EP1731631B1 - Production of a composite material - Google Patents

Production of a composite material Download PDF

Info

Publication number
EP1731631B1
EP1731631B1 EP06114825A EP06114825A EP1731631B1 EP 1731631 B1 EP1731631 B1 EP 1731631B1 EP 06114825 A EP06114825 A EP 06114825A EP 06114825 A EP06114825 A EP 06114825A EP 1731631 B1 EP1731631 B1 EP 1731631B1
Authority
EP
European Patent Office
Prior art keywords
anode
metal
cathode
reinforcement material
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06114825A
Other languages
German (de)
French (fr)
Other versions
EP1731631A3 (en
EP1731631A2 (en
Inventor
Joachim Hausmann
Alexander Arnold
Bernd Friedrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP1731631A2 publication Critical patent/EP1731631A2/en
Publication of EP1731631A3 publication Critical patent/EP1731631A3/en
Application granted granted Critical
Publication of EP1731631B1 publication Critical patent/EP1731631B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/10Refractory metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/04Electrolytic production, recovery or refining of metals by electrolysis of melts of magnesium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a method for producing a composite material and to an apparatus for carrying out this method.
  • metals are often mined in the form of metal oxides. Depending on the ore, more or less expensive processes for reducing the oxides and cleaning foreign substances are used to recover the metal. This will be explained in more detail below with reference to the production of titanium.
  • the Kroll process is usually used ( W. Kroll, Production of Ductile Titanium, Transact. Electrochem. Soc. 78 (1940), pp. 35-37 ).
  • Starting product for this is rutile (TiO 2 ) or ilmenite (FeTiO 3 ), which is prepared after the mining extraction.
  • Essential for the process is the chlorination intermediate, which generates titanium tetrachloride (TiCl 4 ) from titanium oxides and removes impurities.
  • TiCl 4 titanium tetrachloride
  • the final reduction of TiCl 4 to titanium occurs with magnesium.
  • the resulting magnesium chloride is decomposed electrolytically and recycled to the circuit as chlorine and magnesium.
  • the end product of this process is a porous but pure titanium sponge.
  • the process consists of a chain of several sub-processes. This results in equipment and energy a considerable effort.
  • the titanium sponge obtained by the Kroll process or any other process can be processed by remelting, alloying other elements, forging or rolling to semi-finished products, from which corresponding components can be produced.
  • further processing into titanium matrix composites (TMC) is also possible.
  • TMC titanium matrix composites
  • TMCs The difficulty in the production of TMCs is the high melting point and the reactivity of the titanium alloys. Therefore, methods have been developed that allow for composite fabrication below the matrix melt temperature. The lowest possible process temperature in conjunction with short cycle times is the prerequisite for minimizing harmful reaction products.
  • the composite is consolidated at about 1900 bar and in a temperature range of 920 to 980 ° C ( Leyens, C., Hausmann, J., Kumpfert, J., Long Fiber Reinforced Titanium Matrix Composites: Fabrication, Properties, Applications, in Titanium and Titanium Alloys, Peters, M., Leyens, C., eds. 2002, Wiley-VCH: Weinheim. Pp. 321-350 ).
  • This process gives a composite material of the highest quality.
  • a nearly ideal hexagonal fiber arrangement can be achieved. A mutual contact of the fibers is almost excluded by the fiber coating. This is the basic requirement for excellent mechanical properties.
  • titanium matrix composites In addition to the titanium fabrication process described above, a number of other process steps are required to produce the titanium matrix composites. Therefore, the cost of producing titanium matrix composites is again significantly higher than that for the production of titanium and titanium alloys.
  • titanium matrix composites not only titanium matrix composites but also composites with other metallic matrices, such as aluminum, magnesium, nickel and their alloys, are concerned with this issue.
  • DE 42 04 120 C1 describes a process for producing a carbon fiber-aluminum composite in organic solvents, in which the fibers are merely coated in a first step and in a second step the coated fibers are placed in a molten metal to obtain the composite.
  • the anode compartment is not separated from the cathode compartment by a membrane.
  • the metal is already used in its target state (metallic) as the anode material.
  • the coating of the fibers serves as an auxiliary layer for further composite material production.
  • WO 2005/019501 A2 described method does not use a membrane for separating the anodes from the cathode chamber.
  • US 4,341,823 A also describes a two-step process for producing a fiber-metal composite, in which the fibers are first electroless plating coated with metal and then dipped into a lead melt after several further coating operations to obtain the finished composite material.
  • EP 1 489 192 A1 describes a process for the production of titanium-fiber composites, wherein the fibers to be coated must be provided with a slurry in a first step, and then coated with titanium in a second step.
  • FR 2 297 261 describes a device for electrochemical aqueous processes, which does not take into account the high temperatures of molten salt.
  • the anode may consist of a carbon plate, wherein titanium dioxide is reduced in a metal salt melt to titanium.
  • CN 1376813 describes the production of Al-Ti alloys using a carbonaceous anode containing titanium dioxide.
  • the invention is therefore based on the object to find a method and an apparatus for producing a metal-fiber composite material, after which the composite material is available in one step and the resulting oxygen can be easily removed without restricting the process otherwise.
  • Another object of the invention is the electrolysis of a Me x O y -C anode with the aim of environmentally friendly one-stage and chlorine-free production of cost-effective composites with Me metal matrix.
  • the object of the present invention is further to provide composites with a metal matrix, in particular of metals, which have a melting point above the decomposition temperatures of the reinforcing material or tend to undesirable reactions between the metal and the reinforcing material.
  • the object underlying the invention is achieved in a first embodiment by a method for producing a metal-reinforcing material composite material according to claim 1.
  • the membrane or the diaphragm is therefore essential for the invention, so that the carbon located in the anode compartment can not get to the cathode and react there with the very reactive metals such as Ti. Furthermore, the membrane causes the preferably existing loose bed of carbon and metal oxides remains limited to the anode compartment.
  • the membrane is advantageously designed so that it is permeable to ions at most, so that larger particles remain in the anode compartment. Therefore, the membrane is preferably made of fireclay or porous Al 2 O 3 -FF materials (refractory) and preferably has a thickness in a range of 8 to 15 mm.
  • the metal can be dissolved in the electrolyte and deposited on the cathode.
  • the proposed process is characterized by a significantly reduced number of process steps, in particular if the process of metal production is taken into consideration. This results in significant economic and environmental benefits.
  • the essential idea of the invention is therefore a new method of metal production with the Combine composite production directly.
  • the number of process steps for producing a composite material with metal matrix compared to the prior art can be significantly reduced.
  • Advantage is a much more resource-friendly and environmentally friendly production of the composite material. This can be achieved by an electrolytic process in which an anode of metal oxides and carbon is used, by means of which the metal is dissolved in a molten salt and deposited on preferably formed as a cathode reinforcing material.
  • a material which at the same time serves as a reinforcing material in a composite material for example ceramic or carbon fibers
  • a metal matrix composite material is obtained as the end product, without the need for an auxiliary cathode.
  • the composite material obtainable by the process according to the invention may initially have pores and / or be very brittle.
  • the material can advantageously be compacted by a subsequent pressing operation.
  • the pressing can be unidirectional or isostatic with or without the influence of heat.
  • it corresponds to a preferred embodiment of the method according to the invention, when a reinforcing material is coated with the metallic matrix and this is pressed in a subsequent pressing operation to form a compact composite material.
  • Carbon in the anode compartment can easily bind the resulting oxygen and, being conductive, reintroduce it to the molten salt, or optionally transport it and release it to the environment.
  • carbon is used in the anode space in the form of a loose bed.
  • the carbon may be present for example as a solid petroleum pitch or as coke. If the carbon is in the form of a loose bed of solid petroleum pitch, it may optionally melt at the necessary process temperature and encase the metal oxide particles.
  • the use of carbon in the anode space significantly improves the conductivity of the anode compared to the metal oxide alone and thus makes the process considerably more efficient. Furthermore, carbon has the advantage of easy availability which can not be underestimated compared with comparable materials.
  • Salt melts according to the invention include melts in which inorganic salts (electrolytes) are more or less dissociated in their ions.
  • inorganic salts electrolytes
  • salt melts which consist of one, and those, which consist of several components.
  • molten salts are used as heat transfer agents, for example in heating baths (salt baths) and in heat exchangers, recently also as heat storage (for example with KF ⁇ 4 H 2 O, melting point 18.5 ° C), for covering and cleaning molten Metals (descaling, prevention of air entry and dissolution of oxidic impurities) or in the heat treatment of metallic workpieces (in particular during tempering and hardening of steel and in nitriding), for electroplating of refractory materials and in batteries.
  • the process is carried out in a molten salt, wherein the salts are in turn preferably selected from conventional fluxes, for example from the group of chlorides and fluorides and mixtures thereof.
  • the salts are preferably metal salts of the first and second main groups, more preferably metals selected from the group K, Li, Ca and Mg, and mixtures thereof.
  • the metal oxide in the anode compartment can be chlorinated, become itself an electrolyte, and then deposit on the cathode.
  • the halide ion becomes part of the molten salt again.
  • metal oxide of the refractory and / or light metals in particular the metals Al, Mg, Ti, Ni, Nb, W and / or Zr, and very particularly preferably TiO 2 or Al 2 O 3 , since these metals with reinforcing materials particularly lightweight yet mechanically strong and torsion-free composites result.
  • the metal oxide is preferably used as a loose bed, as granules or as a powder. Another advantage of this embodiment is that no expensive Ti metal is needed for the production of a composite material, for example with Ti, but the much cheaper TiO 2 can be used.
  • Light metal in the context of the invention are metallic materials having a specific density of at most 4.5, in particular 5 g / cm 3 . These include, for example, Mg, Al, Be and Ti and their alloys. Light metals are preferably used where the weight of components plays a role in terms of optimal energy use, for example in aviation and automotive technology, but also in building services.
  • the anode current density is adjusted so that the forming Ti-chlorides dissolve in the salt (electrolyte) and do not volatilize. This will cause the chemical equilibrium within the electrolytic cell to be longer stable and prolong the maintenance intervals accordingly. Furthermore, many of these volatile salts are toxic and / or corrosive and should therefore be avoided to save costly removal devices.
  • a reinforcing material in the form of fibers, particles and / or an open-pore foam is used.
  • the fiber material is preferably a metal, a ceramic or carbon, wherein among the fibers cylindrical bodies having a diameter in a range of 4 to 500 microns and a length, the at least 10 times the diameter, preferably.
  • electrically non-conductive ceramics as a fiber material, these can preferably be doped to produce the conductivity, deliberately contaminated or coated conductive. However, a corresponding precoating, doping or targeted contamination is not absolutely necessary.
  • a reinforcing material of metal, carbon and / or ceramic, in particular of SiC is used. It has been found that mechanically particularly stable composites are available compared to other materials.
  • the reinforcing material is conductive or conductive coated, since this can then be used as a cathode itself and makes an auxiliary cathode superfluous.
  • the reinforcing material is preferably used without pretreatment with the metal oxide. As a result, an additional process step can be saved and the process can be significantly streamlined. It has been found that the omission of the pretreatment does not lead to any substantial loss of the properties of the resulting composite material.
  • the reinforcing material, the metal oxide and the process conditions are advantageously selected so that the metal resulting from the metal oxide during the electrolysis does not react chemically or in a limited way with the reinforcing material and thereby is produced to a corresponding composite material. This achieves bonding of the reinforcing material to the metal, which has excellent mechanical properties such as high strength and rigidity.
  • the process is preferably carried out at temperatures in a range of 400 to 900 ° C, more preferably in a range of 800 to 900 ° C.
  • low temperatures can be saved significantly costs.
  • These low temperatures are obtainable, for example, by molten salts containing a mixture of LiCl, KCl and CaCl 2 .
  • the electrolytically produced composite material is advantageously subjected to a subsequent pressing operation, optionally with heat treatment, whereby this compacted and so a compact composite material is produced.
  • Intermediate product is preferably a SiC fiber, which is preferably coated with titanium.
  • such a coated fiber can serve as a raw material for making a composite by compressing bundles thereof and thereby densifying the metallic coating to form the matrix in a compact composite.
  • the cathode material and / or the anode material is preferably continuously supplied and removed. This can also do that entire process can be carried out continuously, thus simplifying the manufacturing process.
  • the object according to the invention is achieved by an electrolytic cell for producing a composite material comprising at least one anode space and at least one cathode space which is separated from the anode space by a membrane (ie a diaphragm), characterized in that the anode is a conductive one Anode, containing carbon and at least one metal oxide, wherein the cathode space, a reinforcing material in the form of fibers, particles and / or an open-cell foam in a molten salt electrolyte is provided.
  • a membrane ie a diaphragm
  • An auxiliary cathode may be provided in the cathode compartment. This is necessary even if the reinforcing material is not conductive or the reinforcing material can not act as a cathode for another reason. In this case, the cathode space is partially or completely filled with the reinforcing material. The metal is now deposited on the auxiliary cathode and thus grows around the reinforcing material to obtain the composite material according to the invention.
  • a plurality of anode compartments may be provided. This is particularly advantageous because it also allows the deposition of alloys, in particular with concentration gradients.
  • the cathode itself consists of the reinforcing material, which is coated conductive or conductive for this purpose.
  • an additional auxiliary cathode is no longer imperative, even if it can still be used.
  • the structure of the device and the operation of the method for producing a composite material according to the invention are based on Fig. 1 described.
  • the electrolytic cell 1 is divided by a diaphragm 2 into anode 3 and cathode chamber 4.
  • the electrolyte 5 In the cell 1 is the electrolyte 5.
  • the anode chamber 3 In the anode chamber 3 is a mixture of metal oxide (for example, TiO 2 ) and Carbon carrier 6 given, for example, oil pitch.
  • a current conductor 7 is used.
  • the cathode chamber 4 can advantageously be additionally contained an auxiliary anode made of a metal.
  • the cathode consists of the reinforcing fibers 9, which are held by a holder 8 (cathode) and electrically contacted.
  • a holder 8 cathode
  • Me electrolyte selection
  • Me forms a powder, sponge or dense coating on the reinforcing material 9.
  • a fiber material which is coated with a dense Me layer the later forms the matrix in a composite material.
  • the cathode 9, which later serves as a reinforcing material but can also advantageously an open-cell foam of carbon, a ceramic or a metal are used, then during the electrolysis, the pores are partially or completely filled with the electrolysis product Me.
  • an auxiliary cathode 10 accordingly Fig. 2 located.
  • the reinforcing material 11 is a non-conductor or is present in loose form, for example as a particle or cut fiber.
  • the cathode 10 and reinforcing material 11 are then arranged so that the deposited metal 12 is obtained in the region of the cathode, thereby enclosing or penetrating the reinforcing material.
  • a mixture of LiCl, KCl and CaCl 2 is used as electrolyte 5. This has a melting point of about 430 ° C.
  • the electrolyte 5 is melted in a crucible 13.
  • a mixture of carbon and titanium dioxide powder 6 is given in the divided by a diaphragm 2 anode space.
  • the reinforcing fibers 9 which are fed continuously via a feed 14 and contacted with the guide 15 and deflected.
  • the Ti chlorides formed dissolve in the electrolyte 5 and are converted by the dissolved in the electrolyte 5 Ca at the cathode to Ti and CaCl 2 .
  • CaCl 2 dissociates into 2Cl - and Ca 2+ .
  • the anode current density is adjusted so that predominantly TiCl 2 forms.
  • TiCl 2 is again converted together with Ca 2+ into Ti and CaCl 2 .
  • the Ti forms a tight coating on the reinforcing fiber 9 connected as a cathode. Through the discharge 16, the titanium-coated fiber is continuously removed from the process.
  • the crucible 13 contains two anode chambers 3 containing mixtures of carbon and different metal oxides 6.
  • the deposition rate of the different metals can be adjusted so as to be able to produce a metal alloy as matrix material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

In a process to form a composite material to reinforce a metal structure, an anode containing carbon and a metal oxide are brought into electrolytic contact with a cathode in the vicinity of the material to be strengthened. The metal is deposited under cathode conditions, the membrane sub-dividing the electrolytic cell into anode and cathode chambers. The anode is an inorganic substance containing CaCl 2. The metal oxide is a lightweight metal e.g. Al, Mg, Ti, Ni, Nb, W and/or Zr. The strengthening material is an electrically-conducting fiber, particle, open-pored foam, metal, carbon, or ceramic e.g. SiC. Also claimed is an electrolytic cell for the production of the composite material.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Verbundwerkstoffes und eine Vorrichtung zur Durchführung dieses Verfahrens.The invention relates to a method for producing a composite material and to an apparatus for carrying out this method.

Aus Lagerstätten werden Metalle häufig in Form von Metalloxiden abgebaut. Zur Gewinnung des Metalls werden abhängig vom Erz mehr oder weniger aufwendige Prozesse zur Reduktion der Oxide und Reinigung von Fremdstoffen eingesetzt. Nachfolgend wird dies an Hand der Herstellung von Titan näher erläutert.From deposits, metals are often mined in the form of metal oxides. Depending on the ore, more or less expensive processes for reducing the oxides and cleaning foreign substances are used to recover the metal. This will be explained in more detail below with reference to the production of titanium.

Zur Reduktion von Titanoxiden wird in der Regel der Kroll-Prozess eingesetzt ( W. Kroll, Production of Ductile Titanium, Transact. Electrochem. Soc. 78 (1940), S. 35-37 ). Ausgangsprodukt hierfür ist Rutil (TiO2) oder Ilmenit (FeTiO3), das nach der bergbaulichen Gewinnung aufbereitet wird. Wesentlich für den Prozess ist die Chlorierungs-Zwischenstufe, die aus Titanoxiden Titantetrachlorid (TiCl4) erzeugt und Verunreinigungen abtrennt. Die Endreduktion des TiCl4 zum Titan erfolgt mit Magnesium. Das dabei entstehende Magnesiumchlorid wird elektrolytisch zerlegt und dem Kreislauf wieder als Chlor und Magnesium zugeführt. Endprodukt dieses Verfahrens ist ein poröser, aber reiner Titanschwamm. Der Prozess besteht aus einer Kette mehrerer Teilprozesse. Hierdurch ergibt sich apparativ als auch energetisch ein erheblicher Aufwand.To reduce titanium oxides, the Kroll process is usually used ( W. Kroll, Production of Ductile Titanium, Transact. Electrochem. Soc. 78 (1940), pp. 35-37 ). Starting product for this is rutile (TiO 2 ) or ilmenite (FeTiO 3 ), which is prepared after the mining extraction. Essential for the process is the chlorination intermediate, which generates titanium tetrachloride (TiCl 4 ) from titanium oxides and removes impurities. The final reduction of TiCl 4 to titanium occurs with magnesium. The resulting magnesium chloride is decomposed electrolytically and recycled to the circuit as chlorine and magnesium. The end product of this process is a porous but pure titanium sponge. The process consists of a chain of several sub-processes. This results in equipment and energy a considerable effort.

Der nach dem Kroll-Prozess oder einem beliebigen anderen Prozess gewonnene Titanschwamm kann durch Umschmelzen, Zulegieren weiterer Elemente, Schmieden oder Walzen zu Halbzeugen verarbeitet werden, aus denen entsprechende Bauteile hergestellt werden können. Für extreme Anwendungen in Bezug auf Festigkeit und Steifigkeit ist auch die Weiterverarbeitung zu Titanmatrix-Verbundwerkstoffen (TMC) möglich. Hierzu existieren eine Reihe von Verfahren, von denen eines im Folgenden kurz dargestellt wird. Ausgangsstoff der bestehenden Verfahren ist stets ein Halbzeug einer Titanlegierung.The titanium sponge obtained by the Kroll process or any other process can be processed by remelting, alloying other elements, forging or rolling to semi-finished products, from which corresponding components can be produced. For extreme applications in terms of strength and rigidity, further processing into titanium matrix composites (TMC) is also possible. For this purpose, a number of methods exist, one of which is briefly described below. Starting material of existing processes is always a semi-finished titanium alloy.

Die Schwierigkeit in der Herstellung von TMCs liegt im hohen Schmelzpunkt und der Reaktionsfreudigkeit der Titanlegierungen. Daher wurden Verfahren entwickelt, die eine Verbundherstellung unterhalb der Matrixschmelztemperatur ermöglichen. Eine möglichst geringe Prozesstemperatur in Verbindung mit kurzen Zykluszeiten ist die Voraussetzung für eine Minimierung schädlicher Reaktionsprodukte.The difficulty in the production of TMCs is the high melting point and the reactivity of the titanium alloys. Therefore, methods have been developed that allow for composite fabrication below the matrix melt temperature. The lowest possible process temperature in conjunction with short cycle times is the prerequisite for minimizing harmful reaction products.

Die Verwendung relativ dicker Monofilamente (Dicke zwischen 100 und 140 µm) aus Siliziumkarbid ermöglicht Verfahren, die mit feineren Fasern nicht rationell wären. Dies sind beispielsweise Verfahren, bei denen die einzelnen Fasern mit dem Matrixmaterial beschichtet werden. Über die Beschichtungsdicke wird der Faservolumengehalt eingestellt. Die beschichteten Fasern werden gebündelt und in einer Hülse aus dem Matrixmaterial verkapselt. In einem anschließenden Pressvorgang in einer Heiß-Isostatischen-Presse wird der Verbund bei etwa 1900 bar und in einem Temperaturbereich von 920 bis 980°C konsolidiert ( Leyens, C., Hausmann, J., Kumpfert, J., Langfaserverstärkte Titanmatrix-Verbundwerkstoffe: Herstellung, Eigenschaften, Anwendungen, in Titan und Titanlegierungen, Peters, M., Leyens, C., Hrsg. 2002, Wiley-VCH: Weinheim. S. 321-350 ). Durch dieses Verfahren erhält man einen Verbundwerkstoff von höchster Qualität. Im Gegensatz zu anderen Verfahren lässt sich eine nahezu ideal hexagonale Faseranordnung erreichen. Ein gegenseitiges Berühren der Fasern ist durch die Faserbeschichtung nahezu ausgeschlossen. Dies ist die Grundvoraussetzung für exzellente mechanische Eigenschaften. Zusätzlich zu dem zuvor beschriebenen Prozess zur Titanherstellung sind zur Herstellung der Titanmatrix-Verbundwerkstoffe eine Reihe weiterer Prozessschritte erforderlich. Daher ist der Aufwand zur Herstellung von Titanmatrix-Verbundwerkstoffen nochmals erheblich höher als der zur Herstellung von Titan und Titanlegierungen. Dieser Sachverhalt betrifft allerdings nicht nur Titanmatrix-Verbundwerkstoffe, sondern auch Verbundwerkstoffe mit anderen metallischen Matrizes, wie beispielsweise Aluminium, Magnesium, Nickel und deren Legierungen.The use of relatively thick monofilaments (thickness between 100 and 140 μm) of silicon carbide allows processes that would not be rational with finer fibers. These are, for example, methods in which the individual fibers are coated with the matrix material. The fiber volume content is adjusted via the coating thickness. The coated fibers are bundled and encapsulated in a sleeve of the matrix material. In a subsequent pressing operation in a hot-isostatic press, the composite is consolidated at about 1900 bar and in a temperature range of 920 to 980 ° C ( Leyens, C., Hausmann, J., Kumpfert, J., Long Fiber Reinforced Titanium Matrix Composites: Fabrication, Properties, Applications, in Titanium and Titanium Alloys, Peters, M., Leyens, C., eds. 2002, Wiley-VCH: Weinheim. Pp. 321-350 ). This process gives a composite material of the highest quality. In contrast to other methods, a nearly ideal hexagonal fiber arrangement can be achieved. A mutual contact of the fibers is almost excluded by the fiber coating. This is the basic requirement for excellent mechanical properties. In addition to the titanium fabrication process described above, a number of other process steps are required to produce the titanium matrix composites. Therefore, the cost of producing titanium matrix composites is again significantly higher than that for the production of titanium and titanium alloys. However, not only titanium matrix composites but also composites with other metallic matrices, such as aluminum, magnesium, nickel and their alloys, are concerned with this issue.

DE 42 04 120 C1 beschreibt ein Verfahren zur Herstellung eines Kohlenstofffaser-Aluminium-Verbundwerkstoffes in organischen Lösungsmitteln, bei dem die Fasern in einem ersten Schritt lediglich beschichtet werden und in einem zweiten Schritt die beschichteten Fasern in eine Metallschmelze gegeben werden um den Verbundwerkstoff zu erhalten. Dabei ist der Anodenraum vom Kathodenraum nicht durch eine Membran getrennt. In dieser Druckschrift wird das Metall bereits in seinem Zielzustand (metallisch) als Anodenmaterial eingesetzt. Zudem dient die Beschichtung der Fasern als Hilfsschicht zur weiteren Verbundwerkstoffherstellung. DE 42 04 120 C1 describes a process for producing a carbon fiber-aluminum composite in organic solvents, in which the fibers are merely coated in a first step and in a second step the coated fibers are placed in a molten metal to obtain the composite. The anode compartment is not separated from the cathode compartment by a membrane. In this document, the metal is already used in its target state (metallic) as the anode material. In addition, the coating of the fibers serves as an auxiliary layer for further composite material production.

Auch das in WO 2005/019501 A2 beschriebene Verfahren setzt keine Membran zur Trennung der Anoden von der Kathodenkammer ein.Also in WO 2005/019501 A2 described method does not use a membrane for separating the anodes from the cathode chamber.

US 4,341,823 A beschreibt ebenfalls ein zweistufiges Verfahren zur Herstellung eines Faser-Metall-Verbundwerkstoffes, bei dem die Fasern zunächst stromlos ('electroless plating') mit Metall beschichtet werden und nach mehreren weiteren Beschichtungsvorgängen anschließend in eine Bleischmelze getaucht werden, um den fertigen Verbundwerkstoff zu erhalten. US 4,341,823 A also describes a two-step process for producing a fiber-metal composite, in which the fibers are first electroless plating coated with metal and then dipped into a lead melt after several further coating operations to obtain the finished composite material.

In EP 0 339 464 A1 werden Metallpartikel zunächst stromlos mit einer dünnen Kupferschicht versehen und in einem zweiten Schritt mit Hilfe von Galvanisierung zu einem Verbundwerkstoff weiterverarbeitet.In EP 0 339 464 A1 Metal particles are first electrolessly provided with a thin copper layer and further processed in a second step by means of electroplating to form a composite material.

EP 1 489 192 A1 beschreibt ein Verfahren zur Herstellung von Titan-Faser-Verbundwerkstoffen, wobei die zu beschichtenden Fasern in einem ersten Schritt mit einem Schlicker versehen werden müssen, um anschließend in einem zweiten Schritt mit Titan beschichtet zu werden. EP 1 489 192 A1 describes a process for the production of titanium-fiber composites, wherein the fibers to be coated must be provided with a slurry in a first step, and then coated with titanium in a second step.

FR 2 297 261 beschreibt eine Vorrichtung für elektrochemische wässrige Verfahren, die den hohen Temperaturen vom Salzschmelzen keine Rechnung trägt. FR 2 297 261 describes a device for electrochemical aqueous processes, which does not take into account the high temperatures of molten salt.

Den meisten der elektrolytischen Herstellungsverfahren ist es gemein, dass der auf der Anodenseite produzierte Sauerstoff nicht schell genug abtransportiert werden kann. Hierzu wäre ein leitfähiges Material notwendig, welches zusätzlich eine hohe Sauerstoffaffinität besitzt. Weiterhin sind zur Herstellung des Verbundwerkstoffes meist mindestens zwei Schritte notwendig.It is common to most of the electrolytic production processes that the oxygen produced on the anode side can not be removed sufficiently quickly. This would be a conductive material necessary, which additionally has a high oxygen affinity. Furthermore, at least two steps are usually necessary for the production of the composite material.

Für die Herstellung von Titan ist in der JP 2004-143557 A beschrieben, dass die Anode aus einer Kohlenstoffplatte bestehen kann, wobei Titandioxid in einer Metallsalzschmelze zu Titan reduziert wird.For the production of titanium is in the JP 2004-143557 A described that the anode may consist of a carbon plate, wherein titanium dioxide is reduced in a metal salt melt to titanium.

CN 1376813 beschreibt die Herstellung von Al-Ti-Legierungen unter Verwendung einer kohlenstoffhaltigen Anode, die Titandioxid enthält. CN 1376813 describes the production of Al-Ti alloys using a carbonaceous anode containing titanium dioxide.

Der Erfindung liegt also die Aufgabe zu Grunde, ein Verfahren und eine Vorrichtung zur Herstellung eines Metall-Faser-Verbundwerkstoffes aufzufinden, wonach der Verbundwerkstoff in einem Schritt erhältlich ist und der entstehende Sauerstoff leicht abtransportiert werden kann, ohne das Verfahren anderweitig einzuschränken. Eine weitere Aufgabe der Erfindung liegt in der Elektrolyse einer MexOy-C-Anode mit dem Ziel der umweltfreundlichen einstufigen und chlorgasfreien Herstellung von kostengünstigen Verbundwerkstoffen mit Me-Metallmatrix.The invention is therefore based on the object to find a method and an apparatus for producing a metal-fiber composite material, after which the composite material is available in one step and the resulting oxygen can be easily removed without restricting the process otherwise. Another object of the invention is the electrolysis of a Me x O y -C anode with the aim of environmentally friendly one-stage and chlorine-free production of cost-effective composites with Me metal matrix.

Die Aufgabe der vorliegenden Erfindung besteht weiterhin in der Bereitstellung von Verbundwerkstoffen mit einer Metallmatrix, insbesondere von Metallen, die einen Schmelzpunkt oberhalb der Zersetzungstemperaturen des Verstärkungsmaterials aufweisen oder zu unerwünschten Reaktionen zwischen dem Metall und dem Verstärkungswerkstoff neigen.The object of the present invention is further to provide composites with a metal matrix, in particular of metals, which have a melting point above the decomposition temperatures of the reinforcing material or tend to undesirable reactions between the metal and the reinforcing material.

Die der Erfindung zu Grunde liegende Aufgabe wird gelöst in einer ersten Ausführungsform durch ein Verfahren zur Herstellung eines Metall-Verstärkungsmaterial-Verbundwerkstoffs gemäß Anspruch 1.The object underlying the invention is achieved in a first embodiment by a method for producing a metal-reinforcing material composite material according to claim 1.

Die Membran beziehungsweise das Diaphragma ist schon deshalb wesentlich für die Erfindung, damit der im Anodenraum befindliche Kohlenstoff nicht zur Kathode gelangen kann und dort mit den sehr reaktiven Metallen wie beispielsweise Ti reagieren kann. Weiterhin bewirkt die Membran, dass die vorzugsweise vorhandene lose Schüttung von Kohlenstoff und Metalloxiden auf den Anodenraum beschränkt bleibt. Die Membran ist dabei vorteilhafterweise so ausgestaltet, dass es höchstens für Ionen durchlässig ist, so dass größere Teilchen im Anodenraum verbleiben. Daher besteht die Membran vorzugsweise aus Schamott oder porösen Al2O3-FF-Materialien (feuerfest) und weist bevorzugt eine Dicke in einem Bereich von 8 bis 15 mm auf.The membrane or the diaphragm is therefore essential for the invention, so that the carbon located in the anode compartment can not get to the cathode and react there with the very reactive metals such as Ti. Furthermore, the membrane causes the preferably existing loose bed of carbon and metal oxides remains limited to the anode compartment. The membrane is advantageously designed so that it is permeable to ions at most, so that larger particles remain in the anode compartment. Therefore, the membrane is preferably made of fireclay or porous Al 2 O 3 -FF materials (refractory) and preferably has a thickness in a range of 8 to 15 mm.

Durch die Elektrolyse von Metalloxid-Kohlenstoff-Anoden in Salzschmelzen kann das Metall im Elektrolyt gelöst und an der Kathode abgeschieden werden. Gegenüber den bisher bekannten Verfahren zeichnet sich der vorgeschlagene Prozess durch eine deutlich reduzierte Anzahl von Prozessschritten aus, insbesondere wenn man den Prozess der Metallherstellung in die Betrachtung mit einbezieht. Hierdurch ergeben sich erhebliche ökonomische und ökologische Vorteile.By electrolysis of metal oxide-carbon anodes in molten salts, the metal can be dissolved in the electrolyte and deposited on the cathode. Compared to the previously known methods, the proposed process is characterized by a significantly reduced number of process steps, in particular if the process of metal production is taken into consideration. This results in significant economic and environmental benefits.

Der wesentliche Erfindungsgedanke besteht also darin, ein neues Verfahren der Metallerzeugung mit dem der Verbundwerkstoffherstellung unmittelbar zu kombinieren. Hierdurch lässt sich die Anzahl der Prozessschritte zur Herstellung eines Verbundwerkstoffes mit Metallmatrix gegenüber dem Stand der Technik erheblich reduzieren. Vorteil ist eine wesentlich ressourcenschonendere und umweltfreundlichere Herstellung des Verbundwerkstoffs. Erreicht werden kann dies durch ein elektrolytisches Verfahren, bei dem eine Anode aus Metalloxiden und Kohlenstoff eingesetzt wird, mittels der das Metall in einer Salzschmelze gelöst und am vorzugsweise als Kathode ausgebildeten Verstärkungsmaterial abgeschieden wird.The essential idea of the invention is therefore a new method of metal production with the Combine composite production directly. As a result, the number of process steps for producing a composite material with metal matrix compared to the prior art can be significantly reduced. Advantage is a much more resource-friendly and environmentally friendly production of the composite material. This can be achieved by an electrolytic process in which an anode of metal oxides and carbon is used, by means of which the metal is dissolved in a molten salt and deposited on preferably formed as a cathode reinforcing material.

Verwendet man als Kathode nämlich vorteilhafterweise einen Werkstoff der zugleich als Verstärkungsmaterial in einem Verbundwerkstoff dienen kann, beispielsweise Keramik- oder Kohlenstofffasern, dann erhält man als Endprodukt einen Metallmatrix-Verbundwerkstoff, ohne eine Hilfskathode zu benötigen.If, as a cathode, it is advantageous to use a material which at the same time serves as a reinforcing material in a composite material, for example ceramic or carbon fibers, then a metal matrix composite material is obtained as the end product, without the need for an auxiliary cathode.

Der nach dem erfindungsgemäßen Verfahren erhältliche Verbundwerkstoff kann zunächst Poren aufweisen und/oder sehr spröde sein. In diesem Fall kann der Werkstoff vorteilhafterweise durch einen anschließenden Pressvorgang verdichtet werden. Das Pressen kann unidirektional oder isostatisch mit oder ohne Einfluss von Wärme erfolgen. Weiterhin entspricht es einer bevorzugten erfindungsgemäßen Ausführung des Verfahrens, wenn ein Verstärkungsmaterial mit der metallischen Matrix beschichtet wird und dieser in einem anschließenden Pressvorgang zu einem kompakten Verbundwerkstoff verpresst wird.The composite material obtainable by the process according to the invention may initially have pores and / or be very brittle. In this case, the material can advantageously be compacted by a subsequent pressing operation. The pressing can be unidirectional or isostatic with or without the influence of heat. Furthermore, it corresponds to a preferred embodiment of the method according to the invention, when a reinforcing material is coated with the metallic matrix and this is pressed in a subsequent pressing operation to form a compact composite material.

Kohlenstoff im Anodenraum kann den entstehenden Sauerstoff leicht binden und, da er leitfähig ist, der Salzschmelze wieder zuführen oder wahlweise transportieren und an die Umgebung abgeben. Vorzugsweise wird Kohlenstoff im Anodenraum in Form einer losen Schüttung eingesetzt. Der Kohlenstoff kann hierbei beispielsweise als festes Erdölpech oder als Koks vorliegen. Liegt der Kohlenstoff in Form einer losen Schüttung von festem Erdölpech vor, so kann dieser bei der notwendigen Prozesstemperatur gegebenenfalls schmelzen und die Metalloxidpartikel umschließen. Durch den Einsatz von Kohlenstoff im Anodenraum wird die Leitfähigkeit der Anode gegenüber allein dem Metalloxid signifikant verbessert und so das Verfahren wesentlich effizienter gestaltet. Weiterhin hat Kohlenstoff gegenüber vergleichbaren Materialien den nicht zu unterschätzenden Vorteil der leichten Verfügbarkeit.Carbon in the anode compartment can easily bind the resulting oxygen and, being conductive, reintroduce it to the molten salt, or optionally transport it and release it to the environment. Preferably, carbon is used in the anode space in the form of a loose bed. The carbon may be present for example as a solid petroleum pitch or as coke. If the carbon is in the form of a loose bed of solid petroleum pitch, it may optionally melt at the necessary process temperature and encase the metal oxide particles. The use of carbon in the anode space significantly improves the conductivity of the anode compared to the metal oxide alone and thus makes the process considerably more efficient. Furthermore, carbon has the advantage of easy availability which can not be underestimated compared with comparable materials.

Es hat sich als besonders vorteilhaft herausgestellt eine anorganische, insbesondere vollständig anorganische Anode einzusetzen. Dadurch kann das Verfahren bei hohen Temperaturen ausgeführt werden, wie diese beispielsweise in einer Salzschmelze vorherrschen.It has proven to be particularly advantageous to use an inorganic, in particular completely inorganic, anode. Thereby, the process can be carried out at high temperatures, such as prevail in a molten salt.

Salzschmelzen im Sinne der Erfindung umfassen Schmelzen, in denen anorganische Salze (Elektrolyte) mehr oder weniger in ihren Ionen dissoziiert sind. Man unterscheidet Salzschmelzen, die aus einer, und solche, die aus mehreren Komponenten bestehen. In der Technik finden Salzschmelzen Verwendung als Wärmeübertragungsmittel, beispielsweise in Heizbädern (Salzbäder) und in Wärmeaustauschern, neuerdings auch als Wärmespeicher (beispielsweise mit KF · 4 H2O, Schmelzpunkt 18,5 °C), zum Abdecken und Reinigen geschmolzener Metalle (Entzunderung, Verhinderung des Luftzutritts und Auflösung oxidischer Verunreinigungen) oder in der Wärmebehandlung von metallischen Werkstücken (insbesondere beim Anlassen und der Härtung von Stahl und beim Nitridieren), zur galvanotechnischen Beschichtung von hochschmelzenden Werkstoffen sowie in Batterien.Salt melts according to the invention include melts in which inorganic salts (electrolytes) are more or less dissociated in their ions. One distinguishes salt melts, which consist of one, and those, which consist of several components. In the art, molten salts are used as heat transfer agents, for example in heating baths (salt baths) and in heat exchangers, recently also as heat storage (for example with KF · 4 H 2 O, melting point 18.5 ° C), for covering and cleaning molten Metals (descaling, prevention of air entry and dissolution of oxidic impurities) or in the heat treatment of metallic workpieces (in particular during tempering and hardening of steel and in nitriding), for electroplating of refractory materials and in batteries.

Vorzugsweise wird das Verfahren in einer Salzschmelze durchgeführt, bei der die Salze wiederum bevorzugt aus üblichen Flussmitteln ausgewählt sind, beispielsweise aus der Gruppe der Chloride und Fluoride und deren Mischungen. Die Salze sind vorzugsweise Metallsalze der ersten und zweiten Hauptgruppe, besonders bevorzugt Metalle ausgewählt aus der Gruppe K, Li, Ca und Mg, und Mischungen derselben. So kann das Metalloxid im Anodenraum beispielsweise chloriert werden, selbst zum Elektrolyten werden und sich anschließend an der Kathode abscheiden. Das Halogenid-Ion wird dabei wieder Teil der Salzschmelze.Preferably, the process is carried out in a molten salt, wherein the salts are in turn preferably selected from conventional fluxes, for example from the group of chlorides and fluorides and mixtures thereof. The salts are preferably metal salts of the first and second main groups, more preferably metals selected from the group K, Li, Ca and Mg, and mixtures thereof. For example, the metal oxide in the anode compartment can be chlorinated, become itself an electrolyte, and then deposit on the cathode. The halide ion becomes part of the molten salt again.

Vorzugsweise setzt man ein Metalloxid der Refraktär- und/oder Leichtmetalle, insbesondere der Metalle Al, Mg, Ti, Ni, Nb, W und/oder Zr ein, und ganz besonders bevorzugt TiO2 oder Al2O3, da diese Metalle mit Verstärkungsmaterialien besonders leichte und dabei doch mechanisch feste und verwindungsfreie Verbundwerkstoffe ergeben. Das Metalloxid wird bevorzugt als lose Schüttung, als Granulat oder als Pulver eingesetzt. Ein weiterer Vorteil dieser Ausgestaltung ist, dass zur Herstellung eines Verbundwerkstoffes beispielsweise mit Ti kein teures Ti-Metall benötigt wird, sondern das viel günstigere TiO2 eingesetzt werden kann.Preference is given to using a metal oxide of the refractory and / or light metals, in particular the metals Al, Mg, Ti, Ni, Nb, W and / or Zr, and very particularly preferably TiO 2 or Al 2 O 3 , since these metals with reinforcing materials particularly lightweight yet mechanically strong and torsion-free composites result. The metal oxide is preferably used as a loose bed, as granules or as a powder. Another advantage of this embodiment is that no expensive Ti metal is needed for the production of a composite material, for example with Ti, but the much cheaper TiO 2 can be used.

Leichtmetall im Sinne der Erfindung sind metallische Werkstoffe mit einer spezifischen Dichte von maximal 4,5, insbesondere 5 g/cm3. Dazu gehören beispielsweise Mg, Al, Be und Ti sowie ihre Legierungen. Leichtmetalle werden bevorzugt dort eingesetzt, wo das Gewicht von Komponenten im Hinblick auf optimale Energienutzung eine Rolle spielt, etwa in der Flug- und Kraftfahrzeugtechnik, aber auch in der Haustechnik.Light metal in the context of the invention are metallic materials having a specific density of at most 4.5, in particular 5 g / cm 3 . These include, for example, Mg, Al, Be and Ti and their alloys. Light metals are preferably used where the weight of components plays a role in terms of optimal energy use, for example in aviation and automotive technology, but also in building services.

Vorteilhafterweise wird die Anodenstromdichte so angepasst, dass sich die bildenden Ti-Chloride im Salz (Elektrolyt) lösen und nicht verflüchtigen. Dadurch wird bewirkt, dass das chemische Gleichgewicht innerhalb der elektrolytischen Zelle länger stabil ist und die Wartungsintervalle dementsprechend verlängert werden. Weiterhin sind viele dieser flüchtigen Salze giftig und/oder ätzend und sollten auch schon deshalb vermieden werden, um aufwendige Entfernungsvorrichtungen einzusparen.Advantageously, the anode current density is adjusted so that the forming Ti-chlorides dissolve in the salt (electrolyte) and do not volatilize. This will cause the chemical equilibrium within the electrolytic cell to be longer stable and prolong the maintenance intervals accordingly. Furthermore, many of these volatile salts are toxic and / or corrosive and should therefore be avoided to save costly removal devices.

Erfindungsgemäß setzt man ein Verstärkungsmaterial in Form von Fasern, Partikeln und/oder eines offenporigen Schaums ein. Gerade bei Verwendung von Fasern oder Schaum kann eine besonders hohe Steifigkeit des Verbundwerkstoffs erzielt werden. Wird ein offenporiger Schaum eingesetzt so resultiert ein Verbundwerkstoff ähnlich wie bei der sogenannten Schmelzinfiltration mit einer hohen mechanischen Isotropie. Für den Fall, dass das Verstärkungsmaterial Fasern umfasst, ist der Faserwerkstoff bevorzugt ein Metall, eine Keramik oder Kohlenstoff, wobei unter den Fasern zylindrische Körper mit einem Durchmesser in einem Bereich von 4 bis 500 µm und einer Länge, die mindestens dem 10-fachen Durchmesser entspricht, bevorzugt werden. Bei der Verwendung von elektrisch nicht leitfähigen Keramiken als Faserwerkstoff können diese vorzugsweise zur Herstellung der Leitfähigkeit dotiert, gezielt verunreinigt oder leitend beschichtet werden. Eine entsprechende Vorbeschichtung, Dotierung oder gezielte Verunreinigung ist jedoch nicht zwingend erforderlich.According to the invention, a reinforcing material in the form of fibers, particles and / or an open-pore foam is used. Especially when using fibers or foam, a particularly high rigidity of the composite material can be achieved. If an open-pore foam is used, the result is a composite material similar to the so-called melt infiltration with a high mechanical isotropy. In the case that the reinforcing material comprises fibers, the fiber material is preferably a metal, a ceramic or carbon, wherein among the fibers cylindrical bodies having a diameter in a range of 4 to 500 microns and a length, the at least 10 times the diameter, preferably. When using electrically non-conductive ceramics as a fiber material, these can preferably be doped to produce the conductivity, deliberately contaminated or coated conductive. However, a corresponding precoating, doping or targeted contamination is not absolutely necessary.

Vorteilhafterweise setzt man ein Verstärkungsmaterial aus Metall, Kohlenstoff und/oder Keramik, insbesondere aus SiC, ein. Es hat sich herausgestellt, dass verglichen mit anderen Materialien mechanisch besonders stabile Verbundwerkstoffe erhältlich sind.Advantageously, a reinforcing material of metal, carbon and / or ceramic, in particular of SiC, is used. It has been found that mechanically particularly stable composites are available compared to other materials.

Vorzugsweise ist das Verstärkungsmaterial leitfähig oder leitfähig beschichtet, da dieses dann selbst als Kathode eingesetzt werden kann und eine Hilfskathode überflüssig macht.Preferably, the reinforcing material is conductive or conductive coated, since this can then be used as a cathode itself and makes an auxiliary cathode superfluous.

Das Verstärkungsmaterial setzt man bevorzugt ohne Vorbehandlung mit dem Metalloxid ein. Dadurch kann ein zusätzlicher Verfahrensschritt eingespart und das Verfahren so erheblich gestrafft werden. Es hat sich gezeigt, dass das Weglassen der Vorbehandlung zu keinen wesentlichen Einbußen der Eigenschaften des resultierenden Verbundwerkstoffes führt.The reinforcing material is preferably used without pretreatment with the metal oxide. As a result, an additional process step can be saved and the process can be significantly streamlined. It has been found that the omission of the pretreatment does not lead to any substantial loss of the properties of the resulting composite material.

Das Verstärkungsmaterial, das Metalloxid und die Verfahrensbedingungen werden vorteilhafterweise so ausgewählt, dass das aus dem Metalloxid bei der Elektrolyse entstehende Metall mit dem Verstärkungsmaterial chemisch nicht oder begrenzt reagiert und dabei zu einem entsprechenden Verbundwerkstoff hergestellt wird. Dadurch wird ein Verbund des Verstärkungsmaterials mit dem Metall erreicht, der hervorragende mechanische Eigenschaften, wie zum Beispiel hohe Festigkeit und Steifigkeit aufweist.The reinforcing material, the metal oxide and the process conditions are advantageously selected so that the metal resulting from the metal oxide during the electrolysis does not react chemically or in a limited way with the reinforcing material and thereby is produced to a corresponding composite material. This achieves bonding of the reinforcing material to the metal, which has excellent mechanical properties such as high strength and rigidity.

Das Verfahren wird vorzugsweise bei Temperaturen in einem Bereich von 400 bis 900 °C, besonders bevorzugt in einem Bereich von 800 bis 900 °C durchgeführt. Durch diese im Vergleich zum Stand der Technik niedrigen Temperaturen können in erheblichem Umfang Kosten eingespart werden. Diese niedrigen Temperaturen sind beispielsweise erzielbar durch Salzschmelzen enthaltend eine Mischung von LiCl, KCI und CaCl2.The process is preferably carried out at temperatures in a range of 400 to 900 ° C, more preferably in a range of 800 to 900 ° C. By this compared to the prior art low temperatures can be saved significantly costs. These low temperatures are obtainable, for example, by molten salts containing a mixture of LiCl, KCl and CaCl 2 .

Der elektrolytisch hergestellte Verbundwerkstoff wird vorteilhafterweise einem anschließenden Pressvorgang gegebenenfalls mit Wärmebehandlung unterzogen, wodurch dieser verdichtet und so ein kompakter Verbundwerkstoff hergestellt wird. Zwischenprodukt ist vorzugsweise eine SiC-Faser, die bevorzugt mit Titan beschichtet ist. Eine derartige beschichtete Faser kann zum Beispiel als Ausgangsmaterial zur Herstellung eines Verbundwerkstoffes dienen, indem Bündel hiervon verpresst werden und dabei die metallische Beschichtung zur Matrix in einem kompakten Verbundwerkstoff verdichtet wird.The electrolytically produced composite material is advantageously subjected to a subsequent pressing operation, optionally with heat treatment, whereby this compacted and so a compact composite material is produced. Intermediate product is preferably a SiC fiber, which is preferably coated with titanium. For example, such a coated fiber can serve as a raw material for making a composite by compressing bundles thereof and thereby densifying the metallic coating to form the matrix in a compact composite.

Das Kathodenmaterial und/oder das Anodenmaterial wird bevorzugt kontinuierlich zugeführt und entnommen. Dadurch kann auch das gesamte Verfahren kontinuierlich durchgeführt werden und somit der Herstellungsprozess vereinfacht werden.The cathode material and / or the anode material is preferably continuously supplied and removed. This can also do that entire process can be carried out continuously, thus simplifying the manufacturing process.

Die Vermeidung einer aufwendigen Umarbeitung der Rohstoffe führt zu einer umweltfreundlichen beispielsweise Titanherstellung mit geringerem Energieaufwand, da die separate Herstellung von TiCl4 entfällt. Zeitgleich mit dieser Titanherstellung werden wesentliche Schritte zur Herstellung des Titanmatrix-Verbundwerkstoffs vollzogen. Weiterhin werden die Rohstoffe äußerst effizient genutzt, da Abfallmengen durch zahlreiche Zwischenschritte und Umarbeitungen weitgehend entfallen.The avoidance of a costly reworking of the raw materials leads to an environmentally friendly, for example, titanium production with lower energy consumption, since the separate production of TiCl 4 is eliminated. Concurrent with this titanium production, substantial steps are being taken to manufacture the titanium matrix composite. Furthermore, the raw materials are used extremely efficiently, since waste quantities are largely eliminated by numerous intermediate steps and reworking.

In einer weiteren Ausführungsform wird die erfindungsgemäße Aufgabe gelöst durch eine elektrolytische Zelle zur Herstellung eines Verbundwerkstoffs, umfassend wenigstens einen Anodenraum und wenigstens einen Kathodenraum, der von dem Anodenraum durch eine Membran (also ein Diaphragma) getrennt ist, dadurch gekennzeichnet, dass die Anode eine leitfähige Anode, enthaltenden Kohlenstoff und wenigstens ein Metalloxid, wobei der Kathodenraum ein Verstärkungsmaterial in Form von Fasern, Partikeln und/oder einem offenporigen Schaum in einer Salzschmelze als Elektrolyt vorgesehen ist.In a further embodiment, the object according to the invention is achieved by an electrolytic cell for producing a composite material comprising at least one anode space and at least one cathode space which is separated from the anode space by a membrane (ie a diaphragm), characterized in that the anode is a conductive one Anode, containing carbon and at least one metal oxide, wherein the cathode space, a reinforcing material in the form of fibers, particles and / or an open-cell foam in a molten salt electrolyte is provided.

Betrachtungen der bekannten Metallgewinnungsverfahren, insbesondere die Herstellung von Mg ergeben, dass es möglich ist, Leichtmetalle durch Elektrolyse mit einer Anode aus einer Metalloxid-KohlenstoffMischung direkt zu gewinnen (elektrochemische Reduktion mit integrierter Chlorierung). Bei diesem Elektrolyseprozess wird der Zellenraum durch ein Diaphragma in Kathoden- und Anodenkammer geteilt. Ein Gemisch von MexOy und Kohlenstoff wird in die Anodenkammer eingesetzt, wobei Me vorteilhafterweise ein Element aus der Gruppe der Refraktär- oder Leichtmetalle insbesondere Al, Mg, Ti, Ni, Nb, W oder Zr. Als Elektrolyt wird ein schmelzflüssiges bevorzugt chlorhaltiges Salz wie beispielsweise CaCl2 oder eine Mischung aus verschiedenen Salzen verwendet.Considerations of the known metal extraction processes, in particular the production of Mg show that it is possible to directly recover light metals by electrolysis with an anode of a metal oxide-carbon mixture (electrochemical reduction with integrated chlorination). In this electrolysis process, the cell space is divided by a diaphragm in the cathode and anode chamber. A mixture of Me x O y and carbon is used in the anode chamber, wherein Me advantageously an element from the group of refractory or light metals, in particular Al, Mg, Ti, Ni, Nb, W or Zr. The electrolyte used is a molten, preferably chlorine-containing, salt, for example CaCl 2 or a mixture of different salts.

Im Kathodenraum kann eine Hilfskathode vorgesehen sein. Diese ist sogar notwendig, wenn das Verstärkungsmaterial nicht leitend ist oder das Verstärkungsmaterial aus einem anderen Grund nicht als Kathode wirken kann. In diesem Fall wird der Kathodenraum mit dem Verstärkungsmaterial teilweise oder vollständig gefüllt. Das Metall wird nun an der Hilfskathode abgeschieden und wächst so um das Verstärkungsmaterial herum, um den erfindungsgemäßen Verbundwerkstoff zu erhalten.An auxiliary cathode may be provided in the cathode compartment. This is necessary even if the reinforcing material is not conductive or the reinforcing material can not act as a cathode for another reason. In this case, the cathode space is partially or completely filled with the reinforcing material. The metal is now deposited on the auxiliary cathode and thus grows around the reinforcing material to obtain the composite material according to the invention.

Vorteilhafterweise können mehrere Anodenräume vorgesehen sein. Dies ist vor allem deshalb von Vorteil, da hierdurch auch die Abscheidung von Legierungen, insbesondere mit Konzentrationsgradienten möglich ist.Advantageously, a plurality of anode compartments may be provided. This is particularly advantageous because it also allows the deposition of alloys, in particular with concentration gradients.

Vorteilhafterweise besteht die Kathode selbst aus dem Verstärkungsmaterial, der zu diesem Zweck leitfähig oder leitfähig beschichtet ist. Dadurch ist eine zusätzliche Hilfskathode nicht mehr zwingend notwendig, auch wenn sie nach wie vor eingesetzt werden kann.Advantageously, the cathode itself consists of the reinforcing material, which is coated conductive or conductive for this purpose. As a result, an additional auxiliary cathode is no longer imperative, even if it can still be used.

Die Erfindung wird mit Hilfe der folgenden Figuren näher veranschaulicht:

  • Fig. 1: Querschnitt einer erfindungsgemäßen Vorrichtung, wobei das Verstärkungsmaterial gleichzeitig die Funktion der Kathode übernimmt.
  • Fig. 2: Querschnitt einer erfindungsgemäßen Vorrichtung, wobei im Kathodenraum eine Hilfskathode vorgesehen ist.
  • Fig. 3: Querschnitt einer erfindungsgemäßen Vorrichtung, wobei im Kathodenraum das Verstärkungsmaterial kontinuierlich zugeführt und entfernt wird und gleichzeitig als Kathode wirkt.
  • Fig. 4: Querschnitt einer erfindungsgemäßen Vorrichtung, wobei im Kathodenraum das Verstärkungsmaterial als Kathode wirkt und zwei Anodenräume vorgesehen sind.
The invention will be further illustrated by the following figures:
  • Fig. 1 : Cross section of a device according to the invention, wherein the reinforcing material simultaneously assumes the function of the cathode.
  • Fig. 2 : Cross section of a device according to the invention, wherein an auxiliary cathode is provided in the cathode compartment.
  • Fig. 3 : Cross section of a device according to the invention, wherein in the cathode space, the reinforcing material is continuously supplied and removed and at the same time acts as a cathode.
  • Fig. 4 : Cross-section of a device according to the invention, wherein the reinforcing material acts as a cathode in the cathode space and two anode spaces are provided.

Der Aufbau der Vorrichtung und die Wirkungsweise des Verfahrens zur erfindungsgemäßen Herstellung eines Verbundwerkstoffes werden anhand von Fig. 1 beschrieben. Die elektrolytische Zelle 1 wird durch ein Diaphragma 2 in Anoden- 3 und Kathodenkammer 4 unterteilt. In der Zelle 1 befindet sich der Elektrolyt 5. In die Anodenkammer 3 wird eine Mischung aus Metalloxid- (beispielsweise TiO2) und Kohlenstoffträger 6 beispielsweise Ölpech gegeben. In die Oxid-Kohlenstoffmischung 6 wird ein Stromleiter 7 eingesetzt. In dem Kathodenraum 4 kann vorteilhafterweise zusätzlich eine Hilfsanode aus einem Metall enthalten sein. Durch die anodische Auflösung des Metalloxids der Metalloxid-Kohlenstoffanode 7 in einem Cl-haltigem Elektrolyt bilden sich im Elektrolyt niedrigwertige Metallchloride, die elektrolytisch gespalten werden. Dabei scheidet sich das Metall an der Kathode 9 ab, die Cl-Ionen werden unter der Wirkung des elektrischen Felds zur Anode 7 transportiert. An der Metalloxid-Kohlenstoffanode 7 reagiert das atomare Chlor mit der Oxid-Kohlenstoffmischung 6 unter Bildung von Chloriden und COx. Die Chloride lösen sich im Elektrolyt 5, dissoziieren und scheiden sich an den Elektroden (beispielsweise 9) ab. Im beispielhaft dargestellten Fall (Fig. 1) besteht die Kathode aus den Verstärkungsfasern 9, die über einen Halter 8 (Kathode) gehalten und elektrisch kontaktiert sind. Abhängig von der Stromdichte an der Kathode 9 und Elektrolytauswahl (Me-Konzentration) bildet Me ein Pulver, Schwamm oder dichten Überzug auf dem Verstärkungsmaterial 9. Erfindungsgemäß wird vorzugsweise als Kathode 9 ein Faserwerkstoff verwendet, der mit einer dichten Me-Schicht überzogen wird, die später die Matrix in einem Verbundwerkstoff bildet. Als Kathode 9, die später als Verstärkungsmaterial dient, kann aber auch vorteilhafterweise ein offenporiger Schaum aus Kohlenstoff, einer Keramik oder ein Metall dienen, wobei dann während der Elektrolyse die Poren teilweise oder vollständig mit dem Elektrolyseprodukt Me gefüllt werden.The structure of the device and the operation of the method for producing a composite material according to the invention are based on Fig. 1 described. The electrolytic cell 1 is divided by a diaphragm 2 into anode 3 and cathode chamber 4. In the cell 1 is the electrolyte 5. In the anode chamber 3 is a mixture of metal oxide (for example, TiO 2 ) and Carbon carrier 6 given, for example, oil pitch. In the oxide-carbon mixture 6, a current conductor 7 is used. In the cathode chamber 4 can advantageously be additionally contained an auxiliary anode made of a metal. Due to the anodic dissolution of the metal oxide of the metal oxide carbon anode 7 in a Cl-containing electrolyte, low-value metal chlorides are formed in the electrolyte and are split electrolytically. In this case, the metal is deposited on the cathode 9, the Cl ions are transported under the action of the electric field to the anode 7. At the metal oxide carbon anode 7, the atomic chlorine reacts with the oxide-carbon mixture 6 to form chlorides and CO x . The chlorides dissolve in the electrolyte 5, dissociate and deposit on the electrodes (for example, 9). In the case exemplified ( Fig. 1 ) The cathode consists of the reinforcing fibers 9, which are held by a holder 8 (cathode) and electrically contacted. Depending on the current density at the cathode 9 and electrolyte selection (Me concentration) Me forms a powder, sponge or dense coating on the reinforcing material 9. According to the invention is preferably used as the cathode 9, a fiber material which is coated with a dense Me layer, the later forms the matrix in a composite material. As the cathode 9, which later serves as a reinforcing material, but can also advantageously an open-cell foam of carbon, a ceramic or a metal are used, then during the electrolysis, the pores are partially or completely filled with the electrolysis product Me.

Weiterhin entspricht es dem Erfindungsgedanken, wenn sich im Kathodenraum zusammen mit dem Verstärkungsmaterial eine Hilfskathode 10 entsprechend Fig. 2 befindet. Dies ist insbesondere dann sinnvoll, wenn das Verstärkungsmaterial 11 ein Nichtleiter ist oder in loser Form, beispielsweise als Partikel oder geschnittene Faser vorliegt. Kathode 10 und Verstärkungsmaterial 11 sind dann so angeordnet, dass das abgeschiedene Metall 12 im Bereich der Kathode anfällt und dabei das Verstärkungsmaterial umschließt oder durchdringt.Furthermore, it corresponds to the idea of the invention, if in the cathode compartment together with the reinforcing material, an auxiliary cathode 10 accordingly Fig. 2 located. This is special makes sense if the reinforcing material 11 is a non-conductor or is present in loose form, for example as a particle or cut fiber. The cathode 10 and reinforcing material 11 are then arranged so that the deposited metal 12 is obtained in the region of the cathode, thereby enclosing or penetrating the reinforcing material.

In Fig. 3 wird als Elektrolyt 5 eine Mischung aus LiCl, KCl und CaCl2 eingesetzt. Dieser hat einen Schmelzpunkt von etwa 430°C. Der Elektrolyt 5 wird in einem Tiegel 13 aufgeschmolzen. In dem durch ein Diaphragma 2 abgeteilten Anodenraum wird eine Mischung aus Kohlenstoff- und Titandioxid-Pulver 6 gegeben. In der Salzschmelze 5 des Kathodenraumes 4 befinden sich die Verstärkungsfasern 9, die über eine Zuführung 14 kontinuierlich zugeführt und mit der Führung 15 kontaktiert und umgelenkt werden.In Fig. 3 As electrolyte 5, a mixture of LiCl, KCl and CaCl 2 is used. This has a melting point of about 430 ° C. The electrolyte 5 is melted in a crucible 13. In the divided by a diaphragm 2 anode space, a mixture of carbon and titanium dioxide powder 6 is given. In the molten salt 5 of the cathode chamber 4 are the reinforcing fibers 9, which are fed continuously via a feed 14 and contacted with the guide 15 and deflected.

Die Chlor-Ionen des Elektrolyten werden unter Wirkung des elektrischen Feldes zur Anode 7 transportiert. An der Anode 7 reagiert Chlor mit der TiO2-Kohlenstoff-Mischung unter Bildung von Ti-Chloriden und CO und CO2 entsprechend nachfolgend aufgeführten Reaktionen.

  • <TiO2> + <C> + 2{Cl} = (TiCl2) + {CO2}
  • <TiO2> + 2<C> + 2{Cl} = (TiCl2) + 2{CO}
  • <TiO2>+<C> + 4{Cl} = {TiCl4} + {CO2}
  • <TiO2>+ 2<C> + 4{Cl} = {TiCl4} + 2{CO}
The chlorine ions of the electrolyte are transported to the anode 7 under the action of the electric field. At the anode 7, chlorine reacts with the TiO 2 -carbon mixture to form Ti-chlorides and CO and CO 2 according to the reactions listed below.
  • <TiO 2 > + <C> + 2 {Cl} = (TiCl 2 ) + {CO 2 }
  • <TiO 2 > + 2 <C> + 2 {Cl} = (TiCl 2 ) + 2 {CO}
  • <TiO 2 > + <C> + 4 {Cl} = {TiCl 4 } + {CO 2 }
  • <TiO 2 > + 2 <C> + 4 {Cl} = {TiCl 4 } + 2 {CO}

Die gebildeten Ti-Chloride lösen sich im Elektrolyt 5 und werden durch das im Elektrolyten 5 gelöste Ca an der Kathode zu Ti und CaCl2 umgesetzt. CaCl2 dissoziiert in 2Cl- und Ca2+. Die Anodenstromdichte wird so eingestellt, dass sich überwiegend TiCl2 bildet. Auf der Seite der Kathode 9 wird das insbesondere TiCl2 wiederum zusammen mit Ca2+ in Ti und CaCl2 umgewandelt. Das Ti bildet auf der als Kathode geschalteten Verstärkungsfaser 9 einen dichten Überzug. Durch die Abführung 16 wird die mit Titan beschichtete Faser kontinuierlich dem Prozess entnommen.The Ti chlorides formed dissolve in the electrolyte 5 and are converted by the dissolved in the electrolyte 5 Ca at the cathode to Ti and CaCl 2 . CaCl 2 dissociates into 2Cl - and Ca 2+ . The anode current density is adjusted so that predominantly TiCl 2 forms. On the side of the cathode 9, in particular TiCl 2 is again converted together with Ca 2+ into Ti and CaCl 2 . The Ti forms a tight coating on the reinforcing fiber 9 connected as a cathode. Through the discharge 16, the titanium-coated fiber is continuously removed from the process.

In Fig. 4 enthält der Tiegel 13 zwei Anodenkammern 3, die Mischungen aus Kohlenstoff und unterschiedlichen Metalloxiden 6 enthalten. Durch das Anlegen geeigneter Potenziale zwischen den Anodenkammern 3 und der Kathode 9 kann die Abscheiderate der unterschiedlichen Metalle angepasst werden, um so eine Metalllegierung als Matrixmaterial herstellen zu können.In Fig. 4 The crucible 13 contains two anode chambers 3 containing mixtures of carbon and different metal oxides 6. By applying suitable potentials between the anode chambers 3 and the cathode 9, the deposition rate of the different metals can be adjusted so as to be able to produce a metal alloy as matrix material.

Claims (12)

  1. A process for producing a metal/reinforcement material composite material, comprising the steps of contacting a conductive anode containing carbon and at least one metal oxide electrolytically with a cathode in the zone of which said reinforcement material is present as an electrolyte in a salt melt and said metal is cathodically deposited with inclusion of said reinforcement material, wherein an electrolytic cell is divided by the membrane into anode and cathode compartments, characterized in that a reinforcement material in the form of fibers, particles and/or an open-cell foam is employed, and that said metal is deposited on the reinforcement material formed as a cathode.
  2. The process according to claim 1, characterized in that an essentially inorganic, especially completely inorganic, anode is employed.
  3. The process according to claim 1 or 2, characterized in that an anode containing a flux, especially a chloride and/or fluoride, especially CaCl2, is employed.
  4. The process according to any of claims 1 to 3, characterized in that a metal oxide selected from oxides of the refractory metals and/or light metals, especially the metals Al, Mg, Ti, Ni, Nb, W and/or Zr, is employed.
  5. The process according to any of claims 1 to 4, characterized in that a reinforcement material of metal, carbon and/or ceramics, especially of SiC, is employed.
  6. The process according to any of claims 1 to 5, characterized in that a reinforcement material that has not been pretreated is employed with the metal oxide.
  7. The process according to any of claims 1 to 6, characterized in that a reinforcement material that will chemically react with the metal produced is employed.
  8. The process according to any of claims 1 to 7, characterized in that said composite material is subjected to a pressing process, optionally in combination with a heat treatment, subsequently to the electrolysis.
  9. The process according to any of claims 1 to 8, characterized in that said cathode material and/or anode material is continuously supplied and removed.
  10. An electrolytic cell for producing a composite material consisting of a metal matrix and a reinforcing material, comprising at least one anode compartment and at least one cathode compartment, which is separated from said anode compartment by a membrane, characterized in that said anode includes a conductive anode containing carbon and at least one metal oxide, wherein a reinforcement material in the form of fibers, particles and/or an open-cell foam is provided as the electrolyte in a salt melt.
  11. The cell according to claim 10, characterized in that said cathode consists of said reinforcement material.
  12. The cell according to claim 10 or 11, characterized in that means for continuously supplying and removing the material are present in the anode and/or cathode compartments.
EP06114825A 2005-06-08 2006-06-01 Production of a composite material Not-in-force EP1731631B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005026267A DE102005026267A1 (en) 2005-06-08 2005-06-08 Production of a composite material

Publications (3)

Publication Number Publication Date
EP1731631A2 EP1731631A2 (en) 2006-12-13
EP1731631A3 EP1731631A3 (en) 2008-07-23
EP1731631B1 true EP1731631B1 (en) 2012-03-21

Family

ID=37103215

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06114825A Not-in-force EP1731631B1 (en) 2005-06-08 2006-06-01 Production of a composite material

Country Status (3)

Country Link
EP (1) EP1731631B1 (en)
AT (1) ATE550460T1 (en)
DE (1) DE102005026267A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787580B2 (en) * 2011-04-06 2015-09-30 株式会社東芝 Electrolytic reduction device
CN104690820A (en) * 2013-12-04 2015-06-10 铜陵市永生机电制造有限责任公司 High-stability electrolytic cell bearing device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722509A (en) * 1952-11-12 1955-11-01 Horizons Titanium Corp Production of titanium
US3498890A (en) * 1967-03-27 1970-03-03 Melpar Inc Preparation of fiber-metal composites by electrodeposition
GB1481663A (en) * 1975-01-09 1977-08-03 Parel S Electrowinning of metals
US4341823A (en) 1981-01-14 1982-07-27 Material Concepts, Inc. Method of fabricating a fiber reinforced metal composite
JP2628184B2 (en) 1988-04-25 1997-07-09 日新製鋼株式会社 Method of electroplating metal on fine powder
DE4204120C1 (en) * 1992-02-12 1993-04-15 Austria Metall Ag, Braunau Am Inn, At Carbon@ or graphite fibre-aluminium composite mfr. - by passing fibre bundle into electrolysis chamber for aluminium@ (alloy coating) and placing fibres in aluminium@ (alloy) melt to form composite
DE19801941A1 (en) * 1997-08-30 1999-03-04 Honsel Ag Alloy and method of making articles from this alloy
JP4703931B2 (en) 2000-02-22 2011-06-15 メタリシス・リミテツド Method for producing metal foam by electrolytic reduction of porous oxide preform
CN1253605C (en) * 2001-12-28 2006-04-26 中国铝业股份有限公司 Process for preparing AlTi alloy by direct electrolysis with carbon anode containing titanium oxide
JP4198439B2 (en) 2002-10-25 2008-12-17 日本軽金属株式会社 Consumable carbon anode for smelting titanium metal
US7101203B2 (en) 2003-06-25 2006-09-05 Cymer, Inc. Method and apparatus for electronically interconnecting high voltage modules positioned in relatively close proximity
US7410562B2 (en) * 2003-08-20 2008-08-12 Materials & Electrochemical Research Corp. Thermal and electrochemical process for metal production
DE102004002343B4 (en) * 2004-01-16 2006-08-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hybrid fiber, process for its preparation and use

Also Published As

Publication number Publication date
ATE550460T1 (en) 2012-04-15
EP1731631A3 (en) 2008-07-23
DE102005026267A1 (en) 2006-12-21
EP1731631A2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
DE3855888T2 (en) ELECTRICALLY CONDUCTIVE TITANIUM SUBOXIDE
DE60108081T2 (en) Process for the electrolytic reduction of metal oxides such as titanium dioxide and its application
DE102006035854B4 (en) Conductive diamond electrode and method of making the same
DE69319721T2 (en) Refractory protective coatings, especially for electrolytic cell components
DE60225319T2 (en) ELECTROCHEMICAL TREATMENT OF SOLID MATERIALS IN SALT MELT
DE2818971C2 (en) Device and method for the electrochemical production of alkali metal from an electrically dissociable salt thereof and the use thereof
WO2001046484A1 (en) Powder mixture or composite powder, a method for production thereof and the use thereof in composite materials
DE2446668B2 (en) METHOD OF MELT FLOW ELECTROLYSIS, IN PARTICULAR OF ALUMINUM OXIDE, AND ANODE FOR CARRYING OUT THE METHOD
DE112021004433T5 (en) Manufacturing process of recycled aluminum, manufacturing device, manufacturing system, recycled aluminum and aluminum workpiece
DE112004000296T5 (en) Metal particles and method of making the same
EP1731631B1 (en) Production of a composite material
DE1092215B (en) Cathode and cell for the production of aluminum from aluminum oxide by fused-salt electrolysis
DE2757808C2 (en) Sintered electrode
DE112008001644T5 (en) Process for recovering elemental silicon from cutting residues
DE112011103087T5 (en) Process for producing an aluminum structure and aluminum structure
DE3000210A1 (en) ELECTROLYTIC CLEANING OF METALS
DE3045349C2 (en) Cathode for a fused metal electrolysis cell for the production of aluminum
DE102004002343B4 (en) Hybrid fiber, process for its preparation and use
DE2819964C2 (en) Metallic diaphragm
DE3314228A1 (en) METHOD FOR SEPARATING IRON AND ITS ALLOY METALS FROM FINE-GRAINED OXIDIC RAW PRODUCTS
DE2740732A1 (en) METHOD AND DEVICE FOR CLEANING ALUMINUM
WO2017059467A1 (en) Component of a metal processing machine
DE3032480C2 (en) Process for removing electrocatalytically effective protective coatings from electrodes with a metal core and application of the process
DE2725389C2 (en) Process for the deposition of metals by molten electrolysis
DE1226311B (en) Process for the electrolytic deposition of zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten or their alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 3/66 20060101AFI20061031BHEP

Ipc: C25C 3/00 20060101ALI20080619BHEP

17P Request for examination filed

Effective date: 20090113

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011157

Country of ref document: DE

Representative=s name: VON KREISLER SELTING WERNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011157

Country of ref document: DE

Representative=s name: PATENTANWAELTE VON KREISLER, SELTING, WERNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011157

Country of ref document: DE

Representative=s name: VON KREISLER SELTING WERNER - PARTNERSCHAFT VO, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011157

Country of ref document: DE

Representative=s name: DOMPATENT VON KREISLER SELTING WERNER - PARTNE, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 550460

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006011157

Country of ref document: DE

Effective date: 20120516

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120723

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

BERE Be: lapsed

Owner name: DEUTSCHES ZENTRUM FUR LUFT- UND RAUMFAHRT E.V.

Effective date: 20120630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006011157

Country of ref document: DE

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120621

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 550460

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160525

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160629

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006011157

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630