EP1731754A1 - Manufacturing method for an injector - Google Patents

Manufacturing method for an injector Download PDF

Info

Publication number
EP1731754A1
EP1731754A1 EP06114885A EP06114885A EP1731754A1 EP 1731754 A1 EP1731754 A1 EP 1731754A1 EP 06114885 A EP06114885 A EP 06114885A EP 06114885 A EP06114885 A EP 06114885A EP 1731754 A1 EP1731754 A1 EP 1731754A1
Authority
EP
European Patent Office
Prior art keywords
valve
bellows
spring
effective cross
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06114885A
Other languages
German (de)
French (fr)
Other versions
EP1731754B1 (en
Inventor
Claus Anzinger
Willibald SCHÜRZ
Martin Simmet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1731754A1 publication Critical patent/EP1731754A1/en
Application granted granted Critical
Publication of EP1731754B1 publication Critical patent/EP1731754B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0057Means for avoiding fuel contact with valve actuator, e.g. isolating actuators by using bellows or diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/16Sealing of fuel injection apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps

Definitions

  • the invention relates to a method for producing a valve which comprises a valve body, a valve needle and a valve spring and which has a bellows for sealing a high-pressure region with respect to a low-pressure region of the valve.
  • a valve for direct injection of fuel into a combustion chamber of a gasoline engine has a valve needle which is axially movable out of its closed position for metering the fuel.
  • Fuel flow through the valve is dictated by a stroke of the valve needle, a diameter of a seat of the valve needle in the valve, and a fuel pressure in the valve.
  • the valve needle is held in its closed position by a spring force of a valve spring and a hydraulic force component resulting from the fuel pressure when the valve needle is not moved out of its closed position by a lift actuator of the valve.
  • a stroke of the Hubaktors, and thus the stroke of the valve needle is dependent on an axial force which counteracts a displacement of the Hubaktors and must be overcome to open the valve by the Hubaktor.
  • the stroke of the lifting actuator is dependent on a control of the Hubaktors.
  • the object of the invention is to provide a method for producing a valve in which a dispersion of an axial force for actuating the valve is low.
  • the invention is characterized by a method of manufacturing a valve comprising a valve body, a valve needle and a valve spring. Furthermore, the valve has a bellows for sealing a high-pressure region with respect to a low-pressure region of the valve.
  • a variable representing a hydraulically effective cross-sectional area of the bellows is determined.
  • the valve spring is selected based on its spring force depending on the size representing the hydraulically effective cross-sectional area of the bellows.
  • the valve needle is disposed in the valve body and is coupled via the valve spring and the bellows with the valve body to open the valve by means of a predetermined axial force acting on the valve needle, depending on a prevailing in the low pressure range or the high pressure area fluid pressure to close.
  • the predetermined axial force can be achieved particularly precisely and with small scattering. Thereby, the predetermined axial force can be reliably adjusted for all valves produced by this method. An additional calibration step for setting the predetermined axial force is thus not required after assembly of the valve. A desired flow through the valve can be achieved so easily and reliably without having to consider an individually required axial force for opening or closing the valve for driving the valve.
  • the invention is characterized by a method of manufacturing a valve comprising a valve body, a valve needle and a valve spring.
  • the valve further includes a bellows for sealing a high pressure region from a low pressure region of the valve.
  • a spring force of the valve spring is determined.
  • the bellows is selected relative to a variable representing its hydraulically effective cross-sectional area, depending on the spring force of the valve spring.
  • the valve needle is placed in the valve body. Further, the valve needle is coupled via the valve spring and the bellows with the valve body, that the valve by means of a predetermined axial force acting on the valve needle, depending on a prevailing in the low pressure region or the high pressure area fluid pressure to open or close.
  • the predetermined axial force can be achieved particularly precisely and with low scattering. Thereby, the predetermined axial force can be reliably adjusted for all valves produced by this method. An additional calibration step for setting the predetermined axial force is thus not required after assembly of the valve. The desired flow through the valve can be achieved so easily and reliably, without having to consider the individually required axial force for opening or closing the valve for driving the valve.
  • the size representing the hydraulically effective cross-sectional area of the bellows is an outer diameter of the bellows. This is based on the finding that due to the manufacturing process of the bellows essentially only the Outer diameter of the bellows has a relevant deviation from a target value of the outer diameter and other sizes of the bellows, such as an inner diameter or a thickness or stiffness of the material of the bellows, substantially correspond to their respective setpoint. Thus, the hydraulically effective cross-sectional area of the bellows is substantially dependent on its outer diameter. As a result, determining the size representing the hydraulically effective cross-sectional area of the bellows is particularly simple, since the outside diameter of the bellows can be determined very easily.
  • a valve for example an injection valve for an internal combustion engine, comprises a valve body 1, in which a valve needle 2 is arranged (FIG. 1).
  • a valve cover 3 is tightly secured, for example by welding, the has a fluid inlet 4 and which separates a high-pressure region of the valve within the valve body 1 from a low-pressure region of the valve outside of the valve body 1.
  • a fluid such as fuel
  • the fluid is supplied at a high fluid pressure, eg 200 bar.
  • a first fastening ring 5 is tightly secured, e.g. by welding.
  • the valve needle 2 is arranged axially movable in the first fastening ring 5.
  • a second fastening ring 6 is fixed, e.g. by pressing on.
  • a bellows 7, which is preferably formed as a metal bellows, is fastened with a first axial end to the first fastening ring 5 and with a second axial end to the second fastening ring 6, e.g. by welding.
  • a valve spring 8 between the valve body 1 and a spring plate 9 is further arranged.
  • the spring plate 9 is coupled to the second fastening ring 6.
  • a spring force F3 of the valve spring 8 acts on the valve needle 2 such that it is drawn into a valve seat 10 of the valve body 1 and thus closes the valve.
  • a Hubaktor 11 is disposed in the low pressure region of the valve.
  • the Hubaktor 11 is formed for example as a piezoelectric actuator and is designed so that the valve needle 2 is movable axially out of its closed position as a function of electrical actuation of the lifting actuator 11 against the spring force F3.
  • a stroke of Hubaktors 11, and thus a stroke of the valve needle 2 is dependent on the control of the Hubaktors 11 and an axial force which counteracts a deflection of the Hubaktors 11 and which is directed so that the valve needle 2 in its closed position is pulled.
  • a hydraulically effective cross-sectional area of the bellows 7 is dependent on the hydraulically effective diameter D1 of the bellows 7.
  • the hydraulically effective diameter D1 of the bellows 7 and the hydraulically effective cross-sectional area of the bellows 7 are particularly dependent on an outer diameter of the bellows 7, but can also be dependent on a different size of the bellows 7. Due to the manufacturing process of the bellows 7, the hydraulically effective cross-sectional area of the bellows 7 can essentially only be dependent eg on its outer diameter. The outer diameter of the bellows 7 is then a hydraulically effective cross-sectional area of the bellows 7 representing size.
  • the size representing the hydraulically effective cross-sectional area of the bellows 7 may also be, for example, the hydraulically effective cross-sectional area of the bellows 7 or the hydraulically effective diameter D1 of the bellows 7.
  • the hydraulic effective size representing cross-sectional area and a relationship with the hydraulically effective cross-sectional area for a type or design of the bellows 7 determined experimentally, so that by means of representing the hydraulically effective cross-sectional area size simply on the hydraulically effective cross-sectional area of the respective bellows 7 of this type or this design can be closed.
  • a mathematical derivation of the relationship is optionally also possible for the type or design of the bellows 7.
  • the high fluid pressure e.g. several tens or a hundred bar.
  • the low fluid pressure e.g. less than ten bar.
  • a hydraulically opening force F2 acts on the valve needle 2 of the hydraulically closing force F1 depending on the fluid pressure in the high-pressure region of the valve and depending on a sealing circle diameter D2 of the valve seat 10 (FIG. 3).
  • the hydraulic closing force F1 and the hydraulic opening force F2 are preferably coordinated so that the hydraulic closing force F1 is at least as large as the hydraulic opening force F2. This ensures that even with increasing fluid pressure in the high pressure region of the valve, the valve needle 2 is pressed into its closed position in the valve seat 10 and thus the valve closes reliable and tight.
  • the valve spring 8 ensures that the valve remains closed even when the fluid pressure in the high-pressure region of the valve is very low, for example during a pause in the operation of the valve.
  • the hydraulically effective cross-sectional area of the bellows 7 or the spring force F3 of the valve spring 8 for each bellows 7 produced or for each manufactured valve spring 8 may be different.
  • a balance of the spring force F3, the hydraulic closing force F1 and the hydraulic opening force F2 can vary from valve to valve.
  • the axial force which the lifting actuator 11 has to apply in order to be able to move the valve needle 2 out of its closed position can also vary accordingly. Since the stroke of Hubaktors 11 is also dependent on the force acting on the Hubaktor 11 axial force, thus, at a predetermined control of the Hubaktors 11 and an opening degree of the valve vary.
  • an injection amount of the fluid is dependent on the sealing circle diameter D2 and the opening degree of the valve.
  • the injection quantity of the fluid can accordingly also vary accordingly.
  • the outer diameter of the bellows 7 may differ by about 0.2 millimeters from its nominal value. This can lead to a deviation of the axial force by e.g. about 20 to 30 Newtons lead.
  • the axial force acting on the lifting actuator 11 must be approximately the same for each injection valve. This can be achieved by selecting a suitable combination of the valve spring 8 with respect to its spring force F3 and the bellows 7 with respect to its hydraulically effective cross-sectional area during the assembly of the valve or its size representing the hydraulically effective cross-sectional area.
  • FIG. 4 shows a flow chart of a first method for producing the valve.
  • the method starts in a step S1.
  • the variable representing the hydraulically effective cross-sectional area of the bellows 7 is determined, e.g. the outer diameter of the bellows 7 or the hydraulically effective diameter D1 of the bellows 7.
  • the valve spring 8 is selected based on their spring force F3, depending on the size representing the hydraulically effective cross-sectional area of the bellows 7.
  • the spring force F3 of the valve spring 8 is chosen to be larger, the smaller the hydraulically effective cross-sectional area of the bellows 7. Accordingly, the spring force F3 of the valve spring 8 is selected to be smaller, the larger the hydraulically effective cross-sectional area of the bellows 7.
  • the selection is preferably carried out automatically, for example by means of a control program.
  • the control program has, for example, access to the respective spring force F3 of the valve springs 8 available for mounting the valve.
  • the control program determines, for example from the variable representing the hydraulically effective cross-sectional area of the bellows 7 that valve spring 8 whose spring force F3 cooperates with the hydraulically effective cross-sectional area of the bellows 7 representing size leads to the axial force which deviates as little as possible from the predetermined axial force.
  • the bellows 7 and the valve spring 8 correspond to two parallel springs whose spring forces add up.
  • an axial force to act on the valve needle 2 can be given.
  • step S4 the valve needle 2 is arranged in the valve body 1 and coupled via the valve spring 8 and the bellows 7 with the valve body 1, that to open the valve by means of the predetermined axial force depending on the prevailing in the low pressure region or the high pressure fluid pressure or close.
  • step S5. the valve needle 2 is arranged in the valve body 1 and coupled via the valve spring 8 and the bellows 7 with the valve body 1, that to open the valve by means of the predetermined axial force depending on the prevailing in the low pressure region or the high pressure fluid pressure or close.
  • FIG. 5 shows a flowchart of a second method for producing the valve, which starts in a step S6.
  • the spring force F3 of the valve spring 8 is determined.
  • the bellows 7 is selected based on the variable representing its hydraulically effective cross-sectional area.
  • the selection takes place in such a way that the hydraulically effective cross-sectional area of the bellows 7 is selected to be greater, the smaller the spring force F3 of the valve spring 8, and the smaller the larger the spring force F3 of the valve spring 8 is.
  • the selection is preferably carried out automatically, for example by means of the control program.
  • the control program has, for example, access to the respective hydraulically effective
  • the control program determines, for example from the spring force F3 that bellows 7, the hydraulically effective cross-sectional area representing size in cooperation with the spring force F3 leads to the axial force, the predetermined axial force deviates as little as possible.
  • valve needle 2 is arranged in the valve body 1 and coupled via the valve spring 8 in the bellows 7 so with the valve body 1 that the valve by means of the predetermined axial force acting on the valve needle 2, depending on the in the Low pressure range or the high pressure area prevailing fluid pressure to open or close is.
  • the method ends in a step S10.
  • the two methods for producing the valve make it possible to produce a plurality of valves which can be actuated with the same predetermined axial force, without having to perform an individual calibration with respect to the predetermined axial force after the assembly of the respective valve. Further, the determination of the spring force F3 of the valve spring 8 or the size representing the hydraulically effective cross-sectional area of the bellows 7 and the selection of the proper combination of the valve spring 8 and the bellows 7 for setting the predetermined axial force can be easily automated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Lift Valve (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

The method involves determining a hydraulically effective cross-section area of bellows (7) which represent size. A valve spring (8) is selected related to its spring action (F3) dependent on that the hydraulically effective cross-section area of the bellows. A valve needle (2) is arranged in the valve body (1) and coupled over the valve spring and the bellows. Axial pressure affects the valve needle which is dependent on a fluid pressure prevailing in a low-pressure range or a high pressure range to open or close the valve.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines Ventils, das einen Ventilkörper, eine Ventilnadel und eine Ventilfeder umfasst und das einen Faltenbalg zum Abdichten eines Hochdruckbereichs gegenüber einem Niederdruckbereich des Ventils aufweist.The invention relates to a method for producing a valve which comprises a valve body, a valve needle and a valve spring and which has a bellows for sealing a high-pressure region with respect to a low-pressure region of the valve.

Ein Ventil für ein direktes Einspritzen von Kraftstoff in einen Brennraum eines Ottomotors weist eine Ventilnadel auf, die zum Zumessen des Kraftstoffs axial aus ihrer Schließposition heraus bewegbar ist. Ein Kraftstoffdurchfluss durch das Ventil ist vorgegeben durch einen Hub der Ventilnadel, einen Durchmesser eines Sitzes der Ventilnadel in dem Ventil und einen Kraftstoffdruck in dem Ventil. Die Ventilnadel wird durch eine Federkraft einer Ventilfeder und einer aus dem Kraftstoffdruck resultierenden hydraulischen Kraftkomponente in ihrer Schließposition gehalten, wenn die Ventilnadel nicht durch einen Hubaktor des Ventils aus ihrer Schließposition heraus bewegt ist. Ein Hub des Hubaktors, und somit auch der Hub der Ventilnadel, ist abhängig von einer axialen Kraft, die einer Auslenkung des Hubaktors entgegen wirkt und die zum Öffnen des Ventils durch den Hubaktor überwunden werden muss. Ferner ist der Hub des Hubaktors abhängig von einer Ansteuerung des Hubaktors.A valve for direct injection of fuel into a combustion chamber of a gasoline engine has a valve needle which is axially movable out of its closed position for metering the fuel. Fuel flow through the valve is dictated by a stroke of the valve needle, a diameter of a seat of the valve needle in the valve, and a fuel pressure in the valve. The valve needle is held in its closed position by a spring force of a valve spring and a hydraulic force component resulting from the fuel pressure when the valve needle is not moved out of its closed position by a lift actuator of the valve. A stroke of the Hubaktors, and thus the stroke of the valve needle is dependent on an axial force which counteracts a displacement of the Hubaktors and must be overcome to open the valve by the Hubaktor. Furthermore, the stroke of the lifting actuator is dependent on a control of the Hubaktors.

Die Aufgabe der Erfindung ist, ein Verfahren zum Herstellen eines Ventils zu schaffen, bei dem eine Streuung einer axialen Kraft zum Betätigen des Ventils gering ist.The object of the invention is to provide a method for producing a valve in which a dispersion of an axial force for actuating the valve is low.

Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.The object is solved by the features of the independent claims. Advantageous developments of the invention are characterized in the subclaims.

Gemäß eines ersten Aspekts zeichnet sich die Erfindung aus durch ein Verfahren zum Herstellen eines Ventils, das einen Ventilkörper, eine Ventilnadel und eine Ventilfeder umfasst. Ferner weist das Ventil einen Faltenbalg zum Abdichten eines Hochdruckbereichs gegenüber einem Niederdruckbereich des Ventils auf. Bei dem Verfahren wird eine eine hydraulisch wirksame Querschnittsfläche des Faltenbalgs repräsentierende Größe ermittelt. Die Ventilfeder wird bezogen auf ihre Federkraft abhängig von der die hydraulisch wirksame Querschnittsfläche des Faltenbalgs repräsentierenden Größe ausgewählt. Die Ventilnadel wird in dem Ventilkörper angeordnet und wird so über die Ventilfeder und den Faltenbalg mit dem Ventilkörper gekoppelt, dass das Ventil mittels einer vorgegebenen axialen Kraft, die auf die Ventilnadel wirkt, abhängig von einem in dem Niederdruckbereich oder dem Hochdruckbereich vorherrschenden Fluiddruck zu öffnen oder zu schließen ist.According to a first aspect, the invention is characterized by a method of manufacturing a valve comprising a valve body, a valve needle and a valve spring. Furthermore, the valve has a bellows for sealing a high-pressure region with respect to a low-pressure region of the valve. In the method, a variable representing a hydraulically effective cross-sectional area of the bellows is determined. The valve spring is selected based on its spring force depending on the size representing the hydraulically effective cross-sectional area of the bellows. The valve needle is disposed in the valve body and is coupled via the valve spring and the bellows with the valve body to open the valve by means of a predetermined axial force acting on the valve needle, depending on a prevailing in the low pressure range or the high pressure area fluid pressure to close.

Durch das Auswählen der Ventilfeder abhängig von der hydraulisch wirksamen Querschnittsfläche des Faltenbalgs kann die vorgegebene axiale Kraft besonders präzise und mit geringen Streuungen erreicht werden. Dadurch kann die vorgegebene axiale Kraft für alle nach diesem Verfahren hergestellten Ventile zuverlässig eingestellt werden. Ein zusätzlicher Kalibrierschritt zum Einstellen der vorgegebenen axialen Kraft ist nach einer Montage des Ventils somit nicht erforderlich. Ein gewünschter Durchfluss durch das Ventil kann so einfach und zuverlässig erreicht werden, ohne für das Ansteuern des Ventils eine individuell erforderliche axiale Kraft zum Öffnen oder Schließen des Ventils berücksichtigen zu müssen.By selecting the valve spring depending on the hydraulically effective cross-sectional area of the bellows, the predetermined axial force can be achieved particularly precisely and with small scattering. Thereby, the predetermined axial force can be reliably adjusted for all valves produced by this method. An additional calibration step for setting the predetermined axial force is thus not required after assembly of the valve. A desired flow through the valve can be achieved so easily and reliably without having to consider an individually required axial force for opening or closing the valve for driving the valve.

Gemäß eines zweiten Aspekts zeichnet sich die Erfindung aus durch ein Verfahren zum Herstellen eines Ventils, das einen Ventilkörper, eine Ventilnadel und eine Ventilfeder umfasst. Das Ventil weist ferner einen Faltenbalg zum Abdichten eines Hochdruckbereichs gegenüber einem Niederdruckbereich des Ventils auf. Eine Federkraft der Ventilfeder wird ermittelt. Der Faltenbalg wird bezogen auf eine seine hydraulisch wirksame Querschnittsfläche repräsentierende Größe abhängig von der Federkraft der Ventilfeder ausgewählt. Die Ventilnadel wird in dem Ventilkörper angeordnet. Ferner wird die Ventilnadel so über die Ventilfeder und den Faltenbalg mit dem Ventilkörper gekoppelt, dass das Ventil mittels einer vorgegebenen axialen Kraft, die auf die Ventilnadel wirkt, abhängig von einem in dem Niederdruckbereich oder dem Hochdruckbereich vorherrschenden Fluiddruck zu öffnen oder zu schließen ist.According to a second aspect, the invention is characterized by a method of manufacturing a valve comprising a valve body, a valve needle and a valve spring. The valve further includes a bellows for sealing a high pressure region from a low pressure region of the valve. A spring force of the valve spring is determined. The bellows is selected relative to a variable representing its hydraulically effective cross-sectional area, depending on the spring force of the valve spring. The valve needle is placed in the valve body. Further, the valve needle is coupled via the valve spring and the bellows with the valve body, that the valve by means of a predetermined axial force acting on the valve needle, depending on a prevailing in the low pressure region or the high pressure area fluid pressure to open or close.

Durch das Auswählen des Faltenbalgs abhängig von der Federkraft der Ventilfeder kann die vorgegebene axiale Kraft besonders präzise und mit geringen Streuungen erreicht werden. Dadurch kann die vorgegebene axiale Kraft für alle nach diesem Verfahren hergestellten Ventile zuverlässig eingestellt werden. Ein zusätzlicher Kalibrierschritt zum Einstellen der vorgegebenen axialen Kraft ist nach der Montage des Ventils somit nicht erforderlich. Der gewünschter Durchfluss durch das Ventil kann so einfach und zuverlässig erreicht werden, ohne für das Ansteuern des Ventils die individuell erforderliche axiale Kraft zum Öffnen oder Schließen des Ventils berücksichtigen zu müssen.By selecting the bellows depending on the spring force of the valve spring, the predetermined axial force can be achieved particularly precisely and with low scattering. Thereby, the predetermined axial force can be reliably adjusted for all valves produced by this method. An additional calibration step for setting the predetermined axial force is thus not required after assembly of the valve. The desired flow through the valve can be achieved so easily and reliably, without having to consider the individually required axial force for opening or closing the valve for driving the valve.

In einer vorteilhaften Ausgestaltung des Verfahrens ist die die hydraulisch wirksame Querschnittsfläche des Faltenbalgs repräsentierende Größe ein Außendurchmesser des Faltenbalgs. Dem liegt die Erkenntnis zugrunde, dass bedingt durch das Fertigungsverfahren des Faltenbalgs im Wesentlichen nur der Außendurchmesser des Faltenbalgs eine relevante Abweichung von einem Sollwert des Außendurchmessers aufweist und andere Größen des Faltenbalgs, z.B. ein Innendurchmesser oder eine Dicke oder Steifigkeit des Materials des Faltenbalgs, im Wesentlichen ihrem jeweiligen Sollwert entsprechen. Somit ist die hydraulisch wirksame Querschnittsfläche des Faltenbalgs im Wesentlichen abhängig von dessen Außendurchmesser. Dadurch ist das Ermitteln der die hydraulisch wirksame Querschnittsfläche des Faltenbalgs repräsentierenden Größe besonders einfach möglich, da der Außendurchmesser des Faltenbalgs sehr einfach ermittelbar ist.In an advantageous embodiment of the method, the size representing the hydraulically effective cross-sectional area of the bellows is an outer diameter of the bellows. This is based on the finding that due to the manufacturing process of the bellows essentially only the Outer diameter of the bellows has a relevant deviation from a target value of the outer diameter and other sizes of the bellows, such as an inner diameter or a thickness or stiffness of the material of the bellows, substantially correspond to their respective setpoint. Thus, the hydraulically effective cross-sectional area of the bellows is substantially dependent on its outer diameter. As a result, determining the size representing the hydraulically effective cross-sectional area of the bellows is particularly simple, since the outside diameter of the bellows can be determined very easily.

Ausführungsbeispiele der Erfindung sind im Folgenden anhand der schematischen Zeichnungen erläutert. Es zeigen:

  • Figur 1 ein Teil eines Ventils mit einem Ventilkörper,
  • Figur 2 ein erster Ausschnitt aus dem Teil des Ventils,
  • Figur 3 ein zweiter Ausschnitt aus dem Teil des Ventils,
  • Figur 4 ein Ablaufdiagramm eines ersten Verfahrens zum Herstellen des Ventils und
  • Figur 5 ein Ablaufdiagramm eines zweiten Verfahrens zum Herstellen des Ventils.
Embodiments of the invention are explained below with reference to the schematic drawings. Show it:
  • 1 shows a part of a valve with a valve body,
  • FIG. 2 shows a first section of the part of the valve,
  • FIG. 3 shows a second section from the part of the valve,
  • FIG. 4 shows a flow diagram of a first method for producing the valve and
  • Figure 5 is a flow diagram of a second method of manufacturing the valve.

Elemente gleicher Konstruktion oder Funktion sind figurenübergreifend mit den gleichen Bezugszeichen versehen.Elements of the same construction or function are provided across the figures with the same reference numerals.

Ein Ventil, z.B. ein Einspritzventil für eine Brennkraftmaschine, umfasst einen Ventilkörper 1, in dem eine Ventilnadel 2 angeordnet ist (Figur 1). An dem Ventilkörper 1 ist ein Ventildeckel 3 dicht befestigt, z.B. durch Anschweißen, der einen Fluidzulauf 4 aufweist und der einen Hochdruckbereich des Ventils innerhalb des Ventilkörpers 1 von einem Niederdruckbereich des Ventils außerhalb des Ventilkörpers 1 trennt. Über den Fluidzulauf 4 kann dem Ventil ein Fluid, beispielsweise Kraftstoff, zugeführt werden. Vorzugsweise wird das Fluid mit einem hohen Fluiddruck, z.B. 200 bar, zugeführt.A valve, for example an injection valve for an internal combustion engine, comprises a valve body 1, in which a valve needle 2 is arranged (FIG. 1). On the valve body 1, a valve cover 3 is tightly secured, for example by welding, the has a fluid inlet 4 and which separates a high-pressure region of the valve within the valve body 1 from a low-pressure region of the valve outside of the valve body 1. Via the fluid inlet 4, a fluid, such as fuel, can be supplied to the valve. Preferably, the fluid is supplied at a high fluid pressure, eg 200 bar.

An dem Ventildeckel 3 ist ein erster Befestigungsring 5 dicht befestigt, z.B. durch Anschweißen. Die Ventilnadel 2 ist in dem ersten Befestigungsring 5 axial bewegbar angeordnet. An der Ventilnadel 2 ist ein zweiter Befestigungsring 6 befestigt, z.B. durch Aufpressen. Ein Faltenbalg 7, der vorzugsweise als ein Metallfaltenbalg ausgebildet ist, ist mit einem ersten axialen Ende an dem ersten Befestigungsring 5 und mit einem zweiten axialen Ende an dem zweiten Befestigungsring 6 dicht befestigt, z.B. durch Anschweißen. Dadurch ist der Hochdruckbereich des Ventils, dem das unter hohem Fluiddruck stehende Fluid über den Fluidzulauf 4 zuführbar ist, gegenüber dem Niederdruckbereich des Ventils, der sich auf einem der Ventilnadel 2 zugewandten Innenbereich des Faltenbalgs 7 befindet, auch bezüglich einer Durchführung der Ventilnadel 2 durch den Ventildeckel 3 zuverlässig abgedichtet.On the valve cover 3, a first fastening ring 5 is tightly secured, e.g. by welding. The valve needle 2 is arranged axially movable in the first fastening ring 5. On the valve needle 2, a second fastening ring 6 is fixed, e.g. by pressing on. A bellows 7, which is preferably formed as a metal bellows, is fastened with a first axial end to the first fastening ring 5 and with a second axial end to the second fastening ring 6, e.g. by welding. As a result, the high-pressure region of the valve, to which the fluid under high fluid pressure can be supplied via the fluid inlet 4, relative to the low-pressure region of the valve, which is located on an inner portion of the bellows 7 facing the valve needle 2, also with respect to a passage of the valve needle 2 through the Valve cover 3 reliably sealed.

In dem Ventilkörper 1 ist ferner eine Ventilfeder 8 zwischen dem Ventilkörper 1 und einem Federteller 9 angeordnet. Der Federteller 9 ist mit dem zweiten Befestigungsring 6 gekoppelt. Dadurch wirkt eine Federkraft F3 der Ventilfeder 8 derart auf die Ventilnadel 2, dass diese in einen Ventilsitz 10 des Ventilkörpers 1 gezogen wird und das Ventil somit verschließt. In einem dem Ventilsitz 10 abgewandten Ende der Ventilnadel 2 ist in dem Niederdruckbereich des Ventils ein Hubaktor 11 angeordnet. Der Hubaktor 11 ist beispielsweise als ein Piezoaktor ausgebildet und ist so ausgebildet, dass die Ventilnadel 2 abhängig von einer elektrischen Ansteuerung des Hubaktors 11 entgegen der Federkraft F3 axial aus ihrer Schließposition heraus bewegbar ist. Ein Hub des Hubaktors 11, und somit auch ein Hub der Ventilnadel 2, ist abhängig von der Ansteuerung des Hubaktors 11 und von einer axialen Kraft, die einer Auslenkung des Hubaktors 11 entgegen wirkt und die so gerichtet ist, dass die Ventilnadel 2 in ihre Schließposition gezogen wird.In the valve body 1, a valve spring 8 between the valve body 1 and a spring plate 9 is further arranged. The spring plate 9 is coupled to the second fastening ring 6. As a result, a spring force F3 of the valve spring 8 acts on the valve needle 2 such that it is drawn into a valve seat 10 of the valve body 1 and thus closes the valve. In a valve seat 10 remote from the end of the valve needle 2, a Hubaktor 11 is disposed in the low pressure region of the valve. The Hubaktor 11 is formed for example as a piezoelectric actuator and is designed so that the valve needle 2 is movable axially out of its closed position as a function of electrical actuation of the lifting actuator 11 against the spring force F3. A stroke of Hubaktors 11, and thus a stroke of the valve needle 2, is dependent on the control of the Hubaktors 11 and an axial force which counteracts a deflection of the Hubaktors 11 and which is directed so that the valve needle 2 in its closed position is pulled.

Auf die Ventilnadel 2 wirken verschiedene axiale Kräfte. In Schließrichtung wirkt die Federkraft F3 der Ventilfeder 8 und eine Federkraft des Faltenbalgs 7, die abhängig ist von dessen Steifigkeit. Ferner wirkt in Schließrichtung eine hydraulisch schließende Kraft F1, die abhängig ist von einem hydraulisch wirksamen Durchmesser D1 des Faltenbalgs 7 (Figur 2).On the valve needle 2 act different axial forces. In the closing direction, the spring force F3 of the valve spring 8 and a spring force of the bellows 7, which depends on its rigidity. Furthermore, a hydraulically closing force F1, which is dependent on a hydraulically effective diameter D1 of the bellows 7 (FIG. 2), acts in the closing direction.

Eine hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 ist abhängig von dem hydraulisch wirksamen Durchmesser D1 des Faltenbalgs 7. Der hydraulisch wirksame Durchmesser D1 des Faltenbalgs 7 bzw. die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 sind insbesondere abhängig von einem Außendurchmesser des Faltenbalgs 7, können jedoch auch von einer anderen Größe des Faltenbalgs 7 abhängig sein. Bedingt durch das Fertigungsverfahren des Faltenbalgs 7 kann die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 im Wesentlichen nur abhängig sein z.B. von dessen Außendurchmesser. Der Außendurchmesser des Faltenbalgs 7 ist dann eine die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 repräsentierende Größe. Die die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 repräsentierende Größe kann jedoch ebenso z.B. die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 oder der hydraulisch wirksame Durchmesser D1 des Faltenbalgs 7 sein. Vorzugsweise wird die die hydraulisch wirksame Querschnittsfläche repräsentierende Größe und ein Zusammenhang mit der hydraulisch wirksamen Querschnittsfläche für einen Typ oder eine Bauform des Faltenbalgs 7 experimentell ermittelt, so dass mittels der die hydraulisch wirksame Querschnittsfläche repräsentierenden Größe einfach auf die hydraulisch wirksame Querschittsfläche des jeweiligen Faltenbalgs 7 dieses Typs bzw. dieser Bauform geschlossen werden kann. Eine mathematische Herleitung des Zusammenhangs ist gegebenenfalls für den Typ oder die Bauform des Faltenbalgs 7 ebenfalls möglich.A hydraulically effective cross-sectional area of the bellows 7 is dependent on the hydraulically effective diameter D1 of the bellows 7. The hydraulically effective diameter D1 of the bellows 7 and the hydraulically effective cross-sectional area of the bellows 7 are particularly dependent on an outer diameter of the bellows 7, but can also be dependent on a different size of the bellows 7. Due to the manufacturing process of the bellows 7, the hydraulically effective cross-sectional area of the bellows 7 can essentially only be dependent eg on its outer diameter. The outer diameter of the bellows 7 is then a hydraulically effective cross-sectional area of the bellows 7 representing size. However, the size representing the hydraulically effective cross-sectional area of the bellows 7 may also be, for example, the hydraulically effective cross-sectional area of the bellows 7 or the hydraulically effective diameter D1 of the bellows 7. Preferably, the hydraulic effective size representing cross-sectional area and a relationship with the hydraulically effective cross-sectional area for a type or design of the bellows 7 determined experimentally, so that by means of representing the hydraulically effective cross-sectional area size simply on the hydraulically effective cross-sectional area of the respective bellows 7 of this type or this design can be closed. A mathematical derivation of the relationship is optionally also possible for the type or design of the bellows 7.

In einem der Ventilnadel 2 abgewandten Außenbereich des Faltenbalgs 7, also in dem Hochdruckbereich des Ventils, herrscht der hohe Fluiddruck, z.B. mehrere zehn oder hundert bar. In dem Innenbereich des Faltenbalgs 7, also in dem Niederdruckbereich des Ventils, herrscht der niedrige Fluiddruck, z.B. weniger als zehn bar. Eine solche Druckdifferenz zischen dem Außenbereich und dem Innenbereich des Faltenbalgs 7 kann zu einem Zusammenpressen des Faltenbalgs 7 führen, wodurch die hydraulisch schließende Kraft F1 abhängig von einem Betrag der Druckdifferenz ist.In an outer region of the bellows 7 facing away from the valve needle 2, ie in the high-pressure region of the valve, the high fluid pressure, e.g. several tens or a hundred bar. In the inner region of the bellows 7, that is to say in the low-pressure region of the valve, the low fluid pressure, e.g. less than ten bar. Such a pressure difference between the outer region and the inner region of the bellows 7 can lead to a compression of the bellows 7, whereby the hydraulically closing force F1 is dependent on an amount of the pressure difference.

Eine hydraulisch öffnende Kraft F2 wirkt abhängig von dem Fluiddruck in dem Hochdruckbereich des Ventils und abhängig von einem Dichtkreisdurchmesser D2 des Ventilsitzes 10 auf die Ventilnadel 2 der hydraulisch schließenden Kraft F1 entgegen (Figur 3). Die hydraulisch schließende Kraft F1 und die hydraulisch öffnende Kraft F2 sind vorzugsweise so aufeinander abgestimmt, dass die hydraulisch schließende Kraft F1 mindestens so groß ist wie die hydraulisch öffnende Kraft F2. Dadurch ist sichergestellt, dass auch mit zunehmendem Fluiddruck in dem Hochdruckbereich des Ventils die Ventilnadel 2 in ihre Schließposition in den Ventilsitz 10 gedrückt wird und das Ventil somit zuverlässig und dicht schließt. Die Ventilfeder 8 stellt sicher, dass das Ventil auch dann geschlossen bleibt, wenn der Fluiddruck in dem Hochdruckbereich des Ventils sehr gering ist, z.B. während einer Betriebspause des Ventils.A hydraulically opening force F2 acts on the valve needle 2 of the hydraulically closing force F1 depending on the fluid pressure in the high-pressure region of the valve and depending on a sealing circle diameter D2 of the valve seat 10 (FIG. 3). The hydraulic closing force F1 and the hydraulic opening force F2 are preferably coordinated so that the hydraulic closing force F1 is at least as large as the hydraulic opening force F2. This ensures that even with increasing fluid pressure in the high pressure region of the valve, the valve needle 2 is pressed into its closed position in the valve seat 10 and thus the valve closes reliable and tight. The valve spring 8 ensures that the valve remains closed even when the fluid pressure in the high-pressure region of the valve is very low, for example during a pause in the operation of the valve.

Aufgrund von fertigungstechnisch unvermeidbaren Toleranzen kann die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 oder die Federkraft F3 der Ventilfeder 8 für jeden hergestellten Faltenbalg 7 oder für jede hergestellte Ventilfeder 8 unterschiedlich sein. Dies hat zur Folge, dass eine Bilanz der Federkraft F3, der hydraulisch schließenden Kraft F1 und der hydraulisch öffnenden Kraft F2 von Ventil zu Ventil variieren kann. Dadurch kann jedoch entsprechend auch die axiale Kraft variieren, die der Hubaktor 11 aufbringen muss, um die Ventilnadel 2 aus ihrer Schließposition heraus bewegen zu können. Da der Hub des Hubaktors 11 ebenfalls abhängig von der auf den Hubaktor 11 wirkenden axialen Kraft ist, kann somit bei einer vorgegebenen Ansteuerung des Hubaktors 11 auch ein Öffnungsgrad des Ventils variieren. Eine Einspritzmenge des Fluids ist jedoch abhängig von dem Dichtkreisdurchmesser D2 und von dem Öffnungsgrad des Ventils. Bei der vorgegebenen Ansteuerung des Hubaktors 11 kann somit auch die Einspritzmenge des Fluids entsprechend variieren. Beispielsweise kann der Außendurchmesser des Faltenbalgs 7 um etwa 0,2 Millimeter von seinem Sollwert abweichen. Dies kann zu einer Abweichung der axialen Kraft um z.B. etwa 20 bis 30 Newton führen.Due to manufacturing tolerances unavoidable tolerances, the hydraulically effective cross-sectional area of the bellows 7 or the spring force F3 of the valve spring 8 for each bellows 7 produced or for each manufactured valve spring 8 may be different. As a result, a balance of the spring force F3, the hydraulic closing force F1 and the hydraulic opening force F2 can vary from valve to valve. As a result, however, the axial force which the lifting actuator 11 has to apply in order to be able to move the valve needle 2 out of its closed position can also vary accordingly. Since the stroke of Hubaktors 11 is also dependent on the force acting on the Hubaktor 11 axial force, thus, at a predetermined control of the Hubaktors 11 and an opening degree of the valve vary. However, an injection amount of the fluid is dependent on the sealing circle diameter D2 and the opening degree of the valve. In the case of the predetermined actuation of the lifting actuator 11, the injection quantity of the fluid can accordingly also vary accordingly. For example, the outer diameter of the bellows 7 may differ by about 0.2 millimeters from its nominal value. This can lead to a deviation of the axial force by e.g. about 20 to 30 Newtons lead.

Um bei der vorgegebenen Ansteuerung des Hubaktors 11 mit jedem Injektor eine gleich große Menge Fluid zumessen zu können, muss die auf den Hubaktor 11 wirkende axiale Kraft für jedes Einspritzventil etwa gleich groß sein. Dies kann erreicht werden durch Auswählen einer geeigneten Kombination der Ventilfeder 8 bezüglich ihrer Federkraft F3 und dem Faltenbalg 7 bezüglich seiner hydraulisch wirksamen Querschnittsfläche während der Montage des Ventils bzw. seiner die hydraulisch wirksame Querschnittsfläche repräsentierenden Größe.In order to be able to meter an equal amount of fluid with each injector at the given activation of the lifting actuator 11, the axial force acting on the lifting actuator 11 must be approximately the same for each injection valve. This can be achieved by selecting a suitable combination of the valve spring 8 with respect to its spring force F3 and the bellows 7 with respect to its hydraulically effective cross-sectional area during the assembly of the valve or its size representing the hydraulically effective cross-sectional area.

Figur 4 zeigt ein Ablaufdiagramm eines ersten Verfahrens zum Herstellen des Ventils. Das Verfahren beginnt in einem Schritt S1. In einem Schritt S2 wird die die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 repräsentierende Größe ermittelt, z.B. der Außendurchmesser des Faltenbalgs 7 oder der hydraulisch wirksame Durchmesser D1 des Faltenbalgs 7. In einem Schritt S3 wird abhängig von der die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 repräsentierenden Größe die Ventilfeder 8 bezogen auf ihre Federkraft F3 ausgewählt.FIG. 4 shows a flow chart of a first method for producing the valve. The method starts in a step S1. In a step S2, the variable representing the hydraulically effective cross-sectional area of the bellows 7 is determined, e.g. the outer diameter of the bellows 7 or the hydraulically effective diameter D1 of the bellows 7. In a step S3, the valve spring 8 is selected based on their spring force F3, depending on the size representing the hydraulically effective cross-sectional area of the bellows 7.

Das Auswählen erfolgt z.B. für das in Figur 1 dargestellte Ventil derart, dass die Federkraft F3 der Ventilfeder 8 umso größer gewählt wird, je kleiner die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 ist. Entsprechend wird die Federkraft F3 der Ventilfeder 8 umso kleiner gewählt, je größer die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 ist.The selection is made e.g. for the valve shown in Figure 1 such that the spring force F3 of the valve spring 8 is chosen to be larger, the smaller the hydraulically effective cross-sectional area of the bellows 7. Accordingly, the spring force F3 of the valve spring 8 is selected to be smaller, the larger the hydraulically effective cross-sectional area of the bellows 7.

Das Auswählen wird vorzugsweise automatisch ausgeführt, z.B. mittels eines Steuerprogramms. Das Steuerprogramm hat beispielsweise zugriff auf die jeweilige Federkraft F3 der für die Montage des Ventils verfügbaren Ventilfedern 8. Das Steuerprogramm ermittelt z.B. aus der die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 repräsentierenden Größe diejenige Ventilfeder 8, deren Federkraft F3 im Zusammenwirken mit der die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 repräsentierenden Größe zu der axialen Kraft führt, die von der vorgegebenen axialen Kraft möglichst wenig abweicht.The selection is preferably carried out automatically, for example by means of a control program. The control program has, for example, access to the respective spring force F3 of the valve springs 8 available for mounting the valve. The control program determines, for example from the variable representing the hydraulically effective cross-sectional area of the bellows 7 that valve spring 8 whose spring force F3 cooperates with the hydraulically effective cross-sectional area of the bellows 7 representing size leads to the axial force which deviates as little as possible from the predetermined axial force.

Der Faltenbalg 7 und die Ventilfeder 8 entsprechen zwei parallel angeordneten Federn, deren Federkräfte sich addieren. Somit kann durch geeignetes Kombinieren des Faltenbalgs 7 bezüglich seiner die hydraulisch wirksame Querschnittsfläche repräsentierenden Größe und der Ventilfeder 8 bezüglich ihrer Federkraft F3 eine axiale Kraft vorgegeben werden, die auf die Ventilnadel 2 wirken soll.The bellows 7 and the valve spring 8 correspond to two parallel springs whose spring forces add up. Thus, by suitably combining the bellows 7 with respect to its size representing the hydraulically effective cross-sectional area and the valve spring 8 with respect to its spring force F3, an axial force to act on the valve needle 2 can be given.

In einem Schritt S4 wird die Ventilnadel 2 in dem Ventilkörper 1 angeordnet und über die Ventilfeder 8 und den Faltenbalg 7 so mit dem Ventilkörper 1 gekoppelt, dass das Ventil mittels der vorgegebenen axialen Kraft abhängig von dem in dem Niederdruckbereich oder dem Hochdruckbereich vorherrschenden Fluiddruck zu öffnen oder zu schließen ist. Das Verfahren endet in dem Schritt S5.In a step S4, the valve needle 2 is arranged in the valve body 1 and coupled via the valve spring 8 and the bellows 7 with the valve body 1, that to open the valve by means of the predetermined axial force depending on the prevailing in the low pressure region or the high pressure fluid pressure or close. The process ends in step S5.

Figur 5 zeigt ein Ablaufdiagramm eines zweiten Verfahrens zum Herstellen des Ventils, das in einem Schritt S6 beginnt. In einem Schritt S7 wird die Federkraft F3 der Ventilfeder 8 ermittelt. In einem Schritt S8 wird abhängig von der Federkraft F3 der Ventilfeder 8 der Faltenbalg 7 bezogen auf die seine hydraulisch wirksame Querschnittsfläche repräsentierende Größe ausgewählt.FIG. 5 shows a flowchart of a second method for producing the valve, which starts in a step S6. In a step S7, the spring force F3 of the valve spring 8 is determined. In a step S8, depending on the spring force F3 of the valve spring 8, the bellows 7 is selected based on the variable representing its hydraulically effective cross-sectional area.

Die Auswahl erfolgt dabei derart, dass die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 umso größer gewählt wird, je kleiner die Federkraft F3 der Ventilfeder 8 ist, und umso kleiner gewählt wird, je größer die Federkraft F3 der Ventilfeder 8 ist.The selection takes place in such a way that the hydraulically effective cross-sectional area of the bellows 7 is selected to be greater, the smaller the spring force F3 of the valve spring 8, and the smaller the larger the spring force F3 of the valve spring 8 is.

Das Auswählen wird vorzugsweise automatisch ausgeführt, z.B. mittels des Steuerprogramms. Das Steuerprogramm hat beispielsweise zugriff auf die jeweilige die hydraulisch wirksame Querschnittsfläche repräsentierende Größe der für die Montage des Ventils verfügbaren Faltenbälge 7. Das Steuerprogramm ermittelt z.B. aus der Federkraft F3 denjenigen Faltenbalg 7, dessen die hydraulisch wirksame Querschnittsfläche repräsentierende Größe im Zusammenwirken mit der Federkraft F3 zu der axialen Kraft führt, die von der vorgegebenen axialen Kraft möglichst wenig abweicht.The selection is preferably carried out automatically, for example by means of the control program. The control program has, for example, access to the respective hydraulically effective The control program determines, for example from the spring force F3 that bellows 7, the hydraulically effective cross-sectional area representing size in cooperation with the spring force F3 leads to the axial force, the predetermined axial force deviates as little as possible.

In einem Schritt S9 wird die Ventilnadel 2 in dem Ventilkörper 1 angeordnet und über die Ventilfeder 8 in dem Faltenbalg 7 so mit dem Ventilkörper 1 gekoppelt, dass das Ventil mittels der vorgegebenen axialen Kraft, die auf die Ventilnadel 2 wirkt, abhängig von dem in dem Niederdruckbereich oder dem Hochdruckbereich vorherrschenden Fluiddruck zu öffnen oder zu schließen ist. Das Verfahren endet in einem Schritt S10.In a step S9, the valve needle 2 is arranged in the valve body 1 and coupled via the valve spring 8 in the bellows 7 so with the valve body 1 that the valve by means of the predetermined axial force acting on the valve needle 2, depending on the in the Low pressure range or the high pressure area prevailing fluid pressure to open or close is. The method ends in a step S10.

Die beiden Verfahren zum Herstellen des Ventils ermöglichen das Herstellen einer Vielzahl von Ventilen, die mit der gleichen vorgegebenen axialen Kraft betätigt werden können, ohne dass nach der Montage des jeweiligen Ventils ein individuelles Kalibrieren bezüglich der vorgegebenen axialen Kraft durchgeführt werden muss. Ferner kann das Ermitteln der Federkraft F3 der Ventilfeder 8 oder der die hydraulisch wirksame Querschnittsfläche des Faltenbalgs 7 repräsentierenden Größe und das Auswählen der geeigneten Kombination der Ventilfeder 8 und des Faltenbalgs 7 zum Einstellen der vorgegebenen axialen Kraft einfach automatisiert werden.The two methods for producing the valve make it possible to produce a plurality of valves which can be actuated with the same predetermined axial force, without having to perform an individual calibration with respect to the predetermined axial force after the assembly of the respective valve. Further, the determination of the spring force F3 of the valve spring 8 or the size representing the hydraulically effective cross-sectional area of the bellows 7 and the selection of the proper combination of the valve spring 8 and the bellows 7 for setting the predetermined axial force can be easily automated.

Claims (3)

Verfahren zum Herstellen eines Ventils, das einen Ventilkörper (1), eine Ventilnadel (2) und eine Ventilfeder (8) umfasst und das einen Faltenbalg (7) zum Abdichten eines Hochdruckbereichs gegenüber einem Niederdruckbereich des Ventils aufweist, wobei bei dem Verfahren - eine eine hydraulisch wirksame Querschnittsfläche des Faltenbalgs (7) repräsentierende Größe ermittelt wird, - die Ventilfeder (8) bezogen auf ihre Federkraft (F3) abhängig von der die hydraulisch wirksame Querschnittsfläche des Faltenbalgs (7) repräsentierenden Größe ausgewählt wird, und - die Ventilnadel (2) in dem Ventilkörper (1) angeordnet und über die Ventilfeder (8) und den Faltenbalg (7) so mit dem Ventilkörper (1) gekoppelt wird, dass das Ventil mittels einer vorgegebenen axialen Kraft, die auf die Ventilnadel (2) wirkt, abhängig von einem in dem Niederdruckbereich oder dem Hochdruckbereich vorherrschenden Fluiddruck zu öffnen oder zu schließen ist. A method of manufacturing a valve comprising a valve body (1), a valve needle (2) and a valve spring (8) and having a bellows (7) for sealing a high pressure area from a low pressure area of the valve, the method a variable representing a hydraulically effective cross-sectional area of the bellows (7) is determined, - The valve spring (8) based on their spring force (F3) is selected depending on the size of the hydraulically effective cross-sectional area of the bellows (7) representing size, and - The valve needle (2) arranged in the valve body (1) and via the valve spring (8) and the bellows (7) so with the valve body (1) is coupled, that the valve by means of a predetermined axial force acting on the valve needle ( 2) acts to open or close depending on a prevailing in the low pressure region or the high pressure area fluid pressure. Verfahren zum Herstellen eines Ventils, das einen Ventilkörper (1), eine Ventilnadel (2) und eine Ventilfeder (8) umfasst und das einen Faltenbalg (7) zum Abdichten eines Hochdruckbereichs gegenüber einem Niederdruckbereich des Ventils aufweist, wobei bei dem Verfahren - eine Federkraft (F3) der Ventilfeder (8) ermittelt wird, - der Faltenbalg (7) bezogen auf eine seine hydraulisch wirksame Querschnittsfläche repräsentierende Größe abhängig von der Federkraft (F3) der Ventilfeder (8) ausgewählt wird und - die Ventilnadel (2) in dem Ventilkörper (1) angeordnet und über die Ventilfeder (8) und den Faltenbalg (7) so mit dem Ventilkörper (1) gekoppelt wird, dass das Ventil mittels einer vorgegebenen axialen Kraft, die auf die Ventilnadel (2) wirkt, abhängig von einem in dem Niederdruckbereich oder dem Hochdruckbereich vorherrschenden Fluiddruck zu öffnen oder zu schließen ist. A method of manufacturing a valve comprising a valve body (1), a valve needle (2) and a valve spring (8) and having a bellows (7) for sealing a high pressure area from a low pressure area of the valve, the method - A spring force (F3) of the valve spring (8) is determined - The bellows (7) based on a hydraulically effective cross-sectional area representing size is selected depending on the spring force (F3) of the valve spring (8) and - The valve needle (2) arranged in the valve body (1) and via the valve spring (8) and the bellows (7) is so coupled to the valve body (1) that the valve by means of a predetermined axial force acting on the valve needle ( 2), depending on one in the low pressure range or the High-pressure area prevailing fluid pressure to open or close is. Verfahren nach einem der vorstehenden Ansprüche, bei dem die die hydraulisch wirksame Querschnittsfläche des Faltenbalgs (7) repräsentierende Größe ein Außendurchmesser des Faltenbalgs (7) ist.Method according to one of the preceding claims, in which the variable representing the hydraulically effective cross-sectional area of the bellows (7) is an outer diameter of the bellows (7).
EP20060114885 2005-06-06 2006-06-02 Manufacturing method for an injector Expired - Fee Related EP1731754B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510025952 DE102005025952B4 (en) 2005-06-06 2005-06-06 Method for producing a valve

Publications (2)

Publication Number Publication Date
EP1731754A1 true EP1731754A1 (en) 2006-12-13
EP1731754B1 EP1731754B1 (en) 2010-03-31

Family

ID=36950172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060114885 Expired - Fee Related EP1731754B1 (en) 2005-06-06 2006-06-02 Manufacturing method for an injector

Country Status (2)

Country Link
EP (1) EP1731754B1 (en)
DE (2) DE102005025952B4 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290221A1 (en) * 2009-07-08 2011-03-02 Robert Bosch GmbH Apparatus for injecting fuel
EP2366888A1 (en) * 2010-03-17 2011-09-21 Continental Automotive GmbH Valve assembly for an injection valve, injection valve and method for assembling a valve assembly of an injection valve
WO2012048999A3 (en) * 2010-10-14 2012-08-16 Robert Bosch Gmbh Fuel injection device
WO2013075876A1 (en) * 2011-11-24 2013-05-30 Robert Bosch Gmbh Valve for metering in a flowing medium
EP3037650A1 (en) * 2014-12-22 2016-06-29 Continental Automotive GmbH Valve assembly and fluid injection valve
WO2017060154A1 (en) * 2015-10-07 2017-04-13 Continental Automotive Gmbh Fluid injector for operating a motor vehicle, and method for producing a fluid injector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380754B (en) * 2011-05-05 2014-01-22 金龙精密铜管集团股份有限公司 Production method of corrugated gas collecting pipeline member for air-conditioner
EP2568155B1 (en) * 2011-09-09 2018-11-14 Continental Automotive GmbH Valve assembly and injection valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141274A1 (en) * 1991-12-14 1993-06-17 Frantisek Sobkovcik Fuel injection device for IC engine - has nozzle housing with fuel channel, which opens into chamber with bellows and needle, connected to valve
EP1079099A2 (en) * 1999-08-24 2001-02-28 Siemens Aktiengesellschaft Metering valve
US6311950B1 (en) * 1999-04-20 2001-11-06 Siemens Aktiengesellschaft Fluid metering device
US20040004139A1 (en) * 2000-11-02 2004-01-08 Bernhard Fischer Fluid dosing device with a throttle point
US20040011892A1 (en) * 2001-07-09 2004-01-22 Gunther Hohl Fuel injection valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10250720A1 (en) * 2002-10-31 2004-05-13 Robert Bosch Gmbh Injector
DE10344880A1 (en) * 2003-09-26 2005-04-14 Robert Bosch Gmbh Fuel injector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141274A1 (en) * 1991-12-14 1993-06-17 Frantisek Sobkovcik Fuel injection device for IC engine - has nozzle housing with fuel channel, which opens into chamber with bellows and needle, connected to valve
US6311950B1 (en) * 1999-04-20 2001-11-06 Siemens Aktiengesellschaft Fluid metering device
EP1079099A2 (en) * 1999-08-24 2001-02-28 Siemens Aktiengesellschaft Metering valve
US20040004139A1 (en) * 2000-11-02 2004-01-08 Bernhard Fischer Fluid dosing device with a throttle point
US20040011892A1 (en) * 2001-07-09 2004-01-22 Gunther Hohl Fuel injection valve

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290221A1 (en) * 2009-07-08 2011-03-02 Robert Bosch GmbH Apparatus for injecting fuel
EP2366888A1 (en) * 2010-03-17 2011-09-21 Continental Automotive GmbH Valve assembly for an injection valve, injection valve and method for assembling a valve assembly of an injection valve
WO2011113746A1 (en) * 2010-03-17 2011-09-22 Continental Automotive Gmbh Valve assembly for an injection valve, injection valve and method for assembling a valve assembly of an injection valve
US9046066B2 (en) 2010-03-17 2015-06-02 Continental Automotive Gmbh Valve assembly for an injection valve, injection valve and method for assembling a valve assembly of an injection valve
WO2012048999A3 (en) * 2010-10-14 2012-08-16 Robert Bosch Gmbh Fuel injection device
JP2013539838A (en) * 2010-10-14 2013-10-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection device
WO2013075876A1 (en) * 2011-11-24 2013-05-30 Robert Bosch Gmbh Valve for metering in a flowing medium
CN103930667A (en) * 2011-11-24 2014-07-16 罗伯特·博世有限公司 Valve for metering in a flowing medium
US9822750B2 (en) 2011-11-24 2017-11-21 Robert Bosch Gmbh Valve for metering in a flowing medium
EP3037650A1 (en) * 2014-12-22 2016-06-29 Continental Automotive GmbH Valve assembly and fluid injection valve
WO2016102237A1 (en) * 2014-12-22 2016-06-30 Continental Automotive Gmbh Valve assembly and fluid injection valve
WO2017060154A1 (en) * 2015-10-07 2017-04-13 Continental Automotive Gmbh Fluid injector for operating a motor vehicle, and method for producing a fluid injector

Also Published As

Publication number Publication date
EP1731754B1 (en) 2010-03-31
DE102005025952B4 (en) 2009-01-29
DE102005025952A1 (en) 2006-12-07
DE502006006550D1 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
EP1731754B1 (en) Manufacturing method for an injector
DE19708304C2 (en) Movement transmission device and injection valve with a movement transmission device
EP1490594B1 (en) Fuel injection valve
DE102008032133B4 (en) Fuel injector
DE102015207307A1 (en) fuel injector
EP2206912B1 (en) Fuel injector
DE10019765B4 (en) Valve for controlling liquids
DE102008005523A1 (en) fuel injector
DE102009001099A1 (en) Fuel injection valve for internal-combustion engine, has valve unit partially guided in sleeve, and spring element surrounding sleeve and subjecting sleeve with compressive force for position fixation in axial and/or radial directions
WO2016034402A1 (en) Proportional valve that can be actuated electromagnetically
DE102019206037B4 (en) Arrangement for an inlet valve, method for producing an arrangement for an inlet valve and high-pressure fuel pump for a motor vehicle
DE102006033878A1 (en) Nozzle assembly for injecting valve, has nozzle body and needle arranged to release fluid flow to row of injecting holes only by needle in cooperation with wall of recess downstream to passage in position range of needle
EP2440770A1 (en) Injection valve comprising a transmission unit
WO2010031628A1 (en) Fuel injection valve
DE102012211169A1 (en) Fuel injector for injecting fuel to chamber of combustion engine, has injection port that is hydraulically connected with high pressure space via through-hole, such that pressure chamber is fuel-supplied by lifting nozzle needle
DE102013212140A1 (en) control valve
DE102018200247A1 (en) Valve arrangement for gas pressure regulation, fuel system with valve arrangement for gas pressure regulation
DE102016224722A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102009026564A1 (en) Fuel injector for injecting fuel into combustion chamber of internal-combustion engine, has control valve element that is formed and arranged such that small resulting hydraulic force is applied on control valve element
DE10002720A1 (en) Valve for controlling liquids
DE10050599B4 (en) Injection valve with a pump piston
DE60304442T2 (en) Measuring device with flow calibration device and method for adjusting the flow rate of the measuring device
DE102010019327B4 (en) valve means
DE60310362T2 (en) Dosing device and method for adjusting the spring preload
DE102007022587A1 (en) Injector with pressure compensated control valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070611

AKX Designation fees paid

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006006550

Country of ref document: DE

Date of ref document: 20100512

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100630

26N No opposition filed

Effective date: 20110104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502006006550

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006006550

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210625

Year of fee payment: 16

Ref country code: DE

Payment date: 20210630

Year of fee payment: 16

Ref country code: FR

Payment date: 20210622

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006006550

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006006550

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220602