WO2005061654A1 - Verwendung von hauptgruppenmetall-diketonatokomplexen als lumineszierende materialien in organischen leuchtdioden (oleds) - Google Patents

Verwendung von hauptgruppenmetall-diketonatokomplexen als lumineszierende materialien in organischen leuchtdioden (oleds) Download PDF

Info

Publication number
WO2005061654A1
WO2005061654A1 PCT/EP2004/014443 EP2004014443W WO2005061654A1 WO 2005061654 A1 WO2005061654 A1 WO 2005061654A1 EP 2004014443 W EP2004014443 W EP 2004014443W WO 2005061654 A1 WO2005061654 A1 WO 2005061654A1
Authority
WO
WIPO (PCT)
Prior art keywords
main group
diketonato
light
group metal
metal
Prior art date
Application number
PCT/EP2004/014443
Other languages
English (en)
French (fr)
Inventor
Arnd Vogler
Andreas Strasser
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO2005061654A1 publication Critical patent/WO2005061654A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Definitions

  • the present invention relates to the use of main group metal diketonato complexes as emitter molecules in organic light-emitting diodes (OLEDs), the use of main group metal diketonato complexes as light-emitting layer in OLEDs, a light-emitting layer containing at least one main group metal diketonato complex, an OLED containing this light -emitting layer and devices which contain an OLED according to the invention.
  • OLEDs organic light-emitting diodes
  • OLEDs organic light-emitting diodes
  • the property of materials is used to emit light when they are excited by electrical current.
  • OLEDs are particularly interesting as an alternative to cathode ray tubes and liquid crystal displays for the production of flat screens. Due to the very compact design and the intrinsically lower power consumption, devices containing OLEDs are particularly suitable for mobile applications, for example for applications in cell phones, laptops, etc.
  • JP-A 08-274370 relates to organic light emitting diodes which emit green light.
  • these contain a semiconductor layer which contains a nitrogen-containing compound which contains boron or aluminum and is doped with thallium.
  • (C 5 H 5 ) TI (I) is used as the doping material.
  • JP-A 2003-036977 relates to organic light-emitting diodes which have a light-emitting layer which contains a compound of the formula A 2 PbX 4 , in which A is an organic ammonium molecule and X is halogen.
  • JP-A 1 1 -307260 relates to an electron-transporting material and organic light-emitting diodes which contain it.
  • the electron-transporting material is tris (8-quinolinolate) bismuth (Biq).
  • Biq is not fluorescent in the electric field, so that when Biq is used, no light is emitted by the electron-transporting layer, but only by the light-emitting layer.
  • An Eu complex is used as the luminescent material in the light-emitting layer.
  • the use of main group metal diketonato complexes as emitter molecules in organic light-emitting diodes (OLEDs) is therefore not known from the prior art.
  • Electroluminescence is understood to mean both electrofluorescence and electrophosphorescence.
  • the object of the present application is therefore to provide compounds which are suitable for electroluminescence in the blue, red and green regions of the electromagnetic spectrum, which enables the production of full-color displays. Furthermore, it is an object of the present application to provide compounds which can be used in substance, without host substances, as a light-emitting layer in OLEDs.
  • R 1 , R 3 independently of one another are substituted or unsubstituted
  • Aryl, alkyl, heteroaryl or alkenyl group preferably independently of one another C to C 4 alkyl, phenyl, pyridyl, imidazolyl, furyl, thienyl, CF 3 , C 2 F 5 or C 6 F 5 ; preferably methyl, ethyl, thienyl or CF 3 , particularly preferably thienyl or CF 3 , very particularly preferably CF 3 ;
  • R z a substituted or unsubstituted aryl, alkyl, heteroaryl or alkenyl group, preferably H, C to C 4 alkyl, CF 3 , phenyl, particularly preferably H; M metal selected from the group IIIb, IVb and Vb des
  • Periodic table of the elements preferably In (I), TI (I), Sn (II), Pb (II), Sb (III), Bi (III), particularly preferably T1 (I), Pb (II), Bi (III) ),> very particularly preferably Pb (II), Bi (III); L neutral ligand, preferably selected from the group consisting of water, pyridine, particularly preferably 4-N.N-
  • Methoxypyridine 4-phenylpyridine and their N-oxides, bipyridyls, preferably 2,2'-bipyridyl, N-methylimidazole, phenanthroline, preferably 1, 10-diphenylphenanthroline, bathophenanthroline,
  • Triphenylphosphine oxide phosphonimido ligand, particularly preferably diphenylphosphonimide trisphenylphosphorane, and sulfoxide; n Number of diketonato ligands from 1 to 4, corresponding to the
  • Oxidation level of the metal used preferably 1 to 3, depending on the oxidation level of the metal; m 0 to 2, preferably 0 or 1, very particularly preferably 0;
  • aryl radical or group, heteroaryl radical or group, alkyl radical or group, alkenyl radical or group, arylene radical or group and heteroarylene radical or group have the following meanings:
  • An aryl radical is to be understood as a radical with a backbone of 6 to 30 carbon atoms, preferably 6 to 18 carbon atoms, which is composed of an aromatic ring or several fused aromatic rings. Suitable basic structures are, for example, phenyl, naphthyl, anthracenyl or phenanthrenyl.
  • This backbone can be unsubstituted (ie that all carbon atoms that can be substituted carry hydrogen atoms) or can be substituted at one, more or all substitutable positions of the backbone.
  • Suitable substituents are, for example, alkyl residues, preferably alkyl residues with 1 to 8 carbon atoms, particularly preferably methyl, ethyl, i-propyl or t-butyl, aryl residues, preferably C 6 aryl residues, which in turn can be substituted or unsubstituted, heteroaryl residues, preferably heteroaryl residues, that have at least one nitrogen atom contain, particularly preferably pyridyl radicals, alkenyl radicals, preferably alkenyl radicals, carry a double bond, particularly preferably alkenyl radicals with an double bond and 1 to 8 carbon atoms, or groups with donor-c acceptor action.
  • Groups with donor action are to be understood as groups which have a + 1 and / or + M effect, and groups with acceptor action; To understand groups that have an -l- and / or -M effect.
  • Suitable groups with a donor or acceptor action are halogen radicals, preferably F, Cl, particularly preferably F, alkoxy radicals, carbonyl radicals, ester radicals, amine radicals, amidre CH 2 F groups, CHF 2 groups, CF 3 groups, CN groups, Thio groups or S ⁇ groups.
  • the aryl radicals very particularly preferably carry substituents selected from the group consisting of methyl, F, Cl and alkoxy, or the aryl radicals J are unsubstituted.
  • the aryl radical or the aryl group is preferably a C 6 aryl radical or naphthyl radical which is optionally substituted by at least one of the above-mentioned substituents.
  • the C 6 aryl radical particularly preferably has none, one or two of the abovementioned substituents, one of the substituents.
  • the aryl radical is very particularly preferably an unsubstituted phenyl radical or C 6 F 5 .
  • the naphthyl radical is preferably naphthyl or 2-naphthyl.
  • a heteroaryl radical or a heteroaryl group is to be understood as radicals which differ from the aryl radicals mentioned above in that at least one carbon atom in the basic structure of the aryl radicals is replaced by a heteroa.
  • Preferred heteroatoms are N, O and S.
  • the basic structure is particularly preferably selected from systems pyridyl, imidazolyl, cyclic esters, cyclic amides and five-membered heteroaromatics such as thiophenyl, pyrrolyl, furanyl.
  • the basic structure can be substituted in several or all substitutable positions of the basic structure. Suitable substituents are the same as those already mentioned with regard to the aryl group].
  • Thiophenyl is particularly preferred.
  • alkyl radical or an alkyl group is understood to mean a radical with 1 to carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 8 carbon atoms, very particularly preferably 1 to 4 carbon atoms.
  • This alkyl radical can be branched or unbranched and optionally interrupted by one or more heteroatoms, preferably N, O or S.
  • the alkyl radical or the alkyl group can also be a C 3 to f C 8 cycloalkyl, preferably a C 5 or C 6 Cycloalkyl radical, which may be with an o several heteroatoms, preferably N, O or S, can be interrupted, for example
  • this alkyl radical can, in particular, with one or more of the substituents mentioned with regard to the aryl groups
  • Halogen radicals preferably F, Cl, Br, particularly preferably F
  • the alkyl radical may carry one or more aryl groups. All of the aryl groups listed above are suitable.
  • the alkyl radicals are particularly preferably selected from the group consisting of methyl, ethyl, i-propyl, n-propyl, i-butyl, n-butyl, t-butyl, sec-butyl, i-pentyl, n-pentyl, sec -Pentyl, neo-pentyl, n-hexyl, i-
  • Methyl, ethyl, i-propyl, n-hexyl, CF 3 and C 2 F 5 are very particularly preferred.
  • alkenyl radical or an alkenyl group is understood to mean a radical which corresponds to the above-mentioned alkyl radicals having at least two carbon atoms, with the difference that at least one C-C single bond of the alkyl radical is replaced by a C-C double bond.
  • the alkenyl radical preferably has one or two double bonds.
  • R 1, R 3 are independently C to C 4 alkyl, phenyl, pyridyl, imidazolyl, furyl, thienyl, CF 3, C 2 F 5 or C 6 F 5 ; preferably methyl, ethyl, thienyl or CF 3 , particularly preferably thienyl or CF 3 ;
  • R 2 is H, C to C 4 alkyl, CF 3 , phenyl;
  • L selected from the group consisting of water, pyridine, preferably 4-
  • Main group metal diketonato complexes are very particularly preferably used, in which the symbols have the following meanings:
  • Particularly preferred compounds of the formula I are selected from the group consisting of TI (l) diketonato complexes of the formula (la), Pb (l [) - diketonato complexes of the formula (1b) and Bi (III) diketonato complexes of the formula (Ic)
  • hfac means hexafluoroacetylacetonate
  • the main group metal complexes mentioned above are outstandingly suitable as emitter molecules in organic light-emitting diodes (OLEDs). " Simple variations of the ligands make it possible to provide main group metal complexes which show electroluminescence in the red, green and in particular in the blue region of the electromagnetic spectrum. The main group metal complexes used according to the invention are therefore suitable for use in industrially usable full-color displays.
  • the main group metal diketonato complexes used according to the invention can be prepared by processes known to the person skilled in the art. Some of them are commercially available.
  • Typical processes are, for example, the deprotonation of the diketene corresponding to the ligands of the compounds of the formula I and subsequent, generally in situ, reaction with suitable main group metal complexes. Furthermore, the production of the main group metal diketonato complexes of formula I by direct reaction of the neutral diketones corresponding to the ligands of the main group metal diketonato complexes with the suitable main group metal complexes, which is preferred.
  • Suitable diketones which lead to the ligands of the main group metal diketonato complexes of the formula I are known to the person skilled in the art and are either commercially available or can be prepared by processes known to the person skilled in the art.
  • a deprotonation of the ligand this can be done by basic metal salts, basic anions such as acetates, acetylacetonates, carbonates or alkoxylates or external bases such as KO l Bu, NaO'Bu, LiO ⁇ u, NaH, silyl amides and phosphazene.
  • Suitable main group metal compounds which can be used as starting compounds are known to the person skilled in the art. Chlorides, sulfates, acetates and acetylacetonates are particularly preferably used.
  • the reaction is preferably carried out in a solvent.
  • Suitable solvents are known to the person skilled in the art and are preferably selected from water and alcohols such as ethanol and mixtures thereof.
  • the molar ratio of the main group metal complex used to the ligand precursor used depends on the oxidation state of the metal, that is to say the number of diketonato ligands. If the complex contains a diketonato ligand, the molar ratio is preferably 0.7: 1.0 to 1.5: 1.0, particularly preferably 0.9: 1.0 to 1.1: 1.0, very particularly preferably 1 :1.
  • the molar ratio is preferably 0.7: 2.0 to 1.5: 2.0, particularly preferably 0.9: 2.0 to 1.1: 2.0, very particularly preferably 1 : 2nd If the complex contains three diketonato ligands, the molar ratio is preferably 0.7: 3.0 to 1.5: 3.0, particularly preferably 0.9: 3.0 to 1.1: 3.0, very particularly preferably 1 : 3rd
  • the main group metal diketonato complexes of the formula I are preferably obtained by direct reaction of the corresponding ligand precursor with a main group metal complex. This reaction is particularly preferably carried out in water or an alcohol or mixtures thereof in the molar ratios of main group metal complexes and ligand precursors already given above.
  • the reaction is generally carried out at temperatures from 0 to the reflux temperature of the solvent, preferably 10 to 50 ° C., particularly preferably at room temperature.
  • the reaction time depends on the desired main group metal diketonato complex and is generally from 10 minutes to 50 hours, preferably from 20 minutes to 24 hours, particularly preferably from 0.5 hours to 12 hours.
  • the main group metal diketohato complex of the formula I obtained is worked up by methods known to those skilled in the art.
  • the product is precipitated by adding water and the precipitated product is filtered, washed, for example with water, and then dried.
  • the main group metal diketonato complexes of the formula I used according to the invention are outstandingly suitable as emitter substances, since they have luminescence (electroluminescence) in the visible range of the electromagnetic spectrum.
  • the main group metal diketonato complexes used as emitter substances according to the invention it is possible to provide compounds which have electroluminescence in the red, green and blue regions of the electromagnetic spectrum. It is thus possible to use the main group metal diketonato complexes used according to the invention to provide technically usable full-color displays as emitter substances.
  • a special property of the main group metal diketonato complexes of the formula I is that they show luminescence in the solid state, particularly preferably electroluminescence, in the visible range of the electromagnetic spectrum.
  • These complexes which are luminescent in the solid state can be used in bulk, that is to say without any further additives, as emitter substances in OLEDs. As a result, an OLED can be produced with a light-emitting layer, no complex cover vaporization of a matrix material with the emitter substance being necessary.
  • Another object of the present application is therefore the use of main group metal diketonato complexes of the formula I as a light-emitting layer in OLEDs.
  • Preferred main group metal diketonato complexes of the formula I have already been mentioned above.
  • Organic light-emitting diodes are basically made up of several layers:
  • the main group metal diketonato complexes of the formula I are preferably used in the light-emitting layer as emitter molecules. Another object of the present application . is therefore a light-emitting layer containing at least one main group metal diketonato complex of the formula I as an emitter molecule. Preferred main group metal diketonato complexes of the formula I have already been mentioned above.
  • the main group metal diketonato complexes of the formula I used according to the invention can be present in substance - without further additives - in the light-emitting layer.
  • further compounds are present in the light-emitting layer.
  • a fluorescent dye can be present in order to change the emission color of the main group metal diketonato complex used as the emitter molecule.
  • a dilution material can also be used. This dilution material can be a polymer, for example poly (N-vinylcarbazole) or polysilane.
  • the diluent can also be a small molecule, for example 4,4'-N, N'-dicarbazole biphenyl (CDP) or tertiary aromatic amines.
  • the proportion of the main group metal diketonato complexes used according to the invention in the light-emitting layer is generally less than 20% by weight, preferably 3 to 10% by weight.
  • the main group metal diketonato complexes of the formula I are preferably used in substance, as a result of which expensive cover vapor deposition of the main group metal diketonato complexes with a matrix material (diluent material or fluorescent dye) is avoided. It is essential that the main group-detail diketonato complexes luminesce in the solid.
  • the main group metal diketonato complexes of the formula I show luminescence in the solid state.
  • the light-emitting layer preferably contains at least one main group metal diketonato complex of the formula I and no matrix material selected from the diluent material and fluorescent dye.
  • a light-emitting layer consisting of at least one main group metal diketonato complex of the formula I as an emitter molecule.
  • Preferred complexes of the formula I have already been mentioned above.
  • the individual of the above-mentioned layers of the OLED can in turn be made up of two or more layers.
  • the hole-transporting layer can be constructed from a layer into which holes are injected from the electrode and a layer which transports the holes away from the hole-injecting layer into the light-emitting layer.
  • the electron-transporting layer can also consist of several layers, for example a layer in which electrons are injected through the electrode and a layer which receives electrons from the electron-injecting layer and transports them into the light-emitting layer. These layers are selected according to factors such as energy level, temperature resistance and charge mobility, as well as the energy difference of the layers with the organic layers or the metal electrodes.
  • the person skilled in the art is able to choose the structure of the OLEDs in such a way that it is optimally adapted to the main group metal diketonato complexes used as emitter substances according to the invention.
  • the HOMO (highest occupied molecular orbital) of the hole-transporting layer should be matched with the work function of the anode and the LUMO (lowest unoccupied molecular orbital) of the electron-transporting layer should be matched with the work function of the cathode.
  • Another object of the present application is an OLED containing at least one light-emitting layer according to the invention.
  • the further layers in the OLED can be constructed from any material that is usually used in such layers and is known to the person skilled in the art.
  • the anode (1) is an electrode that provides positive charge carriers.
  • it can be constructed from materials that contain a metal, a mixture of different metals, a metal alloy, a metal oxide or a mixture of different metal oxides.
  • the anode can be a conductive polymer. Suitable metals include the metals of groups Ib, IVa, Va and Via of the periodic table of the elements and the transition metals of group VIII. If the anode is to be translucent, mixed metal oxides of groups Mb, IIIb and IVb of the periodic table of the elements are generally used, for example indium tin oxide (ITO).
  • ITO indium tin oxide
  • the anode (1) contains an organic material, for example polyaniline, as described, for example, in Nature, vol. 357, pages 477 to 479 (June 11, 1992). At least either the anode or the cathode should be at least partially transparent in order to be able to couple out the light formed.
  • Suitable hole transport materials for the layer (2) of the OLED according to the invention are disclosed, for example, in Kirk-Othmer Encyclopedia of Chemical Technologie, 4th edition, vol. 18, pages 837 to 860, 1996. Both hole-transporting molecules. as well as polymers can be used as hole transport material.
  • Holes used to transport holes are selected from the group consisting of 4,4'-bis [N- (1-naphthyl) -N-phenyI-amino] biphenyl ( ⁇ -NPD), N, N'-diphenyl-N, N '-bis (3-methylphenyl) - [1, 1'-biphenyl] -4,4'-diamine (TPD), 1, 1-bis [(di-4-tolylamino) phenyl] cyclohexane (TAPC), N, N'-bis (4-methylphenyI) -N, N'-bis (4-ethylphenyl) - [1, 1 '- (3,3'-dimethyl) biphenyl] -4,4'-diamine (ETPD), tetrakis - (3-methylphenyl) -N, N, N ', N'-2,5-phenylenediamine (PDA), ⁇ -phenyl-4 ⁇ N, N
  • Pole-transporting polymers commonly used are selected from the group consisting of polyvinyl carbazoles, (phenylmethyl) polysilicas and polyanilines. It is also possible to obtain hole transporting polymers by doping hole transporting molecules in polymers such as polystyrene and polycarbonate. Suitable molecules which transport holes are the molecules already mentioned above.
  • Suitable electron-transporting materials for the layer (4) of the OLEDs according to the invention include metals chelated with oxinoid compounds such as tris (8 ⁇ quinolinolato) aluminum (Alq 3 ), compounds based on phenanthroline such as 2,9-dimethyl, 4,7-diphenyl-1, 10-phenanthroline (DDPA) or 4,7-diphenyl-1, 10-phenanthroline (DPA) and azole compounds such as 2- (4-biphenylyl) -5- (4-t-butyIphenyI) - 1, 3,4-oxadiazole ( PBD) and 3- (4-biphenylyl) -4-phenyl-5- (4-t-butylphenyl) -1, 2,4-triazole (TAZ).
  • oxinoid compounds such as tris (8 ⁇ quinolinolato) aluminum (Alq 3 )
  • DDPA 10-phenanthroline
  • DPA 4,7-diphenyl-1, 10-phenan
  • the layer (4) can serve both to facilitate electron transport and as a buffer layer or as a barrier layer in order to avoid quenching of the exciton at the interfaces of the layers of the OLED.
  • the layer (4) preferably improves the mobility of the electrons and reduces quenching of the exciton.
  • the cathode (5) is an electrode that is used to introduce electrons or negative charge carriers.
  • the cathode can be any metal or non-metal that has a lower work function than the anode.
  • Suitable materials for the cathode are selected from the group consisting of alkali metals of group 1, for example Li, Cs, alkaline earth metals of group 2, metals of group 12 of the periodic table of the elements, comprising the rare earth metals and the lanthanides and actinides.
  • Metals such as aluminum, indium, calcium, barium, samarium and magnesium as well as combinations thereof can also be used.
  • lithium-containing organometallic compounds or LiF can be applied between the organic layer and the cathode in order to reduce the operating voltage.
  • the OLED according to the present invention can additionally contain further layers which are known to the person skilled in the art.
  • a layer can be applied between the layer (2) and the light-emitting layer (3), which facilitates the transport of the positive charge and / or adjusts the band gap of the layers to one another.
  • this additional layer can serve as a protective layer.
  • additional layers can be present between the light-emitting layer (3) and the layer (4) in order to facilitate the transport of the negative charge and / or to match the band gap between the layers.
  • this layer can serve as a protective layer.
  • the OLED according to the invention contains, in addition to layers (1) to (5), at least one of the further layers mentioned below: a hole injection layer between the anode (1) and the hole-transporting layer (2); a blocking layer for electrons between the hole-transporting layer (2) and the light-emitting layer (3); - A block layer for holes between the light-emitting layer (3) and the electron-transporting layer (4); an electron injection layer between the electron transporting layer (4) and the cathode (5).
  • suitable materials for example on the basis of electrochemical tests. Suitable materials for the individual layers are known to the person skilled in the art and are disclosed, for example, in WO 00/70655.
  • each of the named layers of the OLED according to the invention can be made up of two or more layers. Furthermore, it is possible that some or all of the layers (1), (2), (3), (4) and (5) are surface-treated in order to increase the efficiency of the charge carrier transport. The choice of materials for each of the layers mentioned is preferably determined by obtaining an OLED with high efficiency.
  • the OLED according to the invention can be produced by methods known to the person skilled in the art.
  • the OLED is produced by successive vapor deposition of the individual layers on a suitable substrate.
  • Suitable substrates are, for example, glass or polymer films.
  • Conventional techniques such as thermal evaporation, chemical vapor deposition and others can be used for vapor separation.
  • the organic layers can be coated from solutions or dispersions in suitable solvents, using coating techniques known to the person skilled in the art.
  • the different layers have the following thicknesses: anode (2) 500 to 5000 ⁇ , preferably 1000 to 2000 ⁇ ; Hole-transporting layer (3) 50 to 1000 ⁇ , preferably 200 to 800 ⁇ , light-emitting layer (4) 10 to 1000 ⁇ , preferably 100 to 800 ⁇ , electron-transporting layer (5) 50 to 1000 ⁇ , preferably 200 to 800 ⁇ , cathode (6) 200 to 10,000 ⁇ , preferably 300 to 5000 ⁇ .
  • the position of the recombination zone of holes and electrons in the OLED according to the invention and thus the emission spectrum of the OLED can be influenced by the relative thickness of each layer.
  • the thickness of the electron transport layer should preferably be chosen so that the electron / hole recombination zone lies in the light-emitting layer.
  • the ratio of the layer thicknesses of the individual layers in the OLED depends on the materials used. The layer thicknesses of any additional layers used are known to the person skilled in the art.
  • OLEDs By using the main group metal diketonato complexes of the formula I used as emitter molecules in the light-emitting layer of the OLEDs according to the invention, OLEDs can be obtained with high efficiency.
  • the efficiency of the OLEDs according to the invention can also be improved by optimizing the other layers.
  • highly efficient cathodes such as Ca, Ba or LiF can be used.
  • Molded substrates and new hole-transporting materials that reduce surgical tension or cause an increase in quantum efficiency can also be used in the OLEDs according to the invention.
  • additional layers can be present in the OLEDs in order to adjust the energy level of the different layers and to facilitate electroluminescence.
  • the OLEDs according to the invention can be used in all devices in which electroluminescence is useful. Suitable devices are preferably selected from stationary and mobile screens. Stationary screens are e.g. Screens of computers, televisions, screens in printers, kitchen appliances as well as billboards, lighting and information boards. Mobile screens are e.g. Screens in cell phones, laptops, vehicles and destination displays on buses and trains.
  • the main group metal diketonato complexes of the formula I used according to the invention can be used in OLEDs with an inverse structure.
  • the main group metal diketonato complexes in these inverse OLEDs are in turn used in the light-emitting layer, particularly preferably as a light-emitting layer without further additives.
  • the structure of inverse OLEDs and the materials usually used therein are known to the person skilled in the art.

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Hauptgruppenmetall-Diketonatokomplexen der Formel (I) als Emittermolkeküle in organischen Leuchtdioden (OLEDs), worin die Reste in den Ansprüchen und in der Beschreibung definiert sind. Des Weiteren betrifft die vorliegende Erfindung die Verwendung der Hauptgruppenmetall-Diketonatokomplexe als Licht-emittierende Schicht in OLEDs, eine Licht-emittierende Schicht enthaltend mindestens einen Hauptgruppenmetall-Diketonatokomplex, ein OLED enthaltend diese Licht-emittierende Schicht sowie Vorrichtungen, die ein erfindungsgemässes OLED enthalten.

Description

Verwendung von Hauptgruppenmetall-Diketonatokomplexen als lumineszierende Materialien in organischen Leuchtdioden (OLEDs)
Beschreibung
Die vorliegende Erfindung betrifft die Verwendung von Hauptgruppenmetall- Diketonatokomplexen als Emittermoleküle in organischen Leuchtdioden (OLEDs), die Verwendung der Hauptgruppenmetall-Diketonatokomplexe als Licht-emittierende Schicht in OLEDs, eine Licht-emittierende Schicht enthaltend mindestens einen Hauptgruppenmetall-Diketonatokomplex, ein OLED enthaltend diese Licht-emittierende Schicht sowie Vorrichtungen, die ein erfindungsgemäßes OLED enthalten.
In organischen Leuchtdioden (OLED) wird die Eigenschaft von Materialien ausgenutzt, Licht zu emittieren, wenn sie durch elektrischen Strom angeregt werden. OLEDs sind insbesondere interessant als Alternative zu Kathodenstrahlröhren und Flüssigkristalldisplays zur Herstellung von Flachbildschirmen. Aufgrund der sehr kompakten Bauweise und des intrinsisch niedrigeren Stromverbrauchs eignen sich Vorrichtungen, enthaltend OLEDs insbesondere für mobile Anwendungen, zum Beispiel für Anwendungen in Handys, Laptops usw.
Es wurden zahlreiche Materialien vorgeschlagen, die bei der Anregung durch elektrischen Strom Licht emittieren.
JP-A 08-274370 betrifft organische Leuchtdioden, die grünes Licht emittieren. Diese enthalten als Licht-emittierende Schicht eine Halbleiterschicht, die eine Stickstoffhaltige Verbindung, die Bor oder Aluminium enthält und mit Thallium dotiert ist, enthält. Dabei wird (C5H5)TI(I) als Dotiermaterial eingesetzt.
JP-A 2003-036977 betrifft organische Leuchtdioden, die eine Licht-emittierende Schicht aufweisen, die eine Verbindung der Formel A2PbX4 enthält, worin A ein organisches Ammoniummolekül ist und X Halogen bedeutet.
JP-A 1 1 -307260 betrifft ein Elektronen-transportierendes Material und organische Leuchtdioden, die dieses enthalten. Bei dem Elektronen-transportierenden Material handelt es sich um Tris(8-chinolinolat)bismuth (Biq). Biq ist gemäß den Aussagen in JP-A 11-307260 nicht fluoreszierend im elektrischen Feld, so dass bei Einsatz von Biq kein Licht von der Elektronen-transportierenden Schicht emittiert wird, sondern ausschließlich von der Licht-emittierenden Schicht. In der Licht-emittierenden Schicht wird als lumineszierendes Material ein Eu-Komplex eingesetzt. Der Einsatz von Hauptgruppenmetall-Diketonatokomplexen als Emittermoleküle in organischen Leuchtdioden (OLEDs) ist somit aus dem Stand der Technik nicht bekannt.
Obwohl bereits Verbindungen bekannt sind, die im blauen, roten und grünen Bereich des elektromagnetischen Spektrums Elektrolumineszenz zeigen, ist die Bereitstellung von weiteren Verbindungen, die auch in Substanz als Licht-emittierende Schicht einsetzbar sind und bei Raumtemperatur lumineszieren, wünschenswert. Unter Elektrolumineszenz ist sowohl Elektrofluoreszenz als auch Elektrophosphoreszenz zu verstehen.
Aufgabe der vorliegenden Anmeldung ist daher die Bereitstellung von Verbindungen, die zur Elektrolumineszenz im blauen, roten und grünen Bereich des elektromagnetischen Spektrums geeignet sind, wodurch die Herstellung von Vollfarbendisplays ermöglicht wird. Des Weiteren ist es Aufgabe der vorliegenden Anmeldung, Verbindungen bereitzustellen, die in Substanz, ohne Wirtsubstanzen, als Licht-emittierende Schicht in OLEDs eingesetzt werden können.
Diese Aufgabe wird durch die Verwendung von Hauptgruppenmetall- Diketonatokomplexen der Formel (I)
Figure imgf000003_0001
worin die Symbole die folgenden Bedeutungen aufweisen:
R1, R3 unabhängig voneinander eine substituierte oder unsubstituierte
Aryl-, Alkyl-, Heteroaryl- oder Alkenylgruppe, bevorzugt unabhängig voneinander C bis C4-Alkyl, Phenyl, Pyridyl, Imidazolyl, Furyl, Thienyl, CF3, C2F5 oder C6F5; bevorzugt Methyl, Ethyl, Thienyl oder CF3, besonders bevorzugt Thienyl oder CF3, ganz besonders bevorzugt CF3;
Rz H, eine substituierte oder unsubstituierte Aryl-, Alkyl-, Heteroaryl- oder Alkenylgruppe, bevorzugt H, C bis C4-Alkyl, CF3, Phenyl, besonders bevorzugt H; M Metall ausgewählt aus der Gruppe lllb, IVb und Vb des
Periodensystems der Elemente, bevorzugt ln(l), TI(I), Sn(ll), Pb(II), Sb(lll), Bi(lll), besonders bevorzugt Tl(l), Pb(ll), Bi(lll), > ganz besonders bevorzugt Pb(ll), Bi(lll); L neutraler Ligand, bevorzugt ausgewählt aus der Gruppe bestehend aus Wasser, Pyridin, besonders bevorzugt 4-N.N-
. ._ . - Dimethylaminopyridin, 3-Cyanopyridin, 4-Cyanop'yridin, 4-
. Methoxypyridin, 4-Phenylpyridin und deren N-Oxide, Bipyridyle, bevorzugt 2,2'-Bipyridyl, N-Methylimidazol, Phenanthrolin, bevorzugt 1 ,10-Diphenylphenanthrolin, Bathophenanthrolin,
Bathocuproin, Phosphinoxid, besonders bevorzugt
Triphenylphosphinoxid, Phosphonimidoligand, besonders bevorzugt Diphenylphosphonimid-trisphenylphsphoran, und Sulfoxid; n Zahl der Diketonatoliganden von 1 bis 4, entsprechend der
Oxidationsstufe des eingesetzten Metalls, bevorzugt 1 bis 3, in Abhängigkeit von der Oxidationsstufe des Metalls; m 0 bis 2, bevorzugt 0 oder 1 , ganz besonders bevorzugt 0;
als Emittermoleküle in organischen Licht-emittierenden Dioden, gelöst.
Es wurde gefunden, dass die Hauptgruppenmetall-Diketonatokomplexe der Formel I gemäß der vorliegenden Anmeldung als Licht-emittierende Substanzen in OLEDs zur Herstellung von Vollfarbendisplays geeignet sind.
Im Sinne der vorliegenden Anmeldung haben die Begriffe Arylrest oder -gruppe, Heteroarylrest oder -gruppe, Alkylrest oder -gruppe, Alkenylrest oder -gruppe, Arylenrest oder -gruppe und Heteroarylenrest oder -gruppe die folgenden Bedeutungen:
Unter einem Arylrest (oder -gruppe) ist ein Rest mit einem Grundgerüst von 6 bis 30 Kohlenstoffatomen, bevorzugt 6 bis 18 Kohlenstoffatomen zu verstehen, der aus einem aromatischen Ring oder mehreren kondensierten aromatischen Ringen aufgebaut ist. Geeignete Grundgerüste sind zum Beispiel Phenyl, Naphthyl, Anthracenyl oder Phenanthrenyl. Dieses Grundgerüst kann unsubstituiert sein (d. h., dass alle Kohlenstoffatome, die substituierbar sind, Wasserstoffatome tragen), oder an einer, mehreren oder allen substituierbaren Positionen des Grundgerüsts substituiert sein. Geeignete Substituenten sind zum Beispiel Alkylreste, bevorzugt Alkylreste mit 1 bis 8 Kohlenstoffatomen, besonders bevorzugt Methyl, Ethyl, i-Propyl oder t-Butyl, Aryireste, bevorzugt C6-Arylreste, die wiederum substituiert oder unsubstituiert sein können, Heteroarylreste, bevorzugt Heteroarylreste, die mindestens ein Stickstoff atom enthalten, besonders bevorzugt Pyridylreste, Alkenylreste, bevorzugt Alkenylreste, eine Doppelbindung tragen, besonders bevorzugt Alkenylreste mit e Doppelbindung und 1 bis 8 Kohlenstoffatomen, oder Gruppen mit Donor- c Akzeptorwirkung. Unter Gruppen mit Donorwirkung sind Gruppen zu verstehen, einen +l- und/oder +M-Effekt aufweisen, und unter Gruppen mit Akzeptorwirkung ; Gruppen zu verstehen, die einen -l- und/oder -M-Effekt aufweisen. Geeigr Gruppen, mit Donor- oder Akzeptorwirkung sind Halogenreste, bevorzugt- F, Cl, besonders bevorzugt F, Alkoxyreste, Carbonylreste, Esterreste, Aminreste, Amidre CH2F-Gruppen, CHF2-Gruppen, CF3-Gruppen, CN-Gruppen, Thiogruppen oder S< Gruppen. Ganz besonders bevorzugt tragen die Arylreste Substituenten ausgew aus der Gruppe bestehend aus Methyl, F, Cl und Alkoxy, oder die Arylreste J unsubstituiert. Bevorzugt ist der Arylrest oder die Arylgruppe ein C6-Arylrest oder Naphthylrest, der gegebenenfalls mit mindestens einem der vorstehend genanr Substituenten substituiert ist. Besonders bevorzugt weist der C6-Arylrest keinen, ei oder zwei der vorstehend genannten Substituenten auf, wobei der eine Substiü. bevorzugt in para-Position zur weiteren Verknüpfungsstelle des Arylrestes angeorc ist und - im Falle von zwei Substituenten - diese jeweils in meta-Position zur weite Verknüpfungsstelle des Arylrestes angeordnet sind oder alle H-Atome des Arylrestes sind durch F substituiert, also C6F5. Ganz besonders bevorzugt ist der Arylrest ein unsubstituierter Phenylrest oder C6F5. Der Naphthylrest ist bevorzug Naphthyl oder 2-Naphthyl.
Unter einem Heteroarylrest oder einer Heteroarylgruppe sind Reste zu verstehen, sich von den vorstehend genannten Arylresten dadurch unterscheiden, dass in c Grundgerüst der Arylreste mindestens ein Kohlenstoffatom durch ein Heteroa ersetzt ist. Bevorzugte Heteroatome sind N, O und S. Ganz besonders bevorzugt s ein oder zwei Kohlenstoffatome des Grundgerüsts der Arylreste durch Heteroatc ersetzt. Insbesondere bevorzugt ist das Grundgerüst ausgewählt aus Systemen Pyridyl, Imidazolyl, cyclischen Estern, cyclischen Amiden und fünfgiiedrii Heteroaromaten wie Thiophenyl, Pyrrolyl, Furanyl. Das Grundgerüst kann an eil mehreren oder allen substituierbaren Positionen des Grundgerüsts substituiert s Geeignete Substituenten sind die selben, die bereits bezüglich der Arylgrup] genannt wurden. Besonders bevorzugt ist Thiophenyl.
Unter einem Alkylrest oder einer Alkylgruppe ist ein Rest mit 1 bis Kohlenstoffatomen, bevorzugt 1 bis 10 Kohlenstoffatomen, besonders bevorzugt 1 8 Kohlenstoffatomen, ganz besonders bevorzugt 1 bis 4 Kohlenstoffatomen verstehen. Dieser Alkylrest kann verzweigt oder unverzweigt sein und gegebenenf mit einem oder mehreren Heteroatomen, bevorzugt N, O oder S unterbrochen s< Weiterhin kann der Alkylrest oder die Alkylgruppe ein C3- bis fC8-Cycloalkyln bevorzugt ein C5- oder C6-Cycloalkylrest sein, der gegebenenfalls mit einem o mehreren Heteroatomen, bevorzugt N, O oder S unterbrochen- sein kann, z.B.
Cyclopentyl und Cyclohexyl. Des Weiteren kann dieser Alkylrest mit einem oder mehreren der bezüglich der Arylgruppen genannten Substituenten, insbesondere
Halogenresten, bevorzugt F, Cl, Br, besonders bevorzugt F, substituiert sein. Es ist ebenfalls möglich, dass der Alkylrest eine oder mehrere Arylgruppen trägt. Dabei sind alle der vorstehend aufgeführten Arylgruppen geeignet. Besonders bevorzugt sind die-• Alkylreste ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl, i-Propyl, n-Propyl, i-Butyl, n-Butyl, t-Butyl, sec-Butyl, i-Pentyl, n-Pentyl, sec-Pentyl, neo-Pentyl, n-Hexyl, i-
Hexyl, sec-Hexyl, Cyclopentyl, Cyclohexyl, CF3 und C2F5. Ganz besonders bevorzugt sind Methyl, Ethyl, i-Propyl, n-Hexyl, CF3 und C2F5.
Unter einem Alkenylrest oder einer Alkenylgruppe ist ein Rest zu verstehen, der den vorstehend genannten Alkylresten mit mindestens zwei Kohlenstoffatomen entspricht, mit dem Unterschied, dass mindestens eine C-C-Einfachbindung des Alkylrests durch eine C-C-Doppelbindung ersetzt ist. Bevorzugt weist der Alkenylrest eine oder zwei Doppelbindungen auf.
Bevorzugt ist die Verwendung von Hauptgruppenmetall-Diketonatokomplexen der Formel (I), worin die Symbole die folgenden Bedeutungen aufweisen: R1, R3 unabhängig voneinander C bis C4-Alkyl, Phenyl, Pyridyl, Imidazolyl, Furyl, Thienyl, CF3, C2F5 oder C6F5; bevorzugt Methyl, Ethyl, Thienyl oder CF3, besonders bevorzugt Thienyl oder CF3; R2 H, C bis C4-Alkyl, CF3, Phenyl;
M ln(l), Tl(I), Sn(ll), Pb(ll), Sb(lll), Bi(lll); L ausgewählt aus der Gruppe bestehend aus Wasser, Pyridin, bevorzugt 4-
N,N-Dimethylaminopyridin, 3-Cyanopyridin, 4-Cyanopyridin, 4-Methoxypyridin, 4-Phenylpyridin und deren N-Oxide, Bipyridyle, bevorzugt 2,2'-Bipyridyl, N- Methylimidazol, Phenanthrolin, bevorzugt 1 ,10-Diphenylphenanthrolin, Bathophenanthrolin, Bathocuproin, Phosphinoxid, bevorzugt Triphenyl- phosphinoxid, Phosphonimidoligand, bevorzugt Diphenylphosphonimid- trisphenylphsphoran, und Sulfoxid; n 1 bis 4, in Abhängigkeit von der Oxidationsstufe des Metalls; m 0 oder 1 , bevorzugt 0.
Ganz besonders bevorzugt werden Hauptgruppenmetall-Diketonatokomplexe verwendet, worin die Symbole die folgenden Bedeutungen aufweisen:
R1 und R3 CF3;
R2 H; M Tl(l), Pb(II), Bi(lll); n 1 bis 3, in Abhängigkeit von der Oxidationsstufe des Metalls; m 0.
Insbesondere bevorzugte Verbindungen der Formel I sind ausgewählt aus der Gruppe bestehend aus TI(l)-Diketonatokomplexen der Formel (la), Pb(l[)-Diketonatokomplexen der Formel (1b) und Bi(lll)-Diketonatokomplexen der Formel (Ic)
Figure imgf000007_0001
Tl(hfac) Pb(hfac)2
Figure imgf000007_0002
Bi(hfac)3
worin hfac hexafluoroacetylacetonat bedeutet.
Die vorstehend genannten Hauptgruppenmetall-Komplexe sind hervorragend als Emittermoleküle in organischen Licht-emittierenden Dioden (OLEDs) geeignet. Durch" einfache Variationen der Liganden ist es möglich, Hauptgruppenmetall-Komplexe bereit zu stellen, die Elektrolumineszenz im roten, grünen sowie insbesondere im blauen Bereich des elektromagnetischen Spektrums zeigen. Die erfindungsgemäß verwendeten Hauptgruppenmetall-Komplexe eignen sich daher für den Einsatz in technisch verwendbaren Vollfarbendisplays.
Die erfindungsgemäß verwendeten Hauptgruppenmetall-Diketonatokomplexe können nach dem Fachmann bekannten Verfahren "hergestellt werden.Teilweise sind sie kommerziell erhältlich.
Übliche Verfahren sind zum Beispiel die Deprotonierung von den den Liganden der Verbindungen der Formel I entsprechenden Diketqnen und anschließende, im Allgemeinen in situ, Umsetzung mit geeigneten Hauptgruppenmetallkomplexen. Des Weiteren ist die Herstellung der Hauptgruppenmetall-Diketonatokomplexe der Formel I durch direkte Umsetzung der neutralen, den Liganden der Hauptgruppenmetall- Diketonatokomplexe entsprechenden Diketone mit den geeigneten Hauptgruppenmetallkomplexen möglich, was bevorzugt ist.
Geeignete Diketone, die zu den Liganden der Hauptgruppenmetall- Diketonatokomplexe der Formel I führen, sind dem Fachmann bekannt und entweder komerziell erhältlich oder nach dem Fachmann bekannten Verfahren herstellbar.
Erfolgt eine Deprotonierung der Liganden, ,so kann diese durch basische Metallsalze, basische Anionen wie Acetate, Acetylacetonate, Carbonate oder Alkoxylate oder externe Basen wie KOlBu, NaO'Bu, LiO^u, NaH, Silylamide sowie Phosphazenbasen erfolgen.
Geeignete als Ausgangsverbindung einsetzbare Hauptgruppenmetallverbindungen sind dem Fachmann bekannt. Besonders bevorzugt werden Chloride, Sulfate, Acetate und Acetylacetonate eingesetzt.
Die Umsetzung erfolgt bevorzugt in einem Lösungsmittel. Geeignete Lösungsmittel sind dem Fachmann bekannt und sind bevorzugt ausgewählt aus Wasser und Alkoholen wie Ethanol und Gemischen davon.
Das molare Verhältnis von eingesetztem Hauptgruppenmetallkomplex zu eingesetztem Ligandvorläufer ist abhängig von der Oxidationsstufe des Metalls, also der Zahl der Diketonatoliganden. Enthält der Komplex einen Diketonatoliganden, so beträgt das molare Verhältnis bevorzugt 0,7 : 1 ,0 bis 1 ,5 : 1 ,0, besonders bevorzugt 0,9 : 1 ,0 bis 1 ,1 : 1 ,0, ganz besonders bevorzugt 1 :1. Enthält der Komplex zwei Diketonatoliganden, so beträgt das molare Verhältnis bevorzugt 0,7 : 2,0 bis 1 ,5 : 2,0, besonders bevorzugt 0,9 : 2,0 bis 1 ,1 : 2,0, ganz besonders bevorzugt 1 :2. Enthält der Komplex drei Diketonatoliganden, so beträgt das molare Verhältnis bevorzugt 0,7 : 3,0 bis 1 ,5 : 3,0, besonders bevorzugt 0,9 : 3,0 bis 1,1 : 3,0, ganz besonders bevorzugt 1:3.
Bevorzugt werden die Hauptgruppenmetall-Diketonatokomplexe der Formel I durch direkte Umsetzung des entsprechenden Ligandvorläufers mit einem Hauptgruppenmetallkomplex erhalten. Diese Umsetzung erfolgt besonders bevorzugt in Wasser oder einem Alkohol oder Gemischen davon in den bereits vorstehend angegebenen molaren Verhältnissen von Hauptgruppenmetallkomplexen und eingesetzten Ligandvorläufern.
Die Umsetzung erfolgt im Allgemeinen bei Temperaturen von 0 bis Rückflusstemperatur des Lösungsmittels, bevorzugt 10 bis 50 °C, besonders bevorzugt bei Raumtemperatur. Die Reaktionsdauer ist abhängig von dem gewünschten Hauptgruppenmetall- Diketonatokomplex und beträgt im Allgemeinen von 10 min bis 50 h, bevorzugt 20 min bis 24 h, besonders bevorzugt 0,5 h bis 12 h.
Der erhaltene Hauptgruppenmetall-Diketohatokomplex der Formel I wird nach dem Fachmann bekannten Methoden aufgearbeitet. Beispielsweise wird das Produkt durch Zugabe von Wasser ausgefällt und das ausgefallene Produkt filtriert, gewaschen, zum Beispiel mit Wasser, und anschließend getrocknet.
Die - erfindungsgemäß verwendeten Hauptgruppenmetall-Diketonatokomplexe der Formel I eignen sich hervorragend als Emittersubstanzen, da sie Lumineszenz (Elektrolumineszenz) im sichtbaren Bereich des elektromagnetischen Spektrums aufweisen. Mit Hilfe der erfindungsgemäß verwendeten Hauptgruppenmetall- Diketonatokomplexe als Emittersubstanzen ist es möglich, Verbindungen bereit zu stellen, die Elektrolumineszenz im roten, grünen sowie im blauen Bereich des elektromagnetischen Spektrums aufweisen. Somit ist es möglich mit Hilfe der erfindungsgemäß verwendeten Hauptgruppenmetall-Diketonatokomplexe als Emittersubstanzen technisch einsetzbare Vollfarbendisplays bereit zu stellen.
Eine besondere Eigenschaft der Hauptgruppenmetall-Diketonatokomplexe der Formel I ist, dass diese im Festkörper Lumineszenz, besonders bevorzugt Elektrolumineszenz, im sichtbaren Bereich des elektromagnetischen Spektrums zeigen. Diese im Festkörper lumineszierenden Komplexe können in Substanz, also ohne weitere Zusätze, als Emittersubstanzen in OLEDs eingesetzt werden. Dadurch kann ein OLED mit einer Licht-emittierenden Schicht hergestellt werden, wobei keine aufwendige Coverdampf ung eines Matrixmaterials mit der Emittersubstanz erforderlich ist.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher die Verwendung von Hauptgruppenmetall-Diketonatokomplexen der Formel I als Licht-emittierende Schicht in OLEDs. Bevorzugte Hauptgruppenmetall-Diketonatokomplexe der Formel I sind bereits vorstehend genannt.
Organische Licht-emittierende Dioden sind grundsätzlich aus mehreren Schichten aufgebaut:
1. Anode
2. Löcher-transportierende Schicht
3. Licht-emittierende Schicht 4. Elektronen-transportierende Schicht
5. Kathode
Die Hauptgruppenmetall-Diketonatokomplexe der Formel I werden bevorzugt in der Licht-emittierenden Schicht als Emittermoleküle eingesetzt. Ein weiterer Gegenstand der vorliegenden Anmeldung .ist daher eine Licht-emittierende Schicht enthaltend mindestens einen Hauptgruppenmetall-Diketonatokomplex der Formel I als Emittermolekül. Bevorzugte Hauptgruppenmetall-Diketonatokomplexe der Formel I sind bereits vorstehend genannt.
Die erfindungsgemäß verwendeten Hauptgruppenmetall-Diketonatokomplexe der Formel I können in Substanz - ohne weitere Zusätze - in der Licht-emittierenden Schicht vorliegen. Es ist jedoch ebenfalls möglich, dass neben den erfindungsgemäß eingesetzten Hauptgruppenmetall-Diketonatokomplexen der Formel I weitere Verbindungen in der Licht-emittierenden Schicht vorliegen. Beispielsweise kann ein fluoreszierender Farbstoff anwesend sein, um die Emissionsfarbe des als Emittermoleküls eingesetzten Hauptgruppenmetall-Diketonatokomplexes zu verändern. Des Weiteren kann ein Verdünnungsmaterial eingesetzt werden. Dieses Verdünnungsmaterial kann ein Polymer sein, zum Beispiel Poly(N-vinylcarbazol) oder Polysilan. Das Verdünnungsmaterial kann jedoch ebenfalls ein kleines Molekül sein, zum Beispiel 4,4'-N,N'-Dicarbazolbiphenyl (CDP) oder tertiäre aromatische Amine.
Wenn ein Verdünnungsmaterial eingesetzt wird, beträgt der Anteil der erfindungsgemäß eingesetzten Hauptgruppenmetall-Diketonatokomplexe in der Licht- emittierenden Schicht im Allgemeinen weniger als 20 Gew.-%, bevorzugt 3 bis 10 Gew.-%. Bevorzugt werden die Hauptgruppenmetall-Diketonatokomplexe der Formel I in Substanz eingesetzt, wodurch eine aufwendige Coverdampfung der Hauptgruppen- metall-Diketonatokomplexe mit einem Matrixmaterial (Verdünnungsmaterial oder fluoreszierender Farbstoff) vermieden wird. Dafür ist es wesentlich, dass die Hauptgruppenmetail-Diketonatokomplexe im Festkörper lumineszieren. Die Hauptgruppenmetall-Diketonatokomplexe der Formel I zeigen im Festkörper Lumineszenz. Somit enthält die Licht-emittierende Schicht bevorzugt mindestens einen Hauptgruppenmetall-Diketonatokomplex der Formel I und kein Matrixmaterial ausgewählt aus Verdünnungsmaterial und fluoreszierendem Farbstoff.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist in einer bevorzugten Ausführungsform eine Licht-emittierende Schicht bestehend aus mindestens einem Hauptgruppenmetall-Diketonatokomplex der Formel I als Emittermolekül. Bevorzugte Komplexe der Formel I wurden bereits vorstehend genannt. Die einzelnen der vorstehend genannten Schichten des OLEDs können wiederum aus 2 oder mehreren Schichten aufgebaut sein. Beispielsweise kann die Löchertransportierende Schicht aus einer Schicht aufgebaut sein in die aus der Elektrode Löcher injiziert werden und einer Schicht, die die Löcher von der Loch injizierenden Schicht weg in die Licht-emittierende Schicht transportiert. Die Elektronentransportierende Schicht kann ebenfalls aus mehreren Schichten bestehen, zum Beispiel einer Schicht, worin Elektronen durch die Elektrode injiziert werden, und einer Schicht, die aus der Elektronen-injizierenden Schicht Elektronen erhält und in die Licht- emittierende Schicht transportiert. Diese genannten Schichten werden jeweils nach Faktoren wie Energieniveau, Temperaturresistenz und Ladungsträgerbeweglichkeit, sowie Energiedifferenz der genannten Schichten mit den organischen Schichten oder den Metallelektroden ausgewählt. Der Fachmann ist in der Lage, den Aufbau der OLEDs so zu wählen, dass er optimal an die erfindungsgemäß als Emittersubstanzen verwendeten Hauptgruppenmetall-Diketonatokomplexe angepasst ist.
Um besonders effiziente OLEDs zu erhalten, sollte das HOMO (höchstes besetztes Molekülorbital) der Loch-transportierenden Schicht mit der Arbeitsfunktion der Anode angeglichen sein und das LUMO (niedrigstes unbesetztes Molekülorbital) der elektronentransportierenden Schicht sollte mit der Arbeitsfunktion der Kathode angeglichen sein.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist ein OLED enthaltend mindestens eine erfindungsgemäße Licht-emittierende Schicht. Die weiteren Schichten in dem OLED können aus einem beliebigen Material aufgebaut sein, das üblicherweise in solchen Schichten eingesetzt wird und dem Fachmann bekannt ist.
Die Anode (1) ist eine Elektrode, die positive Ladungsträger bereitstellt. Sie kann zum Beispiel aus Materialien aufgebaut sein, die ein Metall, eine Mischung verschiedener Metalle, eine Metalllegierung, ein Metalloxid oder eine Mischung verschiedener Metalloxide enthält. Alternativ kann die Anode ein leitendes Polymer sein. Geeignete Metalle umfassen die Metalle der Gruppen Ib, IVa, Va und Via des Periodensystems der Elemente sowie die Übergangsmetalle der Gruppe VIII. Wenn die Anode lichtdurchlässig sein soll, werden im Allgemeinen gemischte Metalloxide der Gruppen Mb, lllb und IVb des Periodensystems der Elemente eingesetzt, zum Beispiel Indium- Zinn-Oxid (ITO). Es ist ebenfalls möglich, dass die Anode (1) ein organisches Material, zum Beispiel Polyanilin enthält, wie beispielsweise in Nature, Vol. 357, Seiten 477 bis 479 (11. Juni 1992) beschrieben ist. Zumindest entweder die Anode oder die Kathode sollten mindestens teilweise transparent sein, um das gebildete Licht auskoppeln zu können.
Geeignete Lochtransportmaterialien für die Schicht (2) des erfindungsgemäßen OLEDs sind zum Beispiel in Kirk-Othmer Encyclopedia of Chemical Technologie, 4. Auflage, Vol. 18, Seiten 837 bis 860, 1996 offenbart. Sowohl Löcher transportierende Moleküle . als auch Polymere können als Lochtransportmaterial eingesetzt werden. Üblicherweise eingesetzte Löcher transportierende Moleküle sind ausgewählt aus der Gruppe bestehend aus 4,4'-Bis[N-(1-naphthyl)-N-phenyI-amino]biphenyl (α-NPD), N,N'- Diphenyl-N,N'-bis(3-methylphenyl)-[1 ,1'-biphenyl]-4,4'-diamin (TPD), 1 ,1-Bis[(di-4- tolylamino)phenyl]cyclohexan (TAPC), N,N'-Bis(4-methylphenyI)-N,N'-Bis(4- ethylphenyl)-[1 , 1 '-(3,3'-dimethyI)biphenyl]-4,4'-diamin (ETPD), Tetrakis-(3- methylphenyl)-N,N,N',N'-2,5-phenylendiamin (PDA), α-Phenyl-4~N,N~diphenylamino- styrol (TPS), p-(Diethylamino)-benzaldehyddiphenylhydrazon (DEH), Triphenylamin (TPA), Bis[4-(N,N-diethylamino)-2-methylphenyl)(4-methyl-phenyl)methan (MPMP), 1- Phenyl-3-[p-(diethylamino)styryI]-5-[p-(diethylamino)phenyl]pyrazolin (PPR oder DEASP), 1 ,2-trans-Bis(9H-carbazol-9-yI)cyclobutan (DCZB), N,N,N',N'-Tetrakis(4- methylphenyl)-(1 ,1 '-biphenyl)-4,4'-diamin (TTB) und Porphyrinverbindungen wie Kupferphthalocyanine. Üblicherweise eingesetzte Löcher transportierende Polymere sind ausgewählt aus der Gruppe bestehend aus Polyvinylcarbazolen, (Phenylmethyl)polysiianen und Polyanilinen. Es ist ebenfalls möglich, Löcher transportierende Polymere durch Dotieren Löcher transportierender Moleküle in Polymere wie Polystyrol und Polycarbonat zu erhalten. Geeignete Löcher transportierende Moleküle sind die bereits vorstehend genannten Moleküle.
Geeignete Elektronen transportierende Materialien für die Schicht (4) der erfindungsgemäßen OLEDs umfassen mit oxinoiden Verbindungen chelatisierte Metalle wie Tris(8~chinolinolato)aluminium (Alq3), Verbindungen auf Phenanthrolinbasis wie 2,9-Dimethyl,4,7-diphenyl-1 ,10-phenanthrolin (DDPA) oder 4,7-Diphenyl-1 ,10- phenanthrolin (DPA) und Azolverbindungen wie 2-(4-Biphenylyl)-5-(4-t-butyIphenyI)- 1 ,3,4-oxadiazol (PBD) und 3-(4-Biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1 ,2,4-triazol (TAZ). Dabei kann die Schicht (4) sowohl zur Erleichterung des Elektronentransports dienen als auch als Pufferschicht oder als Sperrschicht, um ein Quenchen des Excitons an den Grenzflächen der Schichten des OLEDs zu vermeiden. Vorzugsweise verbessert die Schicht (4) die Beweglichkeit der Elektronen und reduziert ein Quenchen des Excitons. Die Kathode (5) ist eine Elektrode, die zur Einführung von Elektronen oder negativen Ladungsträgern dient. Die Kathode kann jedes Metall oder Nichtmetall sein, das eine geringere Arbeitsfunktion aufweist als die Anode. Geeignete Materialien für die Kathode sind ausgewählt aus der Gruppe bestehend aus Alkalimetallen der Gruppe 1 , zum Beispiel Li, Cs, Erdalkalimetallen der Gruppe 2, Metallen der Gruppe 12 des Periodensystems der Elemente, umfassend die Seltenerdmetalle und die Lanthanide und Aktinide. Des Weiteren können Metalle wie Aluminium, Indium, Calcium, Barium, Samarium und Magnesium sowie Kombinationen davon eingesetzt werden. Weiterhin können Lithium enthaltende organometallische Verbindungen oder LiF zwischen der organischen Schicht und der Kathode aufgebracht werden, um die Betriebsspannung (Operating Voltage) zu vermindern.
Das OLED gemäß der vorliegenden Erfindung kann zusätzlich weitere Schichten enthalten, die dem Fachmann bekannt sind. Beispielsweise kann zwischen der Schicht (2) und der Licht emittierenden Schicht (3) eine Schicht aufgebracht sein, die den Transport der positiven Ladung erleichtert und/oder die Bänderlücke der Schichten aneinander anpasst. Alternativ kann diese weitere Schicht als Schutzschicht dienen. In analoger Weise können zusätzliche Schichten zwischen der Licht emittierenden Schicht (3) und der Schicht (4) vorhanden sein, um den Transport der negativen Ladung zu erleichtern und/oder die Bänderlücke zwischen den Schichten aneinander anzupassen. Alternativ kann diese Schicht als Schutzschicht dienen.
In einer bevorzugten Ausführungsform enthält das erfindungsgemäße OLED zusätzlich zu den Schichten (1 ) bis (5) mindestens eine der im Folgenden genannten weiteren Schichten: eine Loch-Injektionsschicht zwischen der Anode (1 ) und der Löchertransportierenden Schicht (2); eine Blockschicht für Elektronen zwischen der Löcher-transportierenden Schicht (2) und der Licht-emittierenden Schicht (3); - eine Blockschicht für Löcher zwischen der Licht-emittierenden Schicht (3) und der Elektronen-transportierenden Schicht (4); eine Elektronen-Injektionsschicht zwischen der Elektronen-transportierenden Schicht (4) und der Kathode (5). Dem Fachmann ist bekannt, wie er (zum Beispiel auf Basis von elektrochemischen Untersuchungen) geeignete Materialien auswählen muss. Geeignete Materialien für die einzelnen Schichten sind dem Fachmann bekannt und z.B. in WO 00/70655 offenbart. Des Weiteren kann jede der genannten Schichten des erfindungsgemäßen OLEDs aus zwei oder mehreren Schichten ausgebaut sein. Des Weiteren ist es möglich, dass einige oder alle der Schichten (1), (2), (3), (4) und (5) oberflächenbehandelt sind, um die Effizienz des Ladungsträgertransports zu erhöhen. Die Auswahl der Materialien für jede der genannten Schichten ist bevorzugt dadurch bestimmt, ein OLED mit einer hohen Effizienz zu erhalten.
Die Herstellung des erfindungsgemäßen OLEDs kann nach dem Fachmann bekannten Methoden erfolgen. Im Allgemeinen wird das OLED durch aufeinander folgende Dampfabscheidung (Vapor deposition) der einzelnen Schichten auf ein geeignetes Substrat hergestellt. Geeignete Substrate sind zum Beispiel Glas oder Polymerfilme. Zur Dampfabscheidung können übliche Techniken eingesetzt werden wie thermische Verdampfung, Chemical Vapor Deposition und andere. In einem alternativen Verfahren können die organischen Schichten aus Lösungen oder Dispersionen in geeigneten Lösungsmitteln beschichtet werden, wobei dem Fachmann bekannte Beschichtungstechniken angewendet werden.
Im Allgemeinen haben die verschiedenen Schichten folgende Dicken: Anode (2) 500 bis 5000 Ä, bevorzugt 1000 bis 2000 Ä; Löcher-transportierende Schicht (3) 50 bis 1000 Ä, bevorzugt 200 bis 800 Ä, Licht-emittierende Schicht (4) 10 bis 1000 Ä, bevorzugt 100 bis 800 Ä, Elektronen transportierende Schicht (5) 50 bis 1000 Ä, bevorzugt 200 bis 800 Ä, Kathode (6) 200 bis 10.000 Ä, bevorzugt 300 bis 5000 Ä. Die Lage der Rekombinationszone von Löchern und Elektronen in dem erfindungsgemäßen OLED und somit das Emissionsspektrum des OLED können durch die relative Dicke jeder Schicht beeinflusst werden. Das bedeutet, die Dicke der Elektronentransportschicht sollte bevorzugt so gewählt werden, dass die Elektronen/Löcher Rekombinationszone in der Licht-emittierenden Schicht liegt. Das Verhältnis der Schichtdicken der einzelnen Schichten in dem OLED ist von den eingesetzten Materialien abhängig. Die Schichtdicken von gegebenenfalls eingesetzten zusätzlichen Schichten sind dem Fachmann bekannt.
Durch Einsatz der erfindungsgemäß verwendeten Hauptgruppenmetall- Diketonatokomplexe der Formel I als Emittermoleküle in der Licht-emittierenden Schicht der erfindungsgemäßen OLEDs können OLEDs mit hoher Effizienz erhalten werden. Die Effizienz der erfindungsgemäßen OLEDs kann des Weiteren durch Optimierung der anderen Schichten verbessert werden. Beispielsweise können hoch effiziente Kathoden wie Ca, Ba oder LiF eingesetzt werden. Geformte Substrate und neue Löcher-transportierende Materialien, die eine Reduktion der Operationsspannung oder eine Erhöhung der Quanteneffizienz bewirken, sind ebenfalls in den erfindungsgemäßen OLEDs einsetzbar. Des Weiteren können zusätzliche Schichten in den OLEDs vorhanden sein, um die Energielevel der verschiedenen Schichten einzustellen und um Elektrolumineszenz zu erleichtern.
Die erfindungsgemäßen OLEDs können in allen Vorrichtungen eingesetzt werden, worin Elektrolumineszenz nützlich ist. Geeignete Vorrichtungen sind bevorzugt ausgewählt aus stationären und mobilen Bildschirmen. Stationäre Bildschirme sind z.B. Bildschirme von Computern, Fernsehern, Bildschirme in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen und Hinweistafeln. Mobile Bildschirme sind z.B. Bildschirme in Handys, Laptops, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen.
Weiterhin können die erfindungsgemäß eingesetzten Hauptgruppenmetall- Diketonatokomplexe der Formel I in OLEDs mit inverser Struktur eingesetzt werden. Bevorzugt werden die Hauptgruppenmetall-Diketonatokomplexe in diesen inversen OLEDs wiederum in der Licht-emittierenden Schicht, besonders bevorzugt als Lichtemittierende Schicht ohne weitere Zusätze, eingesetzt. Der Aufbau von inversen OLEDs und die üblicherweise darin eingesetzten Materialien sind dem Fachmann bekannt.

Claims

Patentansprüche
1. Verwendung von Hauptgruppenmetall-Diketonatokomplexen der Formel (I)
Figure imgf000016_0001
worin die Symbole die folgenden Bedeutungen aufweisen:
R , R3 unabhängig voneinander eine substituierte oder unsubstituierte
Aryl-, Alkyl-, Heteroaryl- oder Alkenylgruppe;
R2 H, eine substituierte oder unsubstituierte Aryl-, Alkyl-,
Heteroaryl- oder Alkenylgruppe;
M Metall ausgewählt aus der Gruppe lllb, IVb und Vb des
Periodensystems der Elemente;
L neutraler Ligand; n Zahl der Diketonatoliganden von 1 bis 4, entsprechend der
Oxidationsstufe des eingesetzten Metalls; m 0 bis 2;
als Emittermoleküle in organischen Licht-emittierenden Dioden.
2. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass die Symbole die folgenden Bedeutungen aufweisen:
R1, R3 unabhängig voneinander C bis C4-Alkyl, Phenyl, Pyridyl,
Imidazolyl, Furyl, Thienyl, CF3, C2F5 oder C6F5; bevorzugt
Methyl, Ethyl, Thienyl oder CF3, besonders bevorzugt Thienyl oder CF3;
R2 H, C bis C4-Alkyl, CF3, Phenyl;
M ln(l), Tl(l), Sn(ll), Pb(ll), Sb(lll), Bi(lll);
L ausgewählt aus der Gruppe bestehend aus Wasser, Pyridin, bevorzugt 4-N,N-Dimethylaminopyridin,
3-Cyanopyridin, 4-
Cyanopyridin, 4-Methoxypyridin,
4-Phenylpyridin und deren N-
Oxide, Bipyridyle, bevorzugt 2,2'-Bipyridyl, N-Methylimidazol, Phenanthrolin, bevorzugt 1 ,10-Diphenylphenanthrolin,
Bathophenanthrolin, Bathocuproin, Phosphinoxid, bevorzugt Triphenylphosphinoxid, Phosphonimidoligand, bevorzugt Diphenylphosphonimid-trisphenylphsphoran, und Sulfoxid;
n 1 bis 4, in Abhängigkeit von der Oxidationsstufe des Metalls; m 0 oder 1 , bevorzugt 0.
Verwendung nach Anspruch 2, dadurch gekennzeichnet, dass die Symbole die folgenden Bedeutungen aufweisen:
R1 und R3 CF3;
R2 H;
M Tl(l), Pb(II), Bi(lll); n 1 bis 3, in Abhängigkeit von der Oxidationsstufe des Metalls; m 0.
Verwendung nach Anspruch 3, dadurch gekennzeichnet, dass die Hauptgruppenmetall-Diketonatokomplexe der Formel (I) ausgewählt sind aus der Gruppe bestehend aus Tl(I)-Diketonatokomplexen der Formel (la), Pb(II)- Diketonatokomplexen der Formel (Ib) und Bi(ll!)-Diketonatokomplexen der Formel (Ic)
Figure imgf000017_0001
Figure imgf000017_0002
5. Verwendung von Hauptgruppenmetall-Diketonatokomplexen gemäß einem der Ansprüche 1 bis 4 als Licht-emittierende Schicht in OLEDs.
6. Licht-emittierende Schicht enthaltend mindestens einen Hauptgruppenmetall- Diketonatokomplex gemäß einem der Ansprüche 1 bis 4 als Emittermolekül.
7. Licht-emittierende Schicht bestehend aus mindestens einem Hauptgruppenmetall-Diketonatokomplex gemäß einem der Ansprüche 1 bis 4 als Emittermolekül.
8. OLED enthaltend eine Licht-emittierende Schicht gemäß Anspruch 6 oder 7.
9. Vorrichtung ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen wie Bildschirmen von Computern, Fernsehern, Bildschirmen in
Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen, Hinweistafeln und mobilen Bildschirmen wie Bildschirmen in Handys, Laptops, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen enthaltend ein OLED gemäß Anspruch 8.
PCT/EP2004/014443 2003-12-19 2004-12-17 Verwendung von hauptgruppenmetall-diketonatokomplexen als lumineszierende materialien in organischen leuchtdioden (oleds) WO2005061654A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10360681.5 2003-12-19
DE10360681A DE10360681A1 (de) 2003-12-19 2003-12-19 Verwendung von Hauptgruppenmetall-Diketonatokomplexen als lumineszierende Materialien in organischen Leuchtdioden (OLEDs)

Publications (1)

Publication Number Publication Date
WO2005061654A1 true WO2005061654A1 (de) 2005-07-07

Family

ID=34673045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014443 WO2005061654A1 (de) 2003-12-19 2004-12-17 Verwendung von hauptgruppenmetall-diketonatokomplexen als lumineszierende materialien in organischen leuchtdioden (oleds)

Country Status (2)

Country Link
DE (1) DE10360681A1 (de)
WO (1) WO2005061654A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041959B4 (de) * 2009-09-17 2012-03-22 Klaus Müller-Buschbaum Lumineszierende Koordinationspolymere
CN103509054A (zh) * 2012-09-21 2014-01-15 Tcl集团股份有限公司 磷光主体材料、其制备方法和应用及电致磷光发光器件
WO2013182389A3 (de) * 2012-06-06 2014-01-30 Siemens Aktiengesellschaft Hauptgruppenmetallkomplexe als p-dotanden für organische elektronische matrixmaterialien
DE102014210676A1 (de) * 2014-06-05 2015-12-17 Siemens Aktiengesellschaft Sequentielle Funktionalisierung phosphoreszenter Emitterschichten
US20160181540A1 (en) * 2013-08-05 2016-06-23 Siemens Aktiengesellschaft Production Of Organic Phosphorescent Layers With Addition Of Heavy Main Group Metal Complexes
WO2016188604A1 (en) * 2015-05-22 2016-12-01 Merck Patent Gmbh Composition comprising an organic semiconductor and a metal complex
CN106459744A (zh) * 2014-05-29 2017-02-22 西门子公司 双核主族金属磷光发射体
EP3945125A1 (de) * 2020-07-28 2022-02-02 Novaled GmbH Verbindung der formel (i), halbleitermaterial mit mindestens einer verbindung der formel (i), halbleiterschicht mit mindestens einer verbindung der formel (i) und elektronische vorrichtung mit mindestens einer verbindung der formel (i)
WO2022023278A1 (en) * 2020-07-28 2022-02-03 Novaled Gmbh Metal complexes of 4-(2,4-dioxopent-3-yl)-2,3,5,6-tetrafluorobenzonitrile and similar ligands as semiconductor materials for use in electronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757088A2 (de) * 1995-08-04 1997-02-05 Toyo Ink Manufacturing Co., Ltd. Organisches elektrolumiszentes Element und leuchtemittierende Vorrichtung mit diesem Element
WO2001041512A1 (en) * 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
EP1111647A2 (de) * 1999-12-21 2001-06-27 Sony Corporation Elektronenemissionsvorrichtung, Kaltkathoden-Feldemissionsvorrichtung und Verfahren zu deren Herstellung, Anzeigevorrichtung mit Kaltkathodenfeldemitter und Verfahren zu deren Herstellung
WO2003100832A2 (en) * 2002-03-29 2003-12-04 General Electric Company Mechanically flexible organic electroluminescent device with directional light emission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757088A2 (de) * 1995-08-04 1997-02-05 Toyo Ink Manufacturing Co., Ltd. Organisches elektrolumiszentes Element und leuchtemittierende Vorrichtung mit diesem Element
WO2001041512A1 (en) * 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
EP1111647A2 (de) * 1999-12-21 2001-06-27 Sony Corporation Elektronenemissionsvorrichtung, Kaltkathoden-Feldemissionsvorrichtung und Verfahren zu deren Herstellung, Anzeigevorrichtung mit Kaltkathodenfeldemitter und Verfahren zu deren Herstellung
WO2003100832A2 (en) * 2002-03-29 2003-12-04 General Electric Company Mechanically flexible organic electroluminescent device with directional light emission

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041959B4 (de) * 2009-09-17 2012-03-22 Klaus Müller-Buschbaum Lumineszierende Koordinationspolymere
WO2013182389A3 (de) * 2012-06-06 2014-01-30 Siemens Aktiengesellschaft Hauptgruppenmetallkomplexe als p-dotanden für organische elektronische matrixmaterialien
CN104685647A (zh) * 2012-06-06 2015-06-03 西门子公司 用作有机电子基体材料的p-掺杂剂的主族金属络合物
CN106967122A (zh) * 2012-06-06 2017-07-21 西门子公司 用作有机电子基体材料的p掺杂剂的主族金属络合物
US10411197B2 (en) 2012-06-06 2019-09-10 Siemens Aktiengesellschaft Main group metal complexes as P-dopants for organic electronic matrix materials
US10305047B2 (en) 2012-06-06 2019-05-28 Siemens Aktiengesellschaft Main group metal complexes as p-dopants for organic electronic matrix materials
CN103509054A (zh) * 2012-09-21 2014-01-15 Tcl集团股份有限公司 磷光主体材料、其制备方法和应用及电致磷光发光器件
CN103509054B (zh) * 2012-09-21 2016-06-01 Tcl集团股份有限公司 磷光主体材料、其制备方法和应用及电致磷光发光器件
US20160181540A1 (en) * 2013-08-05 2016-06-23 Siemens Aktiengesellschaft Production Of Organic Phosphorescent Layers With Addition Of Heavy Main Group Metal Complexes
US10707422B2 (en) * 2013-08-05 2020-07-07 Siemens Aktiengesellschaft Production of organic phosphorescent layers with addition of heavy main group metal complexes
CN106459744B (zh) * 2014-05-29 2019-08-30 西门子公司 双核主族金属磷光发射体
CN106459744A (zh) * 2014-05-29 2017-02-22 西门子公司 双核主族金属磷光发射体
DE102014210676A1 (de) * 2014-06-05 2015-12-17 Siemens Aktiengesellschaft Sequentielle Funktionalisierung phosphoreszenter Emitterschichten
US10347849B2 (en) 2014-06-05 2019-07-09 Siemens Aktiengesellschaft Sequential functionalization of phosphorescent emitter layers
KR20180011202A (ko) * 2015-05-22 2018-01-31 메르크 파텐트 게엠베하 유기 반도체 및 금속 착물을 포함하는 조성물
WO2016188604A1 (en) * 2015-05-22 2016-12-01 Merck Patent Gmbh Composition comprising an organic semiconductor and a metal complex
KR102550275B1 (ko) * 2015-05-22 2023-06-30 메르크 파텐트 게엠베하 유기 반도체 및 금속 착물을 포함하는 조성물
EP3945125A1 (de) * 2020-07-28 2022-02-02 Novaled GmbH Verbindung der formel (i), halbleitermaterial mit mindestens einer verbindung der formel (i), halbleiterschicht mit mindestens einer verbindung der formel (i) und elektronische vorrichtung mit mindestens einer verbindung der formel (i)
WO2022023278A1 (en) * 2020-07-28 2022-02-03 Novaled Gmbh Metal complexes of 4-(2,4-dioxopent-3-yl)-2,3,5,6-tetrafluorobenzonitrile and similar ligands as semiconductor materials for use in electronic devices

Also Published As

Publication number Publication date
DE10360681A1 (de) 2005-07-14

Similar Documents

Publication Publication Date Title
EP1692244B1 (de) Verwendung von platin(ii)-komplexen als lumineszierende materialien in organischen licht-emittierenden dioden (oleds)
EP1794211B1 (de) Verwendung von kupfer(i)-komplexen in organischen lichtemittierenden dioden
EP2035526B1 (de) Verwendung von übergangsmetallcarbenkomplexen, die keine cyclometallierung über nicht-carbene enthalten, in oleds
EP1735851B1 (de) Verwendung von metallocenkomplexen von metallen der 4. nebengruppe des periodensystems als triplettemitter in organischen leuchtdioden (oleds)
EP2297800B1 (de) Deuterierte übergangsmetall- komplexe und deren verwendung in organischen leuchtdioden
EP2288671B1 (de) Neue übergangsmetall-komplexe und deren verwendung in organischen leuchtdioden - iii
EP2195868B1 (de) Verwendung von acridinderivaten als matrixmaterialien und/oder elektronenblocker in oleds
EP3216797B1 (de) Dinukleare platin-carben-komplexe und deren verwendung in oleds
WO2006100298A1 (de) Verwendung von verbindungen, welche aromatische oder heteroaromatische über carbonyl-gruppen enthaltende gruppen verbundene ringe enthalten, als matrixmaterialien in organischen leuchtdioden
WO2007039344A2 (de) Weisse organische leuchtdioden (oleds) auf der basis von exciplexen zweier blau fluoreszierender verbindungen
DE19812259A1 (de) EL-Anordnung auf Basis von tert.-Aminen, in Alkohol löslichen Alq3-Derivaten bzw. Mischungen und polymeren Bindern
DE102004057073A1 (de) Verwendung von Phenothiazin-S-oxiden und -S,S-dioxiden als Matrixmaterialien für organische Leuchtdioden
EP2301091B1 (de) Verwendung von cyclischen phosphazenverbindungen in organischen leuchtdioden
WO2008043562A1 (de) Lanthanoid-emitter für oled-anwendungen
DE10320103A1 (de) Verfahren zur Herstellung von Phenylpyridin-Metallkomplexen und Verwendung solcher Komplexe in OLEDs
WO2005061654A1 (de) Verwendung von hauptgruppenmetall-diketonatokomplexen als lumineszierende materialien in organischen leuchtdioden (oleds)
WO2006027191A1 (de) Synthese von polynaphthalinen und ihre verwendung
DE60319440T2 (de) Organisches elektrolumineszierendes element
EP1740673B1 (de) Triazolderivate und verwendung von triazolderivaten in organischen leuchtdioden (oleds)
WO2009150140A1 (de) Neue übergangsmetall-komplexe und deren verwendung in organischen leuchtdioden - iv
WO2005061655A1 (de) Verwendung von gadolinium(iii)-chelaten als lumineszierende materialien in organischen leuchtdioden (oleds)
WO2011026886A1 (de) Dinukleare metall-carben-komplexe in oleds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase