EP1739194A1 - Method of supersonic injection of an oxidationagent in a melting furnace - Google Patents

Method of supersonic injection of an oxidationagent in a melting furnace Download PDF

Info

Publication number
EP1739194A1
EP1739194A1 EP06116219A EP06116219A EP1739194A1 EP 1739194 A1 EP1739194 A1 EP 1739194A1 EP 06116219 A EP06116219 A EP 06116219A EP 06116219 A EP06116219 A EP 06116219A EP 1739194 A1 EP1739194 A1 EP 1739194A1
Authority
EP
European Patent Office
Prior art keywords
injectors
ultrasound
injecting
oxidizing agent
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06116219A
Other languages
German (de)
French (fr)
Other versions
EP1739194B1 (en
EP1739194B2 (en
Inventor
Stéphane c/o Messer France SAS Appl. Techn Arnoux
Philippe Messer France SAS Appl. Tech. Grognet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer France SAS
Original Assignee
Messer France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37012109&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1739194(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Messer France SAS filed Critical Messer France SAS
Publication of EP1739194A1 publication Critical patent/EP1739194A1/en
Publication of EP1739194B1 publication Critical patent/EP1739194B1/en
Application granted granted Critical
Publication of EP1739194B2 publication Critical patent/EP1739194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge

Definitions

  • the invention relates to a method for operating a melting furnace, wherein the feedstock, fuel, and at least one oxidizing agent are fed to a molten zone, wherein the oxidizing agent is injected by means of several, arranged around the circumference of the furnace at preferably equal angular intervals injectors at supersonic velocity in the molten zone, and the injection takes place at least in one process section by a chronological sequence of flow and rest phases (pulses) of the individual injectors.
  • the total duration of the flow phases is varied by changing the ratio of the periods from flow phase to resting phase as well as the pulse frequency;
  • the duration of the flow phases is between 50% and 99% of the duration of the entire process section.
  • the invention is therefore based on the object of specifying a method by means of which the melting operation in a melting furnace, in particular in a shaft furnace, which is equipped with several injectors for injecting an oxidant at supersonic speed, well dosed and uniform.
  • This object is achieved on the basis of the method described above according to the invention in that the ratio of the flow and resting phase of the injectors and the number of injectors injecting with ultrasound is varied in such a way depending on a predetermined or continuously determined quantity of oxidizing agent to be supplied according to a predetermined program a steady course of the quantity of oxidizing agent supplied with ultrasound and a flow pattern substantially uniformly covering the melting zone are achieved.
  • the supply of the oxidizing agent, which is introduced with ultrasound into the molten zone is controlled according to a program. If the amount of the total amount of oxidant to be supplied with ultrasound falls below a value set by the program, one or more injectors will be switched off, with a "disconnected" injector, as understood here, not supplying the smelting furnace with any oxidizing agent or oxidizing agent at subsonic speed.
  • one or more injectors are then "switched on", ie they now supply oxidizing agents with ultrasound.
  • the course of the amount of oxidant supplied with ultrasound should be continuous, ie. simultaneously with the change in the number of ultrasonically injecting injectors, the oxidant supply should be adjusted via the injectors injecting thereafter with ultrasound via a corresponding change in the ratio of flow and quiescent phase such that the total quantity of oxidant supplied with ultrasound corresponds to that required for this time.
  • a uniform flow pattern covering the melting zone is to be achieved, i. the ultrasonically injecting injectors are each arranged on the furnace so that a uniform loading of the molten zone is ensured with oxidizing agent.
  • the term "effective duration of the flow phases" or "effective duration of the rest phases” should be understood to mean the total duration possibly distributed over one or more pulses during which the injector is open, ie in flow phase, or closed, ie in rest phase.
  • the oxidant is injected at supersonic velocity into the melt zone, and during a quiescent phase, injection is throttled to a velocity below supersonic velocity or shut off altogether.
  • the range of adjustment of the amount of oxidant injected into the molten zone is between zero (at zero flow duration) and the maximum amount of exhaust of all injectors used (full load operation of all injectors and zero duration of the dwell phase).
  • the amount of oxidant injected into the molten zone with ultrasound varies widely.
  • Formula (1) therefore provides a good basis for automated control of the injectors.
  • the per unit of time to be supplied with ultrasound amount of oxidant can be determined by means of a computer program, the number of connected injectors and the effective duration of the flow and rest phases.
  • empirically recorded values can be included on the optimal for the respective setting pulse rate and possibly an optimized sequence of different pulses and on and the optimal working range of the injectors used.
  • the oxidant flow is influenced very accurately, without affecting the ultrasound injection. Too long periods of rest, during which no oxidizing agent is injected with ultrasound, are avoided as well as a non-uniform application of the melting zone.
  • the emission of pollutants such as NO x and CO is significantly reduced.
  • the consumption of materials in the furnace, as well as the consumption of fuels, coke and electrical energy can be reduced.
  • the method according to the invention is particularly suitable for melting processes in which a melting zone is produced by burning a fuel with an oxidizing agent in a melting furnace in which a feedstock is melted.
  • the shaft furnaces come into question, especially cupolas, such as hot blast. Warm wind, cold wind, secondary wind, long-term, or rotary kilns.
  • the feed is added to the furnace, for example, in the form of steel scrap, cast broke, pig iron or chips. It also uses non-metallic aggregates such as coke, silicon carbide, ferrosilicon, ferromanganese, lime and gravel.
  • the oxidizing agent is preferably oxygen.
  • a further oxidizing agent for example air, can be introduced into the melting zone in a time-constant or likewise pulsating manner.
  • the supply of oxidant is controlled such that when the difference between the maximum possible power of all ultrasonically injecting injectors and the amount of oxidant to be supplied to ultrasound corresponds to the maximum power of a single injector, the number of ultrasonically injecting injectors decreases by one and then, when the amount of oxidant to be supplied with ultrasound exceeds the maximum possible power of all injectors injecting ultrasound, the number of injectors injecting ultrasound is increased by one, with the amount of oxidant to be supplied by ultrasound injection then being uniformly distributed to the ultrasonically injecting injectors. At full load, all injectors of the melting furnace work in continuous operation.
  • all the injectors When it is necessary to reduce the supply of ultrasonically oxidized oxidant, all the injectors initially go into pulsed operation, ie, all the injectors will operate in a flow-phase and quiescent-sequence sequence, as in FIG EP 1 242 781 B1 described method, wherein the total supplied with ultrasound amount of oxidizing agent is adjusted by changing the ratio of flow and rest phase.
  • the lower the need for oxidizing agent the longer the duration of the rest periods of the injectors. If the demand drops such that the sum of the rest phases of all injectors overall corresponds to the maximum output of a single injector, one of the injectors is switched off.
  • the total flow of the ultrasonically injected oxidant is distributed evenly to the connected injectors, ie the remaining connected injectors operate initially at full load, and go into the pulse-wise operation, as soon as the demand is further reduced. The same applies to an increase in demand.
  • the shutdown is such that the remaining connected injectors are evenly distributed around the circumference of the furnace.
  • the injectors are operated asymmetrically on the furnace and after a not too long time a change of the connected injectors takes place.
  • the goal is in any case to apply the molten zone of the furnace as evenly as possible with oxygen.
  • the regulation of the oxygen supply is carried out as follows: In the Voillast stipulate the supply takes place via all injectors. With a reduction in oxygen demand, the injectors go into pulse-wise operation, i. the supply of oxygen takes place in these lances at discrete time intervals in the form of a sequence of flow phase and resting phase, the duration of which results from the respective oxygen requirement. The lower the oxygen requirement, the longer the duration of the rest periods of the injectors. In order to make the oxygen supply as uniform as possible, the injectors are driven alternately in pulses of different lengths, but care is taken that the injection always takes place substantially symmetrically to the central axis of the furnace.
  • the oxygen demand is reduced by a value corresponding to the performance of an injector - or an integer multiple thereof - one or more injectors are switched off, the shutdown taking place in such a way that the still connected injectors act as uniformly as possible on the melting zone of the shaft furnace ,
  • the resting phases of the connected injectors accordingly to make sure a steady transition of Oxidationsffenmengenzuschreib.
  • the connected injectors are operated in the same way as described above. In this operating state, it is expedient to control the connected injectors alternately.
  • the injectors switched off during the described method step are preferably switched on in subsequent method steps or during the melting of a subsequent batch, so that in each case a change of zuzugateden injectors takes place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

Operating a melting furnace by supplying charge material, fuel and an oxidizing agent to a melting zone comprises injecting the oxidizing agent through peripheral ultrasonic injectors in supersonic pulses and adjusting the on/off ratio of the injectors and the number of injectors in use as a function of a predetermined or continuously determined oxidizing agent supply so that the supply is continuously maintained and a flow pattern that uniformly covers the melting zone is produced.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Schmelzofens, bei dem Einsatzstoffe, Brennstoff, und wenigstens ein Oxidationsmittel einer Schmelzzone zugeführt werden, wobei das Oxidationsmittel mittels mehrerer, um den Umfang des Schmelzofens in vorzugsweise gleichen Winkelabständen angeordneter Injektoren mit Überschallgeschwindigkeit in die Schmelzzone eingedüst wird und das Eindüsen zumindest in einem Verfahrensabschnitt durch eine zeitliche Abfolge von Fließ- und Ruhephasen (Pulse) der einzelnen Injektoren erfolgt.The invention relates to a method for operating a melting furnace, wherein the feedstock, fuel, and at least one oxidizing agent are fed to a molten zone, wherein the oxidizing agent is injected by means of several, arranged around the circumference of the furnace at preferably equal angular intervals injectors at supersonic velocity in the molten zone, and the injection takes place at least in one process section by a chronological sequence of flow and rest phases (pulses) of the individual injectors.

Ein bekanntes Verfahren zur Ultraschall-Eindüsung eines Oxidationsmittels in einen Kupolofen wird in der EP 0 946 848 B1 beschrieben. Bei diesem Verfahren werden im oberen Teil des Ofenschachtes die zu erschmelzenden metallischen Einsatzstoffe und als Energieträger Koks zugeführt. Im unteren Teil des Ofenschachtes wird zur Verbrennung des Energieträgers und zur Erzeugung einer heißen Schmelzzone Luft und zusätzlich Sauerstoff eingedüst. Die Zufuhr von Sauerstoff erhöht die Temperatur in der Schmelzzone und steigert die Schmelzleistung des Kupolofens. Um die Eindringtiefe des Sauerstoffstromes zu erhöhen, wird dieser zusammen mit einem Brenngas mittels sogenannter Sauerstoff-Injektionslanzen mit Überschallgeschwindigkeit in die Schmelzzone eingedüst. Hierzu sind in die Sauerstoff-Injektionslanzen jeweils Laval-Düsen eingesetzt.A known method for ultrasonic injection of an oxidizing agent into a cupola furnace is described in US Pat EP 0 946 848 B1 described. In this process, the metallic starting materials to be melted and coke are supplied as energy carriers in the upper part of the furnace shaft. In the lower part of the furnace shaft, air and additionally oxygen are injected to burn the energy carrier and to produce a hot melting zone. The supply of oxygen raises the temperature in the melting zone and increases the melting performance of the cupola. In order to increase the penetration depth of the oxygen stream, this is injected together with a fuel gas by means of so-called oxygen injection lances at supersonic velocity in the molten zone. For this purpose, Laval nozzles are inserted into the oxygen injection lances.

Die Regelung der über eine Laval-Düse in die Schmelzzone eingebrachten Sauerstoffmenge ist jedoch problematisch. Aus physikalischen Gründen ist es nicht möglich, die Sauerstoffmenge herunterzuregeln, ohne die Strömungsgeschwindigkeit auf Schallgeschwindigkeit oder darunter zu drosseln. Dies führt dazu, daß bei einer für einen Betriebszustand des Schmelzofens ausgelegten vorgegebenen Bestückung mit Sauerstoff-Injektionslanzen der Sauerstoffeintrag in den Schmelzofen nicht verringert werden kann, ohne die Überschallgeschwindigkeit und damit deren Wirkung hinsichtlich der Eindringtiefe des Sauerstoffstromes aufzuheben.However, controlling the amount of oxygen introduced into the molten zone via a Laval nozzle is problematic. For physical reasons, it is not possible to control the amount of oxygen without throttling the flow velocity to or below the speed of sound. As a result, in the case of a predetermined configuration of oxygen injection lances designed for an operating state of the melting furnace, the oxygen input into the melting furnace can not be reduced without canceling the supersonic velocity and thus its effect with regard to the penetration depth of the oxygen flow.

In der EP 1 242 781 B1 wird ein verbessertes Verfahren zum Betreiben eines Schmelzofens beschrieben, bei dem das Eindüsen des Sauerstoffs in Form von Pulsen, d,h. durch eine zeitliche Abfolge von Fließphasen, während derer Sauerstoff eingedüst wird, und Ruhephasen, während derer kein Sauerstoff mit Ultraschall zugeführt wird, erfolgt. Werden mehrere symmetrisch um den Umfang des Schmelzofens angeordnete Sauerstoffinjektionslanzen eingesetzt, können die Sauerstofflanzen synchron, also gleichzeitig pulsend, oder aber asynchron, also zeitlich versetzt zueinander, betrieben werden; die Pulsdauern aller Injektoren sind dabei jedoch stets gleich, um eine gleichmäßige Sauerstoffzufuhr zu ermöglichen. Um die insgesamt zugeführte Sauerstoffmenge zu regulieren, wird die Gesamtdauer der Fließphasen durch Änderungen des Verhältnisses der Dauern von Fließphase zu Ruhephase sowie der Pulsfrequenz variiert; vorzugsweise beträgt die Dauer der Fließphasen zwischen 50% und 99% der Dauer des gesamten Verfahrensabschnitts.In the EP 1 242 781 B1 An improved method for operating a melting furnace is described in which the injection of oxygen in the form of pulses, d, h. by a time sequence of flow phases during which oxygen is injected, and rest periods during which no oxygen is supplied with ultrasound, takes place. If a plurality of oxygen injection lances arranged symmetrically around the circumference of the melting furnace are used, the oxygen lances can be operated synchronously, ie simultaneously pulsating, or asynchronously, ie offset in time from one another; However, the pulse durations of all injectors are always the same to allow a uniform supply of oxygen. In order to regulate the total amount of oxygen supplied, the total duration of the flow phases is varied by changing the ratio of the periods from flow phase to resting phase as well as the pulse frequency; Preferably, the duration of the flow phases is between 50% and 99% of the duration of the entire process section.

Das Verfahren hat sich in der Praxis gut bewährt. Beim Einsatz in hinsichtlich ihrer Sauerstoffeintragskapazität überdimensionierten Öfen sind mitunter jedoch Ruhephasen erforderlich, deren Gesamtdauer 50% der Dauer des jeweiligen Verfahrensabschnitts deutlich übersteigt. Dies führt zu einer ungünstigen Beeinflussung des Schmelzergebnisses.The method has proven itself well in practice. When used in terms of their oxygen input capacity oversized ovens but sometimes rest periods are required, the total duration of 50% of the duration of each process section significantly exceeds. This leads to an unfavorable influence on the melting result.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren anzugeben, mittels dem der Schmelzbetrieb in einem Schmelzofen, insbesondere in einem Schachtofen, der mit mehreren Injektoren zum Eindüsen eines Oxidationsmittels mit Überschallgeschwindigkeit ausgestattet ist, wohldosiert und gleichmäßig gestaltet werden kann.The invention is therefore based on the object of specifying a method by means of which the melting operation in a melting furnace, in particular in a shaft furnace, which is equipped with several injectors for injecting an oxidant at supersonic speed, well dosed and uniform.

Diese Aufgabe wird ausgehend von dem eingangs beschriebenen Verfahren erfindungsgemäß dadurch gelöst, dass in Abhängigkeit von einer vorgegebenen oder laufend ermittelten zuzuführenden Oxidationsmittelmenge nach einem vorgegebenen Programm das Verhältnis aus Fließ- und Ruhephase der Injektoren sowie die Anzahl der mit Ultraschall eindüsenden Injektoren derart variiert wird, dass ein stetiger Verlauf der mit Ultraschall zugeführten Oxidationsmittelmenge sowie ein die Schmelzzone im wesentlichen gleichmäßig abdeckendes Strömungsbild erreicht wird.This object is achieved on the basis of the method described above according to the invention in that the ratio of the flow and resting phase of the injectors and the number of injectors injecting with ultrasound is varied in such a way depending on a predetermined or continuously determined quantity of oxidizing agent to be supplied according to a predetermined program a steady course of the quantity of oxidizing agent supplied with ultrasound and a flow pattern substantially uniformly covering the melting zone are achieved.

Erfindungsgemäß wird also die Zufuhr des Oxidationsmittels, das mit Ultraschall in die Schmelzzone eingebracht wird, nach einem Programm gesteuert. Sinkt die Menge des insgesamt mit Ultraschall zuzuführenden Oxidationsmittels unter einen vom Programm festgelegten Wert wird ein oder mehrere Injektoren abgeschaltet, wobei ein "abgeschalteter" Injektor im hier verstandenen Sinne dem Schmelzofen gar kein Oxidationsmittel oder nur noch Oxidationsmittel mit Unterschallgeschwindigkeit zuführt. Entsprechendes gilt für den Fall, das der Wert des insgesamt mit Ultraschall zuzuführenden Oxidationsmittels einen bestimmten, vom Programm vorgegebenen Wert überschreitet: Dann werden ein oder mehrere Injektoren "zugeschaltet", führen also nunmehr Oxidationsmittel mit Ultraschall zu. Beim Betrieb des Schmelzofens müssen stets zwei Bedingungen erfüllt sein: Zum einen soll der Verlauf der mit Ultraschall zugeführten Oxidationsmittelmenge stetig sein, d.h. gleichzeitig mit der Änderung der Anzahl der mit Ultraschall eindüsenden Injektoren soll die Oxidationsmittelzufuhr über die hiernach mit Ultraschall eindüsenden Injektoren über eine entsprechende Änderung des Verhältnisses aus Fließ- und Ruhephase derart eingestellt werden, dass die insgesamt mit Ultraschall zugeführte Oxidationsmittelmenge der für diesen Zeitpunkt erforderlichen entspricht. Zum anderen soll ein die Schmelzzone gleichmäßiges abdeckendes Strömungsbild erreicht werden, d.h. die mit Ultraschall eindüsenden Injektoren sind jeweils derart am Schmelzofen angeordnet, dass eine gleichmäßige Beaufschlagung der Schmelzzone mit Oxidationsmittel gewährleistet wird.According to the invention, therefore, the supply of the oxidizing agent, which is introduced with ultrasound into the molten zone, is controlled according to a program. If the amount of the total amount of oxidant to be supplied with ultrasound falls below a value set by the program, one or more injectors will be switched off, with a "disconnected" injector, as understood here, not supplying the smelting furnace with any oxidizing agent or oxidizing agent at subsonic speed. The same applies to the case in which the value of the total amount of oxidizing agent to be supplied by ultrasound exceeds a certain value predetermined by the program: one or more injectors are then "switched on", ie they now supply oxidizing agents with ultrasound. In the operation of the melting furnace, two conditions must always be met: Firstly, the course of the amount of oxidant supplied with ultrasound should be continuous, ie. simultaneously with the change in the number of ultrasonically injecting injectors, the oxidant supply should be adjusted via the injectors injecting thereafter with ultrasound via a corresponding change in the ratio of flow and quiescent phase such that the total quantity of oxidant supplied with ultrasound corresponds to that required for this time. On the other hand, a uniform flow pattern covering the melting zone is to be achieved, i. the ultrasonically injecting injectors are each arranged on the furnace so that a uniform loading of the molten zone is ensured with oxidizing agent.

Die Menge an Oxidationsmittel, die dem Schmelzofen pro Zeiteinheit mit Ultraschall zugeführt wird, lässt sich durch folgende Formel beschreiben: 1 D = N N c Q T T c eff T

Figure imgb0001

mit T = T i eff + T c eff
Figure imgb0002
The amount of oxidizing agent which is ultrasonically supplied to the furnace per unit time can be described by the following formula: 1 D = N - N c Q T - T c eff T
Figure imgb0001

With T = T i eff + T c eff
Figure imgb0002

Dabei ist

D :
Menge des in die Schmelzzone mit Ultraschall eingeleiteten Oxidationsmittels pro Zeiteinheit
Tieff:
Effektive Dauer der Fließphasen der Injektoren
Tceff :
Effektive Dauer der Ruhephasen der Injektoren
N:
Gesamtzahl an Injektoren
Nc :
Zahl der nicht zugeschalteten Injektoren
Q:
maximaler Fluss durch einen Injektor pro Zeiteinheit
It is
D :
Amount of oxidant introduced into the molten zone per unit time
T heff :
Effective duration of the flow phases of the injectors
T ceff :
Effective duration of resting phases of the injectors
N:
Total number of injectors
N c :
Number of unconnected injectors
Q :
maximum flow through one injector per unit time

Als "effektive Dauer der Fließphasen" bzw. "effektive Dauer der Ruhephasen" soll dabei die gegebenenfalls auf einen oder mehrerer Pulse verteilte Gesamtdauer verstanden werden, während der der Injektor geöffnet, also in Fließphase, oder geschlossen, also in Ruhephase ist. Während einer Fließphase wird das Oxidationsmittel mit Überschallgeschwindigkeit in die Schmelzzone eingedüst und während einer Ruhephase wird das Eindüsen auf eine Geschwindigkeit unterhalb von Überschallgeschwindigkeit gedrosselt oder gänzlich abgestellt. Der Einstellbereich für die Menge des in die Schmelzzone mit Ultraschall eingedüsten Oxidationsmittels bewegt sich zwischen Null (bei einer gegen Null gehenden Dauer der Fließphase) und der maximalen Auslegemenge aller eingesetzten Injektoren (bei Volllastbetrieb aller Injektoren und einer gegen Null gehenden Dauer der Ruhephase). Somit lässt sich die Menge des in die Schmelzzone mit Ultraschall eingedüsten Oxidationsmittels in weitem Rahmen variieren. In Abhängigkeit von der erforderlichen Gesamtmenge an mit Ultraschall zuzuführendem Oxidationsmittel pro Zeiteinheit kann die Zahl der zugeschalteten Injektoren und die jeweilige effektive Öffnungsdauer nach obiger Formel (1) leicht berechnet werden. Die Formel (1) bietet daher eine gute Grundlage für eine automatisierte Steuerung der Injektoren. Durch Angabe der pro Zeiteinheit mit Ultraschall zuzuführenden Menge an Oxidationsmittel kann mittels eines Computerprogramms die Zahl der zugeschalteten Injektoren sowie der effektiven Dauern der Fließ- und Ruhephasen bestimmt werden. In einem solchen Computerprogramm können auch empirisch erfasste Werte über die für die jeweilige Einstellung optimale Pulsfrequenz und ggf. eine optimierte Abfolge verschiedener Pulse sowie über und den optimalen Arbeitsbereich der eingesetzten Injektoren einbezogen werden.The term "effective duration of the flow phases" or "effective duration of the rest phases" should be understood to mean the total duration possibly distributed over one or more pulses during which the injector is open, ie in flow phase, or closed, ie in rest phase. During a flow phase, the oxidant is injected at supersonic velocity into the melt zone, and during a quiescent phase, injection is throttled to a velocity below supersonic velocity or shut off altogether. The range of adjustment of the amount of oxidant injected into the molten zone is between zero (at zero flow duration) and the maximum amount of exhaust of all injectors used (full load operation of all injectors and zero duration of the dwell phase). Thus, the amount of oxidant injected into the molten zone with ultrasound varies widely. Depending on the required total amount of oxidizing agent to be supplied with ultrasound per unit time, the number of connected injectors and the respective effective opening duration according to the above formula (1) can be easily calculated. Formula (1) therefore provides a good basis for automated control of the injectors. By specifying the per unit of time to be supplied with ultrasound amount of oxidant can be determined by means of a computer program, the number of connected injectors and the effective duration of the flow and rest phases. In such a computer program also empirically recorded values can be included on the optimal for the respective setting pulse rate and possibly an optimized sequence of different pulses and on and the optimal working range of the injectors used.

Durch das Wechselspiel von Änderung des Verhältnisses aus Fließ- und Ruhephase einerseits und Änderung der Anzahl der mit Ultraschall eindüsenden Injektoren andererseits wird der Zustrom an Oxidationsmittel in die Schmelzzone sowohl zeitlich als auch räumlich optimiert. Der Oxidationsmittelstrom wird sehr genau beeinflusst, ohne dass dadurch die Ultraschalleindüsung beeinträchtigt wird. Zu lange Ruhephasen, während derer kein Oxidationsmittel mit Ultraschall eingedüst wird, werden ebenso vermieden wie eine ungleichförmige Beaufschlagung der Schmelzzone. Der Ausstoß an Schadstoffen wie NOx und CO wird deutlich reduziert. Ebenso kann der Materialverschleiß am Ofen, wie auch der Verbrauch an Brennstoffen, Koks und elektrischer Energie gesenkt werden. Das erfindungsgemäße Verfahren ist insbesondere für Schmelzprozesse geeignet, bei denen unter Verbrennung eines Brennstoffes mit einem Oxidationsmittel in einem Schmelzofen eine Schmelzzone erzeugt wird, in der ein Einsatzstoff erschmolzen wird. Hierfür kommen die Schachtöfen in Frage, insbesondere Kupolöfen, wie Heißwind-. Warmwind-, Kaltwind-, Sekundärwind-, Langzeit-, oder Wechselöfen. Das Einsatzmaterial wird dem Schmelzofen zum Beispiel in Form von Stahlschrott, Gußbruch, Roheisen oder Spänen zugegeben. Es werden auch nichtmetallische Zuschlagstoffe wie Koks, Siliziumcarbid, Ferrosilizium, Ferromangan, Kalk und Kies eingesetzt. Beim Oxidationsmittel handelt es sich bevorzugt um Sauerstoff. Zusätzlich kann ein weiteres Oxidationsmittel, beispielsweise Luft, in die Schmelzzone zeitlich konstant oder ebenfalls pulsierend eingebracht werden.By the interplay of change in the ratio of flow and quiescent phase on the one hand and change in the number of ultrasonically injecting injectors on the other hand, the influx of oxidant into the melting zone both in time as well as spatially optimized. The oxidant flow is influenced very accurately, without affecting the ultrasound injection. Too long periods of rest, during which no oxidizing agent is injected with ultrasound, are avoided as well as a non-uniform application of the melting zone. The emission of pollutants such as NO x and CO is significantly reduced. Likewise, the consumption of materials in the furnace, as well as the consumption of fuels, coke and electrical energy can be reduced. The method according to the invention is particularly suitable for melting processes in which a melting zone is produced by burning a fuel with an oxidizing agent in a melting furnace in which a feedstock is melted. For this purpose, the shaft furnaces come into question, especially cupolas, such as hot blast. Warm wind, cold wind, secondary wind, long-term, or rotary kilns. The feed is added to the furnace, for example, in the form of steel scrap, cast broke, pig iron or chips. It also uses non-metallic aggregates such as coke, silicon carbide, ferrosilicon, ferromanganese, lime and gravel. The oxidizing agent is preferably oxygen. In addition, a further oxidizing agent, for example air, can be introduced into the melting zone in a time-constant or likewise pulsating manner.

Vorteilhafterweise wird die Zufuhr des Oxidationsmittels derart geregelt, dass dann, wenn die Differenz zwischen der maximal möglichen Leistung aller mit Ultraschall eindüsenden Injektoren und der mit Ultraschall zuzuführenden Oxidationsmittelmenge der maximalen Leistung eines einzelnen Injektors entspricht, die Zahl der mit Ultraschall eindüsenden Injektoren um eins verkleinert und dann, wenn die mit Ultraschall zuzuführende Oxidationsmittelmenge die maximal mögliche Leistung aller mit Ultraschall eindüsenden Injektoren übersteigt, die Zahl der mit Ultraschall eindüsenden Injektoren um eins vergrößert wird, wobei jeweils anschließend die mit Ultraschalleindüsung zuzuführende Oxidationsmittelmenge gleichmäßig auf die mit Ultraschall eindüsenden Injektoren verteilt wird. Bei Volllast arbeiten alle also Injektoren des Schmelzofens im kontinuierlichen Betrieb. Ist es erforderlich, die Zufuhr an mit Ultraschall eingedüstem Oxidationsmittel zu reduzieren, gehen zunächst alle Injektoren in einen pulsweisen Betrieb über, d.h. alle Injektoren werden in einer Abfolge aus Fließphase und Ruhephase betreiben, entsprechend dem in der EP 1 242 781 B1 beschriebenen Verfahren, wobei die insgesamt mit Ultraschall zugeführte Menge an Oxidationsmittel durch die Änderung des Verhältnisses aus Fließ- und Ruhephase eingestellt wird. Je geringer der Bedarf an Oxidationsmittel ist, desto länger ist die Dauer der Ruhephasen der Injektoren. Sinkt der Bedarf derart, dass die Summe der Ruhephasen aller Injektoren insgesamt der maximalen Leistung eines einzelnen Injektors entspricht, wird einer der Injektoren abgeschaltet. Der Gesamtfluss des mit Ultraschall eingedüsten Oxidationsmittels wird gleichmäßig auf die zugeschalteten Injektoren verteilt, d.h. die verbliebenen zugeschalteten Injektoren arbeiten zunächst in Volllast, und gehen in den pulsweisen Betrieb über, sobald der Bedarf weiter reduziert wird. Entsprechendes gilt bei einer Erhöhung des Bedarfs.Advantageously, the supply of oxidant is controlled such that when the difference between the maximum possible power of all ultrasonically injecting injectors and the amount of oxidant to be supplied to ultrasound corresponds to the maximum power of a single injector, the number of ultrasonically injecting injectors decreases by one and then, when the amount of oxidant to be supplied with ultrasound exceeds the maximum possible power of all injectors injecting ultrasound, the number of injectors injecting ultrasound is increased by one, with the amount of oxidant to be supplied by ultrasound injection then being uniformly distributed to the ultrasonically injecting injectors. At full load, all injectors of the melting furnace work in continuous operation. When it is necessary to reduce the supply of ultrasonically oxidized oxidant, all the injectors initially go into pulsed operation, ie, all the injectors will operate in a flow-phase and quiescent-sequence sequence, as in FIG EP 1 242 781 B1 described method, wherein the total supplied with ultrasound amount of oxidizing agent is adjusted by changing the ratio of flow and rest phase. The lower the need for oxidizing agent, the longer the duration of the rest periods of the injectors. If the demand drops such that the sum of the rest phases of all injectors overall corresponds to the maximum output of a single injector, one of the injectors is switched off. The total flow of the ultrasonically injected oxidant is distributed evenly to the connected injectors, ie the remaining connected injectors operate initially at full load, and go into the pulse-wise operation, as soon as the demand is further reduced. The same applies to an increase in demand.

Vorzugsweise erfolgt die Abschaltung derart, dass die verbliebenen zugeschalteten Injektoren gleichmäßig um den Umfang des Schmelzofens verteilt sind. Es ist jedoch auch möglich, dass die Injektoren asymmetrisch am Schmelzofen betrieben werden und nach einer nicht allzu langen Zeitdauer ein Wechsel der zugeschalteten Injektoren erfolgt. Da Ziel ist dabei in jedem Fall, die Schmelzzone des Schmelzofens möglichst gleichmäßig mit Sauerstoff zu beaufschlagen.Preferably, the shutdown is such that the remaining connected injectors are evenly distributed around the circumference of the furnace. However, it is also possible that the injectors are operated asymmetrically on the furnace and after a not too long time a change of the connected injectors takes place. The goal is in any case to apply the molten zone of the furnace as evenly as possible with oxygen.

Arbeiten die zugeschalteten Injektoren im Pulsbetrieb, sieht eine abermals vorteilhafte Ausgestaltung der Erfindung sieht vor, dass die Fließ- und Ruhephasen der zugeschalteten Injektoren derart aufeinander abgestimmt sind, dass die zugeschalteten Injektoren alternierend zueinander angesteuert werden. Damit wird auch in zeitlicher Hinsicht eine sehr gleichmäßige Beaufschlagung der Schmelzzone mit Oxidationsmittel erzielt.Work the connected injectors in pulsed mode, provides a yet again advantageous embodiment of the invention provides that the flow and rest phases of the switched injectors are coordinated so that the switched injectors are driven alternately to each other. Thus, a very uniform exposure of the molten zone is achieved with oxidizing agent in terms of time.

Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert:The invention will be explained in more detail below with reference to an exemplary embodiment:

In den oberen Teil des Schachts eines Kupolofens werden kontinuierlich Stahlschrott, Späne, Roheisen, Kreislaufmaterial und nichtmetallische Zuschlagstoffe wie Koks und Kalk zugegeben. Im unteren Bereich des Schachtes wird Luft - der sogenannte Ofenwind - über einen Windring und von dort in die Schmelzzone eingeführt. Die Zufuhrrate an Luft beträgt konstant 10 000 m3/h. Im unteren Teil des Ofenschachtes sind um die Schmelzzone herum sechs, untereinander baugleiche Sauerstoff-Injektionslanzen in gleichen Winkelabständen angeordnet. Mittels der Sauerstoff-Injektionslanzen wird technischer Sauerstoff mit Überschallgeschwindigkeit in die Schmelzzone eingedüst. Durch diese Eindüsung ergibt sich eine große Eindringtiefe des Sauerstoffstromes, so daß die Temperatur in der Schmelzzone erhöht und die Schmelzleistung des Kupolofens gesteigert wird. In die Sauerstoff-Injektionslanzen sind jeweils Laval-Düsen eingesetzt.Steel scrap, shavings, pig iron, recycled material and non-metallic aggregates such as coke and lime are continuously added to the upper part of the shaft of a cupola furnace. In the lower part of the shaft, air - the so-called furnace wind - is introduced via a wind ring and from there into the melting zone. The supply rate of air is constantly 10 000 m 3 / h. In the lower part of the furnace shaft are around the melting zone around six identical with each other oxygen injection lances arranged at equal angular intervals. By means of the oxygen injection lances, technical oxygen is injected at supersonic velocity into the molten zone. By this injection results in a large penetration depth of the oxygen stream, so that the temperature increases in the melting zone and the melting performance of the cupola is increased. In the oxygen injection lances each Laval nozzles are used.

Die Regelung der Sauerstoffzufuhr erfolgt folgendermaßen: Im Voillastbetrieb erfolgt die Zufuhr über sämtliche Injektoren. Bei einer Reduktion der Sauerstoffanforderung gehen die Injektoren in einen pulsweisen Betrieb über, d.h. die Zuführung des Sauerstoffs erfolgt bei diesen Lanzen in diskreten Zeitabständen in Form einer Abfolge von Fließphase und Ruhephase, deren Dauer sich aus der jeweiligen Sauerstoffanforderung ergibt. Je geringer der Sauerstoffbedarf ist, desto länger ist die Dauer der Ruhephasen der Injektoren. Um die Sauerstoffzuführung möglichst gleichmäßig zu gestalten, werden die Injektoren abwechselnd in Pulsen unterschiedlicher Länge gefahren, wobei jedoch darauf geachtet wird, dass die Injektion stets im Wesentlichen symmetrisch zur Mittelachse des Ofens erfolgt. Wird die Sauerstoffanforderung um einen Wert reduziert, der der Leistung eines Injektors ― oder eines ganzzahligen Vielfachen davon - entspricht, so werden ein oder mehrere Injektoren abgeschaltet, wobei die Abschaltung in der Weise erfolgt, dass die noch zugeschalteten Injektoren die Schmelzzone des Schachtofens möglichst gleichmäßig beaufschlagen. Gleichzeitig verkürzen sich mit Abschaltung des Injektors oder der Injektoren die Ruhephasen der zugeschalteten Injektoren entsprechend, um einen stetigen Übergang der Oxidationsmittelmengenzufuhr sicher zu stellen. Die zugeschalteten Injektoren werden in gleicher Weise wie oben beschrieben betrieben. In diesem Betriebszustand ist es zweckmäßig, die zugeschalteten Injektoren alternierend anzusteuern. Um eine gleichmäßige Nutzung der Injektoren sicherzustellen, werden in nachfolgenden Verfahrensschritten oder beim Aufschmelzen einer nachfolgenden Charge bevorzugt die während des beschriebenen Verfahrensschritts abgeschalteten Injektoren zugeschaltet, so dass jeweils ein Wechsel der zuzuschaltenden Injektoren erfolgt.The regulation of the oxygen supply is carried out as follows: In the Voillastbetrieb the supply takes place via all injectors. With a reduction in oxygen demand, the injectors go into pulse-wise operation, i. the supply of oxygen takes place in these lances at discrete time intervals in the form of a sequence of flow phase and resting phase, the duration of which results from the respective oxygen requirement. The lower the oxygen requirement, the longer the duration of the rest periods of the injectors. In order to make the oxygen supply as uniform as possible, the injectors are driven alternately in pulses of different lengths, but care is taken that the injection always takes place substantially symmetrically to the central axis of the furnace. If the oxygen demand is reduced by a value corresponding to the performance of an injector - or an integer multiple thereof - one or more injectors are switched off, the shutdown taking place in such a way that the still connected injectors act as uniformly as possible on the melting zone of the shaft furnace , At the same time shorten with shutdown of the injector or the injectors, the resting phases of the connected injectors accordingly to make sure a steady transition of Oxidationsmittelmengenzufuhr. The connected injectors are operated in the same way as described above. In this operating state, it is expedient to control the connected injectors alternately. In order to ensure a uniform use of the injectors, the injectors switched off during the described method step are preferably switched on in subsequent method steps or during the melting of a subsequent batch, so that in each case a change of zuzuschaltenden injectors takes place.

Claims (4)

Verfahren zum Betreiben eines Schmelzofens, bei dem Einsatzstoffe, Brennstoff, und wenigstens ein Oxidationsmittel einer Schmelzzone zugeführt werden, wobei das Oxidationsmittel mittels mehrerer, um den Umfang des Schmelzofens in vorzugsweise gleichen Winkelabständen angeordneter Injektoren mit Überschallgeschwindigkeit in die Schmelzzone eingedüst wird und das Eindüsen zumindest in einem Verfahrensabschnitt durch ein zeitliches Aufeinanderfolgen von Fließ- und Ruhephasen (Pulse) der einzelnen Injektoren erfolgt,
dadurch gekennzeichnet,
dass in Abhängigkeit von einer vorgegebenen oder laufend ermittelten zuzuführenden Oxidationsmittelmenge nach einem vorgegebenen Programm das Verhältnis aus Fließ- und Ruhephase der Injektoren sowie die Anzahl der mit Ultraschall eindüsenden Injektoren derart variiert wird, dass ein stetiger Verlauf der mit Ultraschall zugeführten Oxidationsmittelmenge sowie ein die Schmelzzone im wesentlichen gleichmäßig abdeckendes Strömungsbild erreicht wird.
A method for operating a melting furnace, wherein the feedstock, fuel, and at least one oxidizing agent are fed to a molten zone, wherein the oxidant is injected into the molten zone by means of a plurality of injectors arranged at preferably equal angular intervals around the circumference of the furnace at preferably equal angular intervals, and injecting at least in a process section takes place by a temporal succession of flow and rest phases (pulses) of the individual injectors,
characterized,
in that , depending on a predetermined or continuously determined quantity of oxidizing agent to be supplied according to a predetermined program, the ratio of flow and resting phases of the injectors and the number of injectors injecting ultrasound are varied such that a steady course of the amount of oxidizing agent supplied with ultrasound and a melting zone in the essentially uniformly covering flow pattern is achieved.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass jeweils dann, wenn die Differenz zwischen der maximalen Leistung aller mit Ultraschall eindüsenden Injektoren und der insgesamt mit Ultraschalleindüsung zuzuführenden Oxidationsmittelmenge der maximalen Leistung eines einzelnen Injektors entspricht, die Zahl der mit Ultraschall eindüsenden Injektoren um eins verkleinert wird und dann, wenn die mit Ultraschalleindüsung zuzuführende Oxidationsmittelmenge die maximale Leistung aller mit Ultraschall eindüsenden Injektoren übersteigt, die Zahl der mit Ultraschall eindüsenden Injektoren um eins vergrößert wird wobei jeweils anschließend die mit Ultraschalleindüsung zuzuführende Oxidationsmittelmenge gleichmäßig auf die mit Ultraschall eindüsenden Injektoren verteilt wird.A method according to claim 1, characterized in that in each case when the difference between the maximum power of all injecting ultrasound injectors and the total supplied with Ultraschallalleüsung oxidant amount of the maximum power of a single injector, the number of ultrasonic injectors injectors is reduced by one and then, if the amount of oxidant to be supplied with ultrasonic injection exceeds the maximum power of all the injectors injecting ultrasound, then the number of injectors injecting ultrasound is increased by one, each of which subsequently distributes the amount of oxidant to be supplied with ultrasonic injection evenly to the injectors injecting ultrasound. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die jeweils mit Ultraschall eindüsenden Injektoren gleichmäßig um den Umfang des Schmelzofens angeordnet werden.A method according to claim 1 or 2, characterized in that each injecting with ultrasound injectors are arranged uniformly around the circumference of the furnace. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fließ- und Ruhephasen der im Pulsbetrieb arbeitenden mit Ultraschall eindüsenden Injektoren derart aufeinander abgestimmt werden, dass die mit Ultraschall eindüsenden Injektoren alternierend angesteuert werden.Method according to one of the preceding claims, characterized in that the flow and resting phases of operating in the pulse mode with ultrasonic injectors injectors are coordinated such that the injecting with ultrasound injectors are driven alternately.
EP06116219A 2005-07-02 2006-06-28 Method of ultrasonic injection of an oxidationagent in a melting furnace Active EP1739194B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005031019A DE102005031019A1 (en) 2005-07-02 2005-07-02 Method for ultrasonic injection of an oxidizing agent into a melting furnace

Publications (3)

Publication Number Publication Date
EP1739194A1 true EP1739194A1 (en) 2007-01-03
EP1739194B1 EP1739194B1 (en) 2008-01-30
EP1739194B2 EP1739194B2 (en) 2013-01-09

Family

ID=37012109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06116219A Active EP1739194B2 (en) 2005-07-02 2006-06-28 Method of ultrasonic injection of an oxidationagent in a melting furnace

Country Status (3)

Country Link
EP (1) EP1739194B2 (en)
AT (1) ATE385260T1 (en)
DE (2) DE102005031019A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3418401A1 (en) 2017-06-22 2018-12-26 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Shaft furnace and injection of oxidizing agent therein
WO2018234416A1 (en) 2017-06-22 2018-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Shaft furnace and injection of oxidizing agent therein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19729624A1 (en) * 1997-07-02 1999-01-07 Westfalen Ag Furnace for thermal treatment of raw material e.g. iron
EP0946848A2 (en) * 1996-11-13 1999-10-06 Messer Griesheim Gmbh Operating method and device for a shaft furnace
EP0992753A2 (en) * 1998-08-04 2000-04-12 Linde Aktiengesellschaft Operating process for a shaft furnace and shaft furnace
EP1242781A2 (en) * 1999-11-12 2002-09-25 Messer Griesheim Gmbh Method for operation of a smelting furnace
DE10249235A1 (en) * 2002-10-23 2004-05-13 Messer Griesheim Gmbh Process for operating a shaft furnace comprises introducing feed material, fuel, a first oxidant and a second oxidant into a melting zone of a shaft furnace, in which the second oxidant added in a partially pulsed manner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0946848A2 (en) * 1996-11-13 1999-10-06 Messer Griesheim Gmbh Operating method and device for a shaft furnace
DE19729624A1 (en) * 1997-07-02 1999-01-07 Westfalen Ag Furnace for thermal treatment of raw material e.g. iron
EP0992753A2 (en) * 1998-08-04 2000-04-12 Linde Aktiengesellschaft Operating process for a shaft furnace and shaft furnace
EP1242781A2 (en) * 1999-11-12 2002-09-25 Messer Griesheim Gmbh Method for operation of a smelting furnace
DE10249235A1 (en) * 2002-10-23 2004-05-13 Messer Griesheim Gmbh Process for operating a shaft furnace comprises introducing feed material, fuel, a first oxidant and a second oxidant into a melting zone of a shaft furnace, in which the second oxidant added in a partially pulsed manner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3418401A1 (en) 2017-06-22 2018-12-26 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Shaft furnace and injection of oxidizing agent therein
WO2018234416A1 (en) 2017-06-22 2018-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Shaft furnace and injection of oxidizing agent therein
CN111315900A (en) * 2017-06-22 2020-06-19 乔治洛德方法研究和开发液化空气有限公司 Shaft furnace and injection of an oxidizing agent therein

Also Published As

Publication number Publication date
DE502006000324D1 (en) 2008-03-20
EP1739194B1 (en) 2008-01-30
EP1739194B2 (en) 2013-01-09
ATE385260T1 (en) 2008-02-15
DE102005031019A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
DE102007041632A1 (en) Melt-metallurgic furnace i.e. electric arc furnace, operating method, involves feeding correcting variables to mediator from control or regulating and fuzzy regulating unit and calculating actuating signal by mediator from variables
WO2003060169A1 (en) Method for the pyrometallurgical treatment of metals, metal melts and/or slags and injection device
EP2166284B1 (en) Rotary drum furnace and method of operating
EP1739194B1 (en) Method of supersonic injection of an oxidationagent in a melting furnace
EP2171101B1 (en) Shaft furnace and method for operating a furnace
WO2007054308A2 (en) Method for the operation of a shaft furnace, and shaft furnace suitable for said method
EP1481101B1 (en) Method and device for the continuous production of steel using metal charge material
EP1242781B1 (en) Method for operation of a smelting furnace
DE19729624B4 (en) Method and shaft furnace for the thermal treatment of a raw material
EP2215418B1 (en) Method for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier
EP1779705B1 (en) Method and device for operating an electric-arc furnace
DE10249235B4 (en) Method for operating a shaft furnace
DE2126803A1 (en) Process for the production of steel
EP2912199B1 (en) Method and device for supplying energy into a scrap metal pile in an electric arc furnace
DE688094C (en)
EP0236868B1 (en) Process for manufacturing steel from scrap
DE2600254C3 (en) Method and device for firing small-grain firing material in a shaft furnace
EP4110740B1 (en) Method for burning carbon-containing material in a pfr shaft furnace
DE102021115957B3 (en) Device for preheating metal workpieces, in particular the end pieces of rails to be welded together
EP1212470A1 (en) Method for operating a melt-down gasifier
DE2343051C2 (en) Method and device for the continuous production of steel from scrap
EP4189126A1 (en) Method for simultaneously injecting a fuel gas and an oxygen-rich gas into a unit
DE2508806A1 (en) Continuous steel making and casting plant - for mfg small dia bars for concrete reinforcement
EP0992753A2 (en) Operating process for a shaft furnace and shaft furnace
DE2013889A1 (en) Multi-level burner for lime burning shaft kiln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070703

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006000324

Country of ref document: DE

Date of ref document: 20080320

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080530

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: L'AIR LIQUIDE S.A.

Effective date: 20081030

BERE Be: lapsed

Owner name: MESSER FRANCE S.A.S.

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080628

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20130109

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502006000324

Country of ref document: DE

Effective date: 20130109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170529

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170525

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170630

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006000324

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180628

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 385260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230510

Year of fee payment: 18