EP1730449B1 - Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant - Google Patents
Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant Download PDFInfo
- Publication number
- EP1730449B1 EP1730449B1 EP05743002.7A EP05743002A EP1730449B1 EP 1730449 B1 EP1730449 B1 EP 1730449B1 EP 05743002 A EP05743002 A EP 05743002A EP 1730449 B1 EP1730449 B1 EP 1730449B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- burner
- values
- group
- combustion chamber
- burner group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 59
- 238000011017 operating method Methods 0.000 title description 2
- 239000000446 fuel Substances 0.000 claims description 52
- 230000010349 pulsation Effects 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 9
- 230000033228 biological regulation Effects 0.000 claims description 2
- 238000009530 blood pressure measurement Methods 0.000 claims description 2
- 239000003344 environmental pollutant Substances 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 7
- 231100000719 pollutant Toxicity 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2237/00—Controlling
- F23N2237/02—Controlling two or more burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00013—Reducing thermo-acoustic vibrations by active means
Definitions
- the present invention relates to a combustion chamber for a gas turbine with the features of the preamble of claim 1.
- the invention also relates to an associated operating method having the features of the preamble of claim 9.
- a combustor for a gas turbine which has a burner system having a plurality of burner groups each having a plurality of burners. Furthermore, a fuel supply system is provided, which has a main line connected to a fuel source and a secondary line for each burner group, which is connected to each burner of the associated burner group and a controllable distributor valve to the main line.
- a combustion chamber is provided, at whose entrance the burners are arranged. In the known combustion chamber, the individual burners are operable in a pilot mode and in a premix mode, wherein within a burner group all burners are always operated either in premix mode or in pilot mode. Depending on the operating mode, the burners require more or less fuel, which can be adjusted via the distributor valves. The actuation of the Distribution valves takes place in the known combustion chamber as a function of the respective load state of the combustion chamber.
- the burners are operated as lean as possible in the nominal operating point of the combustion chamber. Due to the lean operation, the running in the combustion chamber homogeneous combustion reaction leads to relatively low temperatures. Since the formation of pollutants, in particular the formation of NO x disproportionately depends on the temperature, the low combustion temperatures lead to a reduction of pollutant emissions. On the other hand, it has been shown that a homogeneous temperature distribution in the combustion chamber promotes the formation of pressure pulsations. Thermoacoustic pressure pulsations lead to a noise pollution and can adversely affect the combustion reaction. In extreme cases, strong pressure pulsations can extinguish the flame in the combustion chamber. It has been shown that the combustion reaction is less susceptible to thermoacoustic instabilities with less lean or with rich fuel-oxidizer mixtures. In particular, rich-burning zones may stabilize adjacent zones of lean burn.
- thermoacoustic oscillations are detected in a closed control loop and, depending on the detected oscillations, generate acoustic oscillations of a specific amplitude and phase and coupled into the combustion chamber.
- the thermoacoustic oscillations are suppressed or reduced if, within the control loop, the amplitude of the generated acoustic oscillations is chosen to be proportional to the amplitude of the detected vibrations. In this procedure will be thus attenuates the resulting in certain operating situations thermoacoustic oscillations.
- US6205764B1 describes an apparatus and method for suppressing thermal vibrations in a combustion chamber.
- the invention deals with the problem of pointing out a way to improve the performance of a combustion chamber of the type mentioned, in particular, the formation of pressure pulsations and / or the emission of pollutants should be reduced.
- the invention is based on the general idea to determine for each burner group associated values for pressure pulsations and / or pollutant emissions and to regulate their dependence on the fuel supply to the burner groups.
- This is realized according to the invention with a sensor system which separately detects the values for the pressure pulsations and / or emissions for each burner group and makes it available to a controller which, depending on these pulsation values or emission values, activates distributor valves which control the fuel flow to the individual burner groups or actuated.
- the control or actuation of the distributor valves takes place in such a way that the pulsation values and / or the emission values assume or fall below predetermined threshold values for each burner group.
- the burner system can be operated during operation of the combustion chamber with regard to the lowest possible pollutant emissions and additionally or alternatively with regard to the lowest possible pressure pulsations.
- the actuation of the distributor valves does not take place directly as a function of the pulsation values or the emission values, but indirectly by means of proportional factors which represent for the respective burner group the portion supplied to this burner group at a predetermined total fuel flow to be supplied to the combustion chamber.
- the controller determines a share factor for each burner group and then controls the distributor valves as a function of these share factors. This procedure simplifies the handling of the distributor valves or their actuation.
- the controller determines the proportion factors so that the total fuel flow remains constant. Thus, the control of the fuel flows for the burner groups does not affect or only slightly on the performance of the combustion chamber.
- Fig. 1 comprises a combustion chamber 1 according to the invention of a gas turbine, not shown otherwise, a burner system 2, a fuel supply system 3 and a combustion chamber 4, which is designed annular.
- the burner system 2 comprises a plurality of burners 5, which are arranged distributed at an inlet 6 of the combustion chamber 4 in the circumferential direction.
- the burner system 2 also includes a plurality of burner groups A and B, each of which at least one of the burner 5 is assigned. In the embodiment of Fig. 1 two burner groups A and B are provided, each of which a plurality of burners 5 are assigned. In Fig. 1 the burners 5 of one burner group A are designated 5A, while the burners 5 of the other burner group B are 5B.
- the fuel supply system 3 comprises a main line 7, which is connected to a fuel source 8 not shown in detail. Furthermore, the fuel supply system 3 for each burner group A, B comprises a secondary line 9, which are also designated according to their assignment to the respective burner group A, B with 9A and 9B. Accordingly, here two secondary lines 9A, 9B are provided, which are each connected to each burner 5 of the associated burner group A and B respectively. For example, the secondary lines 9 are formed directly in front of the burners 5 as ring lines. Furthermore, the secondary lines 9 are each connected via a distributor valve 10 to the main line 7. The distribution valves 10 are according to their membership in one of the burner groups A, B designated 10A and 10B.
- the combustion chamber 1 also comprises a sensor 11, which is connected to a controller 12.
- the sensor system 11 is designed such that it can separately record for each burner group A, B pressure pulsation values, which correlate with pressure pulsations of the respective burner group A, B occurring in the combustion chamber 4, and / or emission values with pollutant emissions, in particular with NO x emissions , the respective burner group A, B correlate.
- the sensor system 11 is equipped with at least one pressure sensor 19 and at least one emission sensor 13.
- the individual sensors 13, 19 are connected to the controller 12 via corresponding signal lines 14 in connection. It is clear that the sensor system 11 of each burner group A, B can also assign a plurality of pressure sensors 19 or a plurality of emission sensors 13.
- the sensor system 11 may have a pressure sensor 19 and an emission sensor 13 separately for each individual burner 5.
- the controller 12 is used to actuate the distribution valves 10 and is connected for this purpose with these via corresponding control lines 15.
- the controller 12 is configured such that it can actuate the distributor valves 10 as a function of the determined pulsation values and / or as a function of the determined emission values. In accordance with the invention, this actuation takes place in such a way that the pulsation values or the emission values assume or fall below predetermined threshold values for each burner group A, B.
- the controller 12 contains a suitable algorithm, which determines control signals for operating the distributor valves 10 that originate from the incoming pulsation values and emission values.
- the distributor valves 10A, 10B assigned to the individual burner groups A, B are individually controlled, ie the first distributor valve 10A assigned to the first burner group A is actuated by the controller 12 as a function of the pressure pulsations or emissions occurring at the first burner group A. while the second distributor valve 10B associated with the second burner group B is actuated by the controller 12 as a function of the pulsations or emissions occurring at the second burner group B. Since the control of the distribution valves 10 also takes place in such a way that the variable responsible for the control process is varied, the controller 12 in conjunction with the sensor system 11 forms a separate and closed control loop for each burner group A, B.
- each of these control circuits the pulsation value and / or the emission value are adjusted to predetermined threshold values as a function of a desired-actual comparison.
- these control circuits are not independent of each other, but rather are coupled to one another by at least one boundary condition.
- the coupling of the control circuits by the specification of a total fuel flow, the total of the combustion chamber 4 is to be supplied via all burners 5. This total fuel flow is ultimately responsible for the performance of the combustion chamber 1.
- the power of the combustion chamber 1 can be kept substantially constant, even if their individual burner groups A, B are varied with respect to the respective burner group A, B supplied partial fuel flow.
- the controller 12 determines a proportion factor for each burner group A, B as a function of the measured pulsation values or emission values.
- Each share factor represents the proportion of the total fuel flow supplied to the associated burner group A, B.
- the control of the distribution valves 10 then takes place as a function of these proportional factors and thus only indirectly as a function of the measured values for the pulsations and emissions. By using such proportional factors, the control of the distribution valves 10 is simplified.
- burner system 2 may again have 2 burner groups A and B in another embodiment. While in the embodiment according to Fig. 1 However, the individual burners 5 are formed in one stage, the burner 5 in the variant according to Fig. 2 multi-level, designed here in two stages.
- each two-stage burner 5 has a first burner stage I with a substantially axial and central fuel supply and a second burner stage II with a substantially eccentric and radial fuel supply.
- the first combustors I allow a pilot mode and the second burner stage II a premix mode.
- any mixing operating states between the two mentioned extreme operating modes can be set.
- the fuel supply system 3 now has for each burner group A, B, the multi-stage burner 5, as many secondary lines 9 as the burner 5 of this burner group A, B burner stages I, II have.
- two secondary lines 9 are thus provided within each burner group A, B, each of these secondary lines 9 is connected within this burner group A, B in all burners 5 with the same burner stage I or II.
- four secondary lines 9 are provided, namely a first secondary line 9A I which connects the first burner stages I of the burners 5A in the first burner group A via a first distributor valve 10A I to the main line 7.
- a second secondary line 9A II within the first burner group A connects the second burner stage II with all of the burners 5A to a second distributor valve 10A II .
- a third secondary line 9B I connects the first burner stages I of the burners 5B within the second burner group B with a third distributor valve 10B I
- a fourth secondary line 9B II in all burners 5B of the second burner group B whose second burner stage II with a fourth distributor valve 10B II combines.
- the controller 12 is then designed such that it can control the distributor valves 10 as a function of the emission values or pulsation values determined via the sensor system 11.
- the total fuel flow during the control operations is kept constant. Furthermore, it may be important to carry out the distribution of the fuel flow to the individual fuel stages I, II so that the respective burner 5 is always supplied with a constant fuel flow, so that the individual burner 5 has a constant burner power.
- the individual control loops can be coupled together by the mentioned boundary condition.
- FIG. 3 A simplified control can in one embodiment according to Fig. 3 be achieved, which also like in Fig. 2 two burner groups A, B are provided, the burner 5 are designed as a two-stage burner with two burner stages I, II.
- the fuel supply system 3 again has its own secondary line 9A and 9B for each burner group A, B.
- each burner stage I, II of the associated burner 5 is assigned its own branch line 16.
- the designation of the individual branch lines 16 takes place analogously to the designation of the individual secondary lines 9 in FIG Fig. 2 ,
- the first branch duct 16A I via a first diverter valve 17A I is connected to the first sub-line 9A while the second branch line is also connected II 16A via a second diverter valve 17A II to the first secondary line 9A.
- the third branch line 16B I is connected to the second sub-line 9B via a third branch valve 17B I
- the fourth branch line 16B II is connected to the second sub-line 9B via a fourth branch valve 17B II .
- the controller 12 can now control the distribution of the total fuel flow to the two burner groups A, B by a corresponding actuation of the two distribution valves 10A and 10B.
- the controller 12 via a corresponding actuation of the branch valves 17 within the respective fuel group A, B control the distribution of the associated fuel flows to the two burner stages I, II.
- the multi-stage (I, II) have burner 5, an effective control of the pressure pulsations and / or emissions can be realized.
- the burner system 2 only two burner group A, B, in principle, an embodiment with more than two burner groups A, B, C, D .... possible. Furthermore, in extreme cases, the respective burner group A, B have only a single burner 5.
- Fig. 4 shows an example of an embodiment with twelve burner groups A to L, each burner group A to L is equipped with only a single burner 5A to 5L.
- the fuel supply system 3 then likewise comprises twelve secondary lines 9, of which, however, only six are shown by way of example, FIGS. 9A to 9F.
- Each secondary line 9 connects the associated burner 5A to 5L via a corresponding distributor valve 10 or 10A to 10F to the main line 7
- Sensor system 11 comprises at least one pressure sensor 19 and at least one emission sensor 13 for each burner 5.
- at least one temperature sensor 18 is associated with each burner 5, with the aid of which a flame temperature within combustion chamber 4 is determined in the region of the respectively associated burner 5 can be.
- a pressure sensor arrangement not shown here can be provided which allows a differential pressure measurement at each burner 5, with the help of the respective burner 5, the associated air mass flow can be determined.
- the sensor 11 can now separately record values for each burner 5 which correlate with the flame temperature and alternatively or additionally with an air mass flow at the respective burner 5.
- the controller 12 can now determine, depending on the determined temperature values or air mass flow values, control signals which serve to actuate the associated distributor valves 10A to 10F.
- the controller 12 controls the distribution valves 10A to 10F appropriate so that forms the most homogeneous flame temperature distribution in the combustion chamber 4.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Feeding And Controlling Fuel (AREA)
- Regulation And Control Of Combustion (AREA)
Claims (12)
- Chambre de combustion pour une turbine à gaz,- avec un système de combustion (2) qui comprend au moins deux groupes de brûleurs (A, B) avec chacun au moins un brûleur (5),- avec système d'alimentation en carburant (3) qui comprend une conduite principale (7) reliée à une source de carburant (8) ainsi que, pour chaque groupe de brûleurs (A, B), une conduite secondaire (9), qui est reliée à chaque brûleur (5) du groupe de brûleurs (A, B) correspondant et qui est reliée à la conduite principale (7) par l'intermédiaire d'une soupape de distribution (10) pouvant être contrôlée,- avec un espace de combustion (4) à l'entrée (6) duquel les brûleurs (5) sont disposés,- avec un ensemble de capteurs (11) qui mesure, pour chaque groupe de brûleurs (A, B), des valeurs séparées, corrélées avec les pulsations de pression et/ou les émissions survenant dans l'espace de combustion (4),- avec un dispositif de commande (12) qui est relié avec l'ensemble de capteurs (11) et avec les soupapes de distribution (10) et commande les soupapes de distribution (10) en fonction des valeurs de pulsations et/ou des valeurs d'émissions de façon à ce que, pour chaque groupe de brûleurs (A, B), les valeurs de pulsations et/ou les valeurs d'émissions soient égales et/ou inférieures à des valeurs seuils,- le dispositif de commande (12) déterminant, en fonction des valeurs de pulsations et/ou des valeurs d'émissions, pour chaque groupe de brûleurs (A, B), un facteur de pondération, qui représente la part, introduite dans le groupe de brûleurs (A, B) concerné, d'un flux de carburant total qui doit être introduit dans l'espace de combustion (4) et- le dispositif de commande (12) contrôlant les soupapes de distribution (10) en fonction des facteurs de pondération,- le dispositif de commande (12) contrôlant les soupapes de distribution (10) et/ou déterminant les facteurs de pondération de façon à ce qu'un flux de carburant total qui doit être introduit dans l'espace de combustion (4) reste constant.
- Chambre de combustion selon la revendication 1,
caractérisée en ce que
le dispositif de commande (12) constitue, avec l'ensemble de capteurs (11), pour chaque groupe de brûleurs (A, B), un circuit de régulation, dans lequel la soupape de distribution (10) correspondante est contrôlée en fonction d'une comparaison entre les valeurs de consigne et les valeurs effectives des pulsations et/ou des émissions. - Chambre de combustion selon l'une des revendications 1 à 2,
caractérisée en ce que
l'ensemble de capteurs (11) pour chaque groupe de brûleurs (A, B) comprend au moins un capteur de pression (19) et/ou au moins un capteur d'émissions (13). - Chambre de combustion selon l'une des revendications 1 à 3,
caractérisée en ce que
chaque groupe de brûleurs (A, B) comprend un seul brûleur (5). - Chambre de combustion selon la revendication 4,
caractérisée en ce que- l'ensemble de capteurs (11) mesure en outre, pour chaque brûleur (5), des valeurs séparées, qui sont corrélées avec une température de flamme et/ou avec un débit massique d'air au niveau du brûleur (5) correspondant,- le dispositif de commande (12) contrôle en outre les soupapes de distribution (10) en fonction des valeurs de températures de flamme et/ou des valeurs du débit massique d'air de façon à obtenir une répartition la plus homogène possible de la température de flamme dans l'espace de combustion (4). - Chambre de combustion selon la revendication 5,
caractérisée en ce que
l'ensemble de capteurs (11) pour chaque groupe de brûleurs (5) comprend un capteur de température (18) et/ou un dispositif à capteurs de pression pour une mesure de pression différentielle. - Chambre de combustion selon l'une des revendications 1 à 6,
caractérisée en ce que- au moins dans un groupe de brûleurs (A, B), tous les brûleurs (5) sont conçus comme des brûleurs à plusieurs étages avec chacun au moins deux étages de brûleur (I, II),- le système d'alimentation en carburant (3) pour chaque groupe de brûleurs (A, B) avec des brûleurs à plusieurs étages (5) comprend un nombre de conduites secondaires (9) correspondant au nombre d'étages de brûleurs (I, II), qui sont reliées, dans tous les brûleurs à plusieurs étages (5) du groupe de brûleurs (A, B) correspondant, avec l'étage de brûleur (I, II) correspondant et, par l'intermédiaire d'une soupape de distribution (10) contrôlable, avec la conduite principale (7),- le dispositif de commande (12) contrôle les soupapes de distribution (10) en fonction des valeurs de pulsations et/ou des valeurs d'émissions de façon à obtenir, dans chaque groupe de brûleurs (A, B), une répartition du flux de carburant entre les différents étages de brûleurs (I, II), qui est sélectionnée de façon à ce que, dans le groupe de brûleurs (A, B) correspondant, les valeurs de pulsations et/ou les valeurs d'émissions soient égales et/ou inférieures aux valeurs seuils prédéterminées. - Chambre de combustion selon l'une des revendications 1 à 6,
caractérisée en ce que- au moins dans un groupe de brûleurs (A, B), tous les brûleurs (5) sont conçus comme des brûleurs à plusieurs étages avec chacun au moins deux étages de brûleur (I, II),- le système d'alimentation en carburant (3) pour chaque groupe de brûleurs (A, B) avec des brûleurs à plusieurs étages (5) comprend un nombre de conduites de dérivation (16) correspondant au nombre d'étages de brûleurs (I, II), qui sont reliées, dans tous les brûleurs à plusieurs étages (5) du groupe de brûleurs (A, B) correspondant, avec l'étage de brûleur (I, II) correspondant et, par l'intermédiaire d'une soupape de dérivation (17) contrôlable, avec la conduite secondaire (9) correspondant au groupe de brûleurs (A, B),- le dispositif de commande (12) contrôle en outre les soupapes de dérivation (17) en fonction des valeurs de pulsations et/ou des valeurs d'émissions de façon à obtenir, dans chaque groupe de brûleurs (A, B), une répartition du flux de carburant entre les différents étages de brûleurs (I, II), qui est sélectionnée de façon à ce que, dans le groupe de brûleurs (A, B) correspondant, les valeurs de pulsations et/ou les valeurs d'émissions soient égales et/ou inférieures aux valeurs seuils prédéterminées. - Procédé d'exploitation d'une chambre de combustion (1) selon la revendication 1, la chambre de combustion (1) comprenant un système de combustion (2) qui comprend au moins deux groupes de brûleurs (A, B) avec chacun au moins un brûleur (5), un ensemble de capteurs (11) mesurant, pour chaque groupe de brûleurs (A, B), des valeurs séparées pour les pulsations de pression et/ou les émissions, et un dispositif de commande, ce dispositif de commande contrôlant ou actionnant, en fonction des valeurs de pulsations ou d'émissions mesurées, des soupapes de distribution, qui contrôlent le flux de carburant vers les différents groupes de brûleurs, de façon à ce que, dans chaque groupe de brûleurs (A, B), les valeurs de pulsations et/ou les valeurs d'émissions soient égales et/ou inférieures à des valeurs seuils prédéterminées.- un facteur de pondération étant déterminé en fonction des valeurs de pulsations et/ou d'émissions, pour chaque groupe de brûleurs (A, B), qui représente la part, introduite dans le groupe de brûleurs (A, B) concerné, d'un flux de carburant total prédéterminé qui doit être introduit dans l'espace de combustion (4) de la chambre de combustion (1),- l'importance des flux de carburant introduits dans les différents groupes de brûleurs (A, B) étant déterminée en fonction des facteurs de pondération et- les facteurs de pondération et/ou les flux de carburant introduits dans les différents groupes de brûleurs (A, B) étant déterminés de façon à ce que le flux de carburant total introduit dans l'espace de combustion (4) reste constant.
- Procédé selon la revendication 9,
caractérisé en ce que
pour chaque groupe de brûleurs (A, B), un circuit de régulation est prévu, qui régule l'importance des flux de carburant vers les différents groupe de brûleurs (A, B) en fonction d'une comparaison entre les valeurs de consigne et les valeurs effectives des pulsations et/ou des émissions. - Procédé selon l'une des revendications 9 à 10,
caractérisé en ce que- chaque groupe de brûleurs (A, B) comprend un seul brûleur (5),- en outre, pour chaque brûleur (5), des valeurs séparées sont mesurées, qui sont corrélées avec une température de flamme et/ou avec un débit massique d'air au niveau du brûleur (5) correspondant,- l'importance des flux de carburant introduits dans les différents groupes de brûleurs (A, B) est en outre déterminée en fonction des valeurs de températures de flammes et/ou des valeurs de débits massiques d'air de façon à obtenir, dans un espace de combustion (4) de la chambre de combustion (1) une répartition la plus homogène possible de la température de flamme. - Procédé selon l'une des revendications 9 à 11,
caractérisé en ce que- au moins dans un groupe de brûleurs (A, B), tous les brûleurs (5) sont conçus comme des brûleurs à plusieurs étages avec chacun au moins deux étages de brûleur (I, II),- à l'intérieur de chaque groupe de brûleurs (A, B), les flux de carburant introduits sont répartis entre les différents étages de brûleurs (I, II) de façon à ce que, dans le groupe de brûleurs (A, B) correspondant, les valeurs de pulsations et/ou les valeurs d'émissions soient égales et/ou inférieures aux valeurs seuils prédéterminées.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004015187A DE102004015187A1 (de) | 2004-03-29 | 2004-03-29 | Brennkammer für eine Gasturbine und zugehöriges Betriebsverfahren |
PCT/EP2005/051229 WO2005093327A1 (fr) | 2004-03-29 | 2005-03-17 | Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1730449A1 EP1730449A1 (fr) | 2006-12-13 |
EP1730449B1 true EP1730449B1 (fr) | 2017-11-01 |
Family
ID=34965762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05743002.7A Not-in-force EP1730449B1 (fr) | 2004-03-29 | 2005-03-17 | Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant |
Country Status (4)
Country | Link |
---|---|
US (1) | US7484352B2 (fr) |
EP (1) | EP1730449B1 (fr) |
DE (1) | DE102004015187A1 (fr) |
WO (1) | WO2005093327A1 (fr) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2434437B (en) * | 2006-01-19 | 2011-01-26 | Siemens Ag | Improvements in or relating to combustion apparatus |
DE102006015230A1 (de) | 2006-03-30 | 2007-10-18 | Alstom Technology Ltd. | Brennkammer |
DE102006015529A1 (de) * | 2006-03-31 | 2007-10-04 | Alstom Technology Ltd. | Brennersystem mit gestufter Brennstoff-Eindüsung |
EP1990521A1 (fr) * | 2007-05-09 | 2008-11-12 | Siemens Aktiengesellschaft | Réduction de la dynamique de la pression dans un moteur de turbine à gaz |
EP2071156B1 (fr) | 2007-12-10 | 2013-11-06 | Alstom Technology Ltd | Système de distribution de carburant d'une turbine à gaz avec ensemble brûleur à plusieurs étages |
EP2090829A1 (fr) * | 2008-02-14 | 2009-08-19 | Siemens Aktiengesellschaft | Arrangement de brûleurs et procédé de fonctionnement associé |
US20100192577A1 (en) * | 2009-02-02 | 2010-08-05 | General Electric Company | System and method for reducing combustion dynamics in a turbomachine |
IT1393555B1 (it) * | 2009-04-07 | 2012-04-27 | Ansaldo Energia Spa | Impianto a turbina a gas e metodo per operare detto impianto a turbina a gas |
US9267443B2 (en) | 2009-05-08 | 2016-02-23 | Gas Turbine Efficiency Sweden Ab | Automated tuning of gas turbine combustion systems |
US9354618B2 (en) | 2009-05-08 | 2016-05-31 | Gas Turbine Efficiency Sweden Ab | Automated tuning of multiple fuel gas turbine combustion systems |
US8437941B2 (en) | 2009-05-08 | 2013-05-07 | Gas Turbine Efficiency Sweden Ab | Automated tuning of gas turbine combustion systems |
US9671797B2 (en) | 2009-05-08 | 2017-06-06 | Gas Turbine Efficiency Sweden Ab | Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications |
CN102549342B (zh) * | 2009-10-09 | 2015-10-21 | 西门子公司 | 燃烧设备 |
US9068751B2 (en) * | 2010-01-29 | 2015-06-30 | United Technologies Corporation | Gas turbine combustor with staged combustion |
DE102011102720B4 (de) | 2010-05-26 | 2021-10-28 | Ansaldo Energia Switzerland AG | Kraftwerk mit kombiniertem Zyklus und mit Abgasrückführung |
CH703218A1 (de) | 2010-05-26 | 2011-11-30 | Alstom Technology Ltd | Verfahren zum Betreiben eines Gas-und-Dampf-Kombikraftwerk mit Rauchgasrezirkulation sowie Kraftwerk. |
DE102011117603A1 (de) | 2010-11-17 | 2012-05-24 | Alstom Technology Ltd. | Brennkammer und Verfahren zum Dämpfen von Pulsationen |
DE102011118411A1 (de) * | 2010-12-09 | 2012-06-14 | Alstom Technology Ltd. | Brennkammer und Verfahren zum Liefern von Brennstoffen an eine Brennkammer |
US9920696B2 (en) | 2011-08-09 | 2018-03-20 | Ansaldo Energia Ip Uk Limited | Method for operating a gas turbine and gas turbine unit useful for carrying out the method |
US9631560B2 (en) | 2011-11-22 | 2017-04-25 | United Technologies Corporation | Fuel-air mixture distribution for gas turbine engine combustors |
US10240533B2 (en) | 2011-11-22 | 2019-03-26 | United Technologies Corporation | Fuel distribution within a gas turbine engine combustor |
DK2959139T3 (da) * | 2012-02-22 | 2020-11-23 | Gas Turbine Efficiency Sweden | Optimering af gasturbineforbrændingssystemers lavbelastningsydeevne på enkel-cyklus og varmegenvindingsdampgeneratoranvendelser |
WO2013126279A1 (fr) * | 2012-02-22 | 2013-08-29 | Gas Turbine Efficiency Sweden Ab | Optimisation des performances à faible charge de systèmes de combustion de turbine à gaz sur simple cycle et applications de générateur de vapeur à récupération de chaleur |
WO2014133601A1 (fr) * | 2013-02-26 | 2014-09-04 | Rolls-Royce Corporation | Turbine à gaz et procédé permettant de faire fonctionner une turbine à gaz |
KR20170001104A (ko) * | 2015-06-25 | 2017-01-04 | 두산중공업 주식회사 | 진동제어를 통한 제어방법 |
JP6651389B2 (ja) * | 2016-03-08 | 2020-02-19 | 三菱日立パワーシステムズ株式会社 | 燃料制御装置、燃焼器、ガスタービン、燃料制御方法及びプログラム |
US11181274B2 (en) * | 2017-08-21 | 2021-11-23 | General Electric Company | Combustion system and method for attenuation of combustion dynamics in a gas turbine engine |
US11156164B2 (en) | 2019-05-21 | 2021-10-26 | General Electric Company | System and method for high frequency accoustic dampers with caps |
US11174792B2 (en) | 2019-05-21 | 2021-11-16 | General Electric Company | System and method for high frequency acoustic dampers with baffles |
US11408347B2 (en) * | 2019-07-22 | 2022-08-09 | Hamilton Sundstrand Corporation | Fuel systems |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5303542A (en) * | 1992-11-16 | 1994-04-19 | General Electric Company | Fuel supply control method for a gas turbine engine |
US5402634A (en) * | 1993-10-22 | 1995-04-04 | United Technologies Corporation | Fuel supply system for a staged combustor |
DE19636093B4 (de) * | 1996-09-05 | 2004-07-29 | Siemens Ag | Verfahren und Vorrichtung zur akustischen Modulation einer von einem Hybridbrenner erzeugten Flamme |
DE19704540C1 (de) * | 1997-02-06 | 1998-07-23 | Siemens Ag | Verfahren zur aktiven Dämpfung einer Verbrennungsschwingung und Verbrennungsvorrichtung |
US6560967B1 (en) * | 1998-05-29 | 2003-05-13 | Jeffrey Mark Cohen | Method and apparatus for use with a gas fueled combustor |
DE59810344D1 (de) * | 1998-07-27 | 2004-01-15 | Alstom Switzerland Ltd | Verfahren zum Betrieb einer Gasturbinenbrennkammer mit gasförmigem Brennstoff |
WO2000012940A1 (fr) * | 1998-08-31 | 2000-03-09 | Siemens Aktiengesellschaft | Procede d'exploitation d'une turbine a gaz et turbine a gaz correspondante |
DE19928226A1 (de) * | 1999-05-07 | 2001-02-01 | Abb Alstom Power Ch Ag | Verfahren zur Unterdrückung bzw. Kontrolle von thermoakustischen Schwingungen in einem Verbrennungs-System sowie Verbrennungssystem zur Durchführung des Verfahrens |
DE19934612A1 (de) * | 1999-07-23 | 2001-01-25 | Abb Alstom Power Ch Ag | Verfahren zur aktiven Unterdrückung von strömungsmechanischen Instabilitäten in einem Verbrennungssystem sowie Verbrennungssystem zur Durchführung des Verfahrens |
DE19944922A1 (de) * | 1999-09-20 | 2001-03-22 | Asea Brown Boveri | Steuerung von Primärmassnahmen zur Reduktion der thermischen Stickoxidbildung in Gasturbinen |
GB0019533D0 (en) * | 2000-08-10 | 2000-09-27 | Rolls Royce Plc | A combustion chamber |
DE10064893A1 (de) * | 2000-12-23 | 2002-11-14 | Alstom Switzerland Ltd | Brenner mit gestufter Brennstoffeindüsung |
DE10104151A1 (de) * | 2001-01-30 | 2002-09-05 | Alstom Switzerland Ltd | Verfahren zur Herstellung einer Brenneranlage |
US6722135B2 (en) * | 2002-01-29 | 2004-04-20 | General Electric Company | Performance enhanced control of DLN gas turbines |
-
2004
- 2004-03-29 DE DE102004015187A patent/DE102004015187A1/de not_active Withdrawn
-
2005
- 2005-03-17 WO PCT/EP2005/051229 patent/WO2005093327A1/fr active Application Filing
- 2005-03-17 EP EP05743002.7A patent/EP1730449B1/fr not_active Not-in-force
-
2006
- 2006-09-21 US US11/533,796 patent/US7484352B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20070163267A1 (en) | 2007-07-19 |
US7484352B2 (en) | 2009-02-03 |
WO2005093327A1 (fr) | 2005-10-06 |
EP1730449A1 (fr) | 2006-12-13 |
DE102004015187A1 (de) | 2005-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1730449B1 (fr) | Chambre de combustion pour turbine a gaz et procede de fonctionnement correspondant | |
EP1205653B1 (fr) | Brûleur avec injection de combustible étagée et procédé de fonctionnement | |
EP1621811B1 (fr) | Procédé de fonctionnement pour un dispositif de combustion | |
EP1730448B1 (fr) | Ensemble a plusieurs bruleurs servant a faire fonctionner une chambre de combustion et procede pour faire fonctionner un tel ensemble | |
EP0576697B1 (fr) | Chambre de combustion pour turbine à gaz | |
DE60038593T2 (de) | Verfahren und Einrichtung zur Optimierung von NOx-Ausstoss in einer Gasturbine | |
DE102015122927A1 (de) | Pilotdüse in einer Gasturbinenbrennkammer | |
EP1840465A2 (fr) | Système comportant des brûleurs à injection de carburant étagée | |
EP1319895A2 (fr) | Brûleur à prémélange à combustion pauvre pour turbine à gaz et son procédé de fonctionnement | |
EP2071156B1 (fr) | Système de distribution de carburant d'une turbine à gaz avec ensemble brûleur à plusieurs étages | |
WO2011023648A2 (fr) | Aube de turbulence, brûleur et turbine à gaz | |
DE102005061486B4 (de) | Verfahren zum Betreiben einer Brennkammer einer Gasturbine | |
WO2005093326A2 (fr) | Chambre a combustion de turbine a gaz et procede pour la faire fonctionner | |
EP1150072A2 (fr) | Chambre de combustion de turbine à gaz pourvue d'ouvertures d'alimentation | |
EP1062461B1 (fr) | Chambre de combustion et mode de fonctionnement d'une chambre de combustion | |
EP2538139A2 (fr) | Procédé de fonctionnement d'un dispositif de combustion ainsi que le dispositif de combustion destiné à la mise en oeuvre du procédé | |
EP1510755B1 (fr) | Brûleur avec lance et alimentation étagée en carburant | |
EP0969192B1 (fr) | Méthode pour égaliser la distribution de carburant dans une turbine à gaz avec plusieurs brûleurs | |
EP3250857B1 (fr) | Agencement de brûleur | |
EP1105678B1 (fr) | Procede de fonctionnement d'un bruleur hybride | |
EP1533569B1 (fr) | Méthode de fonctionnement d'un appareil de combustion | |
DE19825335A1 (de) | Verfahren zum Betrieb einer Gasturbine | |
EP3431880B1 (fr) | Module buse pour une chambre de combustion d'un propulseur | |
DE102010009051A1 (de) | Brennstoffzuführungseinrichtung | |
WO2009095405A1 (fr) | Pilotage d'un brûleur à jet doté d'un pilote « vortex enfermé » |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060921 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: TOQAN, MAJED Inventor name: FLOHR, PETER Inventor name: SCHUERMANS, BRUNO |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20070821 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ANSALDO ENERGIA IP UK LIMITED |
|
INTG | Intention to grant announced |
Effective date: 20170518 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 942417 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005015734 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171101 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180202 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180301 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005015734 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180802 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 942417 Country of ref document: AT Kind code of ref document: T Effective date: 20180317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050317 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220321 Year of fee payment: 18 Ref country code: DE Payment date: 20220322 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220322 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005015734 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230317 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230317 |