EP1735851B1 - Verwendung von metallocenkomplexen von metallen der 4. nebengruppe des periodensystems als triplettemitter in organischen leuchtdioden (oleds) - Google Patents

Verwendung von metallocenkomplexen von metallen der 4. nebengruppe des periodensystems als triplettemitter in organischen leuchtdioden (oleds) Download PDF

Info

Publication number
EP1735851B1
EP1735851B1 EP05728180A EP05728180A EP1735851B1 EP 1735851 B1 EP1735851 B1 EP 1735851B1 EP 05728180 A EP05728180 A EP 05728180A EP 05728180 A EP05728180 A EP 05728180A EP 1735851 B1 EP1735851 B1 EP 1735851B1
Authority
EP
European Patent Office
Prior art keywords
butyl
alkyl
zirconocene
group
pentyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05728180A
Other languages
English (en)
French (fr)
Other versions
EP1735851A1 (de
Inventor
Thomas Gessner
Martin KÖNEMANN
Hans-Werner Schmidt
Mukundan Thelakkat
Markus Baete
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1735851A1 publication Critical patent/EP1735851A1/de
Application granted granted Critical
Publication of EP1735851B1 publication Critical patent/EP1735851B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/183Metal complexes of the refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta or W
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the use of metallocene complexes of metals of the 4th subgroup of the Periodic Table as emitter molecules in organic light-emitting diodes (OLEDs), the use of the metallocene complexes as a light-emitting layer in OLEDs, a light-emitting layer comprising at least one metallocene complex, containing an OLED this light-emitting layer and devices containing an inventive OLED.
  • OLEDs organic light-emitting diodes
  • OLEDs organic light emitting diodes
  • the property of materials is used to emit light when excited by electric current.
  • OLEDs are of particular interest as an alternative to cathode ray tubes and liquid crystal displays for the production of flat panel displays. Due to the very compact design and the intrinsically lower power consumption, devices containing OLEDs are particularly suitable for mobile applications, for example for applications in mobile phones, laptops, etc.
  • Electroluminescence is understood as meaning both electrofluorescence and electrophosphorescence.
  • the object of the present application is therefore to provide a class of compounds which is suitable for use in different layers of an OLED, in particular the provision of a compound which is suitable for electroluminescence in the blue, red and green region of the electromagnetic spectrum, thereby enabling the production of full-color displays becomes.
  • the metallocene complexes can be used in the light-emitting layer of an OLED as emitter substance or as matrix material. Furthermore, the use of metallocene complexes as a hole blocker is possible, for. In a block layer for holes disposed between a light-emitting layer and an electron-transporting layer of the OLED.
  • the metallocene complexes are preferably used as emitter molecules in the light-emitting layer.
  • the zirconocene complexes of the formula I are preferably used as matrix material or as emitter molecule in the light-emitting layer or as a lockblocker.
  • the use of the zirconocene complexes of the formula I as emitter molecules in the light-emitting layer is particularly preferred.
  • aryl radical or group alkyl radical or group, alkoxy radical or group and aryloxy radical or group have the following meanings:
  • aryl radical or group
  • Suitable backbones are, for example, phenyl, naphthyl, anthracenyl or phenanthrenyl. This backbone may be unsubstituted (ie, all carbon atoms which are substitutable bear hydrogen atoms) or substituted at one, several or all substitutable positions of the backbone.
  • Suitable substituents are, for example, alkyl radicals, preferably alkyl radicals having 1 to 8 carbon atoms, more preferably methyl, ethyl, i-propyl or t-butyl, aryl radicals, preferably C 6 -aryl radicals, which in turn may be substituted or unsubstituted, heteroaryl radicals, preferably heteroaryl radicals, which contain at least one nitrogen atom, particularly preferably pyridyl radicals, alkenyl radicals, preferably alkenyl radicals which carry a double bond, particularly preferably alkenyl radicals having a double bond and 1 to 8 carbon atoms, or groups having a donor or acceptor action.
  • Donor-action groups are to be understood as meaning groups having a + I and / or + M effect, and groups having acceptor action are to be understood as meaning groups having an -I and / or -M effect.
  • Suitable groups with donor or acceptor action are halogen radicals, preferably F, Cl, Br, particularly preferably F, alkoxy radicals, carbonyl radicals, ester radicals, amine radicals, amide radicals, CH 2 F groups, CHF 2 groups, CF 3 groups, CN- Groups, thio groups or SCN groups.
  • the aryl radicals carry substituents selected from the group consisting of methyl, F, Cl and alkoxy, or the aryl radicals are unsubstituted.
  • the aryl radical or the aryl group is preferably a C 6 -aryl radical which is optionally substituted by at least one of the above substituted substituent is substituted.
  • the C 6 aryl radical has none, one or two of the abovementioned substituents, wherein the one substituent is preferably arranged in the para position to the further point of attachment of the aryl radical and - in the case of two substituents - these in each case in meta position to further linking site of the aryl radical are arranged.
  • the C 6 aryl radical is an unsubstituted phenyl radical.
  • alkyl radical or an alkyl group is to be understood as meaning a radical having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 to 8 carbon atoms.
  • This alkyl radical may be branched or unbranched and may optionally be interrupted by one or more heteroatoms, preferably N, O or S.
  • this alkyl radical may be substituted by one or more of the substituents mentioned with respect to the aryl groups. It is also possible that the alkyl radical carries one or more aryl groups. All of the aryl groups listed above are suitable.
  • the alkyl group or the alkyl group may be a cyclic alkyl group having 3 to 10 ring atoms, preferably 4 to 7 ring atoms.
  • the ring atoms are carbon atoms, it being possible for one or more carbon atoms to be replaced by heteroatoms, preferably N, O or S.
  • the cyclic alkyl radical may be substituted by the substituents already mentioned with regard to the branched or unbranched alkyl radicals.
  • the alkyl radicals are particularly preferably selected from the group consisting of methyl, ethyl, i-propyl, n-propyl, i-butyl, n-butyl, t-butyl, sec-butyl, i-pentyl, n-pentyl, sec-pentyl , neo-pentyl, n-hexyl, i-hexyl and sec-hexyl, cyclohexyl and cyclopentyl. Very particular preference is given to methyl, i-propyl, t-butyl and n-hexyl.
  • alkoxy radical or an alkoxy radical is to be understood as meaning a radical of the general formula -OR 15 , where R 15 is an alkyl radical as defined above.
  • Preferred alkoxy radicals are thus alkoxy radicals selected from the group consisting of -OMethyl, -O-ethyl, -O i propyl, -O n propyl, -O i butyl, -O n butyl, -O t butyl, - O sec butyl, - O i Pentyl, -O n pentyl, -O sec pentyl, -O neo pentyl, -O n hexyl, -O i hexyl and - O sec hexyl.
  • Very particularly preferred are -OMethyl, -O i propyl, -O t butyl and -O n hexyl.
  • aryloxy or an aryloxy group is understood to mean a group of the general formula -OR 16 , where R 16 is an aryl radical as defined above.
  • R 16 is an aryl radical as defined above.
  • aryloxy radical a radical of the group -OPhenyl is very particularly preferred.
  • alkylthio radical or an alkylthio group is to be understood as meaning a group of the general formula -SR 21 , where R 21 is an alkyl radical as defined above.
  • Preferred alkylthio radicals are thus alkylthio radicals selected from the group consisting of -S-methyl, -ethyl, -S- i- propyl, -S- n- propyl, -S- i- butyl, S- n- butyl, -S- t- butyl, -S- sec- butyl, -S- i- pentyl , -S n is pentyl, -S sec is pentyl, -S neo is pentyl, -S n is hexyl, -S i is hexyl and -S sec is hexyl. Very particularly preferred are -SMethyl, -S i propyl, -
  • arylthio radical or an arylthio group is to be understood as meaning a group of the general formula -SR 22 , where R 22 is an aryl radical as defined above.
  • R 22 is an aryl radical as defined above.
  • arylthio radical a radical of the group -SPhenyl is very particularly preferred.
  • the substituent halogen is preferably F, Cl or Br, more preferably Cl or Br, most preferably Cl.
  • bidentate ligand a ligand having two coordination sites.
  • Suitable bidentate ligands are, for example, bis (quinolinolato), 2,2'-bipyridine, 2,2'-bipyridine disulfonates and phenanthroline.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are independently H or alkyl, more preferably alkyl selected from the group consisting of methyl, ethyl, i-propyl, n-propyl, i-butyl, n-butyl, t-butyl, sec-butyl, i-pentyl, n-pentyl, sec-pentyl, neo-pentyl, n-hexyl, i-hexyl and sec-hexyl, and particularly preferably alkyl selected from the group consisting of methyl, i-propyl, t-butyl and n-hexyl; or halogen, preferably halogen selected from the group consisting of F, Cl and Br, most preferably Cl.
  • two adjacent radicals together with the carbon atoms to which they are attached may form a cyclic radical, preferably a 5- or 6-membered ring, which may be saturated or unsaturated, with an unsaturated cyclic radical also an aromatic radical falls, and which may be substituted or unsubstituted.
  • Suitable substituents are preferably selected from the group consisting of alkyl, aryl, alkoxy, hydroxy, aryloxy, halogen, CN, SCN and NO 2 , with alkyl radicals being preferred. Suitable alkyl, aryl, alkoxy, aryloxy and halogen radicals have already been mentioned above. Most preferably, however, the cyclic residue is unsubstituted.
  • two adjacent radicals on one of the cyclic ligands of the compound of formula I, together with the carbon atoms to which they are attached may be an ortho-phenylene radical form, so that the cyclic ligand is an indenyl ligand.
  • two adjacent two residues on a cyclic ligand of the compound of formula I for example R 1 and R 2 and R 3 and R 4 together with the carbon atoms to which they are attached, each form an ortho-phenylene radical such that the cyclic ligand is a fluorenyl ligand.
  • all cyclic ligands of the compound of the formula I which are based on a central cyclopentadienyl radical are referred to as cyclopentadienyl ligands.
  • R 5 and R 10 may together form a bridge of the general formula - (CR 13 R 14 ) n -, where R 13 and R 14 are each independently preferably H or methyl and n is 1 or 2, more preferably 1.
  • the C atom in the group - (CR 13 R 14 ) - may be replaced by an Si atom which may carry the above-mentioned substituents R 13 and R 14 .
  • the bridge of the formula - (CR 13 R 14 ) n - is particularly preferably a bridge of the formula - (CH 3 ) 2 C-, - (CH 2 ) 2 - or - (CH 3 ) 2 Si-.
  • radicals R 1 and R 6 , R 2 and R 7 , R 3 and R 8 , R 4 and R 9 and R 5 and R 10 are each identical. This means that both cyclopentadienyl ligands in formula I have the same substitution pattern.
  • the radicals R 11 and R 12 are each independently alkyl, aryl, alkoxy, aryloxy, halogen, CN, SCN, alkylthio, arylthio, CO, alkynyl, alkylamido, arylamido, trifluoromethanesulfonate or one of the radicals R 11 or R 12 forms a ⁇ -oxo bridge to another zirconocene or Hafnocenkomplex of formula I.
  • Preferred alkyl, aryl, alkoxy, aryloxy, alkylthio, arylthio and halogen radicals have already been mentioned above.
  • R 11 and R 12 are independently alkyl, alkoxy or halogen.
  • R 11 and R 12 are selected from the group consisting of CH 3 , OCH 3 and Cl. Particularly preferably, the radicals R 11 and R 12 are identical. Furthermore, R 11 and R 12 may together form a bidentate ligand. Suitable bidentate ligands have already been mentioned above. Most preferably, R 11 and R 12 are Cl.
  • R 1 R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 and preferred radicals R 11 , R 12 and R 13 and R 14 are already mentioned above.
  • zirconocene complexes of formula I are listed below, wherein M is Zr and rac is the racemic form of the corresponding complex and meso is the meso form of the complex.
  • the aforementioned neutral zirconocene complexes are eminently suitable as emitter molecules in organic light-emitting diodes (OLEDs).
  • OLEDs organic light-emitting diodes
  • the neutral zirconocene complexes used according to the invention are therefore suitable for use in technically usable full-color displays.
  • the zirconocene complexes are prepared by methods known to those skilled in the art. Some of the zirconocene complexes used according to the invention are furthermore commercially available.
  • a common method of preparation is, for example, the deprotonation of the ligand precursors corresponding to the cyclopentadienyl ligands of the compounds of the formula I and subsequent, generally in situ, reaction with suitable zirconium-containing metal complexes.
  • suitable zirconium-containing metal complexes are generally commercially available or can be prepared by processes known to those skilled in the art and preferably contain radicals of the groups R 11 and R 12 .
  • preferred zirconium-containing metal complexes include ZrCl 4 , the THF adducts of ZrCl 4 , CpZrCl 3 .
  • the ligand precursors corresponding to the cyclopentadienyl ligands of the compounds of the formula I can also be reacted with zirconium-containing bases, for example Zr (NEt 2 ) 4, by methods known to the person skilled in the art.
  • Suitable ligand precursors which lead to the cyclopentadienyl ligands of the zirconocene complexes of the formula I are known to the person skilled in the art and are commercially available or preparable by processes known to the person skilled in the art.
  • alkali metals in particular in finely divided form, basic metalates, basic anions such as metal acetates, acetylacetonates or alkoxylates or external bases such as KO t Bu, NaO t Bu, LiO t Bu, NaH, metal alkyls such as butyllithium , Methyllithium, silylamides, Li-hexamethyldisilazide, and Phosphazenbasen done.
  • Suitable solvents are aprotic solvents known to those skilled in the art, and are preferably selected from aromatic and aliphatic solvents. Particular preference is given to using aromatic solvents, such as toluene and benzene, ethers, such as tetrahydrofuran, tert-butyl ether, and tert-butyl methyl ether, and halogenated hydrocarbons, such as methylene chloride.
  • the molar ratio of zirconium-containing metal complex to ligand precursor used is preferably 0.7: 2.0 to 1.5: 2.0, more preferably 0.9: 2.0 to 1.1: 2, most preferably 1: 2 for ligands that have no bridging.
  • the molar ratio is preferably 0.7: 1.0 to 1.5: 1.0, more preferably 0.9: 1.0 to 1.1: 1.0, most preferably 1: 1.
  • the reaction is generally carried out at temperatures from -100 ° C to + 200 ° C, preferably -100 ° C to + 100 ° C, more preferably -78 ° C to + 50 ° C.
  • the reaction time depends on the desired zirconocene complex and is generally from 1 h to 50 h, preferably 2 h to 30 h, particularly preferably 5 h to 25 h.
  • the zirconocene complex of the formula I obtained is worked up by methods known to the person skilled in the art.
  • the resulting zirconocene complex is extracted from the reaction solution with a non-polar solvent, e.g. n-pentane or n-hexane, filtered, washed, for example, with the solvent used for precipitation, and then dried.
  • a non-polar solvent e.g. n-pentane or n-hexane
  • filtered e.g. n-pentane or n-hexane
  • washed for example, with the solvent used for precipitation, and then dried.
  • recrystallization for example from dichloromethane, diethyl ether, dichloroethane or mixtures thereof, highly pure zirconocene complexes are obtained.
  • the zirconocene complexes of the formula I used according to the invention are outstandingly suitable as emitter substances, since they have an emission (electroluminescence) in the visible range of the electromagnetic spectrum.
  • the zirconocene complexes according to the invention as emitter substances, it is possible to provide compounds which have electroluminescence in the red, green and blue regions of the electromagnetic spectrum. It is thus possible with the aid of the zirconocene complexes used according to the invention to provide technically usable full-color displays as emitter substances.
  • the zirconocene complexes are useful as hole blockers, for example, in a block layer for holes in an OLED disposed between the light-emitting layer and an electron-transprotective layer of the OLED.
  • the application of the zirconocene complexes according to the invention in the different layers depends on the position of the HOMO of the metallocene complexes and thus on the substitution pattern of the metallocene complexes.
  • zirconocene complexes of the formula I show luminescence in the solid state, particularly preferably electroluminescence, in the visible region of the electromagnetic spectrum.
  • These luminescent in the solid state complexes can be used in substance, ie without further additives, as emitter substances in OLEDs.
  • an OLED with a light-emitting layer can be produced, wherein no complex co-evaporation of a matrix material with the emitter substance is required.
  • OLEDs organic light emitting diodes
  • the zirconocene complexes can be used in different layers of the OLED, depending on the location of their HOMO, for example, the zirconocene complexes can be used as hole blockers in a block layer for holes or as emitter molecules in the light-emitting layer.
  • a further subject of the present application is therefore a light-emitting layer containing at least one zirconocene complex. Preferred zirconocene complexes are already mentioned above.
  • the zirconocene complexes used according to the invention can be present in the substance-without further additives in the light-emitting layer.
  • further compounds are present in the light-emitting layer.
  • a fluorescent dye may be present to alter the emission color of the zirconocene complex employed as emitter molecule.
  • a diluent material can be used. This diluent material may be a polymer, for example poly (N-vinylcarbazole) or polysilane.
  • the diluent material may also be a small molecule, for example 4,4'-N, N'-dicarbazolebiphenyl (CBP), tetraarylsilane or tertiary aromatic amines.
  • CBP N'-dicarbazolebiphenyl
  • the proportion of the zirconocene complexes used according to the invention in the light-emitting layer is generally less than 20% by weight, preferably from 3 to 10% by weight.
  • the Zirconocenkomplexe be used in substance, whereby a complex co-evaporation of Zirconocenkomplexe with a matrix material (diluent or fluorescent dye) is avoided.
  • the zirconocene complexes luminesce in the solid state.
  • the zirconocene complexes show luminescence in the solid state.
  • the light-emitting layer preferably contains at least one zirconocene complex and no matrix material selected from diluent material and fluorescent dye.
  • Another object of the present application is in a further embodiment, a light-emitting layer consisting of at least one Zirconocenkomplex. Preferred complexes have already been mentioned above.
  • the individual of the abovementioned layers of the OLED can in turn be composed of 2 or more layers.
  • the hole-transporting layer may be composed of a layer into which holes are injected from the electrode and a layer that transports the holes away from the hole-injecting layer into the light-emitting layer.
  • the electron-transporting layer may also consist of several layers, for example a layer in which electrons are injected through the electrode and a layer, which receives electrons from the electron-injecting layer and transports them into the light-emitting layer.
  • These mentioned layers are each selected according to factors such as energy level, temperature resistance and charge carrier mobility, as well as the energy difference of said layers with the organic layers or the metal electrodes.
  • the person skilled in the art is able to choose the structure of the OLEDs in such a way that it is optimally adapted to the zirconocene complexes used according to the invention as emitter substances.
  • the HOMO (highest occupied molecular orbital) of the hole-transporting layer should be aligned with the work function of the anode and the LUMO (lowest unoccupied molecular orbital) of the electron-transporting layer should be aligned with the work function of the cathode.
  • a further subject of the present application is an OLED containing at least one light-emitting layer according to the invention.
  • the further layers in the OLED may be constructed of any material commonly employed in such layers and known to those skilled in the art.
  • the anode (1) is an electrode that provides positive charge carriers.
  • it may be constructed of materials including a metal, a mixture of various metals, a metal alloy, a metal oxide, or a mixture of various metal oxides.
  • the anode may be a conductive polymer. Suitable metals include the metals of groups Ib, IVa, Va and VIa of the Periodic Table of the Elements and the Group VIII transition metals. If the anode is to be transparent, mixed metal oxides of Groups IIb, IIIb and IVb of the Periodic Table of the Elements are generally used. for example indium tin oxide (I-TO).
  • I-TO indium tin oxide
  • the anode (1) contains an organic material, for example polyaniline, such as in Nature, Vol. 357, pages 477 to 479 (June 11, 1992 ) is described. At least either the anode or the cathode should be at least partially transparent in order to be able to decouple the light formed.
  • Suitable hole transport materials for the layer (2) of the OLED according to the invention are, for example, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Vol. 18, pages 837 to 860, 1996 disclosed. Both hole-transporting molecules and polymers can be used as hole transport material.
  • Commonly used hole transporting molecules are selected from the group consisting of 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), N, N'-diphenyl-N, N'-bis (3-methylphenyl) - [1 , 1'-biphenyl] -4,4'-diamine (TPD), 1,1-bis [(di-4-tolylamino) phenyl] cyclohexane (TAPC), N, N'-bis (4-methylphenyl) -N , N'-bis (4-ethylphenyl) - [1,1 '- (3,3'-dimethyl) biphenyl] -4,4'-diamine (ETPD), tetrakis (3-methylphenyl) -N, N, N ', N'-2,5-phenylenediamine (PDA), ⁇ -phenyl-4-N
  • hole-transporting polymers are selected from the group consisting of polyvinylcarbazoles, (phenylmethyl) polysilanes and polyanilines. It is also possible to obtain hole transporting polymers by doping hole transporting molecules into polymers such as polystyrene and polycarbonate. Suitable hole-transporting molecules are the molecules already mentioned above.
  • Suitable electron transporting materials for the layer (4) of the OLEDs according to the invention comprise chelated metals with oxinoid compounds, such as tris (8-quinolinolato) aluminum (Alq 3 ), phenanthroline-based compounds, such as 2,9-dimethyl, 4,7-diphenyl-1, 10-phenanthroline (DDPA) or 4,7-diphenyl-1,10-phenanthroline (DPA) and azole compounds such as 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole ( PBD) and 3- (4-biphenylyl) -4-phenyl-5- (4-t-butylphenyl) -1,2,4-triazole (TAZ).
  • oxinoid compounds such as tris (8-quinolinolato) aluminum (Alq 3 )
  • phenanthroline-based compounds such as 2,9-dimethyl, 4,7-diphenyl-1
  • the layer (4) can serve both to facilitate the electron transport and as a buffer layer or as a barrier layer in order to avoid quenching of the exciton at the interfaces of the layers of the OLED.
  • the layer (4) improves the mobility of the electrons and reduces quenching of the exciton.
  • the cathode (5) is an electrode which serves to introduce electrons or negative charge carriers.
  • the cathode may be any metal or non-metal that has a lower work function than the anode. Suitable materials for the cathode are selected from the group consisting of Group Ia alkali metals, for example, Li, Cs, Group IIa alkaline earth metals, Group IIb metals of the Periodic Table of the Elements, and the rare earth metals and the lanthanides and actinides. Furthermore, metals such as aluminum, indium, calcium, barium, samarium and magnesium and combinations thereof can be used. Furthermore, lithium containing organometallic compounds or LiF between the organic layer and the cathode are applied to reduce the operating voltage (Operating Voltage).
  • the OLED according to the present invention may additionally contain further layers which are known to the person skilled in the art.
  • a layer can be applied between the layer (2) and the light-emitting layer (3), which facilitates the transport of the positive charge and / or adapts the band gap of the layers to one another.
  • this further layer can serve as a protective layer.
  • additional layers may be present between the light-emitting layer (3) and the layer (4) to facilitate the transport of the negative charge and / or to match the band gap between the layers.
  • this layer can serve as a protective layer.
  • Suitable materials for the individual layers are known to the person skilled in the art and are described, for example, in US Pat WO 00/70655 disclosed.
  • each of the mentioned layers of the OLED according to the invention can be developed from two or more layers. Further, it is possible that some or all of the layers (1), (2), (3), (4) and (5) are surface treated to increase the efficiency of charge carrier transport. The selection of materials for each of said layers is preferably determined by obtaining an OLED having a high efficiency.
  • the preparation of the OLEDs according to the invention can be carried out by methods known to the person skilled in the art.
  • the OLED is prepared by sequential vapor deposition of the individual layers onto a suitable substrate.
  • Suitable substrates are, for example, glass or polymer films.
  • vapor deposition conventional techniques can be used such as thermal evaporation, chemical vapor deposition and others.
  • the organic layers may be coated from solutions or dispersions in suitable solvents using coating techniques known to those skilled in the art.
  • the location of the recombination zone of holes and electrons in the OLED according to the invention and thus the emission spectrum of the OLED can be influenced by the relative thickness of each layer.
  • the thickness of the electron transport layer should preferably be selected so that the electron / holes recombination zone is in the light-emitting layer.
  • the ratio of the layer thicknesses of the individual layers in the OLED depends on the materials used.
  • the layer thicknesses of optionally used additional layers are known to the person skilled in the art.
  • OLEDs By using the zirconocene complexes used as the emitter molecule in the light-emitting layer of the OLEDs of the invention, OLEDs can be obtained with high efficiency.
  • the efficiency of the OLEDs according to the invention can be further improved by optimizing the other layers.
  • highly efficient cathodes such as Ca, Ba or LiF can be used.
  • Shaped substrates and new hole-transporting materials that bring about a reduction in the operating voltage or an increase in quantum efficiency are also usable in the OLEDs according to the invention.
  • additional layers may be present in the OLEDs to adjust the energy levels of the various layers and to facilitate electroluminescence.
  • the OLEDs according to the invention can be used in all devices in which electroluminescence is useful. Suitable devices are preferably selected from stationary and mobile screens. Stationary screens include computer screens, televisions, screens in printers, kitchen appliances, and billboards, lights, and billboards. Mobile screens include screens in cell phones, laptops, vehicles, and destination displays on buses and trains.
  • the zirconocene complexes used according to the invention can be used in OLEDs with inverse structure.
  • the zirconocene complexes in these inverse OLEDs are preferably used in turn in the light-emitting layer, particularly preferably as a light-emitting layer without further additives.
  • the construction of inverse OLEDs and the materials usually used therein are known to the person skilled in the art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

  • Die vorliegende Erfindung betrifft die Verwendung von Metallocenkomplexen von Metallen der 4. Nebengruppe des Periodensystems als Emittermoleküle in organischen Leuchtdioden (OLEDs), die Verwendung der Metallocenkomplexe als Licht-emittierende Schicht in OLEDs, eine Licht-emittierende Schicht enthaltend mindestens einen Metallocenkomplex, ein OLED enthaltend diese Licht-emittierende Schicht sowie Vorrichtungen, die ein erfindungsgemäßes OLED enthalten.
  • In organischen Leuchtdioden (OLED) wird die Eigenschaft von Materialien ausgenutzt, Licht zu emittieren, wenn sie durch elektrischen Strom angeregt werden. OLEDs sind insbesondere interessant als Alternative zu Kathodenstrahlröhren und Flüssigkristalldisplays zur Herstellung von Flachbildschirmen. Aufgrund der sehr kompakten Bauweise und des intrinsisch niedrigeren Stromverbrauchs eignen sich Vorrichtungen, enthaltend OLEDs insbesondere für mobile Anwendungen, zum Beispiel für Anwendungen in Handys, Laptops usw.
  • Es wurden zahlreiche Materialien vorgeschlagen, die bei der Anregung durch elektrischen Strom Licht emittieren (Elektrolumineszenz).
  • Baldo et al., Pure Appl. Chem., 1999, 71(11), 2095 bis 2106 beschreibt in Anwendung von phosphoreszierenden Materialien in OLEDs.
  • In dem nachfolgend genannten Stand der Technik ist die Photolumineszenz von speziellen Zirconiumkomplexen beschrieben. Bezüglich einer Elektrolumineszenz von Zirconocen- oder Hafnocenkomplexen, die für den Einsatz in organischen Licht-emittierenden Dioden (OLEDs) erforderlich ist, ist kein Stand der Technik bekannt.
  • Vogler et al., Eur. J. Inorg. Chem. 1998, 1863 bis 1865 betrifft die Untersuchung des Li-gand-Ligand-Ladungstransfers in (2,2'-Bischinolinolato)bis(cyclopentadienyl)-zirconium(IV). Dieser Komplex zeigt Emission im sichtbaren Bereich des elektromagnetischen Spektrums, wenn er mit Licht angeregt wird.
  • Loukova et al., Chemical Physics Letters 329 (2000) 437 bis 442 betrifft phosphoreszierende angeregte Zustände in der Metallocenen Gruppe IVa des Periodensystems der Elemente. Diese Komplexe zeigen Lumineszenz, wenn sie mit Licht angeregt werden.
  • Yam et al., Journal of Organometallic Chemistry 548 (1997) 289 bis 294, betrifft die Synthese von Zirconiumthiolatkomplexen der Formel (η5-C5H5)2Zr(SC6H4R-p)2, worin R Cl, Me oder OMe bedeutet. Diese Komplexe zeigen bei Anregung mit Licht Lumineszenz im sichtbaren Bereich des elektromagnetischen Spektrums.
  • In keinem der vorstehend genannten Dokumente wird die Elektrolumineszenz von Zirconocenkomplexen erwähnt.
  • Obwohl bereits Verbindungen bekannt sind, die im blauen, roten und grünen Bereich des elektromagnetischen Spektrums Elektrolumineszenz zeigen, ist die Bereitstellung von weiteren Verbindungen, die auch in Substanz als Licht-emittierende Schicht einsetzbar sind, wünschenswert. Unter Elektrolumineszenz ist sowohl Elektrofluoreszenz als auch Elektrophosphoreszenz zu verstehen.
  • Aufgabe der vorliegenden Anmeldung ist daher die Bereitstellung einer Verbindungsklasse, die zum Einsatz in verschiedenen Schichten eines OLEDs geeignet ist, insbesondere die Bereitstellung einer Verbindung, die zur Elektrolumineszenz im blauen, roten und grünen Bereich des elektromagnetischen Spektrums geeignet ist, wodurch die Herstellung von Vollfarbendisplays ermöglicht wird.
  • Diese Aufgabe wird gelöst durch die Verwendung von Metallocenkomplexen gemäß Anspruch 1.
  • Die Metallocenkomplexe können in der Licht-emittierenden Schicht eines OLEDs als Emittersubstanz oder als Matrixmaterial eingesetzt werden. Des Weiteren ist der Einsatz der Metallocenkomplexe als Lochblocker möglich, z. B. in einer Blockschicht für Löcher, die zwischen einer Licht-emittierenden Schicht und einer Elektronen-transportierenden Schicht des OLEDs angeordnet ist. Bevorzugt werden die Metallocenkomplexe als Emittermoleküle in der Licht-emittierenden Schicht eingesetzt.
  • Erfindungsgemäß eingsetzt werden dabei neutrale Zirconocenkomplexe der Formel (I)
    Figure imgb0001
    worin die Symbole die folgenden Bedeutungen aufweisen:
  • R1, R2, R3, R4, R5, R6, R7, R8, R9, R10
    unabhängig voneinander H, Alkyl, Aryl, Alkoxy, Hydroxy, Aryloxy, Halogen, CN, SCN, NO2 CR17R18NR19R20, CF3; wobei R17, R18, R19, R20 jeweils unabhängig voneinander H, Alkyl oder Aryl bedeuten;
    oder
    zwei benachbarte Reste bilden gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen zyklischen Rest, der gesättigt oder ungesättigt und substituiert oder unsubstituiert sein kann und gegebenenfalls ein oder mehrere Heteroatome, bevorzugt ausgewählt aus N, O oder S, enthalten kann;
    und/oder
    R5 und R10
    bilden gemeinsam eine Verbrückung, die die allgemeine Formel - (CR13R14)n- aufweist, wobei R13 und R14 jeweils unabhängig voneinander H, Alkyl oder Aryl bedeuten, n 1 bis 2 bedeutet und die Reste R13 und R14 in den n Gruppen -(CR13R14)- gleich oder verschieden sein können und in einer oder mehreren der Gruppen -(CR13R14)- das Kohlenstoffatom durch Si oder B ersetzt sein kann;
    R11, R12
    unabhängig voneinander Alkyl ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl, i-Propyl, n-Propyl, i-Butyl, n-Butyl, t-Butyl, sec-Butyl, i-Pentyl, n-Pentyl, sec-Pentyl, neo-Pentyl, n-Hexyl, i-Hexyl, sec-Hexyl, Cyclohexyl und Cyclopentyl, Aryl, Alkoxy, Aryloxy, Halogen, CN, SCN, CO, Alkinyl, Alkylthio, Arylthio, Alkylamido, Arylamide, Trifluormethansulfonat oder einer der Reste bildet eine µ-oxo-Brücke zu einem weiteren Zirconocen- oder Hafnocenkomplex der Formel I aus;
    oder
    R11 und R12
    bilden gemeinsam einen zweizähnigen Liganden;
    M
    Zr
  • Die Zirconocenkomplexe der Formel I werden bevorzugt als Matrixmaterial oder als Emittermolekül in der Licht-emittierenden Schicht oder als Lockblocker eingesezt. Besonders bevorzugt ist die Verwendung der Zirconocenkomplexe der Formel I als Emittermoleküle in der Licht-emittierenden Schicht.
  • Im Sinne der vorliegenden Anmeldung haben die Begriffe Arylrest oder -gruppe, Alkylrest oder -gruppe, Alkoxyrest oder -gruppe und Aryloxyrest oder -gruppe die folgenden Bedeutungen:
  • Unter einem Arylrest (oder -gruppe) ist ein Rest mit einem Grundgerüst von 6 bis 30 Kohlenstoffatomen, bevorzugt 6 bis 18 Kohlenstoffatomen zu verstehen, der aus einem aromatischen Ring oder mehreren kondensierten aromatischen Ringen aufgebaut ist. Geeignete Grundgerüste sind zum Beispiel Phenyl, Naphthyl, Anthracenyl oder Phenanthrenyl. Dieses Grundgerüst kann unsubstituiert sein (d. h., dass alle Kohlenstoffatome, die substituierbar sind, Wasserstoffatome tragen), oder an einer, mehreren oder allen substituierbaren Positionen des Grundgerüsts substituiert sein. Geeignete Substituenten sind zum Beispiel Alkylreste, bevorzugt Alkylreste mit 1 bis 8 Kohlenstoffatomen, besonders bevorzugt Methyl, Ethyl, i-Propyl oder t-Butyl, Arylreste, bevorzugt C6-Arylreste, die wiederum substituiert oder unsubstituiert sein können, Heteroarylreste, bevorzugt Heteroarylreste, die mindestens ein Stickstoffatom enthalten, besonders bevorzugt Pyridylreste, Alkenylreste, bevorzugt Alkenylreste, die eine Doppelbindung tragen, besonders bevorzugt Alkenylreste mit einer Doppelbindung und 1 bis 8 Kohlenstoffatomen, oder Gruppen mit Donor- oder Akzeptorwirkung. Unter Gruppen mit Donorwirkung sind Gruppen zu verstehen, die einen +I- und/oder +M-Effekt aufweisen, und unter Gruppen mit Akzeptorwirkung sind Gruppen zu verstehen, die einen -I- und/oder -M-Effekt aufweisen. Geeignete Gruppen, mit Donor- oder Akzeptorwirkung sind Halogenreste, bevorzugt F, Cl, Br, besonders bevorzugt F, Alkoxyreste, Carbonylreste, Esterreste, Aminreste, Amidreste, CH2F-Gruppen, CHF2-Gruppen, CF3-Gruppen, CN-Gruppen, Thiogruppen oder SCN-Gruppen. Ganz besonders bevorzugt tragen die Arylreste Substituenten ausgewählt aus der Gruppe bestehend aus Methyl, F, Cl und Alkoxy, oder die Arylreste sind unsubstituiert. Bevorzugt ist der Arylrest oder die Arylgruppe ein C6-Arylrest, der gegebenenfalls mit mindestens einem der vorstehend genannten Substituenten substituiert ist. Besonders bevorzugt weist der C6-Arylrest keinen, einen oder zwei der vorstehend genannten Substituenten auf, wobei der eine Substituent bevorzugt in para-Position zur weiteren Verknüpfungsstelle des Arylrestes angeordnet ist und - im Falle von zwei Substituenten - diese jeweils in meta-Position zur weiteren Verknüpfungsstelle des Arylrestes angeordnet sind. Ganz besonders bevorzugt ist der C6-Arylrest ein unsubstituierter Phenylrest.
  • Unter einem Alkylrest oder einer Alkylgruppe ist ein Rest mit 1 bis 20 Kohlenstoffatomen, bevorzugt 1 bis 10 Kohlenstoffatomen, besonders bevorzugt 1 bis 8 Kohlenstoffatomen zu verstehen. Dieser Alkylrest kann verzweigt oder unverzweigt sein und gegebenenfalls mit einem oder mehreren Heteroatomen, bevorzugt N, O oder S unterbrochen sein. Des Weiteren kann dieser Alkylrest mit einem oder mehreren der bezüglich der Arylgruppen genannten Substituenten substituiert sein. Es ist ebenfalls möglich, dass der Alkylrest eine oder mehrere Arylgruppen trägt. Dabei sind alle der vorstehend aufgeführten Arylgruppen geeignet. Des Weiteren kann der Alkylrest oder die Alkylgruppe ein cyclischer Alkylrest mit 3 bis 10 Ringatomen, bevorzugt 4 bis 7 Ringatomen sein. Bei den Ringatomen handelt es sich um Kohlenstoffatome, wobei ein oder mehrere Kohlenstoffatome durch Heteroatome, bevorzugt N, O oder S, ersetzt sein können. Der cyclische Alkylrest kann mit den bereits bezüglich der verzweigten oder unverzweigten Alkylreste genannten Substituenten substituiert sein. Besonders bevorzugt sind die Alkylreste ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl, i-Propyl, n-Propyl, i-Butyl, n-Butyl, t-Butyl, sec-Butyl, i-Pentyl, n-Pentyl, sec-Pentyl, neo-Pentyl, n-Hexyl, i-Hexyl und sec-Hexyl, Cyclohexyl und Cyclopentyl. Ganz besonders bevorzugt sind Methyl, i-Propyl, t-Butyl und n-Hexyl.
  • Unter einem Alkoxyrest oder einer Alkoxygruppe ist eine Gruppe der allgemeinen Formel -OR15 zu verstehen, wobei R15 einen Alkylrest darstellt, wie er vorstehend definiert ist. Bevorzugte Alkoxyreste sind somit Alkoxyreste ausgewählt aus der Gruppe bestehend aus -OMethyl, -OEthyl, -OiPropyl, -OnPropyl, -OiButyl, -OnButyl, -OtButyl, - OsecButyl, - OiPentyl, -OnPentyl, -OsecPentyl, -OneoPentyl, -OnHexyl, -OiHexyl und - OsecHexyl. Ganz besonders bevorzugt sind -OMethyl, -OiPropyl, -OtButyl und -OnHexyl.
  • Unter einem Aryloxyrest bzw. einer Aryloxygruppe ist eine Gruppe der allgemeinen Formel -OR16 zu verstehen, wobei R16 einen Arylrest darstellt, wie er vorstehend definiert ist. Als Aryloxyrest ist ein Rest der Gruppe -OPhenyl ganz besonders bevorzugt.
  • Unter einem Alkylthiorest oder einer Alkylthiogruppe ist eine Gruppe der allgemeinen formel -SR21 zu verstehen, wobei R21 einen Alkylrest darstellt, wie er vorstehend definiert ist. Bevorzugte Alkylthioreste sind somit Alkylthioreste ausgewählt aus der Gruppe bestehend aus -SMethyl, -SEthyl, -SiPropyl, -SnPropyl, -SiButyl, SnButyl, -StButyl, -SsecButyl, -SiPentyl, -SnPentyl, -SsecPentyl, -SneoPentyl, -SnHexyl, -SiHexyl und -SsecHexyl. Ganz besonders bevorzugt sind -SMethyl, -SiPropyl, -StButyl und -SnHexyl.
  • Unter einem Arylthiorest bzw. einer Arylthiogruppe ist eine Gruppe der allgemeinen Formel -SR22 zu verstehen, wobei R22 einen Arylrest darstellt, wie er vorstehend definiert ist. Als Arylthiorest ist ein Rest der Gruppe -SPhenyl ganz besonders bevorzugt.
  • Bei dem Substituenten Halogen handelt es sich bevorzugt um F, Cl oder Br, besonders bevorzugt um Cl oder Br, ganz besonders bevorzugt um Cl.
  • Unter einem zweizähnigen Liganden ist ein Ligand zu verstehen, der zwei Koordinationsstellen aufweist. Geeignete zweizähnige Liganden sind zum Beispiel Bis(chinolinolato), 2,2'-Bipyridin, 2,2'-Bipyridindisulfonate und Phenanthrolin.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung bedeuten R1, R2, R3, R4, R5, R6, R7, R8, R9 und R10 unabhängig voneinander H oder Alkyl, besonders bevorzugt Alkyl ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl, i-Propyl, n-Propyl, i-Butyl, n-Butyl, t-Butyl, sec-Butyl, i-Pentyl, n-Pentyl, sec-Pentyl, neo-Pentyl, n-Hexyl, i-Hexyl und sec-Hexyl und insbesondere bevorzugt Alkyl ausgewählt aus der Gruppe bestehend aus Methyl, i-Propyl, t-Butyl und n-Hexyl; oder Halogen, bevorzugt Halogen ausgewählt aus der Gruppe bestehend aus F, Cl und Br, ganz besonders bevorzugt Cl.
  • Des Weiteren können in einer bevorzugten Ausführungsform zwei benachbarte Reste gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen zyklischen Rest, bevorzugt einen 5- oder 6-gliedrigen Ring, bilden, der gesättigt oder ungesättigt sein kann, wobei unter einen ungesättigten zyklischen Rest auch ein aromatischer Rest fällt, und der substituiert oder unsubstituiert sein kann. Geeignete Substituenten sind bevorzugt ausgewählt aus der Gruppe bestehend aus Alkyl, Aryl, Alkoxy, Hydroxy, Aryloxy, Halogen, CN, SCN und NO2, wobei Alkylreste bevorzugt sind. Geeignete Alkyl-, Aryl-, Alkoxy-, Aryloxy und Halogenreste sind bereits vorstehend genannt. Ganz besonders bevorzugt ist der zyklische Rest jedoch unsubstituiert. Beispielsweise können zwei benachbarte Reste an einem der zyklischen Liganden der Verbindung der Formel I gemeinsam mit den Kohlenstoffatomen, an die Sie gebunden sind, einen ortho-Phenylenrest bilden, so dass der cyclische Ligand ein Indenylligand ist. Es ist jedoch ebenfalls möglich, dass zweimal zwei benachbarte Reste an einem cyclischen Liganden der Verbindung der Formel I, z.B. R1 und R2 sowie R3 und R4 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, jeweils einen ortho-Phenylenrest bilden, so dass der cyclische Ligand ein Fluorenylligand ist. Im Folgenden werden alle cyclischen Liganden der Verbindung der Formel I, die auf einem zentralen Cyclopentadienylrest basieren, als Cyclopentadienylliganden bezeichnet.
  • Des Weiteren können R5 und R10 gemeinsam eine Verbrückung der allgemeinen Formel -(CR13R14)n- bilden, wobei R13 und R14 jeweils unabhängig bevorzugt H oder Methyl bedeuten und n 1 oder 2, besonders bevorzugt 1 bedeutet. Das C-Atom in der Gruppe - (CR13R14)- kann durch ein Si-Atom ersetzt sein, das die bereits vorstehend genannten Substituenten R13 und R14 tragen kann. Besonders bevorzugt handelt es sich bei der Verbrückung der Formel - (CR13R14)n- um eine Verbrückung der Formel -(CH3)2C-, - (CH2)2- oder -(CH3)2Si-.
    Insbesondere bevorzugt sind die Reste R1 und R6, R2 und R7, R3 und R8, R4 und R9 sowie R5 und R10 jeweils identisch. Das bedeutet, dass beide Cyklopentadienylliganden in Formel I das gleiche Substitutionsmuster aufweisen.
  • Bei den Resten R11 und R12 handelt es sich unabhängig voneinander um Alkyl, Aryl, Alkoxy, Aryloxy, Halogen, CN, SCN, Alkylthio, Arylthio, CO, Alkinyl, Alkylamido, Arylamido, Trifluormethansulfonat oder einer der Reste R11 oder R12 bildet eine µ-oxo-Brücke zu einem weiteren Zirconocen- oder Hafnocenkomplex der Formel I aus. Bevorzugte Alkyl-, Aryl-, Alkoxy-, Aryloxy-, Alkylthio-, Arylthio- und Halogenreste sind bereits vorstehend genannt. Bevorzugt sind R11 und R12 unabhängig voneinander Alkyl, Alkoxy oder Halogen. Ganz besonders bevorzugte Reste R11 und R12 sind ausgewählt aus der Gruppe bestehend aus CH3, OCH3 und Cl. Insbesondere bevorzugt sind die Reste R11 und R12 identisch. Des Weiteren können R11 und R12 gemeinsam einen zweizähnigen Liganden bilden. Geeignete zweizähnige Liganden wurden bereits vorstehend genannt. Ganz besonders bevorzugt sind R11 und R12 Cl.
  • In einer bevorzugten Ausführungsform betrifft die vorliegende Anmeldung die Verwendung von Verbindungen der Formel I, worin die Symbole die folgenden Bedeutungen aufweisen:
  • R1 R2, R3 R4, R5 R6, R7, R8, R9, R10
    unabhängig voneinander H, Alkyl, Aryl oder Halogen;
    oder
    zwei benachbarte Reste bilden gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen ortho-Phenylenrest;
    und/oder
    R5 und R10
    bilden gemeinsam eine Verbrückung der allgemeinen Formel -(CR13R14)n-, wobei R13 und R14 jeweils Methyl bedeuten und n 1 bedeutet und das C-Atom durch Si ersetzt sein kann;
    R11, R12
    unabhängig voneinander Alkyl, Alkoxy, Alkylthio, Arylthio oder Halogen.
  • Bevorzugte Reste R1 R2, R3, R4, R5, R6, R7, R8, R9 und R10 sowie bevorzugte Reste R11, R12 und R13 und R14 sind bereits vorstehend genannt.
  • Insbesondere bevorzugt verwendete Zirconocenkomplexe der Formel I sind nachstehend aufgeführt, wobei M Zr bedeutet und rac die racemische Form des entsprechenden Komplexes ist und meso die meso-Form des Komplexes bedeutet.
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
  • Die vorstehend genannten neutralen Zirconocenkomplexe sind hervorragend als Emittermoleküle in organischen Licht-emittierenden Dioden (OLEDs) geeignet. Durch einfache Variationen der Liganden ist es möglich, Zirconocenkomplexe bereit zu stellen, die Elektrolumineszenz im roten, grünen sowie insbesondere im blauen Bereich des elektromagnetischen Spektrums zeigen. Die erfindungsgemäß verwendeten neutralen Zirconocenkomplexe eignen sich daher für den Einsatz in technisch verwendbaren Vollfarbendisplays.
  • Die Herstellung der Zirconocenkomplexe erfolgt nach dem Fachmann bekannten Verfahren. Einige der erfindungsgemäß verwendeten Zirconocenkomplexe sind des Weiteren kommerziell erhältlich.
  • Ein übliches Verfahren zur Herstellung ist zum Beispiel die Deprotonierung von den den Cyclopentadienylliganden der Verbindungen der Formel I entsprechenden Ligandvorläufern und anschließende, im Allgemeinen in situ, Umsetzung mit geeigneten Zirconium enthaltenden Metallkomplexen. Die geeigneten Zirconium enthaltenden Metallkomplexe sind im Allgemeinen kommerziell erhältlich oder nach dem Fachmann bekannten Verfahren herstellbar und enthalten bevorzugt Reste der Gruppen R11 und R12. Somit sind bevorzugte Zirconium enthaltende Metallkomplexe z.B. ZrCl4, die THF-Addukte von ZrCl4, CpZrCl3.
  • Alternativ können auch die den Cyclopentadienylliganden der Verbindungen der Formel I entsprechenden Ligandvorläufer mit Zirconium enthaltenden Basen, zum Beispiel Zr(NEt2)4 nach dem Fachmann bekannten Verfahren umgesetzt werden.
  • Geeignete Ligandvorläufer, die zu den Cyclopentadienylliganden der Zirconocenkomplexe der Formel I führen, sind dem Fachmann bekannt und sind kommerziell erhältlich bzw. nach dem Fachmann bekannten Verfahren herstellbar.
  • Erfolgt eine Deprotonierung der Liganden, so kann diese durch Alkalimetalle, insbesondere in fein verteilter Form, basische Metallate, basische Anionen wie Metallacetate, Acetylacetonate oder Alkoxylate oder externe Basen wie KOtBu, NaOtBu, LiOtBu, NaH, Metallalkyle wie Butyllithium, Methyllithium, Silylamide, Li-Hexamethyldisilazid, sowie Phosphazenbasen erfolgen.
  • Die Umsetzung erfolgt bevorzugt in einem Lösungsmittel. Geeignete Lösungsmittel sind aprotische Lösungsmittel, die dem Fachmann bekannt sind, und bevorzugt ausgewählt sind aus aromatischen und aliphatischen Lösungsmitteln. Besonders bevorzugt werden aromatische Lösungsmittel wie Toluol und Benzol, Ether wie Tetrahydrofuran, tert.-Butylether, und tert.-Butylmethylether, sowie halogenierte Kohlenwasserstoffe wie Methylenchorid eingesetzt.
  • Das molare Verhältnis von eingesetztem Zirconium enthaltenden Metallkomplex zu eingesetztem Ligandvorläufer beträgt bevorzugt 0,7 : 2,0 bis 1,5 : 2,0, besonders bevorzugt 0,9 : 2,0 bis 1,1 : 2, ganz besonders bevorzugt 1 : 2 bei Liganden, die keine Verbrückung aufweisen. Bei Liganden, die eine Verbrückung aufweisen, beträgt das molare Verhältnis bevorzugt 0,7 : 1,0 bis 1,5 : 1,0, besonders bevorzugt 0,9 : 1,0 bis 1,1 : 1,0, ganz besonders bevorzugt 1 : 1.
  • Die Umsetzung erfolgt im Allgemeinen bei Temperaturen von -100°C bis +200°C, bevorzugt -100°C bis +100°C, besonders bevorzugt -78°C bis +50°C.
  • Die Reaktionsdauer ist abhängig von dem gewünschten Zirconocenkomplex und beträgt im Allgemeinen von 1 h bis 50 h, bevorzugt 2 h bis 30 h, besonders bevorzugt 5 h bis 25 h.
  • Der erhaltene Zirconocenkomplex der Formel I wird nach dem Fachmann bekannten Methoden aufgearbeitet. Beispielsweise wird der entstandene Zirconocenkomplex aus der Reaktionslösung mit einem unpolaren Lösungsmittel, z.B. n-Pentan oder n-Hexan ausgefällt, filtriert, gewaschen, zum Beispiel mit dem zum Ausfällen verwendeten Lösungsmittel, und anschließend getrocknet. Durch Umkristallisation, zum Beispiel aus Dichlormethan, Diethylether, Dichlorethan oder Gemischen davon, werden hochreine Zirconocen komplexe erhalten.
  • Die erfindungsgemäß verwendeten Zirconocenkomplexe der Formel I eignen sich hervorragend als Emittersubstanzen, da sie eine Emission (Elektrolumineszenz) im sichtbaren Bereich des elektromagnetischen Spektrums aufweisen. Mit Hilfe der erfindungsgemäß verwendeten Zirconocenkomplexe als Emittersubstanzen ist es möglich, Verbindungen bereit zu stellen, die Elektrolumineszenz im roten, grünen sowie im blauen Bereich des elektromagnetischen Spektrums aufweisen. Somit ist es möglich mit Hilfe der erfindungsgemäß verwendeten Zirconocenkomplexe als Emittersubstanzen technisch einsetzbare Vollfarbendisplays bereit zu stellen. Des Weiteren eignen sich die Zirconocenkomplexe als Lochblocker, zum Beispiel in einer Blockschicht für Löcher in einem OLED, die zwischen der Licht-emittierenden Schicht und einer Elektronen-transprotierenden Schicht des OLEDs angeordnet ist. Die Anwendung der erfindungsgemäß verwendeten Zirconocenkomplexe in den verschiedenen Schichten ist abhängig von der Lage des HOMO der Metallocenkomplexe und somit von dem Substitutionsmuster der Metallocenkomplexe.
  • Eine besondere Eigenschaft der Zirconocenkomplexe der Formel I ist, dass diese im Festkörper Lumineszenz, besonders bevorzugt Elektrolumineszenz, im sichtbaren Bereich des elektromagnetischen Spektrums zeigen. Diese im Festkörper lumineszierenden Komplexe können in Substanz, also ohne weitere Zusätze, als Emittersubstanzen in OLEDs eingesetzt werden. Dadurch kann ein OLED mit einer Licht-emittierenden Schicht hergestellt werden, wobei keine aufwendige Coverdampfung eines Matrixmaterials mit der Emittersubstanz erforderlich ist.
  • Ein weiterer Gegenstand der vorliegenden Anmeldung sind daher organische Leuchtdioden (OLEDs) enthaltend mindestens einen Zirconocenkomplex der Formel I.
  • Organische Leuchtdioden sind grundsätzlich aus mehreren Schichten aufgebaut:
    1. 1. Anode
    2. 2. Löcher-transportierende Schicht
    3. 3. Licht-emittierende Schicht
    4. 4. Elektronen-transportierende Schicht
    5. 5. Kathode
  • Die Zirconocenkomplexe können in verschiedenen Schichten des OLEDs eingesetzt werden, in Abhängigkeit von der Lage ihres HOMO, zum Beispiel können die Zirconocenkomplexe als Lochblocker in einer Blockschicht für Löcher oder als Emittermoleküle in der Licht-emittierenden Schicht eingesetzt werden.
  • Bevorzugt werden sie in der Licht-emittierenden Schicht als Emittermoleküle eingesetzt. Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher eine Licht-emittierende Schicht enthaltend mindestens einen Zirconocenkomplex. Bevorzugte Zirconocenkomplexe, sind bereits vorstehend genannt.
  • Die erfindungsgemäß verwendeten Zirconocenkomplexe können in Substanz - ohne weitere Zusätze - in der Licht-emittierenden Schicht vorliegen. Es ist jedoch ebenfalls möglich, dass neben den erfindungsgemäß eingesetzten Zirconocenkomplexen weitere Verbindungen in der Licht-emittierenden Schicht vorliegen. Beispielsweise kann ein fluoreszierender Farbstoff anwesend sein, um die Emissionsfarbe des als Emittermolekül eingesetzten Zirconocenkomplexes zu verändern. Des Weiteren kann ein Verdünnungsmaterial eingesetzt werden. Dieses Verdünnungsmaterial kann ein Polymer sein, zum Beispiel Poly(N-vinylcarbazol) oder Polysilan. Das Verdünnungsmaterial kann jedoch ebenfalls ein kleines Molekül sein, zum Beispiel 4,4'-N,N'-Dicarbazolbiphenyl (CBP), Tetraarylsilan oder tertiäre aromatische Amine. Wenn ein Verdünnungsmaterial eingesetzt wird, beträgt der Anteil der erfindungsgemäß eingesetzten Zirconocenkomplexe in der Licht-emittierenden Schicht im Allgemeinen weniger als 20 Gew.-%, bevorzugt 3 bis 10 Gew.-%. Bevorzugt werden die Zirconocenkomplexe in Substanz eingesetzt, wodurch eine aufwendige Coverdampfung der Zirconocenkomplexe mit einem Matrixmaterial (Verdünnungsmaterial oder fluoreszierender Farbstoff) vermieden wird. Dafür ist es wesentlich, dass die Zirconocenkomplexe im Festkörper lumineszieren. Die Zirconocenkomplexe zeigen im Festkörper Lumineszenz. Somit enthält die Licht-emittierende Schicht bevorzugt mindestens einen Zirconocenkomplex und kein Matrixmaterial ausgewählt aus Verdünnungsmaterial und fluoreszierendem Farbstoff.
  • Ein weiterer Gegenstand der vorliegenden Anmeldung ist in einer weiteren Ausführungsform eine Licht-emittierende Schicht bestehend aus mindestens einem Zirconocenkomplex. Bevorzugte Komplexe wurden bereits vorstehend genannt.
  • Die einzelnen der vorstehend genannten Schichten des OLEDs können wiederum aus 2 oder mehreren Schichten aufgebaut sein. Beispielsweise kann die Löcher-transportierende Schicht aus einer Schicht aufgebaut sein, in die aus der Elektrode Löcher injiziert werden und einer Schicht, die die Löcher von der Loch injizierenden Schicht weg in die Licht-emittierende Schicht transportiert. Die Elektronen-transportierende Schicht kann ebenfalls aus mehreren Schichten bestehen, zum Beispiel einer Schicht, worin Elektronen durch die Elektrode injiziert werden, und einer Schicht, die aus der Elektronen-injizierenden Schicht Elektronen erhält und in die Licht-emittierende Schicht transportiert. Diese genannten Schichten werden jeweils nach Faktoren wie Energieniveau, Temperaturresistenz und Ladungsträgerbeweglichkeit, sowie Energiedifferenz der genannten Schichten mit den organischen Schichten oder den Metallelektroden ausgewählt. Der Fachmann ist in der Lage, den Aufbau der OLEDs so zu wählen, dass er optimal an die erfindungsgemäß als Emittersubstanzen verwendeten Zirconocenkomplexe angepasst ist.
  • Um besonders effiziente OLEDs zu erhalten, sollte das HOMO (höchstes besetztes Molekülorbital) der Loch-transportierenden Schicht mit der Arbeitsfunktion der Anode angeglichen sein und das LUMO (niedrigstes unbesetztes Molekülorbital) der elektronentransportierenden Schicht sollte mit der Arbeitsfunktion der Kathode angeglichen sein.
  • Ein weiterer Gegenstand der vorliegenden Anmeldung ist ein OLED enthaltend mindestens eine erfindungsgemäße Licht-emittierende Schicht. Die weiteren Schichten in dem OLED können aus einem beliebigen Material aufgebaut sein, das üblicherweise in solchen Schichten eingesetzt wird und dem Fachmann bekannt ist.
  • Die Anode (1) ist eine Elektrode, die positive Ladungsträger bereitstellt. Sie kann zum Beispiel aus Materialien aufgebaut sein, die ein Metall, eine Mischung verschiedener Metalle, eine Metalllegierung, ein Metalloxid oder eine Mischung verschiedener Metalloxide enthält. Alternativ kann die Anode ein leitendes Polymer sein. Geeignete Metalle umfassen die Metalle der Gruppen Ib, IVa, Va und VIa des Periodensystems der Elemente sowie die Übergangsmetalle der Gruppe VIII. Wenn die Anode lichtdurchlässig sein soll, werden im Allgemeinen gemischte Metalloxide der Gruppen IIb, IIIb und IVb des Periodensystems der Elemente eingesetzt, zum Beispiel Indium-Zinn-Oxid (I-TO). Es ist ebenfalls möglich, dass die Anode (1) ein organisches Material, zum Beispiel Polyanilin enthält, wie beispielsweise in Nature, Vol. 357, Seiten 477 bis 479 (11. Juni 1992) beschrieben ist. Zumindest entweder die Anode oder die Kathode sollten mindestens teilweise transparent sein, um das gebildete Licht auskoppeln zu können.
  • Geeignete Lochtransportmaterialien für die Schicht (2) des erfindungsgemäßen OLEDs sind zum Beispiel in Kirk-Othmer Encyclopedia of Chemical Technologie, 4. Auflage, Vol. 18, Seiten 837 bis 860, 1996 offenbart. Sowohl Löcher transportierende Moleküle als auch Polymere können als Lochtransportmaterial eingesetzt werden. Üblicherweise eingesetzte Löcher transportierende Moleküle sind ausgewählt aus der Gruppe bestehend aus 4,4'-Bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (□-NPD), N,N'-Diphenyl-N, N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamin (TPD), 1,1-Bis[(di-4-tolylamino)phenyl]cyclohexan (TAPC), N,N'-Bis(4-methylphenyl)-N,N'-bis(4-ethylphenyl)-[1,1'-(3,3'-dimethyl)biphenyl]-4,4'-diamin (ETPD), Tetrakis-(3-methylphenyl)-N,N,N',N'-2,5-phenylendiamin (PDA), α-Phenyl-4-N,N-diphenylaminostyrol (TPS), p-(Diethylamino)-benzaldehyddiphenylhydrazon (DEH), Triphenylamin (TPA), Bis[4-(N,N-diethylamino)-2-methylphenyl)](4-methyl-phenyl)methan (MPMP), 1-Phenyl-3-[p-(diethylamino)styryl]-5-[p-(diethylamino)phenyl]pyrazolin (PPR oder DEASP), 1,2-trans-Bis(9H-carbazol-9-yl)cyclobutan (DCZB), N,N,N',N'-Tetrakis(4-methylphenyl)-(1,1'-biphenyl)-4,4'-diamin (TTB) und Porphyrinverbindungen wie Kupferphthalocyanine. Üblicherweise eingesetzte Löcher transportierende Polymere sind ausgewählt aus der Gruppe bestehend aus Polyvinylcarbazolen, (Phenylmethyl)polysilanen und Polyanilinen. Es ist ebenfalls möglich, Löcher transportierende Polymere durch Dotieren Löcher transportierender Moleküle in Polymere wie Polystyrol und Polycarbonat zu erhalten. Geeignete Löcher transportierende Moleküle sind die bereits vorstehend genannten Moleküle.
  • Geeignete Elektronen transportierende Materialien für die Schicht (4) der erfindungsgemäßen OLEDs umfassen mit oxinoiden Verbindungen chelatisierte Metalle wie Tris(8-chinolinolato)aluminium (Alq3), Verbindungen auf Phenanthrolinbasis wie 2,9-Dimethyl,4,7-diphenyl-1,10-phenanthrolin (DDPA) oder 4,7-Diphenyl-1,10-phenanthrolin (DPA) und Azolverbindungen wie 2-(4-Biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazol (PBD) und 3-(4-Biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1,2,4-triazol (TAZ). Dabei kann die Schicht (4) sowohl zur Erleichterung des Elektronentransports dienen als auch als Pufferschicht oder als Sperrschicht, um ein Quenchen des Excitons an den Grenzflächen der Schichten des OLEDs zu vermeiden. Vorzugsweise verbessert die Schicht (4) die Beweglichkeit der Elektronen und reduziert ein Quenchen des Excitons.
  • Die Kathode (5) ist eine Elektrode, die zur Einführung von Elektronen oder negativen Ladungsträgern dient. Die Kathode kann jedes Metall oder Nichtmetall sein, das eine geringere Arbeitsfunktion aufweist als die Anode. Geeignete Materialien für die Kathode sind ausgewählt aus der Gruppe bestehend aus Alkalimetallen der Gruppe Ia, zum Beispiel Li, Cs, Erdalkalimetallen der Gruppe IIa, Metallen der Gruppe IIb des Periodensystems der Elemente, und den Seltenerdmetalle und die Lanthanide und Aktinide. Des Weiteren können Metalle wie Aluminium, Indium, Calcium, Barium, Samarium und Magnesium sowie Kombinationen davon eingesetzt werden. Weiterhin können Lithium enthaltende organometallische Verbindungen oder LiF zwischen der organischen Schicht und der Kathode aufgebracht werden, um die Betriebsspannung (Operating Voltage) zu vermindern.
  • Das OLED gemäß der vorliegenden Erfindung kann zusätzlich weitere Schichten enthalten, die dem Fachmann bekannt sind. Beispielsweise kann zwischen der Schicht (2) und der Licht emittierenden Schicht (3) eine Schicht aufgebracht sein, die den Transport der positiven Ladung erleichtert und/oder die Bänderlücke der Schichten aneinander anpasst. Alternativ kann diese weitere Schicht als Schutzschicht dienen. In analoger Weise können zusätzliche Schichten zwischen der Licht emittierenden Schicht (3) und der Schicht (4) vorhanden sein, um den Transport der negativen Ladung zu erleichtern und/oder die Bänderlücke zwischen den Schichten aneinander anzupassen. Alternativ kann diese Schicht als Schutzschicht dienen.
  • In einer bevorzugten Ausführungsform enthält das erfindungsgemäße OLED zusätzlich zu den Schichten (1) bis (5) mindestens eine der im Folgenden genannten weiteren Schichten:
    • eine Loch-Injektionsschicht zwischen der Anode (1) und der Löcher-transportierenden Schicht (2);
    • eine Blockschicht für Elektronen zwischen der Löcher-transportierenden Schicht (2) und der Licht-emittierenden Schicht (3);
    • eine Blockschicht für Löcher zwischen der Licht-emittierenden Schicht (3) und der Elektronen-transportierenden Schicht (4);
    • eine Elektronen-Injektionsschicht zwischen der Elektronen-transportierenden Schicht (4) und der Kathode (5).
  • Dem Fachmann ist bekannt, wie er (zum Beispiel auf Basis von elektrochemischen Untersuchungen) geeignete Materialien auswählen muss. Geeignete Materialien für die einzelnen Schichten sind dem Fachmann bekannt und z.B. in WO 00/70655 offenbart.
  • Des Weiteren kann jede der genannten Schichten des erfindungsgemäßen OLEDs aus zwei oder mehreren Schichten ausgebaut sein. Des Weiteren ist es möglich, dass einige oder alle der Schichten (1), (2), (3), (4) und (5) oberflächenbehandelt sind, um die Effizienz des Ladungsträgertransports zu erhöhen. Die Auswahl der Materialien für jede der genannten Schichten ist bevorzugt dadurch bestimmt, ein OLED mit einer hohen Effizienz zu erhalten.
  • Die Herstellung des erfindungsgemäßen OLEDs kann nach dem Fachmann bekannten Methoden erfolgen. Im Allgemeinen wird das OLED durch aufeinanderfolgende Dampfabscheidung (Vapor deposition) der einzelnen Schichten auf ein geeignetes Substrat hergestellt. Geeignete Substrate sind zum Beispiel Glas oder Polymerfilme. Zur Dampfabscheidung können übliche Techniken eingesetzt werden wie thermische Verdampfung, Chemical Vapor Deposition und andere. In einem alternativen Verfahren können die organischen Schichten aus Lösungen oder Dispersionen in geeigneten Lösungsmitteln beschichtet werden, wobei dem Fachmann bekannte Beschichtungstechniken angewendet werden.
  • Im Allgemeinen haben die verschiedenen Schichten folgende Dicken: Anode (2) 500 bis 5000 Å (1Å=0.1 nm), bevorzugt 1000 bis 2000 Å; Löcher-transportierende Schicht (3) 50 bis 1000 Å, bevorzugt 200 bis 800 Å, Licht-emittierende Schicht (4) 10 bis 1000 Å, bevorzugt 100 bis 800 Å, Elektronen transportierende Schicht (5) 50 bis 1000 Å, bevorzugt 200 bis 800 Å, Kathode (6) 200 bis 10.000 Å, bevorzugt 300 bis 5000 Å. Die Lage der Rekombinationszone von Löchern und Elektronen in dem erfindungsgemäßen OLED und somit das Emissionsspektrum des OLED können durch die relative Dicke jeder Schicht beeinflusst werden. Das bedeutet, die Dicke der Elektronentransportschicht sollte bevorzugt so gewählt werden, dass die Elektronen/Löcher Rekombinationszone in der Licht-emittierenden Schicht liegt. Das Verhältnis der Schichtdicken der einzelnen Schichten in dem OLED ist von den eingesetzten Materialien abhängig. Die Schichtdicken von gegebenenfalls eingesetzten zusätzlichen Schichten sind dem Fachmann bekannt.
  • Durch Einsatz der erfindungsgemäß verwendeten Zirconocenkomplexe als Emittermolekül in der Licht-emittierenden Schicht der erfindungsgemäßen OLEDs können OLEDs mit hoher Effizienz erhalten werden. Die Effizienz der erfindungsgemäßen OLEDs kann des Weiteren durch Optimierung der anderen Schichten verbessert werden. Beispielsweise können hoch effiziente Kathoden wie Ca, Ba oder LiF eingesetzt werden. Geformte Substrate und neue Löcher-transportierende Materialien, die eine Reduktion der Operationsspannung oder eine Erhöhung der Quanteneffizienz bewirken, sind ebenfalls in den erfindungsgemäßen OLEDs einsetzbar. Des Weiteren können zusätzliche Schichten in den OLEDs vorhanden sein, um die Energielevel der verschiedenen Schichten einzustellen und um Elektrolumineszenz zu erleichtern.
  • Die erfindungsgemäßen OLEDs können in allen Vorrichtungen eingesetzt werden, worin Elektrolumineszenz nützlich ist. Geeignete Vorrichtungen sind bevorzugt ausgewählt aus stationären und mobilen Bildschirmen. Stationäre Bildschirme sind z.B. Bildschirme von Computern, Fernsehern, Bildschirme in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen und Hinweistafeln. Mobile Bildschirme sind z.B. Bildschirme in Handys, Laptops, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen.
  • Weiterhin können die erfindungsgemäß eingesetzten Zirconocenkomplexe in OLEDs mit inverser Struktur eingesetzt werden. Bevorzugt werden die Zirconocenkomplexe in diesen inversen OLEDs wiederum in der Licht-emittierenden Schicht, besonders bevorzugt als Licht-emittierende Schicht ohne weitere Zusätze, eingesetzt. Der Aufbau von inversen OLEDs und die üblicherweise darin eingesetzten Materialien sind dem Fachmann bekannt.
  • Beispiele Beispiel 1
  • Figure imgb0005
  • Zirkonocendichlorid ist kommerziell erhältlich.
    UV/Vis (Pulver): □max,em = 451 nm
  • Beispiel 2 (nicht gemäß der Erfindung)
  • Figure imgb0006
  • Hafnocendichlorid ist kommerziell erhältlich.
    UV/Vis (Pulver): □max,em = 449 nm
  • Beispiel 3:
  • Figure imgb0007
  • rac-Ethylenbis(4,5,6,7-tetrahydro-1-indenyl)zirkoniumdichlorid ist kommerziell erhältlich.
    UV/V is (Pulver) : □max,em = 458 nm

Claims (9)

  1. Verwendung von Zirconocenkomplex-en der Formel I
    Figure imgb0008
    worin die Symbole die folgenden Bedeutungen aufweisen:
    R1 R2, R3, R4, R5, R6, R7, R8, R9, R10 unabhängig voneinander H, Alkyl, Aryl, Alkoxy, Hydroxy, Aryloxy, Halogen, CN, SCN, NO2, CR17R18NR20, CF3; wobei R17, R18, R19, R20 jeweils unabhängig voneinander H, Alkyl oder Aryl bedeuten;
    oder
    zwei benachbarte Reste bilden gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen zyklischen Rest, der gesättigt oder ungesättigt und substituiert oder unsubstituiert sein kann und gegebenenfalls ein oder mehrere Heteroatome enthalten kann;
    und/oder
    R5 und R10 bilden gemeinsam eine Verbrückung, die die allgemeine Formel - (CR13R14)n- aufweist, wobei R13 und R14 jeweils unabhängig voneinander H, Alkyl oder Aryl bedeuten, n 1 bis 2 bedeutet und die Reste R13 und R14 in den n Gruppen -(CR13R14)- gleich oder verschieden sein können und in einer oder mehreren der Gruppen -(CR13R14)- das Kohlenstoffatom durch Si oder B ersetzt sein kann;
    R11, R12 unabhängig voneinander Alkyl ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl, i-Propyl, n-Propyl, i-Butyl, n-Butyl, t-Butyl, sec-Butyl, i-Pentyl, n-Pentyl, sec-Pentyl, neo-Pentyl, n-Hexyl, i-Hexyl, sec-Hexyl, Cyclohexyl und Cyclopentyl, Aryl, Alkoxy, Aryloxy, Halogen, CN, SCN, CO, Alkinyl, Alkylthio, Arylthio, Alkylamido, Arylamido, Trifluormethansulfonat oder einer der Reste bildet eine µ-oxo-Brücke zu einem weiteren Zirconocen- oder Hafnocenkomplex der Formel I aus;
    oder
    R11 und R12 bilden gemeinsam einen zweizähnigen Liganden;
    M Zr;
    in organischen Leuchtdioden.
  2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass
    R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 unabhängig voneinander H, Alkyl, Aryl oder Halogen bedeuten,
    oder
    zwei benachbarte Reste gemeinsam mit den Kohlenstoff atomen, an die sie gebunden sind, einen ortho-Phenylenrest bilden;
    und/oder
    R5 und R10 gemeinsam eine Verbrückung der allgemeinen Formel - (CR13R14)n- bilden, wobei R13 und R14 jeweils Methyl bedeuten und n 1 bedeutet und das C-Atom durch Si ersetzt sein kann;
    R11, R12 unabhängig voneinander Alkyl ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl, i-Propyl, n-Propyl, i-Butyl, n-Butyl, t-Butyl, sec-Butyl, i-Pentyl, n-Pentyl, sec-Pentyl, neo-Pentyl, n-Hexyl, i-Hexyl, sec-Hexyl, Cyclohexyl und Cyclopentyl, Alkoxy, Alkylthio, Arylthio oder Halogen bedeuten.
  3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Zirconocenkomplexe ausgewählt sind aus der Gruppe bestehend aus
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    worin M Zr und rac die racemische Form des entsprechenden Komplexes und meso die meso-Form des entsprechenden Metallkomplexes bedeutet.
  4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Metallocenkomplexe als Emittermoleküle in den OLEDs eingesetzt werden.
  5. OLED enthaltend mindestens einen Zirconocenkomplex gemäß einem der Ansprüche 1 bis 4.
  6. Licht-emittierende Schicht enthaltend mindestens einen Zirconocenkomplex gemäß einem der Ansprüche 1 bis 4.
  7. Licht-emittierende Schicht bestehend aus mindestens einem Zirconocenkomplex gemäß einem der Ansprüche 1 bis 4.
  8. OLED enthaltend eine Licht-emittierende Schicht gemäß Anspruch 6 oder 7.
  9. Vorrichtung ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen wie Bildschirmen von Computern, Fernsehern, Bildschirmen in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen, Hinweistafeln und mobilen Bildschirmen wie Bildschirmen in Handys, Laptops, Farbfernsehern sowie Zielanzeigen an Bussen und Bahnen enthaltend ein OLED gemäß Anspruch 5 oder 8.
EP05728180A 2004-04-08 2005-04-04 Verwendung von metallocenkomplexen von metallen der 4. nebengruppe des periodensystems als triplettemitter in organischen leuchtdioden (oleds) Not-in-force EP1735851B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004018145A DE102004018145A1 (de) 2004-04-08 2004-04-08 Verwendung von Metallocenkomplexen von Metallen der 4. Nebengruppe des Periodensystems als Triplettemitter in organischen Leuchtdioden (OLEDs)
PCT/EP2005/003516 WO2005098988A1 (de) 2004-04-08 2005-04-04 Verwendung von metallocenkomplexen von metallen der 4. nebengruppe des periodensystems als triplettemitter in organischen leuchtdioden (oleds)

Publications (2)

Publication Number Publication Date
EP1735851A1 EP1735851A1 (de) 2006-12-27
EP1735851B1 true EP1735851B1 (de) 2008-12-24

Family

ID=34962599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05728180A Not-in-force EP1735851B1 (de) 2004-04-08 2005-04-04 Verwendung von metallocenkomplexen von metallen der 4. nebengruppe des periodensystems als triplettemitter in organischen leuchtdioden (oleds)

Country Status (8)

Country Link
US (1) US20070264524A1 (de)
EP (1) EP1735851B1 (de)
JP (1) JP4204633B2 (de)
KR (1) KR20060135058A (de)
CN (1) CN1965419B (de)
AT (1) ATE418797T1 (de)
DE (2) DE102004018145A1 (de)
WO (1) WO2005098988A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169483B2 (en) * 2004-04-12 2007-01-30 General Electric Company Opto-electroactive device comprising a metallocene and method
EP1803789A1 (de) 2005-12-28 2007-07-04 Novaled AG Verwendung von Metallkomplexen als Emitter in einem elektronischen Bauelement und elektronisches Bauelement
KR101167737B1 (ko) * 2006-02-22 2012-07-23 삼성전자주식회사 저항변화형 유기 메모리 소자 및 그의 제조방법
US7884209B2 (en) 2006-03-30 2011-02-08 Novaled Ag Use of bora-tetraazapentalenes
DE102006017485B4 (de) 2006-04-13 2014-06-05 Merck Patent Gmbh Biphenyl-Metallkomplexe - Monomere und Oligomere Triplett-Emitter für OLED-Anwendungen
EP1860709B1 (de) 2006-05-24 2012-08-08 Novaled AG Verwendung von quadratisch planaren Übergangsmetallkomplexen als Dotand
DE102006030860A1 (de) 2006-07-04 2008-01-10 Universität Regensburg Oligomere von Isonitril-Metallkomplexen als Triplett-Emitter für OLED-Anwendungen
DE102006035018B4 (de) 2006-07-28 2009-07-23 Novaled Ag Oxazol-Triplett-Emitter für OLED-Anwendungen
DE102006048202A1 (de) * 2006-10-11 2008-04-17 Universität Regensburg Lanthanoid-Emitter für OLED-Anwendungen
US8795771B2 (en) * 2006-10-27 2014-08-05 Sean T. Barry ALD of metal-containing films using cyclopentadienyl compounds
DE102006051975B4 (de) 2006-11-03 2012-04-19 Merck Patent Gmbh Photophysikalische OLED-Effizienz-Steigerung
DE102007002420A1 (de) 2007-01-17 2008-07-24 Universität Regensburg Polymere Anionen/Kationen
DE102007031261A1 (de) 2007-07-05 2009-01-08 Universtität Regensburg Lumineszierende Metallkomplexe mit sperrigen Hilfsliganden
US8119037B2 (en) 2008-10-16 2012-02-21 Novaled Ag Square planar transition metal complexes and organic semiconductive materials using them as well as electronic or optoelectric components
DE102010007825A1 (de) 2010-02-11 2011-08-11 cynora GmbH, 76344 Verwendung von Gold-Komplexen in opto-elektronischen Vorrichtungen
US9450195B2 (en) 2014-12-17 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040072975A1 (en) * 2000-03-17 2004-04-15 Jorg Schottek Salt-like chemical compound, its preparation and its use in catalyst systems for preparing polyolefins
SG99905A1 (en) * 2000-06-21 2003-11-27 Sumitomo Chemical Co Transition metal compound, catalyst for addition polymerization, and process for producing addition polymer
AU2002315208A1 (en) * 2001-06-12 2002-12-23 University Of Florida Method and device for producing near-infrared radiation
JP4188616B2 (ja) * 2002-03-26 2008-11-26 独立行政法人科学技術振興機構 機能性薄膜

Also Published As

Publication number Publication date
JP4204633B2 (ja) 2009-01-07
JP2007532705A (ja) 2007-11-15
DE502005006328D1 (de) 2009-02-05
DE102004018145A1 (de) 2005-10-27
KR20060135058A (ko) 2006-12-28
CN1965419A (zh) 2007-05-16
EP1735851A1 (de) 2006-12-27
ATE418797T1 (de) 2009-01-15
CN1965419B (zh) 2010-07-21
US20070264524A1 (en) 2007-11-15
WO2005098988A1 (de) 2005-10-20

Similar Documents

Publication Publication Date Title
EP1735851B1 (de) Verwendung von metallocenkomplexen von metallen der 4. nebengruppe des periodensystems als triplettemitter in organischen leuchtdioden (oleds)
EP1794211B1 (de) Verwendung von kupfer(i)-komplexen in organischen lichtemittierenden dioden
EP1692244B1 (de) Verwendung von platin(ii)-komplexen als lumineszierende materialien in organischen licht-emittierenden dioden (oleds)
EP2035526B1 (de) Verwendung von übergangsmetallcarbenkomplexen, die keine cyclometallierung über nicht-carbene enthalten, in oleds
EP2195868B1 (de) Verwendung von acridinderivaten als matrixmaterialien und/oder elektronenblocker in oleds
DE60111473T3 (de) Organische lichtemittierende Bauelemente
EP2288671B1 (de) Neue übergangsmetall-komplexe und deren verwendung in organischen leuchtdioden - iii
EP2007781B1 (de) Übergangsmetallkomplexe, enthaltend einen nicht-carben- und ein oder zwei carbenliganden und deren verwendung in oleds
EP2297800B1 (de) Deuterierte übergangsmetall- komplexe und deren verwendung in organischen leuchtdioden
EP2007779B1 (de) Heteroleptische übergangsmetall-carben-komplexe und deren verwendung in organischen leuchtdioden (oleds)
EP1866978A1 (de) Verwendung von verbindungen, welche aromatische oder heteroaromatische über carbonyl-gruppen enthaltende gruppen verbundene ringe enthalten, als matrixmaterialien in organischen leuchtdioden
WO2007039344A2 (de) Weisse organische leuchtdioden (oleds) auf der basis von exciplexen zweier blau fluoreszierender verbindungen
WO2006018292A2 (de) In polymermatrices eingebettete übergansmetallcarbenkomplexe zur verwendung in oleds
DE102013019465A1 (de) Organische elektrolumineszenzvorrichtung mit verzögerter fluoreszenz
DE102004057073A1 (de) Verwendung von Phenothiazin-S-oxiden und -S,S-dioxiden als Matrixmaterialien für organische Leuchtdioden
WO2006027191A1 (de) Synthese von polynaphthalinen und ihre verwendung
WO2005061654A1 (de) Verwendung von hauptgruppenmetall-diketonatokomplexen als lumineszierende materialien in organischen leuchtdioden (oleds)
DE60319440T2 (de) Organisches elektrolumineszierendes element
EP2288670A1 (de) Neue übergangsmetall-komplexe und deren verwendung in organischen leuchtdioden - iv
WO2005061655A1 (de) Verwendung von gadolinium(iii)-chelaten als lumineszierende materialien in organischen leuchtdioden (oleds)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070208

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOENEMANN, MARTIN

Inventor name: BAETE, MARKUS

Inventor name: SCHMIDT, HANS-WERNER

Inventor name: THELAKKAT, MUKUNDAN

Inventor name: GESSNER, THOMAS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 51/00 20060101AFI20080613BHEP

Ipc: H01L 51/50 20060101ALI20080613BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006328

Country of ref document: DE

Date of ref document: 20090205

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090324

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090404

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090525

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090402

Year of fee payment: 5

Ref country code: FR

Payment date: 20090417

Year of fee payment: 5

Ref country code: IT

Payment date: 20090424

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: BASF SE

Effective date: 20090430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090401

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20090925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100404

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100404

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430