EP1726046B1 - Elektrische energieerzeugungsmodule mit zweidimensionalem profil und herstellungsverfahren dafür - Google Patents

Elektrische energieerzeugungsmodule mit zweidimensionalem profil und herstellungsverfahren dafür Download PDF

Info

Publication number
EP1726046B1
EP1726046B1 EP05733587A EP05733587A EP1726046B1 EP 1726046 B1 EP1726046 B1 EP 1726046B1 EP 05733587 A EP05733587 A EP 05733587A EP 05733587 A EP05733587 A EP 05733587A EP 1726046 B1 EP1726046 B1 EP 1726046B1
Authority
EP
European Patent Office
Prior art keywords
module
encapsulant
electric energy
energy generating
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05733587A
Other languages
English (en)
French (fr)
Other versions
EP1726046A2 (de
Inventor
Diego Fischer
Alexandre Closset
Yvan Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VHF Technologies SA
Original Assignee
VHF Technologies SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VHF Technologies SA filed Critical VHF Technologies SA
Priority to SI200530038T priority Critical patent/SI1726046T1/sl
Publication of EP1726046A2 publication Critical patent/EP1726046A2/de
Application granted granted Critical
Publication of EP1726046B1 publication Critical patent/EP1726046B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of electric energy generating modules, such as solar cell modules using photovoltaic films. More particularly, the present invention relates to electric energy generating modules that are especially suitable for roofing and other architectural applications having non-flat surfaces. The present invention further relates to a method of fabricating such modules.
  • a solar or photovoltaic (PV) cell the terms “solar” and “photovoltaic” are used interchangeably herein -- refers to a discrete element that converts light into electrical energy to produce a DC current and voltage.
  • PV module also sometimes referred to as a panel
  • a PV module includes the solar cells and other ancillary parts, such as interconnections, contacts, structural elements, encapsulant materials, and protective devices such as diodes.
  • the structural (i.e., load carrying) element of a module is often either a back layer substrate or a top layer superstrate. The latter must generally be transparent to transmit light to the PV cells.
  • a number of PV modules can be further connected together to form a larger array structure.
  • the most common semiconductor material used in solar cells is silicon -- either in single crystal, polycrystalline, or amorphous form.
  • other semiconductor materials such as gallium arsenide, copper indium diselenide, and cadmium telluride are also used in solar cells.
  • Crystalline silicon solar cells are commonly made from relatively thick (e.g., about 200 ⁇ m) silicon wafers sliced from a single crystal or polycrystalline ingot.
  • modules of much thinner solar cell films to be monolithically deposited onto low-cost substrates (such as glass or plastic) using well-known semiconductor manufacturing techniques.
  • Such thin films provide several advantages, including easier and more cost-effective manufacturing and better suitability for mass production (although this is generally at the expense of lower efficiency).
  • PV cells are typically made by depositing silicon using plasma-enhanced chemical vapor deposition of a reactive gas such as silane with various dopants to form a P-I-N (or N-I-P) semiconductor structure having p-type, i-type (intrinsic), and n-type semiconductor layers.
  • a reactive gas such as silane
  • a PV module is typically sealed or encapsulated in some manner to protect the PV elements mechanically and against corrosion. The sealing also prevents the infiltration of dust and water.
  • the encapsulant covering the top surface of a solar cell module must be at least partly transparent to light so that at least some percentage of the desired wavelengths of light reaches the solar cells.
  • the bottom surface of a PV module (which does not need to transmit light to the solar cells) may consist of a rigid base layer formed of aluminum or another suitable material. PV modules of this type are generally formed by laminating a thin film of solar cells between the top transparent encapsulant and the bottom base layer, as described for example in United States Patent Application No. 10/688,596 , now US-A1-2004/0112425 , for a "Photovoltaic Product and Process of Fabrication thereof".
  • Structurally rigid PV modules can also be formed by using a thick glass layer as a substrate or superstrate. Such rigid PV modules can be employed in architectural applications where the base layer is mounted to lie flat against a wall or roof surface.
  • the roof or wall does not have a flat surface (e.g., a roof with corrugated tiles)
  • mounting the modules onto the roof requires the use of a relatively elaborate mounting configuration underneath the modules and also must ensure that the intended function of the non-flat surface (e.g., the removal of precipitation) is not compromised.
  • the use of flat PV modules on uneven surfaces is often detrimental to the aesthetic look of a building or other structure.
  • EP-A2-0874404 describes a solar cell module bent by application of a working pressure to give it the shape and rigidity required to use it in the same manner as ordinary roof material.
  • the module comprises a photovoltaic layer with a rigid conductive substrate.
  • a support member is stuck to the outside of the back surface in order to increase the mechanical strength of the module in order to realize the solar cell module which functions also as roof material. Therefore, the material of the support member must be selected among strong, rigid materials satisfying the severe requirements for roof building elements. Shaping and bending of the module is thus performed by application of a substantial pressure only, requiring an expensive press equipment.
  • a complicated layer arrangement must be provided in order to avoid high pressures on inner layers or small radius of curvature which may damage the energy generating layer.
  • the module of EP-A2-0874404 comprises mutually connected discrete energy generating rectangular cells.
  • the connection process is tedious and expensive; there is a need for a continuous fabrication method.
  • different cells are bent at different places and thus exposed to different amounts of sunlight.
  • the current in the resulting module is limited to the lowest current in any one cell.
  • the efficiency of the resulting module is greatly reduced by high shading losses in some cells.
  • the solar cell module described comprises a rigid, for example stainless steel substrate.
  • Aluminum strain holding plates are required to give shape in the areas where there is no solar cell. Bending requires a high pressure and expensive equipment, and measures are required to prevent damage to the photovoltaic layer.
  • Solar cells can also be fabricated on flexible substrates, such as those made from polyimide or PET plastics, so that the resulting thin film PV module has a flexible structure.
  • An encapsulant material such as a fluoropolymer film (e.g) may then be used to seal the entire flexible PV module without significantly detracting from the module's flexibility.
  • a fluoropolymer film e.g
  • One such encapsulant used in flexible PV modules is the Tefzel® film (produced by the DuPont Group of companies) applied together with ethylene vinyl acetate (EVA).
  • flexible PV films can be produced using roll-to-roll manufacturing techniques, they boast the potential for very low-cost production compared to films that must be produced using batch techniques
  • the resulting flexible modules are also lightweight and useful in certain types of applications such as for portable PV charger modules since they can be conveniently rolled into a tubular form to occupy less space when not in use.
  • flexible PV modules are also capable of providing much better integration with structural elementsthat are not flat. As a result, for example, flexible PV modules have been used in roofing applications by mounting the modules on top of roof tiles that do not have a generally flat surface.
  • the flexible modules can be made to approximately assume the profile of a non flat surface, such as corrugated or undulating roof tiles (or of a smilarly-shaped rigid base layer that is mounted onto those tiles).
  • a non flat surface such as corrugated or undulating roof tiles (or of a smilarly-shaped rigid base layer that is mounted onto those tiles).
  • most flexible PV modules remain less durable and more fragile than their rigid counterparts making them less suitable for use in architectural applications where they are exposed to weather and/or other environmental conditions.
  • the shaping and mounting of each flexible PV module so that its profile matches the desired profile of the roofing elements remains a relatively laborious process.
  • PV module that is better suited for applications (in particular, roofing or architectural applications) where there are non-flat surfaces with a two-dimensional profile, such as corrugated roofing.
  • the present invention relates to an electric energy generating module (such as a PV module) that is particularly well-suited for mounting and integration in a location (such as the façade or roof of a building) where a non-flat physical surface is either present or desired. This is accomplished by shaping the module so that the module takes on a desired two dimensional profile to match a non-flat surface or a non-flat architectural element.
  • the present invention further relates to a method of fabricating such an electric energy generating module.
  • the invention also relates to a module in which the efficiency losses due to shades by profiled portions of the module on other parts of the module are reduced.
  • the present invention provides an electric energy generating module according to claim 1 comprising an electric energy generating film sealed between a top layer of encapsulant material and a bottom layer of encapsulant material.
  • the type and quantity of the encapsulant materials are such that the shape of the encapsulant materials can be altered when at least one of a high temperature and a pressure is applied thereto, but where the encapsulant materials provide a rigid structure around the electric energy generating film under ordinary (i.e., naturally occurring) temperature and pressure conditions.
  • the module is shaped to have and provide a desired two dimensional profile. Thereafter, once placed under ordinary temperature and pressure conditions (such as those present outdoors) the module has a rigid structure.
  • the electric energy generating film comprises a plurality of strip-shaped cells electrically connected with one another.
  • the longitudinal direction of each strip-shaped cell extends in parallel to a plane defining the two dimensional profile.
  • the electric energy generating film comprises a PV film (for e.g., comprising an amorphous silicon p-i-n semiconductor structure) and the top encapsulant material is at least partially transparent.
  • the top encapsulant material is also preferably UV resistant.
  • the bottom encapsulant material may comprise the same material as the top encapsulant material, but it may also be different.
  • the present invention provides a method of fabricating such an electric energy generating module according to claim 24.
  • the method comprises providing an electric energy generating film, a top layer of encapsulant material and a bottom layer of encapsulant material. At least one of a high temperature and a pressure are then applied to bond the electric energy generating film, the top layer of encapsulant material and the bottom layer of encapsulant material together as a bonded stack. Furthermore, at least one of a high temperature and a pressure are also applied to shape the bonded stack to provide the module with a desired two dimensional profile.
  • the bonding comprises applying a temperature of between approximately 70 and 250°C and a pressure of between approximately 0.3 to 10 bar
  • the shaping comprises applying a temperature of between approximately 70 and 250°C and a pressure of between approximately 0.01 to 1 bar.
  • the shaping may be carried out immediately following the bonding or even simultaneously with the bonding. Again, bending/shaping is performed in such a manner that the longitudinal direction of the plurality of strip-shaped cell extends in parallel to a plane defining the two dimensional profile.
  • Fig. 1 is an exploded view showing the different films (i.e., layers) within a PV module 100, prior to the module undergoing a bonding step. While the present invention can also be applied to other types of electrical energy generating films and modules, it is particularly suited to the PV field, and asa result PV applications are referred to herein. This is in no way intended to limit the scope of the present invention to other suitable types of electrical energy generating films and modules such as, for example, a hybrid thermophotovoltaic (TPV) film.
  • TPV thermophotovoltaic
  • PV module 100 is formed from a thin flexible PV film 110, a sheet of a top encapsulant material 150, and a sheet of a bottom encapsulant material 170.
  • flexible PV film 110 is capable of adopting various 2-D profiles in the plane of the sheet. (In some cases, depending on the materials, structure and processes used even 3-D profiles can be adopted, though variations in the third dimension will generally be much less pronounced than in the other two dimensions.)
  • PV film 110 includes a flexible substrate 120 onto which a PV semiconductor cell structure 130 is built.
  • Substrate 120 preferably comprises a plastic foil such as a polyimide, PET (polyethylene terephtalate), or PEN (polyethylene naphthalate) sheet.
  • a plastic foil such as a polyimide, PET (polyethylene terephtalate), or PEN (polyethylene naphthalate) sheet.
  • Other flexible substrates can also be used, such as aluminium, insulator-metal composites or fiber-enforced plastics.
  • each PV cell is shaped as a strip, and a plurality of thin conductors 140 and two thicker current collection bus bars 145 run along top surface of PV cell structure 130. At least some anisotropic rigidity of the film 110 is given by the strips 130, by the conductors 140 and by the bars 145. A more important rigidity in the perpendicular direction will be given by the bending steps described below.
  • Top encapsulant material 150 is transparent to light 160 so that at least some percentage of the desired wavelengths of light reaches PV film 110. Preferably, top encapsulant material 150 transmits a high percentage of incident light, for example at least 90%. Top encapsulant material 150 is also preferably UV-resistant (or UV-stabilized) so that its transparency, structural reliability, and resistance to corrosion do not significantly deteriorate when exposed to UV radiation for prolonged periods. In addition, in some cases, UV radiation may cause the PV properties of the film to deteriorate, in which case it is also important for top encapsulant material 150 to block any significant amount of such radiation from reaching the film.
  • UV-resistant or UV-stabilized
  • top encapsulant material 150 is not naturally UV resistant, it may be given these UV resistant characteristics (i.e., UV-stabilized) by using additives or protective layers that are either co-extruded or laminated onto the outer surface of material 150.
  • additives or protective materials may include UV-absorbing materials or UV-stable polymers such as fluorinated polymers.
  • Bottom encapsulant material 170 may be opaque and need not necessarily be UV-resistant or UV-stabilized; however in some embodiments it may be most expedient to simply use the same material for both the top encapsulant and bottom encapsulant.
  • both the top and bottom encapsulant materials preferably comprise a thermoformable material, such as a thermoplastic polymer, that can be softened by the application of heat and that then re-hardens on cooling.
  • materials 150 and 170 may comprise PE (polyethylene), PET (polyethylene terephtalate), PEN (polyethylene naphthalate), PC (polycarbonate), PMMA (polymethyl methacrylate), EVA (Ethylene vinyl acetate), TPU (Thermoplastic polyurethane), ETFE (Ethylene tetrafluorethylene) or various combinations of such materials
  • the softening temperature for the encapsulant materials 150 and 170 is between about 70 and 250°C.
  • each of these materials 150 and 170 may comprise an injection molding material.
  • the PV cell structure 130 may, for example, have a thickness of between 0.1 and 20 ⁇ m, while substrate 120 may have a thickness of between about 10 and 300 ⁇ m.
  • the thickness of the sheets of materials 150 and 170 may correspondingly range from about 0.1 to 5 mm. It should also be noted that the thickness of the sheet of material 150 may be the same as that of material 170, but that these may also differ.
  • the type and/or quantity of encapsulant materials 150 and 170 used in accordance with the present invention are such that the PV modules produced have a rigid and durable structure in ordinary conditions (i.e., naturally occurring temperatures and pressures), unlike the encapsulants conventionally used to seal flexible PV film products.
  • a thin flexible PV film may use various different materials and may have various different structures, as is well known to one of ordinary skill in the art.
  • a PV film employs a semiconductor to absorb photons above its energy band-gap, leading to the generation of charge carriers (electrons and holes). These charge carriers are then separated by an internal electric field created by either a p-n or p-i-n junction within the semiconductor, or by a hetero-junction between the semiconductor and another material. The charge carriers are then collected by electrodes and used to generate a current in an outer circuit.
  • Fig. 2 shows a partial cross-sectional view of film 110 taken along the line II-II in Fig. 1.
  • the PV cell structure 130 in Fig. 2 uses amorphous silicon (a-Si), deposited to form a p-i-n PV element 133 comprising p-type (p), intrinsic (i), and n-type (n) layers located between a bottom electrode 132 and a transparent top electrode 138.
  • a-Si amorphous silicon
  • the bottom electrode layer 132 of aluminum (Al) is formed by sputtering or other suitable technique. That layer is then patterned (e.g., using a laser etching process) to separate the bottom electrodes of each cell.
  • the n-type a-Si layer 134 is then deposited over the bottom electrode layer by PECVD from a mixture of silane and hydrogen together with a suitable dopant such as phosphine. Generally, no dopant is used during deposition of the intrinsic a-Si layer 135, while methane and diborane (or trimethylboron) may be added to the silane and hydrogen to provide the necessary doping for the subsequent p-type a-Si layer 136.
  • top electrode layer 138 is deposited and then patterned to form void areas 139 to electrically isolate the top electrodes of neighboring cells.
  • the material of top electrodes 138 should allow a high transmission of photons and suitable materials include Indium-Tin-Oxide (ITO), Tin-Oxide (SnO 2 ), and Zinc-Oxide (ZnO).
  • bottom electrodes 132 may comprise any conductive material be it opaque (e.g., aluminum or silver) or a TCO as described above.
  • a mechanical (or laser) scribe is used to etch a current-carrying grid pattern through the layers 138, 136, 135, 134, and (partially) 132.
  • the etched areas are then filled with a conductive paste (e.g., a silver paste) to create thin conductors 140.
  • a conductive paste e.g., a silver paste
  • flexible thin PV films may also be based on other semiconductor materials such as polycrystalline silicon, microcrystalline silicon, thin film silicon, thin film tandem cells, copper indium gallium diselenide (CIGS), CIS elements, cadmium telluride (CdTe), nano-crystalline dye-sensitized materials, or conductive polymers. It will be appreciated that the semiconductor structure will generally differ depending on the material used.
  • laminator 200 is a hot roll press with two rotating drums 210 and 220 that apply pressure at a temperature of between about 70 and 250°C to bond the sheets together and provide a bonded PV module stack 100'.
  • the bonding process may exploit the self-adhesive properties of encapsulant materials 150 and 170, or additional layers of adhesive material (not shown), such as glue, silicon, or ethylene vinyl acetate, may be interposed between PV film 110 and each encapsulant sheet.
  • laminator 200 applies the combination of both a pressure and a high temperature, in some embodiments only/primarily pressure or only/primarily high temperature can be used to effect the bonding, although the effectiveness of such techniques will generally depend on the type of encapsulant materials 150 and 170 being used. It will nevertheless be appreciated that whatever combination of temperature and pressure are applied, the imposed conditions will not be conditions that occur naturally, i.e., a combination of temperature and/or pressure that module 100 would otherwise be exposed to.
  • the bonding step may occur in a variety of different manners.
  • the bonding step occurs as an entirely batch process using a flat press that bonds together individual flat sections of film 110, top encapsulant 150, and bottom encapsulant 170 to form the bonded stack 100' for a single PV module (preferably so that an overlap of encapsulant surrounds the PV film on all sides).
  • This technique may be preferred if an adhesive layer (such as an EVA layer) is also used to help create the bonded stack 100'.
  • a roll batch process may be used in which sheets of film 110, top encapsulant 150, and bottom encapsulant 170 are fed into a roll press (such as laminator 200 in Fig. 3) from three individual rolls.
  • continuous films corresponding to a plurality of PV modules of film 110, top encapsulant 150, and bottom encapsulant 170 may be fed into a roll press from three individual rolls, and cut to the desired length after lamination or after shaping.
  • the encapsulant materials overlap each side of the PV film to provide edge sealing, and this is possible using either of the first two techniques described above.
  • the PV film will be exposed at the cut edge and therefore will be susceptible to infiltration and/or degradation.
  • an additional step to seal the cut edge may be carried out by reheating the severed bonded stack and welding the existing thermoplastic materials in the stack around the exposed edge to seal it. If necessary or desired, additional thermoformable material can also be added to the bonded stack when sealing the cut/exposed edge.
  • a bonded PV module stack 100' may be simply flat, that surface may also be textured in a manner that alters reflection properties, avoids glare, improves light trapping, and/or improves the aesthetic look of the module. This texture may be applied by using a suitable surface structure on the lamination press/rolls used to bond together the layers.
  • the bonded stack 100' is further shaped by the application of pressure (preferably together with a high temperature) to provide a PV module 100 with a desired two-dimensional profile (i.e., a two-dimensional outline as seen from the side).
  • a profiling device 300 includes complementary mold sections 310 and 320 operating at a high temperature to mechanically force module 100 into a desired profile shape.
  • the pressure applied by device 300 varies from about 0.01 to 1 bar, and in one specific embodiment the pressure applied is 0.05 bar.
  • the temperature in device 300 corresponds to the softening temperatures of the thermoformable encapsulant materials 150 and 170, which as noted above may be from between 70 and 250°C.
  • the profiling step may be carried out by fixing the bonded stack 100' in the frame of a molding device, heating the stack, and then applying a vacuum through holes in two complementary mold sections so that air pressure compresses the mold sections against the bonded stack 100' so that the latter takes on the shape of those mold sections.
  • the profiling step may be carried out as a batch process (as illustrated), or a continuous roll process may be used. Furthermore, the profiling step may be carried out immediately after the bonding step, possibly within the same device (i.e., laminator 200 and profiling device 300 may be combined), since the bonded PV module stack 100' generally does not require cooling prior to undergoing the profiling step. As a further alternative, both the bonding and the profiling step may occur at the same time, as single process step.
  • encapsulant materials 150 and 170 comprise a thermoplastic polymer that degrades chemically when repeatedly heated and cooled or especially if encapsulant materials 150 and 170 comprise a thermosetting material which can only be heated and cured once.
  • a profiled PV module 100 can be realized using injection molding techniques.
  • PV film 110 is placed in a profiled injection mold (not shown), and an encapsulant resin material (with the transparency and UV resistant properties mentioned above) is injected to embed the module in the desired profile shape.
  • encapsulants include PET (polyethylene terephtalate), PC (polycarbonate), PP (polypropylene), PA (polyamide), ABS(acrylonitrile / butadiene / styrene) or various combinations of such materials
  • Re-hardening of the encapsulant material after shaping is preferably performed by cooling, or letting the module return to ambient temperature condition.
  • hardening may be improved, initiated or accelerated using chemical agentsor ultra-violet light for example.
  • a rigid, strong, durable and still relatively lightweight PV module is provided even though no rigid plate or support member (such as aluminum or glass base) forms part of the module.
  • the type and quantity of encapsulant materials used are sufficient to provide PV module 100 with such a rigid and durable structure once the module has cooled and is used under ordinary conditions (i.e., naturally occurring temperatures and pressures). This differs from the encapsulation of existing thin film flexible PV modules where the type and/or quantity of encapsulant used allow the modules to retain their flexible nature under ordinary conditions.
  • the overall thickness of PV module 100 is about 2 mm which provides a strong, rigid, and yet lightweight structure.
  • the shape of the profile of PV module 100 can be corrugated (i.e., with alternating ridges and grooves), standing seam (i.e., interlocking), or any other desired non-flat (i.e., 2-D profile) shape required for a given application.
  • PV module 100 is corrugated with an approximately sinusoidal profile.
  • Fig. 5 A more detailed top perspective view of such a PV module is shown in Fig. 5.
  • Alternate PV module profiles are also exemplarily shown in Figs. 6A and 6B. More specifically, Fig. 6A shows a side view of a PV corrugated module 100A with a corrugated trapezoidal profile, while Fig.
  • FIG. 6B shows a side view of a PV corrugated module 100B with a profile suitable for providing a standing seam effect so that neighboring PV modules can interlock with one another.
  • the profile of PV film 110 inside module 100B is nonetheless flat (i.e., film 110 has a 1-D profile) in this case.
  • the top and bottom surfaces of the PV modules are otherwise uniform, in that a cross-section of the module in a plane parallel to that of the 2-D profile will share the same 2-D profile.
  • this is not necessary and may not be the case where sections acting as fixing points, border sections, or for making electrical contacts are included in the PV module.
  • a three-dimensonal texture may be provided in the top-encapsulant layer, for example by using mold sections 310 and possibly 320 with a textured surface.
  • the texture may define micro-optical elements, for example micro-lenses, for improving convergence of light onto photovoltaic active portions of the film 110 and for deviating light away from the non-active portions of the film (such as the interconnection areas 139 and 140 and areas covered with additional current collecting finger grids).
  • the texture may improve the optical appearance of the module, and/or might reduce unwanted glare of the module surface.
  • the current in the PV module is limited to the lowest current in any one PV cell.
  • the longitudinal axis x1 of the strip-shaped cells and the thin conductors 140 that monolithically provide the electrical series connections between neighboring cells are preferably oriented in parallel to a plane x;z defining the 2-D profile of the module (i.e., the plane of the drawing). This ensures that no PV cell is located entirely (or predominantly) along a groove or valley within the 2-D profile where the cell may be exposed to only minimal sunlight which would significantly limit the current conducted through the PV module as a whole. Instead, with the cell orientation of Fig. 5, no shading losses occur (other than pure geometrical losses) since each cell will generally be exposed to the same amount of sunlight and therefore generate the same amount of current. Serial-connection of the strips will thus be possible without reducing the resulting current over the cells.
  • Figs 6A and 6B where the cells and series-connections for modules 100A and 100B are strip shaped, these again are preferably oriented in parallel to a plane defining the 2-D profile of the module.
  • the PV cells in module 100 are electrically connected in a different manner, a different cell orientation may be preferable.
  • PV module 100 may have two contact openings 146 formed through the encapsulant material to connect electrical wires 148 to each current collection bus bar 145 in PV film 110.
  • contact openings 146 are shown as having been made through the top surface of PV module 100 in Fig. 5. However, more typically, the contact portions will be formed via an opening formed through the encapsulant from the bottom surface of the module.
  • Contact openings 146 are preferably formed after the bonding and profiling steps are complete, in the manner described in United States Patent Application 10/688,596 for a "Photovoltaic Product and Process of Fabrication thereof" now US-A1-2004/0112425 .
  • openings 146 may be sealed for protection purposes As will be appreciated, by connecting wires 148 to PV module 100 the module may be connected with other PV modules as part of a PV array and/or to an external electrical circuit. Alternatively, instead of attaching wires 148, openings 146 may simply enable electrical connection of PV module 100 directly to an underlying PV junction box.
  • the PV modules are rigid, strong, and durable. As a result, the modules are better able to with stand exposure to adverse weather and other environmental conditions compared to most conventional flexible PV film products.
  • the PV modules of the present invention can be more fully integrated into a desired application since they provide a better structural fit.
  • the PV modules of the present invention are well-adapted to be mounted onto existing architectural surfaces (such as corrugated or profiled roofing or façade elements) that are not flat.
  • the PV modules of the present invention may entirely replace existing architectural elements (such as roof tiles or façade elements), so that the PV modules provide both the PV function and the desired architectural/structural function. More generally, the modules of the present invention are well-suited for use in any location having a non-flat surface.
  • the profiles of PV modules 100 may correspond to the size and shape of existing materials already used and standardized within the construction and roofing industry, for example 76 mm or 18 mm corrugated roof tiles.
  • each PV module can be mounted onto (or can replace) one or several standardized architectural units.
  • a single PV module 100 may be produced with a 1 x 2 meter surface size and could be used to cover (or replace) several roofing tiles. With existing PV manufacturing processes, such a module would be able to produce a peak PV power of about 50-300 Watts at about 12 to 300 Volts.
  • the size of the module could be increased, e.g., to 2 x 10 meters, to cover an entire roof section or the whole length of a façade.
  • the surface area of a PV module may be reduced to correspond to the size of a single individual roof tile, e.g., 30 x 50 cm.
  • PV module 100 may be fixed to another element or a surface using clips, using screws through mounting holes drilled through the profile, or using any other fastening technique. In some cases, it may be desirable to provide an air gap beneath a profiled PV module to help cool the PV film and improve its efficiency. Multiple PV modules 100 may also be welded or glued together to form a larger sealed section for a roof or façade.
  • a PV module 100 may further be combined with a thermal insulation layer (e.g., polyurethane foam) beneath the module. Such an insulation layer is preferably applied along the entire bottom surface of the profiled PV module, for example by applying the foam to that surface by extrusion.
  • a thermal insulation layer e.g., polyurethane foam
  • Such an insulation layer may additionally improve and stabilize the mechanical and structural properties of the profiled PV module.
  • a back-insulated profiled module is particularly advantageous in conjunction with the use of amorphous silicon as a PV material, since the temperature coefficient of the power output by such a module is relatively small.
  • Fig. 7 illustrates the layers used (prior to bonding and profiling) in a PV module 400.
  • module 400 includes a PV film 410 including a PV cell structure 430 fabricated on a relatively thick superstrate 450 comprising, for example, PET (polyethylene terephtalate) and a sheet of bottom encapsulant material 470.
  • superstrate 450 acts as both an insulating base on which PV cell structure 430 is fabricated as well as the top encapsulant layer in the subsequent bonding step.
  • superstrate 450 should possess the transparency and UV resistant characteristics previously described for top encapsulant layer 150. It may also be noted that superstrate 450 may have a relatively large thickness so that the resulting PV film 410 is not flexible under ordinary (i.e., naturally occurring) temperatures. Alternatively, the thickness of superstrate 450 may be relatively small but the thickness of the sheet of bottom encapsulant material 470 may be correspondingly increased, in which case PV film 410 may still be flexible.
  • the base electrode first deposited onto superstrate 450 should comprise a TCO and, if a p-i-n configuration is used for cells in PV cell structure 430, p-type, i-type, and n-types layers are then sequentially deposited above the TCO electrode layer.
  • the superstrate 450 is shown as having a larger surface area than PV cell structure 430, it may not be practical to fabricate PV film 410 in this manner.
  • a larger bottom encapsulant sheet 470 may be used and/or additional encapsulant material may be added after the PV film 410 and the sheet of bottom encapsulant 470 have been initially bonded together.
  • the resulting bonded stack can then be profiled in the manner described above.
  • modules may be assembled together, after shaping but preferably before mounting on a roof, in order to extend the width and/or the length or the resulting photovoltaic element. Electrical connections between neighboring modules are preferably accomplished without any wire, by overlapping or contacting the busbars 145 in order to provide the desired serial or parallel connections. Assembly of the different modules is however made in such a manner as to guarantee identical or similar sunshine amount on mutually serially connected cells when the assembled photovoltaic element is mounted.
  • the plane x;z defining the two dimensional profile of the module may extend in an upward direction substantially parallel to the ridge or edge of the roof.
  • the strips 130 preferably extend along an horizontal direction parallel to this ridge or edge.
  • the strips 130 preferably extend in an upward direction, perpendicular to said ridge or edge.
  • the module may also be used asa profiled or corrugated substantially vertical façade element.
  • the strips will preferably extend horizontally. If on the other side the plane isvertical, the strips will preferably extend in an upward direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Ceramic Capacitors (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Surface Heating Bodies (AREA)

Claims (31)

  1. Ein elektrische Energie erzeugendes Modul (100) umfassend:
    einen elektrische Energie erzeugenden photovoltaischen Film (110), der zwischen einer oberen Schicht (150) von mindestens teilweise transparenten Einkapselungsmaterial und einer unteren Schicht (170) des Einkapselungsmaterials eingeschlossen ist,
    in welchem die Art und die Qualität der Einkapselungsmaterialien derart sind, dass die Form des Moduls verändert werden kann, wenn mindestens eine hohe Temperatur oder ein Druck daran angewendet wird, aber in welchem die Einkapselungsmaterialien unter normalen Temperatur- und Druckkonditionen eine starre Struktur um den elektrische Energie generierenden Film (110) bereitstellen,
    in welchem der elektrische Energie erzeugenden Film eine Vielzahl von in Streifen geformten Zellen (130) umfasst, die elektrisch miteinander verbunden sind,
    wobei das Modul geformt ist, um ein gewünschtes zweidimensionales Profil bereitzustellen,
    dadurch gekennzeichnet, dass die longitudinale Richtung (x1) von jeder in Streifen geformten Zelle (130) sich parallel zu einer Ebene (x;z), die besagtes zweidimensionales Profil definiert, ausdehnt.
  2. Das Modul gemäss Anspruch 1, in welchem besagte in Streifen geformte Zellen (130) in Serie miteinander verbunden sind.
  3. Das Modul gemäss einem der Ansprüche 1 oder 2, in welchem die Art und Qualität des Einkapselungsmaterials und von den anderen Schichten so sind, dass die Form des Moduls permanent durch die Anwendung der folgenden Schritte verändert wird:
    Ausweichen des Einkapselungsmaterials durch Anwendung von einer hohen Temperatur,
    Anwendung von einem Druck zu dem Modul (100), um die gewünschte Form zu erhalten,
    Aushärten der Einkapselungsmaterialien.
  4. Das Modul gemäss Anspruch 3, in welchem die Art und die Qualität der Einkapselungsmaterialien so sind, dass die Form des Moduls durch die Anwendung einer Temperatur zwischen 70 und 250°C und einem Druck zwischen 103 Pa bis 105 Pa verändert wird.
  5. Das Modul gemäss einem der Ansprüche 3 bis 4, in welchem die Art und Qualität der verwendeten Materialien in mindestens einer Schicht des Moduls so sind, dass die Form des Moduls unter normalen Temperaturbedingungen nicht permanent ohne Brechen verändert werden kann, selbst wenn ein Druck zeitweilig daran angewendet wird.
  6. Das Modul gemäss einem der Ansprüche 1 bis 5, in welchem der elektrische Energie erzeugende Film (110) ein Substrate (120) umfasst, das unter normalen Temperatur- und Druckbedingungen flexibel ist.
  7. Das Modul gemäss Anspruch 6, in welchem das Substrat (120) des elektrische Energie erzeugenden Films mindestens eins der folgenden Materialien Polyimide, Polyethylen Terephtalate (PET) oder Polyethylen Naphthalate (PEN), Aluminium, isolierende Metallzusammensetzungen oder faserverstärkte Materialien umfasst.
  8. Das Modul gemäss einem der Ansprüche 1 bis 7, in welchem in Übereinstimmung mit dem zweidimensionalen Profil des Moduls, der elektrische Energie erzeugende Film (110) in dem Modul (100) nicht flach ist.
  9. Das Modul gemäss einem der Ansprüche 1 bis 8, in welchem der elektrische Energie erzeugende Film (110) eine amorphe Silikonhalbleiterstruktur, ein mikrokristallines Silikon, ein Dünnfilmsilikon, ein CIS-Element, ein CdTE-Element und/oder eine dünne Filmtandemzelle umfasst.
  10. Das Modul gemäss einem der Ansprüche 1 bis 9, in welchem der elektrische Energie erzeugende Film (110), das obere Einkapselungsmaterial (150) und das untere Einkapselungsmaterial (170) zusammengefügt wurden, um einen Stapel mit einem ebenen Profil zu bilden, bevor das Modul geformt wird, um ein zweidimensionales Profil zu bilden.
  11. Das Modul gemäss einem der Ansprüche 1 bis 10, in welchem der elektrische Energie erzeugende Film (110), das obere Einkapselungsmaterial (150) und das untere Einkapselungsmaterial (170) in einem kontinuierlichen Laminationsverfahren zusammengefügt wird, bevor das Modul geformt und auf eine gewünschte Länge geschnitten wird.
  12. Das Modul gemäss einem der Ansprüche 1 bis 11, in welchem das Modul (100) unter Verwendung eines Gussinjektionsverfahrens geformt ist und die oberen und unteren Einkapselungsmaterien ein Harz umfassen, welches geeignet ist, um während des besagten Verfahrens injiziert zu werden.
  13. Das Modul gemäss einem der Ansprüche 1 bis 12, in welchem das obere Einkapselungsmaterial mindestens eins der folgenden Materialien: Polyethylen (PE), Polyethylen Terephtalate (PET), Polyethylen Naphthalate (PEN), Polycarbonate (PC), Polymethyl Methacrylate (PMMA), Ethylen Vinyl Acetate (EVA), Thermoplatic Polyurethane (TPU), Ethylen tetrafluorethylene (ETFE) umfassen.
  14. Das Modul gemäss Anspruch 13, in welchem das untere Einkapselungsmaterial das gleiche Material wie das obere Einkapselungsmaterial umfasst.
  15. Das Modul gemäss einem der Ansprüche 1 bis 14, in welchem das zweidimensionale Profil des Moduls (100) zu einem nicht ebenen Profil einer architektonischen Einheit oder Oberfläche gehört, um das Modul auf besagte architektonische Einheit oder Oberfläche zu montieren oder einen oder mehrere von den architektonischen Einheiten zu ersetzen.
  16. Das Modul gemäss Anspruch 15, in welchem das zweidimensionale Profil des Moduls zu einem Profil eines gewellten oder profilierten Dachs oder Fassadenelement korrespondiert.
  17. Das Modul gemäss Anspruch 16, in welchem das zweidimensionale Profil des Moduls zu dem Profil eines gewellten oder profilierten Dachs gehört,
    in welchem besagtes Modul mindestens einen Streifen (130) umfasst, dazu beabsichtigt, um sich entlang einer Richtung im Wesentlichen parallel zu dem Grat oder eine Kante des besagten Dachs auszudehnen, wenn besagtes Modul montiert ist,
    und wobei sich besagte Ebene (x;z), die besagtes zweidimensionales Profil definiert, in einer nach oben gerichteten Richtung im Wesentlichen parallel zu besagtem Grat oder Kante ausdehnt, wenn besagtes Modul montiert ist.
  18. Das Modul gemäss Anspruch 16, in welchem das zweidimensionale Profil des Moduls zu dem Profil eines gewellten oder profilierten Fassadenelements gehört,
    in welchem besagtes Modul mindestens einen Streifen (130) beabsichtigt, um sich in einer im Wesentlichen horizontalen Richtung auszudehnen, wenn das Modul montiert ist,
    und in welchem sich besagte Ebene (x;z), die besagtes zweidimensionales Profil definiert, in einer im Wesentlichen horizontalen Richtung ausdehnt, wenn das Modul montiert ist.
  19. Das Modul gemäss einem der Ansprüche 1 bis 15, in welchem das zweidimensionale Profil des Moduls dem Profil einer gewellten oder profilierten Fassade eines gewellten oder profilierten Dachs entspricht,
    in welchem besagtes Modul mindestens einen Streifen (130) umfasst, beabsichtigt, um sich in einer nach oben gerichteten Richtung auszudehnen, die im Wesentlichen senkrecht zu besagtem Grat oder Kante ist, wenn besagtes Modul montiert ist,
    und in welchem sich besagte Ebene (x;z), die besagtes zweidimensionales Profil definiert, in einer nach oben gerichteten Richtung im Wesentlichen senkrecht zu besagtem Grat oder Kante ausdehnt, wenn das Modul montiert ist.
  20. Das Modul gemäss Anspruch 16, in welchem das zweidimensionale Profil des Moduls zu dem Profil eines gewellten oder profilierten Fassadenelements gehört,
    in welchem besagtes Modul mindestens einen Streifen (130) umfasst, beabsichtigt, um sich entlang einer Richtung im Wesentlichen vertikal auszudehnen, wenn besagtes Modul montiert ist,
    und in welchem sich besagte Ebene (x;z), die besagtes zweidimensionales Profil definiert, in im Wesentlichen vertikaler Richtung ausdehnt, wenn besagtes Modul montiert ist.
  21. Das Modul gemäss einem der Ansprüche 1 bis 20, in welchem die obere Schicht des Einkapselungsmaterials auch einen Überzug für den elektrische Energie erzeugenden Film umfasst.
  22. Das Modul gemäss einem der Ansprüche 1 bis 21, weiter umfassend eine thermische Isolationsschicht, angebracht auf der unteren Oberfläche des Moduls, nachdem das Modul geformt wurde.
  23. Das Modul gemäss einem der Ansprüche 1 bis 22, weiter umfassend eine dreidimensionale Struktur in besagter oberen Einkapselungsschicht, die so konzipiert ist, um die Konvergenz von Licht auf die aktiven PV-Teile des Moduls zu verbessern.
  24. Ein Verfahren, um ein elektrische Energie erzeugendes Modul (100) herzustellen, umfassend:
    Bereitstellen eines Energie erzeugenden Films (110), welcher eine Vielzahl von in Streifen geformten Zellen (130) umfasst, die elektrisch miteinander verbunden sind, einer oberen Schicht eines Einkapselungsmaterials (150) und einer unteren Schicht eines Einkapselungsmaterials (170);
    Anwendung von mindestens einer hohen Temperatur und einem Druck, um den elektrische Energie erzeugenden Film, die obere Schicht des Einkapslungsmaterials und die untere Schicht des Einkapslungsmaterials miteinander als ein verbundenen Stapel zu verbinden; und
    Aufrechterhalten oder Anwendung einer hohen Temperatur, um besagtes Einkapselungsmaterial zu schmelzen/aufzuweichen, und die Anwendung eines Drucks, um den verbundenen Stapel zu formen, um ein Modul mit einem gewünschten zweidimensionalen Profil zu schaffen,
    in welchem die Art und die Qualität der bereit gestellten Einkapselungsmaterialien derart sind, dass die Form des Moduls verändert werden kann, wenn mindestens eine von einer hohen Temperatur und ein Druck daran angewendet wird, aber in welchem die Einkapselungsmaterialien (150, 170) unter normalen Temperatur und Druckkonditionen eine starre Struktur um den elektrische Energie erzeugenden Film (110) bereitstellen,
    dadurch gekennzeichnet, dass die longitudinale Richtung (x1) von jeder in Streifen geformten Zelle sich parallel zu einer Ebene (x;z), die besagtes zweidimensionales Profil definiert, ausdehnt.
  25. Das Verfahren gemäss Anspruch 24, in welchem das Verbinden die Anwendung von sowohl einer hohen Temperatur und als auch einem Druck umfasst.
  26. Das Verfahren gemäss Anspruch 25, in welchem das Verbinden die Anwendung einer Temperatur zwischen 70 und 250°C und einem Druck 3 * 104 Pa bis 106 Pa umfasst und in welchem das Formen die Anwendung einer Temperatur zwischen 70 und 250°C und einem Druck 103 Pa bis 105 Pa umfasst.
  27. Das Verfahren gemäss einem der Ansprüche 24 bis 26, in welchem das Formen unmittelbar nach dem Verbinden ausgeführt wird.
  28. Das Verfahren gemäss einem der Ansprüche 24 bis 27, in welchem das Formen gleichzeitig mit dem Verbinden ausgeführt wird.
  29. Das Verfahren gemäss einem der Ansprüche 24 bis 28, in welchem das Formen den Gebrauch eines Gussinjektionsverfahrens umfasst und die oberen und unteren Einkapselungsmaterialien ein Harz umfassen, welches geeignet ist, um während des besagten Verfahrens injiziert zu werden.
  30. Das Verfahren gemäss einem der Ansprüche 24 bis 29, wobei besagte hohe Temperatur ausreichend ist, um besagte Einkapselungsmaterialien zu schmelzen, ohne besagten Energie erzeugenden Film (110) zu beschädigen, wobei besagtes Verfahren einen Schritt zur Entlastung der Temperatur umfasst, um die Einkapselungsmaterialien nach dem Formen wiederzuerhärten.
  31. Das Verfahren gemäss einem der Ansprüche 24 bis 30, weiter umfassend einem Schritt der Anwendung einer dreidimensionalen Oberflächenstruktur zu besagter oberer Einkapselungsschicht.
EP05733587A 2004-03-16 2005-03-16 Elektrische energieerzeugungsmodule mit zweidimensionalem profil und herstellungsverfahren dafür Not-in-force EP1726046B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200530038T SI1726046T1 (sl) 2004-03-16 2005-03-16 Moduli za generiranje elektriäśne energije z dvodimenzionalnim profilom ter postopek za njih0vo izdelavo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55338004P 2004-03-16 2004-03-16
PCT/EP2005/051214 WO2005091379A2 (en) 2004-03-16 2005-03-16 Electric energy generating modules with a two-dimensional profile and method of fabricating the same

Publications (2)

Publication Number Publication Date
EP1726046A2 EP1726046A2 (de) 2006-11-29
EP1726046B1 true EP1726046B1 (de) 2007-06-20

Family

ID=34956304

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05733587A Not-in-force EP1726046B1 (de) 2004-03-16 2005-03-16 Elektrische energieerzeugungsmodule mit zweidimensionalem profil und herstellungsverfahren dafür

Country Status (10)

Country Link
EP (1) EP1726046B1 (de)
JP (1) JP2007529889A (de)
CN (1) CN1934716A (de)
AT (1) ATE365381T1 (de)
AU (1) AU2005224794B2 (de)
DE (1) DE602005001449T2 (de)
ES (1) ES2286805T3 (de)
PT (1) PT1726046E (de)
WO (1) WO2005091379A2 (de)
ZA (1) ZA200607745B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418418B2 (en) 2009-04-29 2013-04-16 3Form, Inc. Architectural panels with organic photovoltaic interlayers and methods of forming the same
TWI408826B (de) * 2009-01-22 2013-09-11

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2328873T3 (es) * 2006-04-18 2009-11-18 Dow Corning Corporation Dispositivo fotovoltaico basado en diseleniuro de indio y cobre y procedimiento de preparacion del mismo.
GB2480778A (en) * 2006-06-16 2011-11-30 Chetwood Holdings Ltd Solar energy collection element with rain water collection
SM200600027A (it) * 2006-08-08 2008-02-13 Stefano Segato Preparazione fotovoltaica multistrato per la generazione di energia elettrica nonché' metodo di realizzazione ed applicazione
AT505186A1 (de) * 2007-05-10 2008-11-15 Isovolta Verwendung eines kunststoffverbundes für die herstellung photovoltaischer module
WO2009006110A2 (en) 2007-06-28 2009-01-08 Jacobs Gregory F Photovoltaic devices including cover elements, and photovoltaic systems, arrays, roofs and methods using them
EP2218111A2 (de) 2007-11-06 2010-08-18 Ming-Liang Shiao Photovoltaik-dachelemente mit bindeschichtsystemen und dächer damit und herstellungsverfahren dafür
US9178465B2 (en) 2007-11-06 2015-11-03 Certainteed Corporation Photovoltaic roofing elements including tie layer systems and roofs using them
JP5270200B2 (ja) * 2008-03-19 2013-08-21 タキロン株式会社 屋根構造
US20090255573A1 (en) * 2008-04-11 2009-10-15 Building Materials Investment Corporation Photovoltaic heat-weldable thermoplastic roofing membrane
GB2460762B (en) * 2008-06-11 2013-01-02 Kingspan Res & Dev Ltd Composite insulating panel with solar collector
EP2329531A2 (de) * 2008-09-23 2011-06-08 Oerlikon Solar AG, Trübbach Verfahren zur herstellung eines photovoltaikmoduls
JP5353442B2 (ja) * 2009-05-25 2013-11-27 セイコーエプソン株式会社 太陽電池パネル、太陽電池ユニット、太陽電池ユニット集合体
FR2947099B1 (fr) * 2009-06-17 2013-11-15 Cynegy Holdings France Tuile photovoltaique pour toiture
WO2011050367A2 (en) * 2009-10-24 2011-04-28 Photon Energy Systems Manufacturing photovoltaic devices and devices formed
NZ599188A (en) * 2009-11-05 2014-05-30 Kingspan Res & Dev Ltd A composite insulating panel
JP5174972B2 (ja) * 2009-11-05 2013-04-03 三菱電機株式会社 薄膜太陽電池モジュールおよびその製造方法
EP2360739A1 (de) * 2010-02-11 2011-08-24 Sika Technology AG Membran umfassend Solarzelle
JP5407989B2 (ja) * 2010-03-30 2014-02-05 三菱マテリアル株式会社 太陽電池用複合膜の形成方法
DE102011008645A1 (de) * 2011-01-14 2012-07-19 Thomas Rösener Solarmodul
CN102916067B (zh) * 2011-08-05 2015-06-24 深圳市中航三鑫光伏工程有限公司 一种建材型双面玻璃光伏构件及其制造方法
ES2514891B1 (es) * 2013-04-26 2015-08-05 Fº JAVIER PORRAS VILA Placa foto-termovoltáica con lupas y solenoides, de efecto invernadero
ES2546354B1 (es) * 2014-03-21 2016-06-30 Fº JAVIER PORRAS VILA Generador solar con microlupas y multiplicador de corriente, con célula termovoltaica con mil parejas de cables
DE102014106964A1 (de) * 2014-05-16 2015-11-19 Johannes Stöllinger Gebäudebauelement mit Photovoltaikfunktionalität sowie Verfahren zum Herstellen eines Gebäudebauelements mit Photovoltaikfunktionalität
CN106206823B (zh) * 2016-08-26 2017-07-14 江苏东鋆光伏科技有限公司 一种用于提高电池片发电功率的反光膜及其制备方法
FR3065837B1 (fr) * 2017-04-28 2022-12-16 Sunpower Corp Module solaire avec polymere incline
CN110783419A (zh) * 2018-07-12 2020-02-11 北京铂阳顶荣光伏科技有限公司 曲面光伏组件及其制备方法
WO2020121036A1 (en) * 2018-12-13 2020-06-18 Arcelormittal Lamination device and process thereof
GB2588379A (en) * 2019-10-11 2021-04-28 Solivus Ltd A roof panel
WO2024195848A1 (ja) * 2023-03-23 2024-09-26 積水化学工業株式会社 太陽光発電シートの設置構造

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860509A (en) * 1987-05-18 1989-08-29 Laaly Heshmat O Photovoltaic cells in combination with single ply roofing membranes
JP2974485B2 (ja) * 1992-02-05 1999-11-10 キヤノン株式会社 光起電力素子の製造法
US5998729A (en) * 1997-04-11 1999-12-07 Canon Kabushiki Kaisha Solar cell module having improved flexibility
EP0874404B1 (de) * 1997-04-21 2004-06-30 Canon Kabushiki Kaisha Solarzellenmodul und Verfahren zu dessen Herstellung
JPH11214724A (ja) * 1998-01-21 1999-08-06 Canon Inc 太陽電池モジュール及びその製造方法と施工方法、及び太陽光発電システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408826B (de) * 2009-01-22 2013-09-11
US8418418B2 (en) 2009-04-29 2013-04-16 3Form, Inc. Architectural panels with organic photovoltaic interlayers and methods of forming the same
US9076731B2 (en) 2009-04-29 2015-07-07 3Form, Llc Architectural panels with organic photovoltaic interlayers and methods of forming the same

Also Published As

Publication number Publication date
CN1934716A (zh) 2007-03-21
JP2007529889A (ja) 2007-10-25
AU2005224794A1 (en) 2005-09-29
DE602005001449T2 (de) 2008-02-21
WO2005091379A2 (en) 2005-09-29
ZA200607745B (en) 2008-05-28
WO2005091379A3 (en) 2005-10-27
ATE365381T1 (de) 2007-07-15
ES2286805T3 (es) 2007-12-01
AU2005224794B2 (en) 2009-12-17
DE602005001449D1 (de) 2007-08-02
PT1726046E (pt) 2007-10-01
EP1726046A2 (de) 2006-11-29

Similar Documents

Publication Publication Date Title
EP1726046B1 (de) Elektrische energieerzeugungsmodule mit zweidimensionalem profil und herstellungsverfahren dafür
US20070012353A1 (en) Electric energy generating modules with a two-dimensional profile and method of fabricating the same
US9202955B2 (en) Photovoltaic roofing elements
US9786802B2 (en) Photovoltaic roofing panels, photovoltaic roofing assemblies, and roofs using them
US9331224B2 (en) Photovoltaic roofing elements, photovoltaic roofing systems, methods and kits
CN204928739U (zh) 双面太阳能面板和双面太阳能电池
CN102576770B (zh) 制造具有多结和多电极的光伏电池的方法
US20120152327A1 (en) Method of manufacturing solar modules
WO2009121062A1 (en) Photovoltaic roofing elements, laminates, systems and kits
KR20120140250A (ko) 개선된 광전 디바이스
US20220345075A1 (en) Angled polymer solar modules
US20100200045A1 (en) Solar power system and method of manufacturing and deployment
KR102658247B1 (ko) Bipv 적용 가능한 고출력 슁글드 태양광 모듈 및 그 제조 방법
US20140318603A1 (en) All Plastic Solar Panel
US20120024339A1 (en) Photovoltaic Module Including Transparent Sheet With Channel
US20110308577A1 (en) Photovoltaic panel and method of manufacturing the same
KR20240057178A (ko) 투광성이 우수한 태양광 윈도우 시스템 및 이의 제조 방법
WO2013013226A1 (en) Structures for solar roofing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060914

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTS & TECHNOLOGY SURVEYS SA

REF Corresponds to:

Ref document number: 602005001449

Country of ref document: DE

Date of ref document: 20070802

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070920

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070917

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070402821

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2286805

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070920

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

26N No opposition filed

Effective date: 20080325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: VHF TECHNOLOGIES SA

Free format text: VHF TECHNOLOGIES SA#AV. DES SPORTS 18#1400 YVERDON (CH) -TRANSFER TO- VHF TECHNOLOGIES SA#AV. DES SPORTS 18#1400 YVERDON (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20110328

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20110308

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110311

Year of fee payment: 7

BERE Be: lapsed

Owner name: VHF TECHNOLOGIES SA

Effective date: 20120331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120317

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20130110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170322

Year of fee payment: 13

Ref country code: GR

Payment date: 20170314

Year of fee payment: 13

Ref country code: NL

Payment date: 20170321

Year of fee payment: 13

Ref country code: FR

Payment date: 20170322

Year of fee payment: 13

Ref country code: CH

Payment date: 20170322

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20170315

Year of fee payment: 13

Ref country code: AT

Payment date: 20170322

Year of fee payment: 13

Ref country code: GB

Payment date: 20170322

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170313

Year of fee payment: 13

Ref country code: ES

Payment date: 20170315

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170323

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005001449

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180917

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 365381

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180316

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181003

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180316

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180316