierten Partikeln (1, 2) in einem Kompartiment (10) mit Seitenflächen (11), wobei auf mindestens einer der Seitenflächen (11) mehrere Elektroden (21, 22, 23) angeordnet sind, und
    - Erzeugung von hochfrequenten elektrischen Feldern mit den Elektroden (21, 22, 23)
    dadurch gekennzeichnet, dass
    - unter der Wirkung der hochfrequenten elektrischen Felder mehrere zirkulierende Strömungen (30, 34, 35, 36) gebildet werden, mit denen die Partikel (1, 2) zu mindestens einem vorbestimmten Sammlungsbereich (40) im Kompartiment (10) geführt werden, wobei
    - die Strömungen (30, 34, 35, 36) so gebildet werden, dass an der jeweiligen Elektrode (21, 22, 23) wenigstens ein Zweig der Strömung entlang einer Längsausdehnung der Elektrode (21, 22, 23) verläuft und die Strömung (30, 34, 35, 36) um eine Achse (31) umläuft, die senkrecht zu der jeweils angrenzenden Seitenfläche (11) mit der Elektrode (21, 22, 23) ausgerichtet ist, und
    - die Elektroden (21, 22, 23) auf verschiedenen Seiten des Sammlungsbereiches (40) angeordnet sind, von denen die Partikel (1, 2) entsprechend mit den mehreren Strömungen (30, 34, 35, 36) zum Sammlungsbereich (40) geführt werden.
  2. Verfahren nach Anspruch 1, bei dem die Partikel im Sammlungsbereich (40) ohne eine Berührung der Seitenfläche (11) des Kompartiments (10) angeordnet werden.
  3. Verfahren nach Anspruch 1, bei dem die Partikel im Sammlungsbereich (40) so angeordnet werden, dass sie eine der Seitenflächen (11) des Kompartiments (10) berühren.
  4. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem jeweils an einer Elektrode (21) mehrere zirkulierende Strömungen (32, 33) erzeugt werden, mit denen die Partikel zu dem mindestens einen Sammlungsbereich (40) geführt werden.
  5. Verfahren nach Anspruch 1, bei dem die Strömungen im Wesentlichen symmetrisch relativ zum Sammlungsbereich (40) erzeugt werden.
  6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem durch die hochfrequenten elektrischen Felder mittels negativer Dielektrophorese auf die Partikel Kräfte ausgeübt werden, die zum Sammlungsbereich (40) gerichtet sind.
  7. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem die hochfrequenten elektrischen Felder mit bandförmigen Elektroden einer Elektrodenanordnung (20) zur Erzeugung von mindestens einem dielektrophoretischen Feldkäfig erzeugt werden, die an den Seitenflächen (11) des Kompartiments angeordnet sind.
  8. Verfahren nach Anspruch 7, bei dem der dielektrophoretische Feldkäfig mit einem Potentialminimum erzeugt wird, das sich im Sammlungsbereich (40) befindet.
  9. Verfahren nach Anspruch 8, bei dem ein in zumindest zwei Raumrichtungen geschlossener dielektrophoretischer Feldkäfig erzeugt wird.
  10. Verfahren nach mindestens einem der Ansprüche 6 bis 9, bei dem die hochfrequenten elektrischen Felder mit Elektroden einer Elektrodenanordnung (20) mit einem äußeren dielektrophoretischen Feldkäfig (20.1) und mit einem inneren dielektrophoretischen Feldkäfig (20.2) erzeugt werden, wobei die Elektroden an den Seitenflächen (11) des Kompartiments angeordnet sind.
  11. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem die Partikel in den Sammlungsbereich (40) aus einem Einzugsbereich des Kompartiments (10) geführt werden, dessen Volumen 102 bis 109-fach größer als das Volumen des Sammlungsbereiches (40) ist.
  12. Verfahren nach Anspruch 11, bei dem der Einzugsbereich ein Volumen von bis zu 50 µl und der Sammlungsbereich (40) ein Volumen von 40 µl bis zu 1 fl besitzen.
  13. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem im Sammlungsbereich (40) mindestens eine weitere Kraft auf die Partikel wirkt.
  14. Verfahren nach Anspruch 13, bei dem die Kraft eine optisch wirksame, eine dielektrophoretische oder eine magnetische Kraft ist.
  15. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem im Sammlungsbereich (40) eine Messung an den gesammelten Partikeln erfolgt.
  16. Verfahren nach Anspruch 15, bei dem die Messung eine elektrische, elektrochemische oder optische Messung umfasst.
  17. Verfahren nach Anspruch 16, bei dem die Messung eine Detektion eines Rezeptor-Ligand-Bindungs-Ereignisses umfasst.
  18. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem im Kompartiment mehrere Sammlungsbereiche (41, 42, 43, ...) angeordnet sind, in denen Partikel gesammelt werden.
  19. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem im Kompartiment eine laminare Strömung oder ein Ultraschallfeld erzeugt wird, die sich mit der zirkulierenden Strömung (30) überlagern.
  20. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem im Kompartiment (10) mehrere zirkulierende Strömungen (34, 35, 36) erzeugt werden, die sich gegenseitig überlagern.
  21. Verfahren nach mindestens einem der vorhergehenden Ansprüche, bei dem Partikel mit einem Durchmesser gesammelt werden, der geringer als 1 µm ist.
  22. Verfahren nach Anspruch 21, bei dem Partikel gesammelt werden, die Zellen, Viren, Bakterien, Proteine, Zellbestandteile oder biologische Makromoleküle umfassen.
  23. Sammlungsvorrichtung zur Sammlung von Partikeln, die in einer Flüssigkeit suspendiert sind, umfassend:
    - ein von Seitenflächen (11) begrenztes Kompartiment (10) zur Aufnahme der Flüssigkeit mit den suspendierten Partikeln, und
    - mehrere Elektroden (21, 22, 23), die auf mindestens einer der Seitenflächen (11) angeordnet sind und mit denen im Kompartiment (10) hochfrequente elektrische Felder erzeugt werden können,
    dadurch gekennzeichnet, dass
    - die Elektroden (21, 22, 23) eine langgestreckte Form mit einem Aspektverhältnis Elektrodenbreite : Elektrodenlänge aufweisen, das im Bereich von 1 : 10 bis 1 : 100 gewählt ist, und dazu eingerichtet sind, hochfrequente elektrische Felder zur Bildung von mehreren zirkulierender Strömungen (30) zu erzeugen, mit denen die Partikel zu mindestens einem vorbestimmten Sammlungsbereich (40) im Kompartiment (10) geführt werden können, und die Strömungen (30) so zu bilden, dass ein Zweig jeder Strömung (30) entlang der langgestreckten Form verläuft, und
    - mindestens eine Achse (31), um welche die Strömung (30) umläuft, senkrecht zu der jeweils angrenzenden Seitenfläche (11) mit der Elektrode ausgerichtet ist.
  24. Vorrichtung nach Anspruch 23, bei welcher der Sammlungsbereich (40) mit einem Abstand von den Seitenflächen (11) des Kompartiments (10) angeordnet ist.
  25. Vorrichtung nach Anspruch 23, bei welcher der Sammlungsbereich (40) eine der Seitenflächen (11) des Kompartiments (10) berührt.
  26. Vorrichtung nach mindestens einem der Ansprüche 23 bis 25, bei der eine Elektrodenanordnung (20) mit einer Vielzahl von Elektroden (21, 22, 23) zur Erzeugung von mehreren zirkulierenden Strömungen (32, 33) eingerichtet ist.
  27. Vorrichtung nach mindestens einem der Ansprüche 23 bis 26, bei der an den Seitenflächen (11) des Kompartiments Käfigelektroden zur Erzeugung von mindestens einem dielektrophoretischen Feldkäfig angeordnet ist.
  28. Vorrichtung nach Anspruch 27, bei der die Käfigelektroden Teil der Elektrodenanordnung (20) sind.
  29. Vorrichtung nach Anspruch 27, bei der die Käfigelektroden einen äußeren dielektrophoretischen Feldkäfig (20.1) und einen inneren dielektrophoretischen Feldkäfig (20.2) bilden, der in dem äußeren dielektrophoretischen Feldkäfig (20.1) angeordnet ist.
  30. Vorrichtung nach mindestens einem der Ansprüche 23 bis 27, bei der eine Heizeinrichtung, Kühleinrichtung und/oder eine Lichtquelle vorgesehen sind.
  31. Vorrichtung nach mindestens einem der Ansprüche 23 bis 30, bei welcher der Sammlungsbereich (40) mit einer Magnetfeldeinrichtung ausgestattet ist.
  32. Vorrichtung nach mindestens einem der Ansprüche 23 bis 31, die mit einer Messeinrichtung (50) zur Erfassung von elektrischen oder optischen Eigenschaften von Partikeln im Sammlungsbereich (40) ausgestattet ist.
  33. Vorrichtung nach mindestens einem der Ansprüche 23 bis 32, bei der mindestens eine der Seitenflächen des Kompartiments im Bereich des mindestens einen Sammlungsbereiches mit Detektionsspots in Form von Rezeptormolekülen funktionalisiert ist.
  34. Vorrichtung nach mindestens einem der Ansprüche 23 bis 33, bei der mehrere Sammlungsbereiche (41, 42, 43) vorgesehen sind.
  35. Vorrichtung nach mindestens einem der Ansprüche 23 bis 34, bei der das Kompartiment Teil eines Kanals eines fluidischen Mikrosystems ist.
  36. Vorrichtung nach Anspruch 35, bei der die Sammlungsbereiche (41, 42, 43) entlang einer Längsrichtung des Kanals reihenförmig angeordnet sind.
EP05747443A 2004-05-12 2005-05-06 Verfahren und vorrichtung zur sammlung von suspendierten partikeln Not-in-force EP1744831B8 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004023466A DE102004023466B4 (de) 2004-05-12 2004-05-12 Verfahren und Vorrichtung zur Sammlung von suspendierten Partikeln
PCT/EP2005/004925 WO2005110605A1 (de) 2004-05-12 2005-05-06 Verfahren und vorrichtung zur sammlung von suspendierten partikeln

Publications (3)

Publication Number Publication Date
EP1744831A1 EP1744831A1 (de) 2007-01-24
EP1744831B1 true EP1744831B1 (de) 2010-11-17
EP1744831B8 EP1744831B8 (de) 2011-09-07

Family

ID=34969129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05747443A Not-in-force EP1744831B8 (de) 2004-05-12 2005-05-06 Verfahren und vorrichtung zur sammlung von suspendierten partikeln

Country Status (5)

Country Link
US (1) US7879214B2 (de)
EP (1) EP1744831B8 (de)
AT (1) ATE488301T1 (de)
DE (2) DE102004023466B4 (de)
WO (1) WO2005110605A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003074A (ja) * 2006-05-26 2008-01-10 Furuido:Kk マイクロ流体デバイス、計測装置及びマイクロ流体撹拌方法
DE102006052925A1 (de) * 2006-11-09 2008-05-15 Evotec Technologies Gmbh Feldkäfig und zugehöriges Betriebsverfahren
EP1935498A1 (de) 2006-12-22 2008-06-25 Universität Leipzig Vorrichtung und Verfahren zum berührungslosen Manipulieren und Ausrichten von Probenteilchen in einem Messvolumen mit Hilfe eines inhomogenen elektrischen Wechselfelds
KR101947233B1 (ko) * 2016-09-26 2019-02-12 울산과학기술원 유전영동과 전기삼투를 이용한 입자 분리 전극 및 이를 포함하는 입자 분리 장치
JP6742618B2 (ja) * 2018-06-11 2020-08-19 シャープ株式会社 生体粒子観察装置および生体粒子観察方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440638A (en) * 1982-02-16 1984-04-03 U.T. Board Of Regents Surface field-effect device for manipulation of charged species
DE19653659C1 (de) * 1996-12-20 1998-05-20 Guenter Prof Dr Fuhr Elektrodenanordnung für Feldkäfige
JP2002516742A (ja) * 1998-05-29 2002-06-11 インダストリアル リサーチ リミテッド 粒子または細胞の集中および/または定位置への移動のための方法および装置
DE19859459A1 (de) * 1998-12-22 2000-06-29 Evotec Biosystems Ag Mikrosysteme zur Zellpermeation und Zellfusion
DE19903001A1 (de) 1999-01-26 2000-08-24 Evotec Biosystems Ag Verfahren und Vorrichtung zur Detektion mikroskopisch kleiner Objekte
DE10055921A1 (de) * 2000-11-10 2002-05-29 Evotec Ag Verfahren und Vorrichtung zur Erzeugung von Mikrokonvektionen
DE10059152C2 (de) * 2000-11-29 2003-03-27 Evotec Ag Mikrosystem zur dielektrischen und optischen Manipulierung von Partikeln
DE10224150B4 (de) * 2002-05-27 2004-04-01 Siemens Ag Reaktor zur Behandlung eines Probenmediums
DE60202374T2 (de) 2002-10-25 2005-12-08 Evotec Technologies Gmbh Methode und Vorrichtung zur Aufnahme dreidimensionaler Abbildungen von schwebend gehaltenen Mikroobjekten unter Verwendung hochauflösender Mikroskopie
DE10255858A1 (de) * 2002-11-29 2004-06-17 Evotec Oai Ag Fluidisches Mikrosystem mit feldformenden Passivierungsschichten auf Mikroelektroden
DE10320869A1 (de) 2003-05-09 2004-12-16 Evotec Technologies Gmbh Verfahren und Vorrichtungen zur Flüssigkeitsbehandlung suspendierter Partikel

Also Published As

Publication number Publication date
DE102004023466B4 (de) 2008-11-13
US20070221501A1 (en) 2007-09-27
EP1744831A1 (de) 2007-01-24
ATE488301T1 (de) 2010-12-15
EP1744831B8 (de) 2011-09-07
WO2005110605A1 (de) 2005-11-24
DE102004023466A1 (de) 2005-12-08
DE502005010554D1 (de) 2010-12-30
US7879214B2 (en) 2011-02-01

Similar Documents

Publication Publication Date Title
DE60130052T2 (de) Elektroden-Bau für dielektrophoretische Anordnung und dielektrophoretische Trennung
EP1603678B1 (de) Verfahren und vorrichtung zur trennung von partikeln in einer flüssigkeitsströmung
DE60010666T2 (de) Verfahren und vorrichtung zur programmierbaren behandlung von fluiden
DE60019761T2 (de) Apparat und verfahren für dielektrophoresis
DE69737552T2 (de) Fraktionierung mittels dielektrophoresis und fraktionierung unter anwendung eines flussfeldes
EP1140343B1 (de) Verfahren und vorrichtung zur konvektiven bewegung von flüssigkeiten in mikrosystemen
DE102009028493B4 (de) Mikrofluidische Zelle
EP1089823B1 (de) Elektrodenanordnungen zur erzeugung funktioneller feldbarrieren in mikrosystemen
WO2000000292A1 (de) Elektrodenanordnung zur dielektrophoretischen partikelablenkung
WO2000037628A1 (de) Mikrosysteme zur zellpermeation und zellfusion
EP1744831B1 (de) Verfahren und vorrichtung zur sammlung von suspendierten partikeln
WO2002082053A2 (de) Verfahren und vorrichtung zur manipulation kleiner flüssigkeitsmengen und/oder darin enthaltener teilchen
CN110918139B (zh) 微流控芯片、含有该微流控芯片的装置及样本浓缩的方法
WO1998028405A1 (de) Elektrodenanordnung für feldkäfige
DE60214155T2 (de) Verfahren zur beschleunigung und verstärkung der bindung von zielkomponenten an rezeptoren und vorrichtung dafür
WO2004013614A1 (de) Impedanzmessung in einem fluidischen mikrosystem
EP1979738A1 (de) Anordnung zur erzeugung von flüssigkeitsströmungen und/oder teilchenströmen, verfahren zu ihrer herstellung und zu ihrem betrieb sowie ihre verwendung
DE102010043030A1 (de) Mikrofluidische Vorrichtung und mikrofluidisches Verfahren zur Verarbeitung von Biopartikeln
DE102009028496A1 (de) Mikrofluidische Zelle
EP1331986B1 (de) Verfahren und vorrichtung zur erzeugung von mikrokonvektionen
DE19860118C1 (de) Elektrodenanordnungen zur Erzeugung funktioneller Feldbarrieren in Mikrosystemen
DE102006023238A1 (de) Vorrichtung und Verfahren zur kontaktlosen Fixierung, Positionierung, Freigabe und Entnahme von Partikeln
DE10320869A1 (de) Verfahren und Vorrichtungen zur Flüssigkeitsbehandlung suspendierter Partikel
DE102018211001A1 (de) Vorrichtung zum dielektrophoretischen Einfang von Teilchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070131

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MUELLER, TORSTEN

Inventor name: STELZLE, MARTIN

Inventor name: KENTSCH, JOERG

Inventor name: SCHNELLE, THOMAS

Inventor name: GROM, FRANK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KENTSCH, JOERG

Inventor name: MUELLER, TORSTEN

Inventor name: STELZLE, MARTIN

Inventor name: SCHNELLE, THOMAS

Inventor name: GROM, FRANK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PERKINELMER CELLULAR TECHNOLOGIES GERMANY GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: NMI NATURWISSENSCHAFTLICHES UND MEDIZINISCHES INST

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005010554

Country of ref document: DE

Date of ref document: 20101230

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101117

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110217

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110317

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110818

BERE Be: lapsed

Owner name: NMI NATURWISSENSCHAFTLICHES UND MEDIZINISCHES INST

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005010554

Country of ref document: DE

Effective date: 20110818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 488301

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20131128

Year of fee payment: 9

Ref country code: GB

Payment date: 20131128

Year of fee payment: 9

Ref country code: DE

Payment date: 20131125

Year of fee payment: 9

Ref country code: CH

Payment date: 20131125

Year of fee payment: 9

Ref country code: SE

Payment date: 20131128

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131128

Year of fee payment: 9

Ref country code: IT

Payment date: 20131129

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005010554

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140507

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005010554

Country of ref document: DE

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140506

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140506

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602