EP1731074B1 - Vacuum cleaner - Google Patents
Vacuum cleaner Download PDFInfo
- Publication number
- EP1731074B1 EP1731074B1 EP06118794A EP06118794A EP1731074B1 EP 1731074 B1 EP1731074 B1 EP 1731074B1 EP 06118794 A EP06118794 A EP 06118794A EP 06118794 A EP06118794 A EP 06118794A EP 1731074 B1 EP1731074 B1 EP 1731074B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- channel
- pressure
- vacuum cleaner
- suction
- filter chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2889—Safety or protection devices or systems, e.g. for prevention of motor over-heating or for protection of the user
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/0072—Mechanical means for controlling the suction or for effecting pulsating action
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2805—Parameters or conditions being sensed
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2805—Parameters or conditions being sensed
- A47L9/2821—Pressure, vacuum level or airflow
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2836—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
Definitions
- the invention relates to a vacuum cleaner with an electric motor, a suction channel, a pressure channel and a secondary air channel, wherein an opening of the secondary air channel takes place in dependence on the temperature in the pressure channel, wherein further a pressure detection takes place in the suction air channel.
- the invention is based on the object of specifying a vacuum cleaner with an effective adaptation to different suction conditions, wherein as little irritation as possible should occur to the user.
- an opening of the secondary air channel takes place with combined consideration of a temperature value, for example the temperature in the pressure channel, the volume flow in the suction or pressure channel and the pressure drop across the filter chamber.
- a temperature value for example the temperature in the pressure channel, the volume flow in the suction or pressure channel and the pressure drop across the filter chamber.
- the input power of the electric motor is not changed, as is known in the state of the art, but selectively controlled by an actuator for opening the secondary air duct, preferably by means of a electrical activation of the actuator.
- this actuator may be a servo motor for continuously opening a secondary air duct flap.
- bi-metal, magnetic, piezoelectric or electro-chemical actuators are conceivable.
- the signal for the actuator is derived from a map, which is stored in a microcontroller.
- This map is preferably determined by the negative pressure behind the filter chamber, the negative pressure in front of the filter chamber, the temperature at vulnerable components and optionally by the user influenced thresholds.
- a volumetric flow meter is arranged in the suction channel.
- a pressure gauge is arranged, which may further be provided that the negative pressure in the suction channel is used independently to evaluate the pressure drop across the filter chamber for opening the secondary air passage.
- the measured negative pressure is compared with the power setting of the electric motor and / or with an attachment.
- the electric motor determine via temperature sensors and the map the optimal opening of the secondary air duct calculate. It follows that the user always has the optimum suction power available for all floor coverings without the sliding force becoming too high. At the same time, the protection of the device against overheating is ensured. Irritations of the user due to audible fluctuating power consumption are excluded by the inventive solution.
- the suction power is regulated according to the invention by opening the secondary air duct, wherein the speed of the electric motor remains approximately the same.
- the Filteryogllgrad is detected by means of the pressure drop across the filter chamber, in which case a signal for electrical, mechanical, optical or acoustic display for changing the filter takes place when a stored limit value is reached.
- the volume flow is preferably measured in the suction channel.
- the pressure drop across the filter chamber depends inter alia on the volume flow, which has the disadvantage that a correct display is possible only at a certain volume flow, ie at a certain power position and at a certain attachment and operating state.
- the absolute obstruction of the filter chamber can be calculated and displayed in the solution according to the invention, this independent of the operating state, ie the power position of the electric motor and the type of attachment.
- the calculation is carried out via a map stored in a microcontroller. High sliding forces of the nozzle or other attachments are coupled to high negative pressures in the suction paths in front of the filter chamber.
- a corresponding actuating signal for opening the secondary air channel is generated, whereupon the pushing force drops.
- a header detection this can be done individually for each header at different Limit values are made.
- the total quantity delivered is determined. This value is compared to a preset value. If this value is exceeded, a signal is generated to change further filters, for example odor filters or superfine filters. When changing the filter, the integrator is reset to zero.
- the user has set an operating state in which the actuator of the secondary air duct is open and / or the power controller of the electric motor is not set to maximum power, so can the increasing filling of the filter chamber and the resulting decrease in the suction power can be compensated by the present signals a corresponding closing of the secondary air duct. If the latter is closed and the device is not in the maximum power position, then the user can be shown to switch to a higher power level. It is also conceivable to let this increase in the power level take place automatically, the values to be taken into account being derived from the characteristic map.
- FIG. 1 Shown and described is first with reference to Fig. 1 an electric motor 1 for a vacuum cleaner, not shown, to which electric motor 1 a driven by this impeller 2 is arranged.
- the blower unit formed thereby is provided with the numeral 3.
- the blower unit 3 is a suction channel 4 and behind the blower unit 3, a suction channel 5 is arranged.
- a secondary air channel 6 opens, the suction channel side opening 7 by means of an actuator 8 in a basic position according to Fig. 1 is closed.
- a temperature sensor 9 for example.
- the determined temperature value is compared in a control / evaluation unit 10 with a predetermined actual value. Exceeds the determined temperature a predetermined setpoint value, a signal for opening the secondary air duct is generated.
- the temperature detection can be done by measuring the body temperature or by measuring the Saugstrom Kunststoff temperature in the immediate vicinity of the electric motor 1 or other components to be protected. Further components endangered by high temperatures may be, for example, filters, plastic housing parts or even electronic components.
- the transmitter in the control / evaluation unit 10 may be constructed discretely or be designed in the form of a microcontroller, wherein a limit value for generating a control signal for opening the secondary air duct 6 may be preset or may be present as a variable value.
- the opening 7 of the secondary air channel 6 can basically be arranged arbitrarily on the negative pressure side of the electric motor 1 in the region of the suction channel 4, but preferably an arrangement is selected behind a motor protection filter.
- the opening of the secondary air duct 6 first closing actuator 8 is electrically activated according to the invention, which also spatially remote, formed by actuator 8 and secondary air duct opening 7 valves are controlled.
- the actuator 8 is provided in the form of a bi-metal actuator 11 which is electrically heated when the limit temperature is exceeded until it deforms to release the secondary air duct opening 7 (see dash-dotted representation in FIG Fig. 1 ). If the temperature drops due to the cooling air sucked in via the secondary air duct 6 again below the limit, the heater 12 des'Bi-metal actuator 11 is turned off, so that a provision of the actuator takes place to close the opening 7.
- Fig. 2 is another vacuum cleaner shown in which via a pressure sensor 25 in the suction channel 4 of the present pressure is measured and evaluated in a control / evaluation unit 10. About the latter, the actuator 8 is electrically driven to open the secondary air duct 6 from a predetermined limit. Shown here, however, are solutions of the actuator 8 according to the first embodiment, ie in the form of a bi-metal actuator 11, a solenoid actuator or a Actuator in the form of a piezoelectric element or an electro-chemical actuator.
- a suitably defined temperature limit is exceeded, cooling secondary air is supplied by a, the Mau Kunststoffkanal- Opening 7 occlusive actuator 8 is opened under pressure control.
- the switching point of the actuator 8, ie the necessary negative pressure at which an opening is made is so high that this does not affect regular applications. In general, opening takes place at higher negative pressure values.
- the switching threshold of the actuator 8 is not reached and thus does not open to flow cooling secondary air to last sen.
- Fig. 4 shows an embodiment of the invention in which an opening of the secondary air duct 6 takes place with combined consideration of a temperature value in the pressure channel 5 for detecting the temperature of the electric motor 1, the volume flow in the suction channel 4 and the pressure drop across a filter chamber 15.
- pressure sensors 16, 17 are provided in the suction channel 4 in front of and behind the filter chamber 15, the pressure sensor 17 behind the filter chamber 15 and a volumetric flow meter 18 are placed in the flow direction r in front of the opening 7 of the secondary air duct 6.
- the negative pressure in the suction channel 4 is used independently of the evaluation of the pressure drop across the filter chamber 15 via the pressure sensor 16.
- the values acquired via the sensors 9, 16, 17 and 18 are fed to a control / evaluation unit 10 in the form of a microcontroller and compared there with a stored characteristic map.
- a control / evaluation unit 10 in the form of a microcontroller and compared there with a stored characteristic map.
- As a further parameter for the evaluation of the signals serve the adjustment of, the electric motor 1 regulating power controller (arrow 19) and optionally the signal of a header detection (arrow 20).
- the pushing force of the attachment can be determined. If the value for the negative pressure in front of the filter chamber 15 exceeds a preset limit, then a corresponding actuating signal (arrow 21) for opening the actuator 8, which in the form of a servomotor, a bi-metal actuator, a solenoid actuator or in the form a piezoelectric element or an electro-chemical actuator can be formed, generated, whereupon the pushing force decreases. If an attachment detection (arrow 20) is present, this can be done individually for each attachment at different limits.
- the total volume of air delivered is determined. This value is compared to a preset value. If this value is exceeded, for example, a signal for changing the odor filter or superfine filter is generated (Arrow 22). When the filter is changed, the integrator is reset to zero.
- the level of the filter chamber is to be determined. If the pressure drop reaches a stored value, a signal (arrow 23) is generated to indicate the required filter change.
- This display can be done electrically, mechanically, visually or acoustically.
- the increasing filling of the filter chamber 15 and the resulting decrease in the suction power can be compensated by a corresponding one with the present signals Moving the actuator 8. If this is closed and the electric motor 1 is not operated in the maximum position, then the user can be indicated to switch to a higher power level. Such a power upshift can also be done automatically via the map.
- Fig. 4 illustrated solution according to the invention is achieved via the use of a map a steady adjustment of the optimum suction power.
- This adjustment of the suction power via a, formed from the actuator 8 and the secondary air duct opening 7 valve.
- all sizes are available to determine the pressure loss of the filled filter chamber 15 and to control the Saugadosan Adjuste / filter change indicator.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Vacuum Cleaner (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Filters For Electric Vacuum Cleaners (AREA)
- Motor Or Generator Frames (AREA)
- Motor Or Generator Cooling System (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
Description
Die Erfindung betrifft einen Staubsauger mit einem Elektromotor, einem Saugkanal, einem Druckkanal und einem Nebenluftkanal, wobei in Abhängigkeit von der Temperatur in dem Druckkanal eine Öffnung des Nebenluftkanals erfolgt, wobei weiter eine Druckerfassung in dem Saugluftkanal erfolgt.The invention relates to a vacuum cleaner with an electric motor, a suction channel, a pressure channel and a secondary air channel, wherein an opening of the secondary air channel takes place in dependence on the temperature in the pressure channel, wherein further a pressure detection takes place in the suction air channel.
Die Leistung von Staubsaugern mit dem Ziel, die Staubaufnahme insbesondere auf Hartböden und niedrig-florigen Teppichen zu maximieren, wird immer weiter gesteigert. Bei diesen hohen Luftleistungen steigt jedoch auch auf hochflorigen Teppichen die Schiebekraft auf hohe Werte. Es sind diesbezüglich Lösungen bekannt, bei welchen Automatik-Stellungen vorgesehen sind, welche abhängig vom Unterdruck im Gerät die Leistungsaufnahme des Motors regeln. Bei immer weiter steigender Aufnahmeleistung von Staubsaugern steigt auch der Aufwand für die Kühlung des Motors für den Fall, dass das Gerät bzw. der Staubfilter verstopfen und dadurch der Saugluftstrom, der üblicherweise auch die Kühlung, bspw. des Elektromotors, übernimmt, zu gering wird. Bei den bekannten Automatik-Einrichtungen wird der Unterdruck in der Regel im Bereich hinter der Filterkammer abgegriffen. Bei hochflorigen Teppichen steigt der Unterdruck im Gerät an. Wird ein bestimmter Schwellwert überschritten, so wird elektronisch die Aufnahmeleistung gesenkt. Nachteilig wirkt sich aus, dass diese Leistungsabsenkung -und auch das automatische Anheben der Leistung- beim Benutzer zu Irritationen führt.The performance of vacuum cleaners with the aim of maximizing dust pickup, especially on hard floors and low-pile carpets, continues to increase. However, even at high-pile carpets, the sliding force increases to high values with these high air flows. There are known in this regard solutions in which automatic positions are provided, which regulate the power consumption of the motor depending on the negative pressure in the device. With ever increasing recording power of vacuum cleaners and the cost of cooling the motor in the event that the device or the dust filter clogged and thereby the suction air flow, which usually also the cooling, eg. The electric motor takes over, is too low. In the known automatic devices, the negative pressure is usually tapped in the area behind the filter chamber. For deep-pile carpets, the negative pressure in the device increases. If a certain threshold is exceeded, electronically the recording power is lowered. The disadvantage is that this power reduction - and also the automatic increase of the power - leads to irritation for the user.
Aus der
Der Erfindung liegt, ausgehend von dem eingangs geschilderten Zusammenhang, die Aufgabe zugrunde, einen Staubsauger mit einer wirkungsvollen Anpassung an unterschiedliche Saugbedingungen anzugeben, wobei es möglichst wenig zu Irritationen des Benutzers kommen soll.Based on the above-described context, the invention is based on the object of specifying a vacuum cleaner with an effective adaptation to different suction conditions, wherein as little irritation as possible should occur to the user.
Den vorgenannten Nachteilen wird durch die Erfindung begegnet, indem eine Öffnung des Nebenluftkanals unter kombinierter Berücksichtigung von einem Temperaturwert, bspw. der Temperatur im Druckkanal, dem Volumenstrom im Saug- bzw. Druckkanal und dem Druckabfall an der Filterkammer erfolgt. Durch die erfindungsgemäße Lösung wird nicht, wie im Stand der Technik bekannt, die Aufnahmeleistung des Elektromotors verändert, sondern gezielt ein Stellorgan zum Öffnen des Nebenluftkanals angesteuert, bevorzugt durch eine elektrische Aktivierung des Stellorgans. Hierbei kann dieses Stellorgan ein Servo-Motor zum kontinuierlichen Öffnen einer Nebenluftkanalklappe sein. Darüber hinaus sind auch Bi-Metall-, Magnet-, Piezo- oder auch elektro-chemische Stellorgane denkbar. Das Signal für das Stellorgan wird aus einem Kennfeld abgeleitet, welches in einem Mikrokontroller abgespeichert ist. Dieses Kennfeld wird bevorzugt bestimmt durch den Unterdruck hinter der Filterkammer, dem Unterdruck vor der Filterkammer, der Temperatur an gefährdeten Bauteilen und optional vom Benutzer beeinflussbarer Schwellwerte. Weiter kann vorgesehen sein, dass in dem Saugkanal ein Volumenstrommesser angeordnet ist. Zudem erweist es sich als vorteilhaft, dass in dem Saugkanal vor und hinter der Filterkammer ein Druckmesser angeordnet ist, wobei weiter vorgesehen sein kann, dass der Unterdruck im Saugkanal unabhängig zur Auswertung des Druckabfalls an der Filterkammer zur Öffnung des Nebenluftkanals herangezogen wird. Zudem erweist es sich als vorteilhaft, dass der gemessene Unterdruck mit der Leistungseinstellung des Elektromotors und/oder mit einem Vorsatzgerät abgeglichen wird. Aus den ermittelten Daten lassen sich die Schiebekraft des Vorsatzgerätes aus dem Druck vor der Filterkammer, der Füllgrad der Filterkammer aus dem Druckabfall an derselben und die Temperaturbelastung gefährdeter Bauteile, wie bspw. des Elektromotors, über Temperatursensoren ermitteln und über das Kennfeld die optimale Öffnung des Nebenluftkanals errechnen. Hieraus folgt, dass der Benutzer für alle Bodenbeläge immer die optimale Saugleistung zur Verfügung hat, ohne dass die Schiebekraft zu hoch wird. Zugleich ist auch der Schutz des Gerätes vor Überhitzung gewährleistet. Irritationen des Benutzers durch hörbare schwankende Leistungsaufnahme sind durch die erfindungsgemäße Lösung ausgeschlossen. Die Saugleistung wird erfindungsgemäß durch Öffnen des Nebenluftkanals reguliert, wobei die Drehzahl des Elektromotors annähernd gleich bleibt. Durch die Temperaturerfassung mittels Sensoren ist ein Schutz vor Schäden durch Überhitzung der zu schützenden Bauteile, bspw. bei einer Verstopfung, erreicht. Wird ein abgespeicherter Temperaturgrenzwert erreicht oder überschritten, so erfolgt ein Signal zum Öffnen des Nebenluftkanals. Darüber hinaus wird auch der Filterfüllgrad mittels des Druckabfalls an der Filterkammer erfasst, wobei hier bei Erreichen eines abgespeicherten Grenzwertes ein Signal zur elektrischen, mechanischen, optischen oder akustischen Anzeige zum Filterwechsel erfolgt. Wie erwähnt, wird bevorzugt in dem Saugkanal auch der Volumenstrom gemessen. Im bekannten Stand der Technik hängt der Druckabfall an der Filterkammer unter anderem vom Volumenstrom ab, was sich dahingehend als nachteilig auswirkt, dass eine korrekte Anzeige nur bei einem bestimmten Volumenstrom, d. h. bei einer bestimmten Leistungsstellung und bei einem bestimmten Vorsatzgerät und Betriebszustand möglich ist. Durch die Kenntnis des Volumenstromes kann bei der erfindungsgemäßen Lösung die absolute Verstopfung der Filterkammer berechnet und angezeigt werden, dies unabhängig vom Betriebszustand, d. h. der Leistungsstellung des Elektromotors und der Art des Vorsatzgerätes. Die Berechnung erfolgt hierbei über ein in einem Mikrokontroller abgelegten Kennfeld. Hohe Schiebekräfte der Düse bzw. anderer Vorsatzgeräte sind gekoppelt an hohe Unterdrücke in den Saugwegen vor der Filterkammer. Übersteigt der Wert für den Unterdruck vor der Filterkammer einen voreingestellten Grenzwert, so wird ein entsprechendes Stellsignal für das Öffnen des Nebenluftkanals generiert, woraufhin die Schiebekraft sinkt. Bei einer Vorsatzgeräte-Erkennung kann dies individuell für jedes Vorsatzgerät bei unterschiedlichen Grenzwerten erfolgen. Durch die Integration des Volumenstromes wird die gesamte geförderte Menge ermittelt. Dieser Wert wird mit einem voreingestellten Wert verglichen. Bei Überschreiten dieses Wertes wird ein Signal zum Wechsel weiterer Filter, bspw. Geruchsfilter oder Feinstfilter generiert. Beim Wechsel des Filters wird ein Reset des Integrators auf Null durchgeführt. Hat der Benutzer einen Betriebszustand eingestellt, bei welchem das Stellorgan des Nebenluftkanals offen ist und/oder der Leistungssteller des Elektromotors nicht auf maximale Leistung eingestellt ist, so kann mit den vorliegenden Signalen die zunehmende Füllung der Filterkammer und die daraus resultierende Abnahme der Saugleistung kompensiert werden durch ein entsprechendes Zufahren des Nebenluftkanals. Ist letzterer geschlossen und das Gerät nicht in maximaler Leistungsstellung, so kann dem Benutzer angezeigt werden, in eine höhere Leistungsstufe zu schalten. Denkbar ist auch, diese Anhebung der Leistungsstufe automatisch erfolgen zu lassen, wobei die zu berücksichtigenden Werte aus dem Kennfeld abgeleitet werden.The abovementioned disadvantages are counteracted by the invention in that an opening of the secondary air channel takes place with combined consideration of a temperature value, for example the temperature in the pressure channel, the volume flow in the suction or pressure channel and the pressure drop across the filter chamber. As a result of the solution according to the invention, the input power of the electric motor is not changed, as is known in the state of the art, but selectively controlled by an actuator for opening the secondary air duct, preferably by means of a electrical activation of the actuator. Here, this actuator may be a servo motor for continuously opening a secondary air duct flap. In addition, bi-metal, magnetic, piezoelectric or electro-chemical actuators are conceivable. The signal for the actuator is derived from a map, which is stored in a microcontroller. This map is preferably determined by the negative pressure behind the filter chamber, the negative pressure in front of the filter chamber, the temperature at vulnerable components and optionally by the user influenced thresholds. It can further be provided that a volumetric flow meter is arranged in the suction channel. In addition, it proves to be advantageous that in the suction channel in front of and behind the filter chamber, a pressure gauge is arranged, which may further be provided that the negative pressure in the suction channel is used independently to evaluate the pressure drop across the filter chamber for opening the secondary air passage. In addition, it proves to be advantageous that the measured negative pressure is compared with the power setting of the electric motor and / or with an attachment. From the data obtained, the pushing force of the attachment from the pressure in front of the filter chamber, the degree of filling of the filter chamber from the pressure drop at the same and the temperature load of vulnerable components, such as. The electric motor, determine via temperature sensors and the map the optimal opening of the secondary air duct calculate. It follows that the user always has the optimum suction power available for all floor coverings without the sliding force becoming too high. At the same time, the protection of the device against overheating is ensured. Irritations of the user due to audible fluctuating power consumption are excluded by the inventive solution. The suction power is regulated according to the invention by opening the secondary air duct, wherein the speed of the electric motor remains approximately the same. By detecting the temperature by means of sensors protection against damage caused by overheating of the components to be protected, for example. In a blockage, achieved. If a stored temperature limit value is reached or exceeded, a signal for opening the secondary air duct takes place. In addition, the Filterfüllgrad is detected by means of the pressure drop across the filter chamber, in which case a signal for electrical, mechanical, optical or acoustic display for changing the filter takes place when a stored limit value is reached. As mentioned, the volume flow is preferably measured in the suction channel. In the known state of the art, the pressure drop across the filter chamber depends inter alia on the volume flow, which has the disadvantage that a correct display is possible only at a certain volume flow, ie at a certain power position and at a certain attachment and operating state. By knowing the volume flow, the absolute obstruction of the filter chamber can be calculated and displayed in the solution according to the invention, this independent of the operating state, ie the power position of the electric motor and the type of attachment. The calculation is carried out via a map stored in a microcontroller. High sliding forces of the nozzle or other attachments are coupled to high negative pressures in the suction paths in front of the filter chamber. If the value for the negative pressure upstream of the filter chamber exceeds a preset limit value, a corresponding actuating signal for opening the secondary air channel is generated, whereupon the pushing force drops. In a header detection this can be done individually for each header at different Limit values are made. By integrating the volume flow, the total quantity delivered is determined. This value is compared to a preset value. If this value is exceeded, a signal is generated to change further filters, for example odor filters or superfine filters. When changing the filter, the integrator is reset to zero. If the user has set an operating state in which the actuator of the secondary air duct is open and / or the power controller of the electric motor is not set to maximum power, so can the increasing filling of the filter chamber and the resulting decrease in the suction power can be compensated by the present signals a corresponding closing of the secondary air duct. If the latter is closed and the device is not in the maximum power position, then the user can be shown to switch to a higher power level. It is also conceivable to let this increase in the power level take place automatically, the values to be taken into account being derived from the characteristic map.
Nachstehend ist ein Ausführungsbeispiel der Erfindung anhand der beigefügten Zeichnung ausführlich dargestellt. Die
-
Fig. 1 eine schematische Darstellung eines Elektromotors mit einem Saugkanal, einem Druckkanal und einem Nebenluftkanal für einen Staubsauger; -
Fig. 2 eine derFig. 1 entsprechende Darstellung; -
Fig. 3 eine weitere derFig. 1 entsprechende Darstellung; -
Fig. 4 eine Ausführungsform der Erfindung.
-
Fig. 1 a schematic representation of an electric motor with a suction channel, a pressure channel and a secondary air duct for a vacuum cleaner; -
Fig. 2 one of theFig. 1 corresponding representation; -
Fig. 3 another oneFig. 1 corresponding representation; -
Fig. 4 an embodiment of the invention.
Dargestellt und beschrieben ist zunächst mit Bezug zu
In Saugrichtung r ist der Gebläseeinheit 3 ein Saugkanal 4 und hinter der Gebläseeinheit 3 ein Saugkanal 5 angeordnet.In the suction direction r, the
In dem Saugkanal 4, d. h. in Saugrichtung r vor der Gebläseeinheit 3 mündet ein Nebenluftkanal 6, dessen saugkanalseitige Öffnung 7 mittels eines Stellorgans 8 in einer Grundstellung gemäß
Der Saugluftstrom übernimmt zugleich die Kühlung des Elektromotors 1. Störungen, wie bspw. Verstopfungen, können jedoch zu einer derartigen Reduzierung des Saugluftstromes führen, dass eine ausreichende Kühlung des Elektromotors 1 nicht mehr gegeben ist. Um hier den Elektromotor vor Schäden durch Überhitzung zu schützen, wird die Temperatur in Saugstromrichtung r hinter dem Elektromotor 1, d. h. im Bereich des Druckkanals 5 mittels eines Temperatursensors 9, bspw. in Form eines NTC, erfasst. Der ermittelte Temperaturwert wird in einer Steuer-/Auswert-Einheit 10 mit einem vorgegebenen Ist-Wert verglichen. Übersteigt die ermittelte Temperatur einen vorgegebenen Soll-Wert, so wird ein Signal zum Öffnen des Nebenluftkanals generiert.However, blockages, however, can lead to such a reduction of the suction air flow that sufficient cooling of the
Die Temperaturerfassung kann mittels Messung der Körpertemperatur oder auch durch Messung der Saugstromluft-Temperatur in unmittelbarer Nähe des Elektromotors 1 bzw. auch anderer zu schützender Bauteile erfolgen. Weitere durch hohe Temperaturen gefährdete Bauteile können bspw. Filter, Kunststoffgehäuseteile oder auch Elektronikbauteile sein. Die Auswerteelektronik in der Steuer-/Auswerteeinheit 10 kann diskret aufgebaut oder auch in Form eines Mikrokontrollers ausgebildet sein, wobei ein Grenzwert zur Generierung eines Steuersignals zum Öffnen des Nebenluftkanals 6 fest voreingestellt sein oder auch als variabeler Wert vorliegen kann.The temperature detection can be done by measuring the body temperature or by measuring the Saugstromluft temperature in the immediate vicinity of the
Die Öffnung 7 des Nebenluftkanals 6 kann grundsätzlich beliebig auf der Unterdruckseite des Elektromotors 1 im Bereich des Saugkanals 4 angeordnet sein, wobei jedoch bevorzugt eine Anordnung hinter einem Motorschutzfilter gewählt wird.The
Das die Öffnung des Nebenluftkanals 6 zunächst verschließende Stellorgan 8 wird erfindungsgemäß elektrisch aktiviert, womit auch räumlich entfernt liegende, durch Stellorgan 8 und Nebenluftkanal-Öffnung 7 gebildete Ventile ansteuerbar sind.The opening of the
In dem dargestellten Staubsauger ist das Stellorgan 8 in Form eines Bi-Metall-Stellorgans 11 vorgesehen, welches bei Überschreiten der Grenztemperatur elektrisch beheizt wird, bis es sich zur Freigabe der Nebenluftkanal-Öffnung 7 verformt (siehe strichpunktierte Darstellung in
Alternativ zu dem dargestellten Stellorgan 8 ist es auch denkbar, ein Magnet-Stellorgan vorzusehen, welches bei Überschreiten der Grenztemperatur elektrisch angesteuert wird und die Nebenluftkanal-Öffnung 7 freigibt. Darüber hinaus sind auch Piezo-Elemente oder elektro-chemische Aktuatoren als Stellorgane denkbar.As an alternative to the illustrated
In
In dem Staubsauger gemäß
Um eine Schädigung zu vermeiden, muss Nebenluft zugeführt werden. Wird in einer kleinen Leistungsstufe des Elektromotors der Temperatur-Grenzwert erreicht, so wird das unterdruckgesteuerte Stellorgan 8 entgegen der Federkraft einer das Stellorgan 8 in die Schließstellung beaufschlagenden Feder 30 geöffnet, dies dadurch bedingt, dass der Elektromotor 1 mittels Ansteuerung über die Steuer-/Auswert-Einheit 10 in eine Leistungsstufe verbracht wird, bei welcher hinreichend Unterdruck erzeugt wird, um die Schaltschwelle des Stellorgans 8 zu überschreiten.In order to avoid damage, secondary air must be supplied. If the temperature limit value is reached in a small power stage of the electric motor, then the vacuum-controlled
Zur Erfassung des Druckabfalls an der Filterkammer 15 sind in dem Saugkanal 4 vor und hinter der Filterkammer 15 Drucksensoren 16, 17 vorgesehen, wobei der Drucksensor 17 hinter der Filterkammer 15 und ein Volumenstrommesser 18 in Strömungsrichtung r vor der Öffnung 7 des Nebenluftkanals 6 platziert sind.For detecting the pressure drop across the
Über den Drucksensor 16 wird zudem der Unterdruck im Saugkanal 4 unabhängig zur Auswertung des Druckabfalls an der Filterkammer 15 herangezogen.In addition, the negative pressure in the
Die über die Sensoren 9, 16, 17 und 18 erfassten Werte werden einer Steuer-/Auswert-Einheit 10 in Form eines Mikrokontrollers zugeführt und dort mit einem hinterlegten Kennfeld verglichen. Als weitere Parameter zur Auswertung der Signale dienen die Einstellung des, den Elektromotor 1 regelnden Leistungsstellers (Pfeil 19) und gegebenenfalls das Signal einer Vorsatzgeräteerkennung (Pfeil 20) .The values acquired via the
Aus dem durch den Drucksensor 16 gemessenen Wert vor der Filterkammer 15 ist die Schiebekraft des Vorsatzgerätes ermittelbar. Übersteigt der Wert für den Unterdruck vor der Filterkammer 15 einen voreingestellten Grenzwert, so wird ein entsprechendes Stellsignal (Pfeil 21) für das Öffnen des Stellorganes 8, welches in Form eines Servomotors, eines Bi-Metall-Stellorganes, eines Magnet-Stellorganes oder in Form eines Piezo-Elementes oder eines elektro-chemischen Aktuators gebildet sein kann, generiert, woraufhin die Schiebekraft sinkt. Ist eine Vorsatzgeräte-Erkennung (Pfeil 20) vorhanden, so kann dies individuell für jedes Vorsatzgerät bei unterschiedlichen Grenzwerten erfolgen.From the value measured by the
Durch die Integration einer Volumenstromermittlung wird die gesamte geförderte Luftmenge ermittelt. Dieser Wert wird mit einem voreingestellten Wert verglichen. Bei Überschreiten dieses Wertes wird bspw. ein Signal zum Wechseln des Geruchs- oder Feinstfilters generiert (Pfeil 22). Bei einem Wechsel des Filters wird ein Reset des Integrators auf Null durchgeführt.By integrating a volume flow determination, the total volume of air delivered is determined. This value is compared to a preset value. If this value is exceeded, for example, a signal for changing the odor filter or superfine filter is generated (Arrow 22). When the filter is changed, the integrator is reset to zero.
Über den ermittelten Druckabfall an der Filterkammer 15 ist der Füllstand der Filterkammer zu ermitteln. Erreicht der Druckabfall einen abgespeicherten Wert, so wird ein Signal (Pfeil 23) generiert, zur Anzeige des nötigen Filterwechsels. Diese Anzeige kann elektrisch, mechanisch, optisch oder auch akustisch erfolgen.
Durch Kenntnis des mittels des Volumenstrommessers 18 ermittelten Volumenstromes kann die absolute Verstopfung der Filterkammer 15 berechnet und angezeigt werden, dies unabhängig vom Betriebszustand, d. h. von der Leistungsstellung des Elektromotors 1 und Art des Vorsatzgerätes. Die Berechnung erfolgt über das hinterlegte Kennfeld in der Steuer-/Auswert-Einheit.About the determined pressure drop across the
By knowing the volume flow determined by means of the
Hat der Benutzer einen Betriebszustand eingestellt, bei welchem das Stellorgan 8 geöffnet ist und/oder der Leistungssteller nicht auf eine Maximalposition eingestellt ist, so kann mit den vorliegenden Signalen die zunehmende Füllung der Filterkammer 15 und die daraus resultierende Abnahme der Saugleistung kompensiert werden durch ein entsprechendes Zufahren des Stellorganes 8. Ist dieses geschlossen und der Elektromotor 1 nicht in Maximalstellung betrieben, so kann dem Benutzer angezeigt werden, in eine höhere Leistungsstufe zu schalten. Ein solches Höherschalten der Leistungsstufe kann auch über das Kennfeld automatisch erfolgen.If the user has set an operating state in which the
Um gefährdete Bauteile, wie bspw. den Elektromotor 1, vor Schäden durch Überhitzung in Folge von Verstopfung usw. zu schützen, wird über den Temperatursensor 9 in Abhängigkeit von einem hinterlegten Grenzwert ein Signal (Pfeil 21) zum Öffnen des Nebenluftkanals 6 generiert.In order to protect vulnerable components, such as. The
Durch die in
Claims (7)
- Vacuum cleaner having an electric motor (1), a suction channel (4), a pressure channel (5) and an auxiliary air channel (6), the auxiliary air channel (6) being opened as a function of the temperature in the pressure channel (5), furthermore pressure being detected in the suction channel, characterised in that the auxiliary air channel (6) is opened in combined consideration of a temperature value, for example the temperature in the pressure channel (5), the volumetric flow in the suction (4) or pressure (5) channel, and the pressure drop at the filter chamber (15).
- Vacuum cleaner according to claim 1, characterised in that in the suction channel (4) is arranged a volumetric flow meter (18).
- Vacuum cleaner according to either of claims 1 or 2, characterised in that in the suction channel (4) in front of and behind the filter chamber (15) is arranged a pressure gauge (18).
- Vacuum cleaner according to any of claims 1 to 3, characterised in that the partial pressure in the suction channel (4) is used to open the auxiliary air channel (6), independently of evaluation of the pressure drop at the filter chamber (15).
- Vacuum cleaner according to any of claims 1 to 4, characterised in that the measured partial pressure is coordinated with the power setting of the electric motor (1) and/or with an attachment.
- Vacuum cleaner according to any of claims 1 to 5, characterised in that the volumetric flow measurement can be integrated.
- Vacuum cleaner according to claim 6, characterised in that the integrated value of volumetric flow measurement is used to generate a signal as a function of a reference value.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10035482 | 2000-07-21 | ||
DE10129596A DE10129596A1 (en) | 2000-07-21 | 2001-06-20 | vacuum cleaner |
EP01951652A EP1301114B1 (en) | 2000-07-21 | 2001-07-05 | Vacuum cleaner |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01951652A Division EP1301114B1 (en) | 2000-07-21 | 2001-07-05 | Vacuum cleaner |
EP01951652.5 Division | 2001-07-05 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1731074A2 EP1731074A2 (en) | 2006-12-13 |
EP1731074A3 EP1731074A3 (en) | 2007-05-02 |
EP1731074B1 true EP1731074B1 (en) | 2008-11-19 |
Family
ID=7649689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06118794A Expired - Lifetime EP1731074B1 (en) | 2000-07-21 | 2001-07-05 | Vacuum cleaner |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1731074B1 (en) |
AT (1) | ATE414459T1 (en) |
DE (2) | DE10129596A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0314945D0 (en) | 2003-06-26 | 2003-07-30 | Black & Decker Inc | Vacuum cleaner |
DE102004050017B4 (en) * | 2004-10-13 | 2006-10-26 | Miele & Cie. Kg | Valve for a floor care appliance, in particular for a vacuum cleaner |
WO2006053584A1 (en) * | 2004-11-20 | 2006-05-26 | Alfred Kärcher Gmbh & Co. Kg | Vacuum cleaner equipped with a bleeder valve for controlling the cooling of the electronic control system |
DE102011078383A1 (en) * | 2011-06-30 | 2013-01-03 | BSH Bosch und Siemens Hausgeräte GmbH | Secondary air valve, vacuum cleaner and assembly process |
DE102011078388A1 (en) | 2011-06-30 | 2013-01-03 | BSH Bosch und Siemens Hausgeräte GmbH | Auxiliary air valve for vacuum cleaner, has housing, inlet opening and outlet opening for bypass airflow, and pressure-dependent opening closure unit for blocking flow connection between inlet opening and outlet |
DE102016110923A1 (en) * | 2016-06-15 | 2017-12-21 | Miele & Cie. Kg | Blower device for a vacuum cleaner, method for operating a blower device, control unit and vacuum cleaner |
DE102017126393A1 (en) * | 2017-11-10 | 2019-05-16 | Vorwerk & Co. Interholding Gmbh | Regenerative vacuum cleaner |
DE102020127421A1 (en) * | 2020-10-19 | 2022-04-21 | Miele & Cie. Kg | Vacuum cleaner and method of operating a vacuum cleaner |
DE102021104759A1 (en) | 2021-02-26 | 2022-09-01 | J. Schmalz Gmbh | Device for fixing, stretching, lifting and/or moving objects by suction using negative pressure |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL274310A (en) * | 1961-02-04 | |||
DE2246961A1 (en) * | 1972-09-25 | 1974-04-04 | Siemens Elektrogeraete Gmbh | DISPLAY DEVICE FOR THE FILLING LEVEL OF A VACUUM CLEANER FILTER |
SE381982B (en) * | 1974-03-01 | 1976-01-12 | Electrolux Ab | DEVICE FOR VACUUM CLEANERS INCLUDING ONE OF A TEMPERATURE-SENSORY BODY POWERABLE VALVE |
US4124916A (en) * | 1977-08-04 | 1978-11-14 | The Singer Company | Vacuum cleaner condition indicator and safety device |
DE2819193A1 (en) * | 1978-05-02 | 1979-11-08 | Siemens Ag | VACUUM CLEANER WITH A SPEED CONTROL DEVICE FOR THE FAN UNIT |
DE2911255C2 (en) * | 1979-03-22 | 1986-09-25 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | vacuum cleaner |
DE2917142A1 (en) * | 1979-04-27 | 1980-11-06 | Mauz & Pfeiffer Progress | Vacuum cleaner with temp. control - incorporates valve blocking or opening air vent, using permanent magnet and spring |
JP3146881B2 (en) * | 1994-10-07 | 2001-03-19 | 松下電器産業株式会社 | Vacuum cleaner controller |
GB2315231A (en) * | 1996-07-15 | 1998-01-28 | Notetry Ltd | Apparatus for Separating Particles |
GB2320419B (en) * | 1996-12-20 | 2000-08-16 | Notetry Ltd | Improved vacuum cleaner |
JPH11318772A (en) * | 1998-05-21 | 1999-11-24 | Matsushita Electric Ind Co Ltd | Vacuum cleaner |
-
2001
- 2001-06-20 DE DE10129596A patent/DE10129596A1/en not_active Withdrawn
- 2001-07-05 AT AT06118794T patent/ATE414459T1/en not_active IP Right Cessation
- 2001-07-05 EP EP06118794A patent/EP1731074B1/en not_active Expired - Lifetime
- 2001-07-05 DE DE50114511T patent/DE50114511D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ATE414459T1 (en) | 2008-12-15 |
DE50114511D1 (en) | 2009-01-02 |
EP1731074A3 (en) | 2007-05-02 |
DE10129596A1 (en) | 2002-01-31 |
EP1731074A2 (en) | 2006-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1731074B1 (en) | Vacuum cleaner | |
EP3217157B1 (en) | Heat cost allocator and method for measuring the heat loss of a radiator | |
EP0373353B1 (en) | Device for regulating and/or displaying the operation of suction cleaners | |
DE102011015574B4 (en) | Suction device with a motor sensor | |
EP1882882A2 (en) | Flowrate regulating device | |
WO2009068299A1 (en) | Air volume flow and pushing force control device | |
DE102010015647A1 (en) | Method for determining an operating position of an on / off valve and field device | |
EP3367868A1 (en) | Cleaning device, particularly household vacuum cleaner | |
DE102006042902B4 (en) | Method and device for electrical monitoring of the calcification state of an electrically heated instantaneous water heater | |
EP2595522B1 (en) | Method and apparatus for controlling the performance of a fan motor for a vacuum cleaner | |
DE102010054979A1 (en) | Valve arrangement and method for actuating a valve | |
DE102011015575B4 (en) | Suction device with a cleaning sensor | |
DE19830737C2 (en) | Method and device for controlling a suction device with a turbine | |
DE102012110758A1 (en) | Air filter assembly e.g. high efficiency particulate air (HEPA) filter assembly for hand-held electric motor driven vacuum cleaner in household, has housing with scale formation for determining weight of air filter located in housing | |
EP1301114B1 (en) | Vacuum cleaner | |
DE1954700A1 (en) | Vacuum cleaner with an electric motor driven fan | |
EP2789283B1 (en) | Suction device and method for operating the same | |
AU2017245592B2 (en) | Measurement module | |
EP1672216A1 (en) | Pump having protection means against freezing | |
EP2468165A1 (en) | Vacuum cleaner and method for operating same | |
EP2436294B1 (en) | Vacuum cleaner and method for operating same | |
DE2925677C2 (en) | Control device for a defrosting device of a refrigeration unit | |
DE10026001B4 (en) | Device for monitoring a fan in a gas heater | |
DE1648501C2 (en) | Compressor with an absolute pressure measuring device | |
AT411494B (en) | HEAT METER FOR HEATING MEDIA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1301114 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HOFFMANN, THOMAS Inventor name: SCHEUREN, BERNHARD Inventor name: FIESELER, MARTIN DR. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17P | Request for examination filed |
Effective date: 20070928 |
|
17Q | First examination report despatched |
Effective date: 20071120 |
|
AKX | Designation fees paid |
Designated state(s): AT DE ES FR IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1301114 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE ES FR IT |
|
REF | Corresponds to: |
Ref document number: 50114511 Country of ref document: DE Date of ref document: 20090102 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090301 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090820 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090705 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200723 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200731 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50114511 Country of ref document: DE |