EP1730449B1 - Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant - Google Patents

Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant Download PDF

Info

Publication number
EP1730449B1
EP1730449B1 EP05743002.7A EP05743002A EP1730449B1 EP 1730449 B1 EP1730449 B1 EP 1730449B1 EP 05743002 A EP05743002 A EP 05743002A EP 1730449 B1 EP1730449 B1 EP 1730449B1
Authority
EP
European Patent Office
Prior art keywords
burner
values
group
combustion chamber
burner group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05743002.7A
Other languages
German (de)
English (en)
Other versions
EP1730449A1 (fr
Inventor
Peter Flohr
Bruno Schuermans
Majed Toqan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Ansaldo Energia IP UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ansaldo Energia IP UK Ltd filed Critical Ansaldo Energia IP UK Ltd
Publication of EP1730449A1 publication Critical patent/EP1730449A1/fr
Application granted granted Critical
Publication of EP1730449B1 publication Critical patent/EP1730449B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means

Definitions

  • the present invention relates to a combustion chamber for a gas turbine with the features of the preamble of claim 1.
  • the invention also relates to an associated operating method having the features of the preamble of claim 9.
  • a combustor for a gas turbine which has a burner system having a plurality of burner groups each having a plurality of burners. Furthermore, a fuel supply system is provided, which has a main line connected to a fuel source and a secondary line for each burner group, which is connected to each burner of the associated burner group and a controllable distributor valve to the main line.
  • a combustion chamber is provided, at whose entrance the burners are arranged. In the known combustion chamber, the individual burners are operable in a pilot mode and in a premix mode, wherein within a burner group all burners are always operated either in premix mode or in pilot mode. Depending on the operating mode, the burners require more or less fuel, which can be adjusted via the distributor valves. The actuation of the Distribution valves takes place in the known combustion chamber as a function of the respective load state of the combustion chamber.
  • the burners are operated as lean as possible in the nominal operating point of the combustion chamber. Due to the lean operation, the running in the combustion chamber homogeneous combustion reaction leads to relatively low temperatures. Since the formation of pollutants, in particular the formation of NO x disproportionately depends on the temperature, the low combustion temperatures lead to a reduction of pollutant emissions. On the other hand, it has been shown that a homogeneous temperature distribution in the combustion chamber promotes the formation of pressure pulsations. Thermoacoustic pressure pulsations lead to a noise pollution and can adversely affect the combustion reaction. In extreme cases, strong pressure pulsations can extinguish the flame in the combustion chamber. It has been shown that the combustion reaction is less susceptible to thermoacoustic instabilities with less lean or with rich fuel-oxidizer mixtures. In particular, rich-burning zones may stabilize adjacent zones of lean burn.
  • thermoacoustic oscillations are detected in a closed control loop and, depending on the detected oscillations, generate acoustic oscillations of a specific amplitude and phase and coupled into the combustion chamber.
  • the thermoacoustic oscillations are suppressed or reduced if, within the control loop, the amplitude of the generated acoustic oscillations is chosen to be proportional to the amplitude of the detected vibrations. In this procedure will be thus attenuates the resulting in certain operating situations thermoacoustic oscillations.
  • US6205764B1 describes an apparatus and method for suppressing thermal vibrations in a combustion chamber.
  • the invention deals with the problem of pointing out a way to improve the performance of a combustion chamber of the type mentioned, in particular, the formation of pressure pulsations and / or the emission of pollutants should be reduced.
  • the invention is based on the general idea to determine for each burner group associated values for pressure pulsations and / or pollutant emissions and to regulate their dependence on the fuel supply to the burner groups.
  • This is realized according to the invention with a sensor system which separately detects the values for the pressure pulsations and / or emissions for each burner group and makes it available to a controller which, depending on these pulsation values or emission values, activates distributor valves which control the fuel flow to the individual burner groups or actuated.
  • the control or actuation of the distributor valves takes place in such a way that the pulsation values and / or the emission values assume or fall below predetermined threshold values for each burner group.
  • the burner system can be operated during operation of the combustion chamber with regard to the lowest possible pollutant emissions and additionally or alternatively with regard to the lowest possible pressure pulsations.
  • the actuation of the distributor valves does not take place directly as a function of the pulsation values or the emission values, but indirectly by means of proportional factors which represent for the respective burner group the portion supplied to this burner group at a predetermined total fuel flow to be supplied to the combustion chamber.
  • the controller determines a share factor for each burner group and then controls the distributor valves as a function of these share factors. This procedure simplifies the handling of the distributor valves or their actuation.
  • the controller determines the proportion factors so that the total fuel flow remains constant. Thus, the control of the fuel flows for the burner groups does not affect or only slightly on the performance of the combustion chamber.
  • Fig. 1 comprises a combustion chamber 1 according to the invention of a gas turbine, not shown otherwise, a burner system 2, a fuel supply system 3 and a combustion chamber 4, which is designed annular.
  • the burner system 2 comprises a plurality of burners 5, which are arranged distributed at an inlet 6 of the combustion chamber 4 in the circumferential direction.
  • the burner system 2 also includes a plurality of burner groups A and B, each of which at least one of the burner 5 is assigned. In the embodiment of Fig. 1 two burner groups A and B are provided, each of which a plurality of burners 5 are assigned. In Fig. 1 the burners 5 of one burner group A are designated 5A, while the burners 5 of the other burner group B are 5B.
  • the fuel supply system 3 comprises a main line 7, which is connected to a fuel source 8 not shown in detail. Furthermore, the fuel supply system 3 for each burner group A, B comprises a secondary line 9, which are also designated according to their assignment to the respective burner group A, B with 9A and 9B. Accordingly, here two secondary lines 9A, 9B are provided, which are each connected to each burner 5 of the associated burner group A and B respectively. For example, the secondary lines 9 are formed directly in front of the burners 5 as ring lines. Furthermore, the secondary lines 9 are each connected via a distributor valve 10 to the main line 7. The distribution valves 10 are according to their membership in one of the burner groups A, B designated 10A and 10B.
  • the combustion chamber 1 also comprises a sensor 11, which is connected to a controller 12.
  • the sensor system 11 is designed such that it can separately record for each burner group A, B pressure pulsation values, which correlate with pressure pulsations of the respective burner group A, B occurring in the combustion chamber 4, and / or emission values with pollutant emissions, in particular with NO x emissions , the respective burner group A, B correlate.
  • the sensor system 11 is equipped with at least one pressure sensor 19 and at least one emission sensor 13.
  • the individual sensors 13, 19 are connected to the controller 12 via corresponding signal lines 14 in connection. It is clear that the sensor system 11 of each burner group A, B can also assign a plurality of pressure sensors 19 or a plurality of emission sensors 13.
  • the sensor system 11 may have a pressure sensor 19 and an emission sensor 13 separately for each individual burner 5.
  • the controller 12 is used to actuate the distribution valves 10 and is connected for this purpose with these via corresponding control lines 15.
  • the controller 12 is configured such that it can actuate the distributor valves 10 as a function of the determined pulsation values and / or as a function of the determined emission values. In accordance with the invention, this actuation takes place in such a way that the pulsation values or the emission values assume or fall below predetermined threshold values for each burner group A, B.
  • the controller 12 contains a suitable algorithm, which determines control signals for operating the distributor valves 10 that originate from the incoming pulsation values and emission values.
  • the distributor valves 10A, 10B assigned to the individual burner groups A, B are individually controlled, ie the first distributor valve 10A assigned to the first burner group A is actuated by the controller 12 as a function of the pressure pulsations or emissions occurring at the first burner group A. while the second distributor valve 10B associated with the second burner group B is actuated by the controller 12 as a function of the pulsations or emissions occurring at the second burner group B. Since the control of the distribution valves 10 also takes place in such a way that the variable responsible for the control process is varied, the controller 12 in conjunction with the sensor system 11 forms a separate and closed control loop for each burner group A, B.
  • each of these control circuits the pulsation value and / or the emission value are adjusted to predetermined threshold values as a function of a desired-actual comparison.
  • these control circuits are not independent of each other, but rather are coupled to one another by at least one boundary condition.
  • the coupling of the control circuits by the specification of a total fuel flow, the total of the combustion chamber 4 is to be supplied via all burners 5. This total fuel flow is ultimately responsible for the performance of the combustion chamber 1.
  • the power of the combustion chamber 1 can be kept substantially constant, even if their individual burner groups A, B are varied with respect to the respective burner group A, B supplied partial fuel flow.
  • the controller 12 determines a proportion factor for each burner group A, B as a function of the measured pulsation values or emission values.
  • Each share factor represents the proportion of the total fuel flow supplied to the associated burner group A, B.
  • the control of the distribution valves 10 then takes place as a function of these proportional factors and thus only indirectly as a function of the measured values for the pulsations and emissions. By using such proportional factors, the control of the distribution valves 10 is simplified.
  • burner system 2 may again have 2 burner groups A and B in another embodiment. While in the embodiment according to Fig. 1 However, the individual burners 5 are formed in one stage, the burner 5 in the variant according to Fig. 2 multi-level, designed here in two stages.
  • each two-stage burner 5 has a first burner stage I with a substantially axial and central fuel supply and a second burner stage II with a substantially eccentric and radial fuel supply.
  • the first combustors I allow a pilot mode and the second burner stage II a premix mode.
  • any mixing operating states between the two mentioned extreme operating modes can be set.
  • the fuel supply system 3 now has for each burner group A, B, the multi-stage burner 5, as many secondary lines 9 as the burner 5 of this burner group A, B burner stages I, II have.
  • two secondary lines 9 are thus provided within each burner group A, B, each of these secondary lines 9 is connected within this burner group A, B in all burners 5 with the same burner stage I or II.
  • four secondary lines 9 are provided, namely a first secondary line 9A I which connects the first burner stages I of the burners 5A in the first burner group A via a first distributor valve 10A I to the main line 7.
  • a second secondary line 9A II within the first burner group A connects the second burner stage II with all of the burners 5A to a second distributor valve 10A II .
  • a third secondary line 9B I connects the first burner stages I of the burners 5B within the second burner group B with a third distributor valve 10B I
  • a fourth secondary line 9B II in all burners 5B of the second burner group B whose second burner stage II with a fourth distributor valve 10B II combines.
  • the controller 12 is then designed such that it can control the distributor valves 10 as a function of the emission values or pulsation values determined via the sensor system 11.
  • the total fuel flow during the control operations is kept constant. Furthermore, it may be important to carry out the distribution of the fuel flow to the individual fuel stages I, II so that the respective burner 5 is always supplied with a constant fuel flow, so that the individual burner 5 has a constant burner power.
  • the individual control loops can be coupled together by the mentioned boundary condition.
  • FIG. 3 A simplified control can in one embodiment according to Fig. 3 be achieved, which also like in Fig. 2 two burner groups A, B are provided, the burner 5 are designed as a two-stage burner with two burner stages I, II.
  • the fuel supply system 3 again has its own secondary line 9A and 9B for each burner group A, B.
  • each burner stage I, II of the associated burner 5 is assigned its own branch line 16.
  • the designation of the individual branch lines 16 takes place analogously to the designation of the individual secondary lines 9 in FIG Fig. 2 ,
  • the first branch duct 16A I via a first diverter valve 17A I is connected to the first sub-line 9A while the second branch line is also connected II 16A via a second diverter valve 17A II to the first secondary line 9A.
  • the third branch line 16B I is connected to the second sub-line 9B via a third branch valve 17B I
  • the fourth branch line 16B II is connected to the second sub-line 9B via a fourth branch valve 17B II .
  • the controller 12 can now control the distribution of the total fuel flow to the two burner groups A, B by a corresponding actuation of the two distribution valves 10A and 10B.
  • the controller 12 via a corresponding actuation of the branch valves 17 within the respective fuel group A, B control the distribution of the associated fuel flows to the two burner stages I, II.
  • the multi-stage (I, II) have burner 5, an effective control of the pressure pulsations and / or emissions can be realized.
  • the burner system 2 only two burner group A, B, in principle, an embodiment with more than two burner groups A, B, C, D .... possible. Furthermore, in extreme cases, the respective burner group A, B have only a single burner 5.
  • Fig. 4 shows an example of an embodiment with twelve burner groups A to L, each burner group A to L is equipped with only a single burner 5A to 5L.
  • the fuel supply system 3 then likewise comprises twelve secondary lines 9, of which, however, only six are shown by way of example, FIGS. 9A to 9F.
  • Each secondary line 9 connects the associated burner 5A to 5L via a corresponding distributor valve 10 or 10A to 10F to the main line 7
  • Sensor system 11 comprises at least one pressure sensor 19 and at least one emission sensor 13 for each burner 5.
  • at least one temperature sensor 18 is associated with each burner 5, with the aid of which a flame temperature within combustion chamber 4 is determined in the region of the respectively associated burner 5 can be.
  • a pressure sensor arrangement not shown here can be provided which allows a differential pressure measurement at each burner 5, with the help of the respective burner 5, the associated air mass flow can be determined.
  • the sensor 11 can now separately record values for each burner 5 which correlate with the flame temperature and alternatively or additionally with an air mass flow at the respective burner 5.
  • the controller 12 can now determine, depending on the determined temperature values or air mass flow values, control signals which serve to actuate the associated distributor valves 10A to 10F.
  • the controller 12 controls the distribution valves 10A to 10F appropriate so that forms the most homogeneous flame temperature distribution in the combustion chamber 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)

Claims (12)

  1. Chambre de combustion pour une turbine à gaz,
    - avec un système de combustion (2) qui comprend au moins deux groupes de brûleurs (A, B) avec chacun au moins un brûleur (5),
    - avec système d'alimentation en carburant (3) qui comprend une conduite principale (7) reliée à une source de carburant (8) ainsi que, pour chaque groupe de brûleurs (A, B), une conduite secondaire (9), qui est reliée à chaque brûleur (5) du groupe de brûleurs (A, B) correspondant et qui est reliée à la conduite principale (7) par l'intermédiaire d'une soupape de distribution (10) pouvant être contrôlée,
    - avec un espace de combustion (4) à l'entrée (6) duquel les brûleurs (5) sont disposés,
    - avec un ensemble de capteurs (11) qui mesure, pour chaque groupe de brûleurs (A, B), des valeurs séparées, corrélées avec les pulsations de pression et/ou les émissions survenant dans l'espace de combustion (4),
    - avec un dispositif de commande (12) qui est relié avec l'ensemble de capteurs (11) et avec les soupapes de distribution (10) et commande les soupapes de distribution (10) en fonction des valeurs de pulsations et/ou des valeurs d'émissions de façon à ce que, pour chaque groupe de brûleurs (A, B), les valeurs de pulsations et/ou les valeurs d'émissions soient égales et/ou inférieures à des valeurs seuils,
    - le dispositif de commande (12) déterminant, en fonction des valeurs de pulsations et/ou des valeurs d'émissions, pour chaque groupe de brûleurs (A, B), un facteur de pondération, qui représente la part, introduite dans le groupe de brûleurs (A, B) concerné, d'un flux de carburant total qui doit être introduit dans l'espace de combustion (4) et
    - le dispositif de commande (12) contrôlant les soupapes de distribution (10) en fonction des facteurs de pondération,
    - le dispositif de commande (12) contrôlant les soupapes de distribution (10) et/ou déterminant les facteurs de pondération de façon à ce qu'un flux de carburant total qui doit être introduit dans l'espace de combustion (4) reste constant.
  2. Chambre de combustion selon la revendication 1,
    caractérisée en ce que
    le dispositif de commande (12) constitue, avec l'ensemble de capteurs (11), pour chaque groupe de brûleurs (A, B), un circuit de régulation, dans lequel la soupape de distribution (10) correspondante est contrôlée en fonction d'une comparaison entre les valeurs de consigne et les valeurs effectives des pulsations et/ou des émissions.
  3. Chambre de combustion selon l'une des revendications 1 à 2,
    caractérisée en ce que
    l'ensemble de capteurs (11) pour chaque groupe de brûleurs (A, B) comprend au moins un capteur de pression (19) et/ou au moins un capteur d'émissions (13).
  4. Chambre de combustion selon l'une des revendications 1 à 3,
    caractérisée en ce que
    chaque groupe de brûleurs (A, B) comprend un seul brûleur (5).
  5. Chambre de combustion selon la revendication 4,
    caractérisée en ce que
    - l'ensemble de capteurs (11) mesure en outre, pour chaque brûleur (5), des valeurs séparées, qui sont corrélées avec une température de flamme et/ou avec un débit massique d'air au niveau du brûleur (5) correspondant,
    - le dispositif de commande (12) contrôle en outre les soupapes de distribution (10) en fonction des valeurs de températures de flamme et/ou des valeurs du débit massique d'air de façon à obtenir une répartition la plus homogène possible de la température de flamme dans l'espace de combustion (4).
  6. Chambre de combustion selon la revendication 5,
    caractérisée en ce que
    l'ensemble de capteurs (11) pour chaque groupe de brûleurs (5) comprend un capteur de température (18) et/ou un dispositif à capteurs de pression pour une mesure de pression différentielle.
  7. Chambre de combustion selon l'une des revendications 1 à 6,
    caractérisée en ce que
    - au moins dans un groupe de brûleurs (A, B), tous les brûleurs (5) sont conçus comme des brûleurs à plusieurs étages avec chacun au moins deux étages de brûleur (I, II),
    - le système d'alimentation en carburant (3) pour chaque groupe de brûleurs (A, B) avec des brûleurs à plusieurs étages (5) comprend un nombre de conduites secondaires (9) correspondant au nombre d'étages de brûleurs (I, II), qui sont reliées, dans tous les brûleurs à plusieurs étages (5) du groupe de brûleurs (A, B) correspondant, avec l'étage de brûleur (I, II) correspondant et, par l'intermédiaire d'une soupape de distribution (10) contrôlable, avec la conduite principale (7),
    - le dispositif de commande (12) contrôle les soupapes de distribution (10) en fonction des valeurs de pulsations et/ou des valeurs d'émissions de façon à obtenir, dans chaque groupe de brûleurs (A, B), une répartition du flux de carburant entre les différents étages de brûleurs (I, II), qui est sélectionnée de façon à ce que, dans le groupe de brûleurs (A, B) correspondant, les valeurs de pulsations et/ou les valeurs d'émissions soient égales et/ou inférieures aux valeurs seuils prédéterminées.
  8. Chambre de combustion selon l'une des revendications 1 à 6,
    caractérisée en ce que
    - au moins dans un groupe de brûleurs (A, B), tous les brûleurs (5) sont conçus comme des brûleurs à plusieurs étages avec chacun au moins deux étages de brûleur (I, II),
    - le système d'alimentation en carburant (3) pour chaque groupe de brûleurs (A, B) avec des brûleurs à plusieurs étages (5) comprend un nombre de conduites de dérivation (16) correspondant au nombre d'étages de brûleurs (I, II), qui sont reliées, dans tous les brûleurs à plusieurs étages (5) du groupe de brûleurs (A, B) correspondant, avec l'étage de brûleur (I, II) correspondant et, par l'intermédiaire d'une soupape de dérivation (17) contrôlable, avec la conduite secondaire (9) correspondant au groupe de brûleurs (A, B),
    - le dispositif de commande (12) contrôle en outre les soupapes de dérivation (17) en fonction des valeurs de pulsations et/ou des valeurs d'émissions de façon à obtenir, dans chaque groupe de brûleurs (A, B), une répartition du flux de carburant entre les différents étages de brûleurs (I, II), qui est sélectionnée de façon à ce que, dans le groupe de brûleurs (A, B) correspondant, les valeurs de pulsations et/ou les valeurs d'émissions soient égales et/ou inférieures aux valeurs seuils prédéterminées.
  9. Procédé d'exploitation d'une chambre de combustion (1) selon la revendication 1, la chambre de combustion (1) comprenant un système de combustion (2) qui comprend au moins deux groupes de brûleurs (A, B) avec chacun au moins un brûleur (5), un ensemble de capteurs (11) mesurant, pour chaque groupe de brûleurs (A, B), des valeurs séparées pour les pulsations de pression et/ou les émissions, et un dispositif de commande, ce dispositif de commande contrôlant ou actionnant, en fonction des valeurs de pulsations ou d'émissions mesurées, des soupapes de distribution, qui contrôlent le flux de carburant vers les différents groupes de brûleurs, de façon à ce que, dans chaque groupe de brûleurs (A, B), les valeurs de pulsations et/ou les valeurs d'émissions soient égales et/ou inférieures à des valeurs seuils prédéterminées.
    - un facteur de pondération étant déterminé en fonction des valeurs de pulsations et/ou d'émissions, pour chaque groupe de brûleurs (A, B), qui représente la part, introduite dans le groupe de brûleurs (A, B) concerné, d'un flux de carburant total prédéterminé qui doit être introduit dans l'espace de combustion (4) de la chambre de combustion (1),
    - l'importance des flux de carburant introduits dans les différents groupes de brûleurs (A, B) étant déterminée en fonction des facteurs de pondération et
    - les facteurs de pondération et/ou les flux de carburant introduits dans les différents groupes de brûleurs (A, B) étant déterminés de façon à ce que le flux de carburant total introduit dans l'espace de combustion (4) reste constant.
  10. Procédé selon la revendication 9,
    caractérisé en ce que
    pour chaque groupe de brûleurs (A, B), un circuit de régulation est prévu, qui régule l'importance des flux de carburant vers les différents groupe de brûleurs (A, B) en fonction d'une comparaison entre les valeurs de consigne et les valeurs effectives des pulsations et/ou des émissions.
  11. Procédé selon l'une des revendications 9 à 10,
    caractérisé en ce que
    - chaque groupe de brûleurs (A, B) comprend un seul brûleur (5),
    - en outre, pour chaque brûleur (5), des valeurs séparées sont mesurées, qui sont corrélées avec une température de flamme et/ou avec un débit massique d'air au niveau du brûleur (5) correspondant,
    - l'importance des flux de carburant introduits dans les différents groupes de brûleurs (A, B) est en outre déterminée en fonction des valeurs de températures de flammes et/ou des valeurs de débits massiques d'air de façon à obtenir, dans un espace de combustion (4) de la chambre de combustion (1) une répartition la plus homogène possible de la température de flamme.
  12. Procédé selon l'une des revendications 9 à 11,
    caractérisé en ce que
    - au moins dans un groupe de brûleurs (A, B), tous les brûleurs (5) sont conçus comme des brûleurs à plusieurs étages avec chacun au moins deux étages de brûleur (I, II),
    - à l'intérieur de chaque groupe de brûleurs (A, B), les flux de carburant introduits sont répartis entre les différents étages de brûleurs (I, II) de façon à ce que, dans le groupe de brûleurs (A, B) correspondant, les valeurs de pulsations et/ou les valeurs d'émissions soient égales et/ou inférieures aux valeurs seuils prédéterminées.
EP05743002.7A 2004-03-29 2005-03-17 Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant Not-in-force EP1730449B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004015187A DE102004015187A1 (de) 2004-03-29 2004-03-29 Brennkammer für eine Gasturbine und zugehöriges Betriebsverfahren
PCT/EP2005/051229 WO2005093327A1 (fr) 2004-03-29 2005-03-17 Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant

Publications (2)

Publication Number Publication Date
EP1730449A1 EP1730449A1 (fr) 2006-12-13
EP1730449B1 true EP1730449B1 (fr) 2017-11-01

Family

ID=34965762

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05743002.7A Not-in-force EP1730449B1 (fr) 2004-03-29 2005-03-17 Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant

Country Status (4)

Country Link
US (1) US7484352B2 (fr)
EP (1) EP1730449B1 (fr)
DE (1) DE102004015187A1 (fr)
WO (1) WO2005093327A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2434437B (en) * 2006-01-19 2011-01-26 Siemens Ag Improvements in or relating to combustion apparatus
DE102006015230A1 (de) 2006-03-30 2007-10-18 Alstom Technology Ltd. Brennkammer
DE102006015529A1 (de) * 2006-03-31 2007-10-04 Alstom Technology Ltd. Brennersystem mit gestufter Brennstoff-Eindüsung
EP1990521A1 (fr) * 2007-05-09 2008-11-12 Siemens Aktiengesellschaft Réduction de la dynamique de la pression dans un moteur de turbine à gaz
EP2071156B1 (fr) 2007-12-10 2013-11-06 Alstom Technology Ltd Système de distribution de carburant d'une turbine à gaz avec ensemble brûleur à plusieurs étages
EP2090829A1 (fr) * 2008-02-14 2009-08-19 Siemens Aktiengesellschaft Arrangement de brûleurs et procédé de fonctionnement associé
US20100192577A1 (en) * 2009-02-02 2010-08-05 General Electric Company System and method for reducing combustion dynamics in a turbomachine
IT1393555B1 (it) * 2009-04-07 2012-04-27 Ansaldo Energia Spa Impianto a turbina a gas e metodo per operare detto impianto a turbina a gas
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
CN102549342B (zh) * 2009-10-09 2015-10-21 西门子公司 燃烧设备
US9068751B2 (en) * 2010-01-29 2015-06-30 United Technologies Corporation Gas turbine combustor with staged combustion
DE102011102720B4 (de) 2010-05-26 2021-10-28 Ansaldo Energia Switzerland AG Kraftwerk mit kombiniertem Zyklus und mit Abgasrückführung
CH703218A1 (de) 2010-05-26 2011-11-30 Alstom Technology Ltd Verfahren zum Betreiben eines Gas-und-Dampf-Kombikraftwerk mit Rauchgasrezirkulation sowie Kraftwerk.
DE102011117603A1 (de) 2010-11-17 2012-05-24 Alstom Technology Ltd. Brennkammer und Verfahren zum Dämpfen von Pulsationen
DE102011118411A1 (de) * 2010-12-09 2012-06-14 Alstom Technology Ltd. Brennkammer und Verfahren zum Liefern von Brennstoffen an eine Brennkammer
US9920696B2 (en) 2011-08-09 2018-03-20 Ansaldo Energia Ip Uk Limited Method for operating a gas turbine and gas turbine unit useful for carrying out the method
US9631560B2 (en) 2011-11-22 2017-04-25 United Technologies Corporation Fuel-air mixture distribution for gas turbine engine combustors
US10240533B2 (en) 2011-11-22 2019-03-26 United Technologies Corporation Fuel distribution within a gas turbine engine combustor
DK2959139T3 (da) * 2012-02-22 2020-11-23 Gas Turbine Efficiency Sweden Optimering af gasturbineforbrændingssystemers lavbelastningsydeevne på enkel-cyklus og varmegenvindingsdampgeneratoranvendelser
WO2013126279A1 (fr) * 2012-02-22 2013-08-29 Gas Turbine Efficiency Sweden Ab Optimisation des performances à faible charge de systèmes de combustion de turbine à gaz sur simple cycle et applications de générateur de vapeur à récupération de chaleur
WO2014133601A1 (fr) * 2013-02-26 2014-09-04 Rolls-Royce Corporation Turbine à gaz et procédé permettant de faire fonctionner une turbine à gaz
KR20170001104A (ko) * 2015-06-25 2017-01-04 두산중공업 주식회사 진동제어를 통한 제어방법
JP6651389B2 (ja) * 2016-03-08 2020-02-19 三菱日立パワーシステムズ株式会社 燃料制御装置、燃焼器、ガスタービン、燃料制御方法及びプログラム
US11181274B2 (en) * 2017-08-21 2021-11-23 General Electric Company Combustion system and method for attenuation of combustion dynamics in a gas turbine engine
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
US11408347B2 (en) * 2019-07-22 2022-08-09 Hamilton Sundstrand Corporation Fuel systems

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303542A (en) * 1992-11-16 1994-04-19 General Electric Company Fuel supply control method for a gas turbine engine
US5402634A (en) * 1993-10-22 1995-04-04 United Technologies Corporation Fuel supply system for a staged combustor
DE19636093B4 (de) * 1996-09-05 2004-07-29 Siemens Ag Verfahren und Vorrichtung zur akustischen Modulation einer von einem Hybridbrenner erzeugten Flamme
DE19704540C1 (de) * 1997-02-06 1998-07-23 Siemens Ag Verfahren zur aktiven Dämpfung einer Verbrennungsschwingung und Verbrennungsvorrichtung
US6560967B1 (en) * 1998-05-29 2003-05-13 Jeffrey Mark Cohen Method and apparatus for use with a gas fueled combustor
DE59810344D1 (de) * 1998-07-27 2004-01-15 Alstom Switzerland Ltd Verfahren zum Betrieb einer Gasturbinenbrennkammer mit gasförmigem Brennstoff
WO2000012940A1 (fr) * 1998-08-31 2000-03-09 Siemens Aktiengesellschaft Procede d'exploitation d'une turbine a gaz et turbine a gaz correspondante
DE19928226A1 (de) * 1999-05-07 2001-02-01 Abb Alstom Power Ch Ag Verfahren zur Unterdrückung bzw. Kontrolle von thermoakustischen Schwingungen in einem Verbrennungs-System sowie Verbrennungssystem zur Durchführung des Verfahrens
DE19934612A1 (de) * 1999-07-23 2001-01-25 Abb Alstom Power Ch Ag Verfahren zur aktiven Unterdrückung von strömungsmechanischen Instabilitäten in einem Verbrennungssystem sowie Verbrennungssystem zur Durchführung des Verfahrens
DE19944922A1 (de) * 1999-09-20 2001-03-22 Asea Brown Boveri Steuerung von Primärmassnahmen zur Reduktion der thermischen Stickoxidbildung in Gasturbinen
GB0019533D0 (en) * 2000-08-10 2000-09-27 Rolls Royce Plc A combustion chamber
DE10064893A1 (de) * 2000-12-23 2002-11-14 Alstom Switzerland Ltd Brenner mit gestufter Brennstoffeindüsung
DE10104151A1 (de) * 2001-01-30 2002-09-05 Alstom Switzerland Ltd Verfahren zur Herstellung einer Brenneranlage
US6722135B2 (en) * 2002-01-29 2004-04-20 General Electric Company Performance enhanced control of DLN gas turbines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20070163267A1 (en) 2007-07-19
US7484352B2 (en) 2009-02-03
WO2005093327A1 (fr) 2005-10-06
EP1730449A1 (fr) 2006-12-13
DE102004015187A1 (de) 2005-10-20

Similar Documents

Publication Publication Date Title
EP1730449B1 (fr) Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant
EP1205653B1 (fr) Brûleur avec injection de combustible étagée et procédé de fonctionnement
EP1621811B1 (fr) Procédé de fonctionnement pour un dispositif de combustion
EP1730448B1 (fr) Ensemble a plusieurs bruleurs servant a faire fonctionner une chambre de combustion et procede pour faire fonctionner un tel ensemble
EP0576697B1 (fr) Chambre de combustion pour turbine à gaz
DE60038593T2 (de) Verfahren und Einrichtung zur Optimierung von NOx-Ausstoss in einer Gasturbine
DE102015122927A1 (de) Pilotdüse in einer Gasturbinenbrennkammer
EP1840465A2 (fr) Système comportant des brûleurs à injection de carburant étagée
EP1319895A2 (fr) Brûleur à prémélange à combustion pauvre pour turbine à gaz et son procédé de fonctionnement
EP2071156B1 (fr) Système de distribution de carburant d'une turbine à gaz avec ensemble brûleur à plusieurs étages
WO2011023648A2 (fr) Aube de turbulence, brûleur et turbine à gaz
DE102005061486B4 (de) Verfahren zum Betreiben einer Brennkammer einer Gasturbine
WO2005093326A2 (fr) Chambre a combustion de turbine a gaz et procede pour la faire fonctionner
EP1150072A2 (fr) Chambre de combustion de turbine à gaz pourvue d'ouvertures d'alimentation
EP1062461B1 (fr) Chambre de combustion et mode de fonctionnement d'une chambre de combustion
EP2538139A2 (fr) Procédé de fonctionnement d'un dispositif de combustion ainsi que le dispositif de combustion destiné à la mise en oeuvre du procédé
EP1510755B1 (fr) Brûleur avec lance et alimentation étagée en carburant
EP0969192B1 (fr) Méthode pour égaliser la distribution de carburant dans une turbine à gaz avec plusieurs brûleurs
EP3250857B1 (fr) Agencement de brûleur
EP1105678B1 (fr) Procede de fonctionnement d'un bruleur hybride
EP1533569B1 (fr) Méthode de fonctionnement d'un appareil de combustion
DE19825335A1 (de) Verfahren zum Betrieb einer Gasturbine
EP3431880B1 (fr) Module buse pour une chambre de combustion d'un propulseur
DE102010009051A1 (de) Brennstoffzuführungseinrichtung
WO2009095405A1 (fr) Pilotage d'un brûleur à jet doté d'un pilote « vortex enfermé »

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TOQAN, MAJED

Inventor name: FLOHR, PETER

Inventor name: SCHUERMANS, BRUNO

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070821

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA IP UK LIMITED

INTG Intention to grant announced

Effective date: 20170518

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 942417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015734

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171101

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180202

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015734

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180802

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 942417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220321

Year of fee payment: 18

Ref country code: DE

Payment date: 20220322

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220322

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015734

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317