EP1730389B1 - Vorrichtung zur kühlluftbeaufschlagung einer laufschaufel - Google Patents

Vorrichtung zur kühlluftbeaufschlagung einer laufschaufel Download PDF

Info

Publication number
EP1730389B1
EP1730389B1 EP05717155A EP05717155A EP1730389B1 EP 1730389 B1 EP1730389 B1 EP 1730389B1 EP 05717155 A EP05717155 A EP 05717155A EP 05717155 A EP05717155 A EP 05717155A EP 1730389 B1 EP1730389 B1 EP 1730389B1
Authority
EP
European Patent Office
Prior art keywords
cooling
distribution plate
opening
air supply
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05717155A
Other languages
English (en)
French (fr)
Other versions
EP1730389A1 (de
Inventor
Remigi Tschuor
Heinz Neuhoff
Iouri Strelkov (Alexandrovich)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1730389A1 publication Critical patent/EP1730389A1/de
Application granted granted Critical
Publication of EP1730389B1 publication Critical patent/EP1730389B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Definitions

  • the invention relates to a device forde Kunststoffbeetzschung a blade as defined in the preamble of claim 1.
  • a device for example from the EP-A-0 340 149
  • Rotary machines for example turbo or compressor stages of gas or steam turbine plants, generally have fixed guide vanes and rotor blades rotating about an axis of rotation for targeted expansion or compression of gases or gas mixtures, which are usually exposed to high process temperatures and thus have to withstand high thermal loads , In addition to the thermal load, it is in particular the rotating about the axis of rotation blades, which are also exposed to high, caused by the centrifugal forces mechanical loads.
  • the blade root is preferably interspersed with a plurality of radially-oriented cooling passages which extend innately through the entire extension of the blade blade for effective cooling of the blade.
  • For cooling air supply serve cooling air supply channels provided on the rotor side, is fed by the cooling air into the rotor blade radially passing through the cooling channels.
  • Such a cooling air supply system thus requires a rotor having a plurality of radially oriented cooling air ducts, the individual cooling ducts of which must be exactly aligned by appropriate positioning of the individual rotor blades in alignment with the radial cooling ducts provided in the rotor blade root. Even the slightest misalignments between the blade root and the rotor unit can permanently impair effective cooling of the blade, which is considerably reduced by the life of the blade.
  • a cooling air feed stream enters the axially oriented cooling air supply channel within the blade root, from which branch off individual cooling air channels projecting radially into the blade airfoil. Since blades are usually produced as part of a casting process, it is used to form such in a casting inside cavities of the so-called Gusskem technique, which allows in particular the rotor blade axially projecting through the cooling air supply duct and the individual, the blade inside radially at least partially enforcing individual cooling channels to produce.
  • flow passages are provided which provide the axially directed cooling air feed stream into the radially extending cooling passages to redirect within the blade.
  • the flow gaps to be provided for this purpose which cause both a change in direction and also a flow distribution of the cooling air feed stream directed axially into the blade root, are subject to production-related structural tolerances by which precise guidance and division of the cooling air flow onto the individual cooling ducts extending radially along the blade airfoil only occur an unsatisfactory accuracy is possible.
  • the invention is intended to remedy the situation, so that the invention is based on the object to optimize the cooling air distribution to the individual radially oriented cooling channels within a blade. Also, the measures to be taken for this purpose should not cause costly manufacturing or assembly steps and have robust properties that can withstand the high demands in terms of thermal and mechanical stress within such about a rotation axis rotating components.
  • the further embodiments relate to the case of a blade which is mounted along a rotor unit of a gas or steam turbine plant and can be used in a turbo stage or compressor stage.
  • the general inventive concept which also relates to altemaive plant components that are exposed to comparable loads.
  • the distribution plate which is preferably made of temperature-resistant flat material, provides passage openings along its extent corresponding to the radially extending cooling channel regions, in each case with opening diameters through which the volume flow of cooling air which can be predetermined in the individual cooling channel regions.
  • the distribution plate With the aid of the distribution plate, it is thus possible to divide previously calculated volume proportions of cooling air, which are adapted to the respective rotating blade, onto the individual cooling channel regions extending radially along the blade airfoil. Such an exact division of the cooling air flow is not possible due to the manufacturing tolerances unavoidably associated with the casting process, with the exclusive use of flow-related profiles produced by casting.
  • Cooling air supply ducts provided at least two axially spaced apart shoulder elements, the radially opposite the opening edge of the opening of the at least one cooling channel region slightly spaced, and with this limits an insertion slot, in the axial becamertiges insertion into the cooling air supply duct, the distribution plate experiences a preferably flush snug fit. It should be noted at this point that it is preferable to provide a plurality of cooling channel regions which pass radially through the rotor blade and are separated from one another by intermediate walls.
  • the intermediate walls open via a respective opening edge facing the cooling air supply channel, which encloses the opening of the respective cooling channel region extending radially inward.
  • the distributor plate made of a material and with a material thickness to manufacture, so that the bending moment of the distribution plate by the resulting by rotation and on The distribution plate attacking centrifugal forces is exceeded and the distribution plate is able to conform to the casting geometry of the opening edges downright.
  • This nestling process can also be supported in a further preferred embodiment in that the distribution plate has locally limited material weakenings, for example in the form of mechanical indentations or cracks. Also, such material weakenings can be generated by deliberately changing the microstructure in the distribution plate. Such points of reduced strength are distributed along the distribution plate, preferably in areas near the opening edges where it is necessary to make a fluid-tight connection.
  • the distribution plate fixed at one end or both ends to the inner structure of the blade root in the area of the cooling air supply channel, for example by means of a soldered or welded connection.
  • the joints required for this purpose are easily accessible for mounting purposes axially through the cooling air supply channel, so that the required assembly effort is not significantly increased.
  • the axially extending through the blade root fully extending cooling air supply channel is open on both sides with respect to the blade root, it is necessary to close an axial-side opening fluid-tight.
  • a simplest embodiment provides, by corresponding bending of an end region of the distribution plate to provide a frontal closure of the cooling air supply duct, wherein the distribution plate at least in the region of its end bent-over plate portion with the inner wall of the Cooling air supply duct to be welded or soldered.
  • a fixation in this regard could adversely affect the required at least in the state of rotation adjusting fluid-tight connection between the distribution plate and the at least one opening edge, so that a further preferred embodiment instead of a fixed disposal of the distribution plate in the region of the bent Verteilplattenabiteses a separate end plate provides , which closes the cooling air supply channel axially on one side fluid-tight.
  • FIG. 1 the cross-section through a blade 1 is shown, which is arranged rotatably about a rotation axis 2 of a rotor unit integrated in a gas turbine arrangement.
  • the rotor blade 1 has a rotor blade root 3 which can be frictionally connected to the rotor unit (not shown) via a correspondingly formed joining contour (fir tree structure - not shown). Radialward joins to the blade root 3, the blade 4, in the interior of which cooling channel areas K1 to K4 are provided.
  • the cooling channel areas K1 to K4 are provided in the region of the blade root 3 extends an axially, ie parallel to the axis of rotation 2, oriented cooling air supply channel 5, which first extends through the entire axial width of the blade root 3.
  • shoulder elements 6 are provided, which are machined out of the casting material by means of the casting process, with which the entire blade 1 can be produced, from which the remaining blade material is made.
  • the shoulder elements 6 have upper surface portions 61 which are slightly spaced from each other on the radial side so-called opening edges 71.
  • the opening edges 71 surround openings 7 facing the cooling supply channel 5, to which the cooling channel areas K1 and K2, which are bounded in each case by cooling channel area walls 72, adjoin the radial side.
  • a distribution plate 8 is provided in which appropriately positioned and dimensioned passage openings 81 are introduced.
  • the passage openings 81 are correspondingly provided in the opening region of the openings 7.
  • the illustrated embodiment according to FIG. 1 it applies the axially fed via the cooling air supply duct 5 cooling air supply flow targeted in the Feed cooling duct areas K1 and K2.
  • the passage openings 81 provided in the opening region of the cooling channel region K1 allow a cooling air flow on the radial side through the cooling channel K1, which provides an outlet opening A at the upper flank of the blade 4, through which the cooling air escapes into the hot gas channel H.
  • the cooling air entering through the passage openings 81 into the cooling channel region K2 is for the most part diverted through corresponding flow guiding means 9 into the cooling channel region K3, which is adjoined by the cooling channel region K4 in the flow direction (see flow arrows).
  • the distribution plate 8 ensures that the cooling air flow flowing downwards in the cooling channel region K3 is deflected in its entirety into the cooling channel region K4 extending radially upwards.
  • the distribution plate 8 gas-tight or fluid-tight against the corresponding opening edges 71 and the edge contour 10 hugs.
  • care must be taken to ensure that no leakage flows occur between the distribution plate 8 and the opening edges 71.
  • it is necessary to dimension the distribution plate 8 and to select in terms of their plate material that it is firmly pressed flush with the corresponding opening edges 71 and the edge contour 10 of the centrifugal forces caused by the rotation about the rotation axis 2.
  • the distribution plate 8 lies loosely in the between the surface portions 61 of the shoulder elements 6 and the opening edges 71 and the edge contour 10 limited entrance slot 11 (see FIG. 2 ).
  • FIG. 2 As already mentioned, the shoulder elements 6 present in the interior of the cooling tuft supply channel 5 and the individual cooling channel areas K1 to K4, ie the cooling channel area walls 72 with the corresponding opening edges 71, are obstructed the casting process produced together.
  • the opening edges 71 enclose with the surface portions 61 of the shoulder elements 6 an insertion slot 11, along which the distribution plate 8 which is planar in shape in the initial state can be pushed in axially.
  • the distribution plate 8 otherwise remains lying loose on the surface portions 61 of the shoulder elements 6.
  • a cover plate 12 to the in FIG. 2 used left inlet opening in the cooling air supply duct 5 and welded or soldered in edge regions with the blade root 3. Due to the one-sided, gas-tight closure of the cooling air supply duct 5, the cooling air feed flow S entering from the right side into the cooling air supply duct 5 experiences a stowage effect within the cooling air supply duct 5, whereby the cooling air feed stream S is driven through the passage openings 81 provided in the distribution plate 8. Size and arrangement of the individual passage openings 81 define the volume flow of the cooling air flow entering the respective cooling passage areas K1 and K2.
  • FIG. 3 shows a further detail of the fluid-tight welded to the axial end portion of the cooling air supply duct 5 end plate 12.
  • the end plate 12 is seated in a corresponding counter-contoured recess 13 within the blade root 3 and is welded fluid-tight with this.
  • the Distribution plate 8 loosely within the insertion slot 11 rests on the shoulder element 6. Only in the way of rotation and the resulting centrifugal forces the distribution plate 8 is raised radially and thus comes into contact with the edge contour 10, with which it enters into a corresponding fluid-tight connection. In this way it is avoided that cooling air can get back at this point from the cooling channel area K4 in the cooling air supply duct 5.
  • FIGS. 4a and b show a top and side view of a first distribution plate 8, the geometric dimensions of which are adapted to the insertion slot 11 described above.
  • the distributor plate 8 is made of a heat-resistant flat material and initially designed for assembly purposes on one side flat (see FIG. 4a ).
  • the distribution plate 8 has passage openings 81 whose arrangement, shape and size determines the cooling air volume which is conveyed through the cooling channel areas K1 to K4.
  • the distributor plate 8 formed on one side between the opening edges 71 and the surface portions 61 of the shoulder elements 6 and, after complete insertion into the cooling air supply channel 5 at an end portion 82 or 83 in the manner described above. See the page view in FIG. 4b .
  • the dimensions of the distribution plate 8 and the material are chosen such that at least local deflections on the distribution plate 8 in the region of the opening edges 71 may occur so that the distribution plate 8 can form a fluid-tight connection with the opening edges 71.
  • the measures described above are used for the preferred loose mounting of the distribution plate 8 within the cooling supply channel 5, wherein the distribution plate 8 is spatially fixed only within the insertion slot 11 on the one hand by the shoulder elements 6 and on the other hand by the opening edges 71 and the edge contour 10. Installation-consuming welding operations are completely avoidable in this way, but can be provided locally if required.
  • FIG. 5 shows a partial cross section through the foot portion 3 of a blade 1, which is formed according to the above embodiments.
  • a single cooling channel area K1 is provided, to be shown in the cooling air from the cooling air supply duct 5 targeted. This follows via appropriately provided passage openings in the axially inserted distribution plate 8, which has at intervals along the distribution plate 8 on the bending capacity improving notches 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft eine Vorrichtung zur Kühlluftbeaufschlagung einer Laufschaufel wie sie im Oberbegriff des Anspruchs 1 definiert wird. Eine solche Vorrichtung ist z.B. aus der EP-A- 0 340 149 bekannt Rotationsmaschinen, beispielsweise Turbo- oder Verdichterstufen von Gas- oder Dampfturbinenanlagen weisen zur gezielten Expansion oder Kompression von Gasen oder Gasgemischen in der Regel feststehende Leit- und um eine Rotationsachse drehende Laufschaufeln auf, die zumeist hohen Prozesstemperaturen ausgesetzt sind und somit hohen thermischen Belastungen standhalten müssen. Neben der thermischen Belastung sind es insbesondere die um die Rotationsachse drehenden Laufschaufeln, die zusätzlich hohen, aufgrund der Zentrifugalkräfte hervorgerufenen mechanischen Belastungen ausgesetzt sind.
  • Im Bestreben den Wirkungsgrad derartiger Wärmekraftmaschinen zu verbessern, werden zumeist Maßnahmen getroffen, durch die die rotierenden Komponenten aufgrund zunehmenden Prozesstemperaturen und erhöhten Rotationsgeschwindigkeiten stets größer werden thermischen und mechanischen Belastungen ausgesetzt werden. Diesen Bestrebungen sind jedoch aufgrund der eingesetzten Materialien, aus denen vor allem die rotierenden Anlagenkomponenten gefertigt sind, physikalische Belastungsgrenzen gesetzt. Um dennoch weitere Optimierungen hinsichtlich des Wirkungsgrades vornehmen zu können wird nach Wegen gesucht, insbesondere die Hitze exponierten und Zentrifugalkraft beaufschlagten Anlagenkomponenten effektiv zu kühlen. Hierzu ist bereits eine Reihe von Vorschlägen bekannt, mit denen Laufschaufeln in Rotationsmaschinen mit Kühlluft beaufschlagt werden. Typischerweise weist eine derartig ausgebildete Laufschaufel zu Zwecken ihrer rotorseitigen Befestigung einen tannenzapfenartig strukturierten Laufschaufelfuss auf, an den sich radialwärts das Laufschaufelblatt anschließt. Zu Kühlzwecken ist der Laufschaufelfuss vorzugsweise mit einer Vielzahl von radialwärts orientierten Kühlkanälen durchsetzt, die sich zur effektiven Kühlung der Laufschaufel innwandig durch die gesamte Erstreckung des Laufschaufelblattes erstrecken. Zur Kühllufteinspeisung dienen rotorseitig vorgesehene Kühlluftspeisekanäle, durch die Kühlluft in die den Laufschaufelfuss radial durchsetzenden Kühlkanäle eingespeist wird. Ein derartiges Kühlluftversorgungssystem setzt somit einen über eine Vielzahl von radial orientierten Kühlluftkanälen aufweisenden Rotor voraus, dessen einzelne Kühlkanäle exakt durch entsprechende Positionierung der einzelnen Laufschaufeln in Flucht mit den im Laufschaufelfuss vorgesehenen radialen Kühlkanälen gebracht werden müssen. Bereits geringste Dejustierungen zwischen Laufschaufelfuss und Rotoreinheit können eine wirksame Kühlung der Laufschaufel nachhaltig beeinträchtigen, durch die Lebensdauer der Laufschaufel erheblich reduziert wird.
  • Alternativ zur radialen Kühlluftversorgung einer Laufschaufel über ein rotorseitiges Kühlluftversorgungssystem ist vorgeschlagen worden, die Kühlluftversorgung über einen den Laufschaufelfuss axialwärts durchsetzten Kühlluftversorgungskanal vorzunehmen. Hierbei gelangt ein Kühlluftspeisestrom in den axialwärts orientierten Kühlluftversorgungskanal innerhalb des Laufschaufelfusses, von dem aus einzelne radialwärts in das Laufschaufelblatt hineinragende Kühlluftkanäle abzweigen. Da Laufschaufeln in aller Regel im Rahmen eines Giessverfahrens hergestellt werden, bedient man sich zur Ausbildung derartiger in einem Gussteil innen liegender Hohlräume der so genannten Gusskem-Technik, die es insbesondere ermöglicht den den Laufschaufelfuss axialwärts durchragenden Kühlluftversorgungskanal sowie die einzelnen, das Laufschaufelblatt innenliegend radial wenigstens teilweise durchsetzenden einzelnen Kühlkanäle, herzustellen. Es zeigt sich jedoch, dass für eine optimierte Verteilung des Kühlluftspeisestromes innerhalb des axial orientierten Kühlluftversorgungskanals Strömungskulissen vorzusehen sind, die den axial gerichteten Kühlluftspeisestrom in die sich radialwärts erstreckenden Kühlkanäle innerhalb des Laufschaufelblattes umlenken sollen. Herstellungsbedingt sind jedoch den hierfür vorzusehenden Strömungskulissen, die sowohl eine Richtungsänderung sowie auch eine Strömungsaufteilung der in den Schaufelfuss axial gerichteten Kühlluftspeisestrom bedingen, herstellungsbedingter Strukturformtoleranzen unterworfen, durch die eine exakte Führung und Aufteilung der Kühlluftströmung auf die einzelnen sich radial längs des Laufschaufelblattes erstreckenden Kühlkanäle nur mit einer unbefriedigenden Genauigkeit möglich ist.
  • Hier soll die Erfindung Abhilfe schaffen, so dass der Erfindung die Aufgabe zugrunde liegt, die Kühlluftverteilung auf die einzelnen radial orientierten Kühlkanäle innerhalb einer Laufschaufel zu optimieren. Auch sollen die hierfür zu treffenden Maßnahmen keine kostenaufwendigen Herstellungs- oder Montageschritte verursachen und über robuste Eigenschaften verfügen, die den hohen Anforderungen bezüglich thermischer sowie auch mechanischer Belastung innerhalb derartiger um eine Drehachse rotierender Komponenten standhalten zu können.
  • Darstellung der Erfindung
  • Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche sowie der Beschreibung unter Bezugnahme auf die Ausführungsbeispiele zu entnehmen.
  • Zur einfacheren Darstellung und Beschreibung des Erfindungsgedankens beziehen sich die weiteren Ausführungen auf den Fall einer Laufschaufel, die längs einer Rotoreinheit eines Gas- oder Dampfturbinenanlage montiert ist und in einer Turbostufe oder Verdichterstufe einsetzbar ist. Selbstverständlich soll durch diese Bezugnahme der allgemeine Erfindungsgedanke nicht eingeschränkt werden, der sich auch auf altemaive Anlagenkomponenten, die vergleichbaren Belastungen ausgesetzt sind, bezieht.
  • Die vorzugsweise aus temperaturbeständigem Flachmaterial gefertigte Verteilplatte sieht längs ihrer Erstreckung jeweils korrespondierend zu den sich radial erstreckenden Kühlkanalbereichen Durchtrittsöffnungen vor, jeweils mit Öffnungsdurchmessem, durch die der Volumenstrom an Kühlluft, der in die einzelnen Kühlkanalbereiche gelangt vorgebbar ist. Mit Hilfe der Verteilplatte ist es somit möglich, vorab berechnete an die jeweilige rotierende Laufschaufel angepasste Volumenanteile an Kühlluft auf die einzelnen sich radialwärts Laufschaufelblatt erstreckenden Kühlkanalbereiche aufzuteilen. Eine derartig exakte Aufteilung der Kühlluftströmung ist aufgrund der mit dem Giessverfahren unvermeidbar verbundenen Fertigungstoleranzen unter ausschließlicher Nutzung giesstechnisch hergestellter Strömungskulissen nicht möglich.
  • Um den Montageaufwand zum Einbringen der Verteilplatte längs der sich axialwärts durch den Komponentenfuss erstreckenden Kühlversorgungskanal möglichst gering zu halten und zugleich Voraussetzungen für einen exakten Sitz und eine exakte Positionierung der Verteilplatte relativ zu den wenigstens einen sich radialwärts erstreckenden Kühlkanalbereich zu schaffen, sind innerhalb des Kühlluftversorgungskanals wenigstens zwei axialwärts voneinander beabstandete Schulterelemente vorgesehen, die radialseitig dem Öffnungsrand der Öffnung des zumindest einen Kühlkanalbereich leicht beabstandet gegenüberliegt, und mit diesem einen Einschubschlitz begrenzt, in den durch axialwärtiges Einschieben in den Kühlluftversorgungskanal die Verteilplatte einen vorzugsweise bündigen Paßsitz erfährt. An dieser Stelle ist anzumerken, dass vorzugsweise mehrere das Laufschaufelblatt radialwärts durchsetzende Kühlkanalbereiche vorgesehen sind, die durch Zwischenwände voneinander getrennt angeordnet sind. Im Bereich des sich axial im Laufschaufelfuss erstreckenden Kühlluftversorgungskanals münden die Zwischenwände über jeweils einen zum Kühlluftversorgungskanal zugewandt orientierten Öffnungsrand, der die Öffnung des jeweiligen sich radialwärts ersteckenden Kühlkanalbereichs umschließt. Mit diesem Öffnungsrand gilt es zumindest im Zustand der Rotation eine fluiddichte Verbindung zur Verteilplatte zu schaffen, um mögliche Leckageströme zwischen Verteilplatte und Öffnungsrand vollkommen auszuschließen.
  • Durch die sich im Wege der Rotation selbstständig einstellende, fluiddichte Verbindung zwischen Verteilplatte und dem Öffnungsrand der Öffnung des wenigstens einen sich radialwärts erstreckenden Kühlkanalbereiches, ist es nicht erforderlich, toleranzfreie Spaltmaße für den Einschubschlitz, der zwischen den Schulterelementen und dem wenigstens einen Öffnungsrand begrenzt wird, vorzusehen, eine Forderung, der mit herkömmlichen Giessverfahren ohnehin nicht nachgekommen werden kann.
  • Um der Forderung nachzukommen, zumindest bei Rotation für eine fluiddichte Verbindung zwischen Verteilerplatte und den entsprechenden Öffnungsrändern zu sorgen, gilt es die Verteilerplatte aus einem Material sowie mit einer Materialstärke zu fertigen, so dass das Biegemoment der Verteilplatte durch die im Wege der Rotation entstehenden und an der Verteilplatte angreifenden Zentrifugalkräfte überschritten wird und sich die Verteilplatte an die Gussgeometrie der Öffnungsränder regelrecht anzuschmiegen vermag. Dieser Anschmiegevorgang kann in einer weiteren bevorzugten Ausbildungsform zudem dadurch unterstützt werden, in dem die Verteilerplatte lokal begrenzte Materialschwächungen, beispielsweise in Form mechanischer Einkerbungen oder Risse verfügt. Auch können derartige Materialschwächungen durch gezieltes Ändern der Gefügestruktur in der Verteilplatte erzeugt werden. Derartige Stellen herabgesetzter Festigkeiten werden längs der Verteilplatte verteilt angeordnet, vorzugsweise in Bereichen nahe der Öffnungsränder, an denen es gilt eine fluiddichte Verbindung herzustellen.
  • Auch kann es in einigen Fällen vorteilhaft sein, die Verteilplatte zumindest endseitig an einem Ende oder beiden Enden mit der inneren Gefügestruktur des Laufschaufelfusses im Bereich des Kühlluftversorgungskanals fest zu verfügen, beispielsweise im Wege einer Löt- oder Schweißverbindung. Die hierfür erforderlichen Fügestellen sind zu Montagezwecken axialwärts durch den Kühlluftversorgungskanal leicht zugänglich, so dass der hierfür erforderliche Montageaufwand nicht wesentlich erhöht wird.
  • Da, wie im weiteren anhand eines Ausführungsbeispieles noch näher erläutert wird, der sich axialwärts durch den Laufschaufelfuss vollständig erstreckende Kühlluftversorgungskanal in Bezug auf den Laufschaufelfuss beidseitig offen ausgebildet ist, ist es erforderlich eine axialseitige Öffnung fluiddicht zu verschließen.
  • Eine einfachste Ausführungsform sieht vor, durch entsprechendes Umbiegen eines Endbereiches der Verteilplatte einen stirnseitigen Abschluß des Kühlluftversorgungskanales zu schaffen, wobei die Verteilplatte zumindest im Bereich ihres endseitig umgebogenen Plattenabschnittes mit der Innenwand des Kühlluftversorgungskanals zu verschweißen oder zu verlöten ist. Eine diesbezügliche Fixierung könnte sich jedoch nachteilhaft auf die geforderte sich zumindest im Zustand der Rotation einstellende fluiddichte Verbindung zwischen der Verteilplatte und dem wenigstens einen Öffnungsrand auswirken, so dass eine weitere bevorzugte Ausführungsform anstelle einer festen Verfügung der Verteilplatte im Bereich des umgebogenen Verteilplattenabschnittes eine gesonderte Abschlußplatte vorsieht, die den Kühlluftversorgungskanal axialwärts einseitig fluiddicht abschliesst. Hierzu bietet es sich an, die an die Querschnittskontur des Kühlluftversorgungskanals angepaßte Abschlußplatte über Löt- oder Schweißverbindungen mit dem Laufschaufelfuss fluiddicht zu verfügen.
  • Kurze Beschreibung der Erfindung
  • Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung exemplarisch beschrieben. Es zeigen:
  • Fig. 1
    Querschnitt durch eine Laufschaufel einer Gasturbinenanlage,
    Fig. 2
    detaillierte Querschnittsdarstellung durch den Fussbereich einer Laufschaufel,
    Fig. 3
    Detaildarstellung bezüglich einer den Kühlluftversorgungskanal axialwärts gasdicht abschließenden Abschlußplatte,
    Fig.4 a-d
    Ansichten alternativ ausgebildeter Verteitplatten sowie
    Fig. 5
    Alternative Verteilplatte innerhalb eines Laufschaufelfusses.
    Wege zur Ausführung der Erfindung, gewerbliche Verwendbarkeit
  • In Figur 1 ist der Querschnitt durch eine Laufschaufel 1 dargestellt, die um eine Drehachse 2 einer in einer Gasturbinenanordnung integrierten Rotoreinheit drehbar angeordnet ist. Die Laufschaufel 1 weist einen Laufschaufelfuss 3 auf, der über eine entsprechend ausgebildete Fügekontur (Tannenbaumstruktur - nicht dargestellt) kraftschlüssig mit der nicht weiter dargestellten Rotoreinheit verbindbar ist. Radialwärts schließt sich an den Laufschaufelfuss 3 das Laufschaufelblatt 4 an, in dessen Inneren Kühlkanalbereiche K1 bis K4 vorgesehen sind. Im Bereich des Laufschaufelfusses 3 erstreckt sich ein axialwärts, d.h. parallel zur Drehachse 2, orientierter Kühlluftversorgungskanal 5, der zunächst die gesamte axiale Breite des Schaufelfusses 3 durchragt. Im Inneren des Kühlluftversorgungskanals 5 sind sogenannte Schulterelemente 6 vorgesehen, die im Wege des Giessverfahrens, mit dem die gesamte Laufschaufel 1 herstellbar ist, aus dem Gussmaterial herausgearbeitet sind, aus dem das übrige Laufschaufelmaterial besteht. Die Schulterelemente 6 weisen obere Flächenabschnitte 61 auf, die jeweils radialseitig so genannten Öffnungsrändern 71 leicht beabstandet gegenüber liegen. Die Öffnungsränder 71 umgeben zum Kühlversorgungskanal 5 zugewandte Öffnungen 7, an die sich radialseitig die Kühlkanalbereiche K1 und K2 anschließen, die jeweils von Kühlkanalbereichswänden 72 begrenzt sind. Gleichsam dem Kühlversorgungskanal 5 sind auch die im Inneren der im Laufschaufelblatt vorgesehenen Kühlkanalbereiche K1 bis K4 im Wege des Giessverfahrens herstellbar, durch Vorsehen eines geeignet modellierten Verdrängungskerns, der als Platzhalter für die jeweiligen Hohlräume dient und während des Giessprozesses in der Gussform eingebracht wird.
  • Zur Strömungsführung aber insbesondere zur Strömungsdimensionierung der durch die Kühlkanalbereiche K1, K2, K3 und K4 hindurch tretenden Kühlluftströmung ist eine Verteilplatte 8 vorgesehen, in der entsprechend positionierte und dimensionierte Durchtrittsöffnungen 81 eingebracht sind. Die Durchtrittsöffnungen 81 sind entsprechend im Öffnungsbereich der Öffnungen 7 vorgesehen.
  • Im gezeigten Ausführungsbeispiel gemäß Figur 1 gilt es den axialwärts über den Kühlluftversorgungskanal 5 zugeführten Kühlluftspeisestrom gezielt in die Kühlkanalbereiche K1 und K2 einzuspeisen. Die über die im Öffnungsbereich des Kühlkanalbereiches K1 vorgesehenen Durchtrittsöffnungen 81 ermöglichen eine Kühlluftströmung radialseits durch den Kühlkanal K1 der an der oberen Flanke des Laufschaufelblattes 4 eine Austrittsöffnung A vorsieht, durch die die Kühlluft in den Heissgaskanal H entweicht. Demgegenüber wird die über die Durchtrittsöffnungen 81 in den Kühlkanalbereich K2 eintretende Kühlluft größtenteils durch entsprechende Strömungsleitmittel 9 in den Kühlkanalbereich K3 umgeleitet, an den sich in Strömungsrichtung (siehe Strömungspfeile) der Kühlkanalbereich K4 anschließt. Im Verbindungsbereich des Kühlkanalbereiches K3 und K4 sorgt die Verteilplatte 8 dafür, dass der im Kühlkanalbereich K3 nach unten strömende Kühlluftstrom gesamtheitlich in den sich radialseits nach oben erstreckenden Kühlkanalbereich K4 umgelenkt wird. Hierfür ist es erforderlich, dass sich die Verteilplatte 8 gas- bzw. fluiddicht an die entsprechenden Öffnungsränder 71 sowie die Randkontur 10 anschmiegt. Zugleich gilt es dafür Sorge zu tragen, dass keinerlei Leckageströme zwischen der Verteilplatte 8 und den Öffnungsrändern 71 auftreten. Um dies zu gewährleisten gilt es die Verteilplatte 8 derart zu dimensionieren und hinsichtlich ihres Plattenmaterials auszuwählen, dass sie von den durch die Rotation um die Drehachse 2 hervorgerufenen Zentrifugalkräfte fest an die entsprechenden Öffnungsränder 71 sowie die Randkontur 10 fluiddicht bündig gepresst wird. Die Verteilplatte 8 liegt dabei lose in dem zwischen den Flächenabschnitten 61 der Schulterelemente 6 und den Öffnungsrändern 71 sowie der Randkontur 10 begrenzten Eintrittsschlitz 11 (siehe Figur 2).
  • Für einen einseitig axialen, gasdichten Abschluss des Kühlluftversorgungskanals 5 sorgt eine Abschlussplatte 12, die fest mit dem Laufschaufelfuss 3 im Wege einer Schweiß- oder Lötverbindung verfügt ist.
  • Figur 2 zeigt eine Detaildarstellung der in den sich axialwärts erstreckenden Kühlluftversorgungskanal 5 eingebrachten Verteilplatte 8. Wie bereits erwähnt, werden die im Inneren des Kühltuftversorgungskanals 5 vorhandenen Schulterelemente 6 sowie die einzelnen Kühlkanalbereiche K1 bis K4, d.h. die Kühlkanalbereichswände 72 mit den entsprechenden Öffnungsrändern 71 im Wege des Giessverfahrens gemeinsam hergestellt. Die Öffnungsränder 71 schliessen mit den Oberflächenabschnitten 61 der Schulterelemente 6 einen Einschubschlitz 11 ein, längs dem die im Ausgangszustand ebenflächig geformte Verteilplatte 8 axialwärts einschiebbar ist. Nach Einschieben der Verteilplatte 8 in der in Figur 2 dargestellten Form innerhalb des Kühlluftversorgungskanals 5, werden zur weitgehend axialen und radialen Fixierung der Verteilplatte 8 innerhalb des Einschubschlitzes 11 die Endbereiche der Verteilplatte 8 in der in Figur 2 angegebenen Weise umgebogen. Die Verteilplatte 8 verbleibt ansonsten lose aufliegend auf den Flächenabschnitten 61 der Schulterelemente 6. Um den Kühlluftversorgungskanal 5 einseitig axialwärts fluiddicht abzuschließen, wird eine Abschlussplatte 12 auf die in Figur 2 linke Eintrittsöffnung in den Kühlluftversorgungskanal 5 eingesetzt und in Randbereichen mit dem Laufschaufelfuss 3 verschweißt bzw. verlötet. Durch den einseitigen, gasdichten Abschluss des Kühlluftversorgungskanals 5 erfährt die von der rechten Seite in den Kühlluftversorgungskanal 5 eintretende Kühlluftspeiseströmung S eine sich innerhalb des Kühlluftversorgungskanals 5 ausbildende Stauwirkung, wodurch der Kühlluftspeisestrom S durch die in der Verteilplatte 8 vorgesehenen Durchtrittsöffnungen 81 hindurch getrieben wird. Größe und Anordnung der einzelnen Durchtrittsöffnungen 81 definieren den Volumenstrom der in die jeweiligen Kühlkanalbereiche K1 und K2 eintretenden Kühlluftströmung. Durch die sich während der Rotation ausbildende fluiddicht innige Verbindung zwischen der Verteilplatte 8 und den Randbereichen 71 die die jeweiligen Öffnungen 7 der Kühlkanalbereiche K1 und K2 umgeben, werden jegliche Leckageströmungen, die sich zwischen der Verteilplatte 8 und den Randbereichen 71 ausbilden könnten, unterbunden. Auf diese Weise ist gewährleistet, dass die Kühlluftströmung ausschließlich längs der im Inneren des Laufschaufelblattes vorgesehenen Kühlkanalbereiche K1 bis K4 verlustfrei geführt wird.
  • Figur 3 zeigt eine weitere Detaildarstellung der mit dem axialen Endbereich des Kühlluftversorgungskanals 5 fluiddicht verschweißten Abschlussplatte 12. Die Abschlussplatte 12 sitzt in einer entsprechend gegenkonturierten Ausnehmung 13 innerhalb des Laufschaufelfusses 3 und ist mit diesem fluiddicht verschweißt. Ebenso aus der Bilddarstellung in Figur 3 kann entnommen werden, dass die Verteilplatte 8 lose innerhalb des Einschubschlitzes 11 auf dem Schulterelement 6 aufliegt. Erst im Wege der Rotation und den damit entstehenden Zentrifugalkräften wird die Verteilplatte 8 radialwärts angehoben und gerät somit in Kontakt mit der Randkontur 10, mit dem sie eine entsprechend fluiddichte Verbindung eingeht. Auf diese Weise wird vermieden, dass Kühlluft an dieser Stelle aus dem Kühlkanalbereich K4 in den Kühlluftversorgungskanal 5 zurückgelangen kann.
  • In den Figuren 4 a-d jeweils zwei unterschiedliche Ausbildungsformen für eine Verteilplatte 8 dargestellt. Figuren 4a und b zeigen eine Drauf- und Seitensichtdarstellung einer ersten Verteilplatte 8, deren geometrische Abmessungen an den vorstehend beschriebenen Einschubschlitz 11 angepasst sind. Die Verteilerplatte 8 ist aus einem hitzebeständigen Flachmaterial gefertigt und zu Montagezwecken zunächst auf einer Seite eben ausgebildet (siehe Figur 4a). Ferner verfügt die Verteilplatte 8 über Durchtrittsöffnungen 81, deren Anordnung, Form und Größe das Kühlluftvolumen bestimmt, das durch die Kühlkanalbereiche K1 bis K4 befördert wird.
  • Zu Montagezwecken gilt es die auf einer Seite eben ausgebildete Verteilerplatte 8 zwischen die Öffnungsränder 71 und den Flächenabschnitten 61 der Schulterelemente 6 axialwärts einzuschieben und nach vollständigem Einführen in den Kühlluftversorgungskanal 5 an einem Endabschnitt 82 oder 83 in der vorstehend beschriebenen Weise entsprechend umzubiegen. Siehe hierzu die Seitensichtdarstellung in Figur 4b. Wie bereits eingangs erwähnt sind die Dimensionen der Verteilplatte 8 sowie das Material derart gewählt, dass zumindest lokale Durchbiegungen an der Verteilplatte 8 im Bereich der Öffnungsränder 71 auftreten können, damit die Verteilplatte 8 eine fluiddichte Verbindung mit den Öffnungsrändern 71 eingehen kann. Um das Biegevermögen der Verteilplatte 8, insbesondere in Bereichen, die den Öffnungsrändern 71 gegenüberliegen, zu verbessern, dienen gemäß dem Ausführungsbeispiel in Figur 4c und d lokale Materialschwächungen in Form von Einkerbungen 15 längs der Verteilplatte 8 vorgesehen werden. Durch die gezielt vorgenommenen lokal begrenzten Einkerbungen 15 kann die Biegesteifigkeit der Verteilplatte 8 zumindest lokal reduziert werden, um ein lokales Anschmiegen der Verteilplatte 8 an die Öffnungsränder 71 zu optimieren. Ebenso sieht das Ausführungsbeispiel in Figur 4 c und 4d jeweils unterschiedlich dimensionierte Durchtrittsöffnungen 81 für die Kühllufteinspeisung in die Kühlkanalabschnitte K1 und K2 vor. So wird der Kühlkanalbereich K1 mit wesentlich weniger Kühlluft beaufschlagt als der Kühlkanalbereich K2.
  • Die vorstehend beschriebenen Maßnahmen dienen der bevorzugten losen Lagerung der Verteilplatte 8 innerhalb des Kühlversorgungskanals 5, wobei die Verteilplatte 8 lediglich innerhalb des Einschubschlitzes 11 einerseits durch die Schulterelemente 6 und andererseits durch die Öffnungsränder 71 respektive die Randkontur 10 räumlich fixiert wird. Montageaufwendige Schweissvorgänge sind auf diese Weise vollständig vermeidbar, können jedoch bei Bedarf lokal vorgesehen werden.
  • Figur 5 zeigt einen Teilquerschnitt durch den Fussbereich 3 einer Laufschaufel 1, die gemäß den vorstehenden Ausführungen ausgebildet ist. Längs des Kühltuftversorgungskanals 5 ist lediglich ein einziger Kühlkanalbereich K1 vorgesehen, in den Kühlluft aus den Kühlluftversorgungskanal 5 gezielt abgezeigt werden soll. Dieser folgt über entsprechend vorgesehene Durchtrittsöffnungen in der axial eingefügten Verteilplatte 8, die an geeigneten Stellen längs der Verteilplatte 8 über das Biegevermögen verbessernde Einkerbungen 14 verfügt.
  • Bezugszeichenliste
  • 1
    Laufschaufel
    2
    Drehachse
    3
    Laufschaufelfuss
    4
    Schaufelblatt
    5
    Kühlluftversorgungskanal
    6
    Schulterelemente
    61
    Flächenabschnitt
    7
    Öffnung
    71
    Öffnungsrand
    72
    Kühlkanalzwischenwand
    8
    Verteilplatte
    81
    Durchtrittsöffnung
    82,83
    Endabschnitte
    9
    Umlenkelemente
    10
    Randkontur
    11
    Einschubschlitz
    12
    Abschlussplatte
    13
    Ausnehmung
    14
    Einkerbungen

Claims (17)

  1. Vorrichtung zur inwandigen Kühlluftbeaufschlagung einer um eine Drehachse (2) rotierenden Komponente, insbesondere eine Laufschaufel (1) in einer Rotationsmaschine, mit einem Komponentenfuss (3), der drehfest an eine Rotoreinheit befestigbar ist, an den sich einstückig radialwärts erstreckend ein Komponentenblatt (4) anschließt, in dem wenigstens sich ein längs zur Drehachse (2) radialwärts erstreckender Kühlkanalbereich (K1) vorgesehen ist, der im Bereich des Komponentenfusses (3) über eine Öffnung 7 in einen den Komponentenfuss (3) längs zur Drehachse (2) wenigstens teilweise durchsetzenden Kühlluftversorgungskanal (5) mündet, und eine Verteilplatte (8) im Bereich des Kühlluftversorgungskanals (5) derart vorgesehen ist, dass die Verteilplatte (8) eine mit einem die Öffnung (7) des Kühlkanalbereiches (K1) umgebenden Öffnungsrand (71) zumindest während der Rotation der Komponente um die Drehachse (2) eine fluiddichte Verbindung eingeht und im Bereich der Öffnung (7) des zumindest einen Kühlkanalbereiches (K1) wenigstens eine Durchtrittsöffnung (81) vorsieht, durch die Kühlluft aus dem axialen Kühlluftversorgungskanal (5) in den radialen Kühlkanalbereich (K1) gelangt,
    dadurch gekennzeichnet, dass innerhalb des Kühlluftversorgungskanals (5) wenigstens zwei axialwärts voneinander beabstandete Schulterelemente (6) vorgesehen sind, die jeweils zu einem Öffnungsrand (71) radialwärts gegenüberliegend angeordnet sind und mit diesem einen für die Verteilplatte (8) vorgesehenen Einschubschlitz (11) einschliessen.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass die Komponente im Wege eines Giessverfahrens herstellbar ist, bei dem der den Komponentenfuss (3) axial durchragende Kühlluftversorgungskanal (5) sowie der wenigstens eine in dem Komponentenblatt (4) radial orientierte Kühlkanalbereich (K1) mittels Gusskerntechnik erzeugbar sind.
  3. Vorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass der die Öffnung (7) umgebende Öffnungsrand (71) ein die Öffnung (7) umschließender Flächenbereich ist, der eine mit der Öffnungsebene zusammenfallende Flächenebene aufweist.
  4. Vorrichtung nach Anspruch 3,
    dadurch gekennzeichnet, dass wenigstens zwei Kühlkanalbereiche (K1, K2) vorgesehen sind, deren Öffnungsränder (71) in einer gemeinsamen Flächenebene liegen, mit der die Verteilplatte (8) zumindest während der Rotation der Komponente um die Drehachse (2) eine fluiddichte Verbindung eingeht.
  5. Vorrichtung nach Anspruch 3 oder 4,
    dadurch gekennzeichnet, dass die Öffnungsebene der Öffnung (7) senkrecht zur der durch die Drehung um die Drehachse (2) vorgegebenen Radialrichtung orientiert ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass der Kühlluftversorgungskanal (5) den Komponentenfuss (3) axialwärts vollständig durchragt, und dass die Verteilplatte (8) wenigstens einseitig in den Kühlluftversorgungskanal (5) vollständig einschiebbar ist.
  7. Vorrichtung nach Anspruch 6,
    dadurch gekennzeichnet, dass die Verteilplatte (8) in dem im Kühlluftversorgungskanal (5) eingebrachten Zustand wenigstens einen umgebogenen Endbereich (82, 83) vorsieht.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass die Verteilplatte (8) aus einem metallischen Flachmaterial besteht.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass die Verteilplatte (8) lose auf den Schulterelementen (6) aufliegt und eine fluiddichte Verbindung zwischen der Verteilplatte (8) und dem Öffnungsrand (7) durch eine Kraftschlussverbindung erfolgt, die sich durch die Rotation hervorgerufene Zentrifugalkräfte, die auf die Verteilplatte (8) einwirken, einstellt.
  10. Vorrichtung nach Anspruch 9,
    dadurch gekennzeichnet, dass Material und Materialstärke der Verteilplatte (8) derart gewählt sind, dass sich die Verteilplatte (8) zumindest im Bereich des Öffnungsrandes 71 an deren Oberflächenkontur lokal begrenzt anschmiegt.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass die Verteilplatte (8) aus einem Flach- oder Rundmaterial gefertigt ist.
  12. Vorrichtung nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass die Verteilplatte (8) zumindest lokal begrenzt innerhalb des Kühlluftversorgungskanals (5) fest verfügt ist, vorzugsweise mittels Löt- oder Schweißverbindung.
  13. Vorrichtung nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet, dass die Verteilplatte (8) lokal begrenzte Materialschwächungen aufweist.
  14. Vorrichtung nach Anspruch 13,
    dadurch gekennzeichnet, dass die Materialschwächungen in Form mechanischer Einkerbungen (14) oder Risse oder durch Änderung der Gefügestruktur in der Verteilplatte (8) ausgebildet sind.
  15. Vorrichtung nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet, dass der Kühlluftversorgungskanal (5) wenigstens einseitig mit einer Abschlussplatte (12) fluiddicht abgeschlossen ist.
  16. Vorrichtung nach Anspruch 15,
    dadurch gekennzeichnet, dass die Abschlussplatte (12) nach Einbringen der Verteilplatte (8) in den Kühlluftversorgungskanal (5) mit dem Komponentenfuss (3) verschweisst oder verlötet ist.
  17. Vorrichtung nach einem der Ansprüche 1 bis 16,
    dadurch gekennzeichnet, dass die Komponente eine Laufschaufel einer Verdichter- oder Turbinenstufe in einer Dampf- oder Gasturbinenanordnung ist.
EP05717155A 2004-03-30 2005-03-29 Vorrichtung zur kühlluftbeaufschlagung einer laufschaufel Not-in-force EP1730389B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004015609 2004-03-30
PCT/EP2005/051411 WO2005095761A1 (de) 2004-03-30 2005-03-29 Vorrichtung zur kühlluftbeaufschlagung einer laufschaufel

Publications (2)

Publication Number Publication Date
EP1730389A1 EP1730389A1 (de) 2006-12-13
EP1730389B1 true EP1730389B1 (de) 2009-12-09

Family

ID=34965257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05717155A Not-in-force EP1730389B1 (de) 2004-03-30 2005-03-29 Vorrichtung zur kühlluftbeaufschlagung einer laufschaufel

Country Status (8)

Country Link
US (1) US7524168B2 (de)
EP (1) EP1730389B1 (de)
AT (1) ATE451541T1 (de)
AU (1) AU2005229202B2 (de)
DE (1) DE502005008673D1 (de)
ES (1) ES2337800T3 (de)
MY (1) MY140195A (de)
WO (1) WO2005095761A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2898384B1 (fr) * 2006-03-08 2011-09-16 Snecma Aube mobile de turbomachine a cavite commune d'alimentation en air de refroidissement
EP2003291B1 (de) * 2007-06-15 2017-08-09 Ansaldo Energia Switzerland AG Gegossene Turbinenschaufel sowie Verfahren zur Herstellung
WO2009118245A1 (de) 2008-03-28 2009-10-01 Alstom Technology Ltd Leitschaufel für eine gasturbine sowie gasturbine mit einer solchen leitschaufel
FR2937372B1 (fr) * 2008-10-22 2010-12-10 Snecma Aube de turbine equipee de moyens de reglage de son debit de fluide de refroidissement
EP2184443A1 (de) 2008-11-05 2010-05-12 Siemens Aktiengesellschaft Gasturbine mit Sicherungsplatte zwischen Schaufelfuss und Scheibe
GB201016597D0 (en) * 2010-10-04 2010-11-17 Rolls Royce Plc Turbine disc cooling arrangement
RU2543100C2 (ru) * 2010-11-29 2015-02-27 Альстом Текнолоджи Лтд Рабочая лопатка для газовой турбины, способ изготовления указанной лопатки и газовая турбина с такой лопаткой
DE102011121634B4 (de) 2010-12-27 2019-08-14 Ansaldo Energia Ip Uk Limited Turbinenschaufel
EP2551453A1 (de) * 2011-07-26 2013-01-30 Alstom Technology Ltd Kühlvorrichtung eines Gasturbinenkompressors
US10961854B2 (en) * 2018-09-12 2021-03-30 Raytheon Technologies Corporation Dirt funnel squealer purges
FR3091722B1 (fr) * 2019-01-11 2020-12-25 Safran Aircraft Engines Rotor, turbine équipée d’un tel rotor et turbomachine équipée d’une telle turbine
US11118462B2 (en) * 2019-01-24 2021-09-14 Pratt & Whitney Canada Corp. Blade tip pocket rib
US11371359B2 (en) 2020-11-26 2022-06-28 Pratt & Whitney Canada Corp. Turbine blade for a gas turbine engine
CN116796666B (zh) * 2023-08-21 2023-11-07 中国航发上海商用航空发动机制造有限责任公司 轴流压气机测点布置方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2819870A (en) * 1955-04-18 1958-01-14 Oleh A Wayne Sheet metal blade base
US2830357A (en) * 1955-05-27 1958-04-15 Bristol Aero Engines Ltd Blades for gas turbines
US3834831A (en) * 1973-01-23 1974-09-10 Westinghouse Electric Corp Blade shank cooling arrangement
US3902820A (en) * 1973-07-02 1975-09-02 Westinghouse Electric Corp Fluid cooled turbine rotor blade
GB1605282A (en) * 1973-10-27 1987-12-23 Rolls Royce 1971 Ltd Bladed rotor for gas turbine engine
CH580750A5 (de) * 1974-07-17 1976-10-15 Bbc Sulzer Turbomaschinen
US4236870A (en) * 1977-12-27 1980-12-02 United Technologies Corporation Turbine blade
US4626169A (en) * 1983-12-13 1986-12-02 United Technologies Corporation Seal means for a blade attachment slot of a rotor assembly
DE68906594T2 (de) * 1988-04-25 1993-08-26 United Technologies Corp Staubabscheider fuer eine luftgekuehlte schaufel.
US6059529A (en) * 1998-03-16 2000-05-09 Siemens Westinghouse Power Corporation Turbine blade assembly with cooling air handling device
US6422817B1 (en) * 2000-01-13 2002-07-23 General Electric Company Cooling circuit for and method of cooling a gas turbine bucket
US6471480B1 (en) * 2001-04-16 2002-10-29 United Technologies Corporation Thin walled cooled hollow tip shroud
FR2823794B1 (fr) * 2001-04-19 2003-07-11 Snecma Moteurs Aube rapportee et refroidie pour turbine
DE102004011151B4 (de) * 2003-03-19 2015-11-26 Alstom Technology Ltd. Turbinenschaufel

Also Published As

Publication number Publication date
AU2005229202B2 (en) 2010-08-05
US20070041836A1 (en) 2007-02-22
EP1730389A1 (de) 2006-12-13
MY140195A (en) 2009-11-30
ATE451541T1 (de) 2009-12-15
DE502005008673D1 (de) 2010-01-21
AU2005229202A1 (en) 2005-10-13
ES2337800T3 (es) 2010-04-29
WO2005095761A1 (de) 2005-10-13
US7524168B2 (en) 2009-04-28

Similar Documents

Publication Publication Date Title
EP1730389B1 (de) Vorrichtung zur kühlluftbeaufschlagung einer laufschaufel
DE69932966T2 (de) Leitschaufelanordnung für eine Turbomaschine
DE602005000350T2 (de) Turbinenstatorschaufel mit verbesserter Kühlung
DE60018817T2 (de) Gekühlte Gasturbinenschaufel
DE1946535C3 (de) Bauteil für ein Gasturbinentriebwerk
EP2179143B1 (de) Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
EP2132414B1 (de) Shiplap-anordnung
EP0902167A1 (de) Kühlvorrichtung für Gasturbinenkomponenten
EP1848904B1 (de) Dichtungselement zur verwendung in einer strömungsmaschine
DE602004001532T2 (de) Verfahren zur Kühlung einer tannenbaumförmigen Befestigung zwischen einer Turbinenscheibe und ihrer Schaufel
EP2350441B1 (de) Leitschaufel für eine gasturbine und zugehörige gasturbine
DE102010016620A1 (de) Turbinenleitapparat mit Seitenwandkühlplenum
EP1591626A1 (de) Schaufel für Gasturbine
DE3516738A1 (de) Stroemungsmaschine
WO2009121716A1 (de) Schaufel für eine gasturbine
EP1247602B1 (de) Verfahren zur Herstellung einer Turbinenschaufel
DE2843326B2 (de) Turbinenlaufschaufel für ein Gasturbinentriebwerk
EP1676980B1 (de) Turbolader mit variabler Turbinengeometrie
DE102011120691A1 (de) Gebaute Schaufelanordnung für eine Gasturbine sowie Verfahren zum Betrieb einer solchen Schaufelanordnung
EP1113144B1 (de) Gekühlte Strömungsumlenkvorrichtung für eine bei hohen Temperaturen arbeitende Strömungsmaschine
EP1073827B1 (de) Turbinenschaufel
DE19617539A1 (de) Rotor für eine thermische Turbomaschine
EP1006263A1 (de) Schaufelkühlung
DE2853586C2 (de) Laufradscheibe für Gasturbinenläufer mit Innengekühlten Schaufeln
EP2489837A1 (de) Drosseleinsatz für Turbinenschaufel und zugehörige Turbinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005008673

Country of ref document: DE

Date of ref document: 20100121

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ALSTOM TECHNOLOGY LTD

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2337800

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100309

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20100331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

26N No opposition filed

Effective date: 20100910

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100329

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005008673

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005008673

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005008673

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH; CH

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: ALSTOM TECHNOLOGY LTD

Effective date: 20160623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005008673

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005008673

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005008673

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005008673

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

Effective date: 20161116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170326

Year of fee payment: 13

Ref country code: CH

Payment date: 20170327

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170327

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170324

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170329

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170328

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005008673

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180329

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180329

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180330