EP1719201B1 - Slot-line-type microwave device with a photonic band gap structure - Google Patents

Slot-line-type microwave device with a photonic band gap structure Download PDF

Info

Publication number
EP1719201B1
EP1719201B1 EP05717648.9A EP05717648A EP1719201B1 EP 1719201 B1 EP1719201 B1 EP 1719201B1 EP 05717648 A EP05717648 A EP 05717648A EP 1719201 B1 EP1719201 B1 EP 1719201B1
Authority
EP
European Patent Office
Prior art keywords
slot
substrate
line
patterns
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05717648.9A
Other languages
German (de)
French (fr)
Other versions
EP1719201A2 (en
Inventor
Nicolas Boisbouvier
Ali Louzir
Françoise Le Bolzer
Anne-Claude Tarot
Kouroch Mahdjoubi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1719201A2 publication Critical patent/EP1719201A2/en
Application granted granted Critical
Publication of EP1719201B1 publication Critical patent/EP1719201B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2005Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/18Waveguides; Transmission lines of the waveguide type built-up from several layers to increase operating surface, i.e. alternately conductive and dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/2016Slot line filters; Fin line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor

Definitions

  • the present invention relates to a novel microwave device of the slot line or slot-based structure type (slot-line, wiggly slotline, ...) comprising at least one photonic band gap structure (BIP).
  • slot line or slot-based structure type slot-line, wiggly slotline, ...) comprising at least one photonic band gap structure (BIP).
  • BIP photonic band gap structure
  • the photonic band gap structures known more generally under the term "Photonic Band Gap Structure” or PBG in English, are periodic structures that prohibit the propagation of waves for certain frequency bands. It is notably known from the patent US 6,577,211 B1 performing a periodic structure by demetallizing a ground plane electrode and using this structure to form a filter. In recent years, research and studies have been carried out for the use of these structures in frequency ranges such as those used in microwave devices.
  • such a microwave device comprises a substrate 1, a face 2 has been metallized.
  • a slot line 3 is made by etching the metal layer.
  • the substrate 1 has a height h and is made of a known dielectric material such as the materials known under the name "Ro4003" or "FR4", the metal layer being preferably made of copper or any other conductive material.
  • the BIP structure is obtained by producing patterns 4, namely pellets, on the face of the substrate 1 opposite to the face carrying the metal layer 2.
  • the patterns or pellets 4 are generally made by etching a metal layer and are opposite the line-slot 3.
  • the patterns 4 repeat periodically and are spaced apart by a distance which gives the repetition period of the pattern. This distance sets the center frequency of the forbidden band when the patterns are identical.
  • the distance a is of the order of k ⁇ g / 2 where ⁇ g is the guided wavelength in line-slot 3 at the central frequency of the photonic forbidden band and k is a positive integer greater than or equal to 1.
  • Pattern 4 may be of any shape. However, the equivalent area of the pattern determines the width and / or depth of the band gap.
  • the present invention relates to an improvement to the above structure.
  • This enhancement makes it possible, among other the effect of the photonic forbidden band, taking full advantage of the line-slot on which the BIP structure intervenes.
  • it is possible to increase the rejection of the forbidden band, or, constant rejection, to minimize the bulk of the structure.
  • the use of two different substrates offers an additional degree of freedom for adjusting the rejection of the filter as well as the center frequency and the width of the forbidden band.
  • the permittivities ⁇ r1 and ⁇ r2 of the first and second substrates may be equal or different.
  • the period between two metallic patterns is equal to k ⁇ g / 2 where ⁇ g is the guided wavelength in the slot at the center frequency of the photonic forbidden band and k is a positive integer greater than or equal to 1.
  • the periodic patterns have an equivalent area depending on the width and depth of the band gap.
  • the period of the patterns made on the first substrate is identical to the period of the patterns made on the second substrate.
  • the periodic patterns made on the first substrate are opposite patterns made on the second substrate or, alternatively, the patterns made on the first substrate. are offset with respect to the periodic patterns made on the second substrate.
  • the photonic bandgap structure described above can be used with a slot line etched in the conductive layer, this line-slot having a width varying according to a periodic law.
  • This form of line-slot is known under the name "Wiggly-slotline”.
  • this structure can be used with any other device based on line slot (filter, ).
  • this invention makes it possible to reinforce the filtering function.
  • a first microwave device is schematically represented on the Figures 3A and 3B . More specifically, this device comprises a first substrate 10 made of a dielectric material such as the Rogers Ro4003. This first substrate has a permittivity ⁇ r1.
  • one of the faces of the substrate 10 has been covered with a conductive layer 12, more particularly with a metal layer such as a copper layer in which a line-slot 13 has been etched.
  • a second substrate 11 of dielectric material having a permittivity ⁇ r2 has been deposited under the layer 12.
  • the permittivities ⁇ r1 and ⁇ r2 of the two substrates may be identical or different.
  • the use of a different permittivity gives an additional degree of freedom in the realization of the desired filter in terms of rejection, width and central frequency of the forbidden band.
  • the fact of using two different substrates modifies ⁇ eff seen by the line; this value is involved in the relationship between the central frequency of the forbidden band and the design of the BIP structure.
  • a first photonic bandgap structure formed by metal patterns 14 etched on the face of the first substrate 10 opposite the face carrying the metal layer 12.
  • the patterns 14 are constituted, in the embodiment shown, by disc-shaped pellets, namely five metal pellets.
  • the pellets 14 are spaced a distance a 'which gives the repetition period of the pattern. This distance sets the center frequency of the forbidden band when the patterns are identical.
  • the distance a 'between the patterns is of the order of k' ⁇ g / 2 where ⁇ g is the guided wavelength in the slot 13 at the central frequency of the chosen forbidden band and k' is a positive integer greater than or equal to 1.
  • periodic metal patterns 15 have been etched on the face of the substrate 11 opposite the face in contact with the metal layer 12.
  • This structure formed by the patterns 15 is, in this embodiment, identical to the structure formed by the patterns. 14 and patterns 14 and 15 are opposite each other.
  • identical patterns were made on both sides of the slot 13, ie the space between the patterns 14 or 15 and the number of patterns was retained.
  • a device as represented in Figures 3A and 3B was simulated by directly exciting the slit line.
  • the parameters S of transmission and reflection are presented to the figure 4 .
  • the forbidden band has a width of 1.4 GHz and is centered at 8.3 GHz. This band is therefore wider than the band obtained with a device according to the Figures 1A and 1B .
  • central frequency rejection of the forbidden band is then -23dB, an improvement of 6dB compared to the structure of the Figures 1A and 1B .
  • the line-slot 21 made in the metal layer 20 is constituted by a line having a width modulated periodically.
  • the modulations are constituted by circles 21A spaced periodically on the line 21.
  • a dielectric substrate On the face of the substrate opposite the face carrying the layer 20 have been formed photonic bandgap structures constituted by metal pellets 22 spaced periodically vis-à-vis the slot 21, according to a period. was simulated using for the period a ", a value of 12.7 mm, this periodicity being used also for the circles 21 a. On the other hand, for the simulation, the line has twelve circles 21 a.
  • the device consists of two substrates 30, 31 in a dielectric material having respective permittivities ⁇ r1 and ⁇ r2. Between the two substrates is provided a metal layer 32 in which was made by etching a line-slot 33. On the faces opposite to the face in contact with the layer 32, were made photonic bandgap structures 34 and 35.
  • the photonic bandgap structure 35 is constituted by patterns spaced from each other by a distance a 1 which gives the periodicity of the patterns.
  • the patterns 34 also have a periodicity to 1 but they are not vis-à-vis the patterns 35. The patterns are actually shifted above and below the slit line.
  • the effect is rather complex.
  • shifting the metal pellets can be seen as a modification of the shape / surface of the elementary cell especially when the pellets above and below the slot line partially overlap.
  • the gap between the layer of metal pellets above and below the slot line offers an additional degree of freedom whether with two identical or different substrates.
  • the present invention has been described with reference to disk-shaped patterns. However, the invention also applies to patterns of any shape, knowing that the equivalent surface of the pattern determines the width and / or depth of the band gap.

Description

La présente invention concerne un nouveau dispositif microondes du type ligne fente ou structure à base de fente (slot-line, wiggly slotline,...) comportant au moins une structure à bandes interdites photoniques (BIP)The present invention relates to a novel microwave device of the slot line or slot-based structure type (slot-line, wiggly slotline, ...) comprising at least one photonic band gap structure (BIP).

Les structures à bandes interdites photoniques (BIP) connues de manière plus générale sous le terme « Photonic Band Gap Structure » ou PBG en langue anglaise, sont des structures périodiques qui interdisent la propagation des ondes pour certaines bandes de fréquences. Il est notamment connu du brevet US 6,577,211 B1 de réaliser une structure périodique par démétallisation d'une électrode formant plan de masse et d'utiliser cette structure pour former un filtre. Depuis quelques années, des recherches et études ont été effectuées pour l'utilisation de ces structures dans des gammes de fréquences telles que celles utilisées dans les dispositifs micro-ondes.The photonic band gap structures (BIP) known more generally under the term "Photonic Band Gap Structure" or PBG in English, are periodic structures that prohibit the propagation of waves for certain frequency bands. It is notably known from the patent US 6,577,211 B1 performing a periodic structure by demetallizing a ground plane electrode and using this structure to form a filter. In recent years, research and studies have been carried out for the use of these structures in frequency ranges such as those used in microwave devices.

Le document " SVACINA J: "DISPERSION CHARACTERISTICS OF MULTILAYERED SLOTLINES - A SIMPLE APPROACH", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE INC. NEW YORK, US, vol. 47, no. 9, PART 2, septembre 1999. (1999-09), pages 1826-1829, XP000852100,ISSN: 0018-9480 )", est un article relatif aux propriétés d'une structure ligne-fente multicouches, à savoir réalisée avec des substrats de permittivités différentes. La flexibilité sur les valeurs de la permittivité, donnent une flexibilité sur la valeur de l'impédance caractéristique de la ligne fente seule ou de la permittivité effective.The document " SVACINA J: "DISPERSION CHARACTERISTICS OF MULTILAYERED SLOTLINES - A SIMPLE APPROACH", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE INC. NEW YORK, US, vol. 47, no. 9, PART 2, September 1999. (1999-09), pages 1826-1829, XP000852100, ISSN: 0018-9480 ) ", is an article on the properties of a multilayer line-slot structure, ie realized with substrates of different permittivities.The flexibility on the values of the permittivity, give a flexibility on the value of the characteristic impedance of the slot line alone or the effective permittivity.

Un procédé de réalisation de structure de ce type a déjà été proposé par la demanderesse, notamment dans la demande de brevet français n° 02 12656 du 11 octobre 2002 et dans l'article intitulé « Harmonic-less Annular Slot Antenna (ASA) using a novel PBG structure for slot-line printed device » IEEE AP-S 2003 . Ces documents décrivent donc un procédé de réalisation d'une structure BIP sur un dispositif micro-ondes de type ligne-fente réalisé sur un substrat métallisé, ainsi que des antennes du type fente annulaire ou des antennes de type Vivaldi utilisant de telles structures pour réaliser un filtrage ou une adaptation en fréquence de ladite antenne.A method for producing such a structure has already been proposed by the applicant, particularly in French patent application no. 02 12656 of 11 October 2002 and in the article entitled «Harmonic-less Annular Antenna Slot (ASA) using a novel PBG structure for slot-line» IEEE AP-S 2003 . These documents therefore describe a method for producing a BIP structure on a line-slot microwave device made on a metallized substrate, as well as annular slot type antennas or Vivaldi type antennas using such structures to realize a filtering or a frequency adaptation of said antenna.

Comme représenté sur les figures 1A et 1B, un tel dispositif micro-ondes comporte un substrat 1 dont une face 2 a été métallisée. Une ligne fente 3 est réalisée par gravure de la couche métallique.As shown on Figures 1A and 1B such a microwave device comprises a substrate 1, a face 2 has been metallized. A slot line 3 is made by etching the metal layer.

Comme représenté sur les figures 1A et 1B, le substrat 1 présente une hauteur h et est réalisé en un matériau diélectrique connu tel que les matériaux connus sous la dénomination « Ro4003 » ou du « FR4 », la couche métallique étant réalisée préférentiellement, en cuivre ou en tout autre matériau conducteur..As shown on Figures 1A and 1B the substrate 1 has a height h and is made of a known dielectric material such as the materials known under the name "Ro4003" or "FR4", the metal layer being preferably made of copper or any other conductive material.

Dans ce cas, la structure BIP est obtenue en réalisant des motifs 4, à savoir des pastilles, sur la face du substrat 1 opposée à la face portant la couche métallique 2. Les motifs ou pastilles 4 sont en général réalisés par gravure d'une couche métallique et se trouvent en vis-à-vis de la ligne-fente 3.In this case, the BIP structure is obtained by producing patterns 4, namely pellets, on the face of the substrate 1 opposite to the face carrying the metal layer 2. The patterns or pellets 4 are generally made by etching a metal layer and are opposite the line-slot 3.

De manière connue, pour obtenir une structure à bandes interdites photoniques, les motifs 4 se répètent périodiquement et sont espacés d'une distance a qui donne la période de répétition du motif. Cette distance fixe la fréquence centrale de la bande interdite lorsque les motifs sont identiques. De ce fait, la distance a est de l'ordre de kλg/2 où λg est la longueur d'onde guidée dans la ligne-fente 3 à la fréquence centrale de la bande interdite photonique et k est un entier positif supérieur ou égal à 1.In a known manner, to obtain a photonic bandgap structure, the patterns 4 repeat periodically and are spaced apart by a distance which gives the repetition period of the pattern. This distance sets the center frequency of the forbidden band when the patterns are identical. As a result, the distance a is of the order of kλg / 2 where λg is the guided wavelength in line-slot 3 at the central frequency of the photonic forbidden band and k is a positive integer greater than or equal to 1.

Le motif 4 peut être de forme quelconque. Toutefois, la surface équivalente du motif détermine la largeur et/ou la profondeur de la bande interdite.Pattern 4 may be of any shape. However, the equivalent area of the pattern determines the width and / or depth of the band gap.

Pour mettre en oeuvre le phénomène de filtrage d'un tel dispositif, on a simulé un dispositif du type de celui représenté à la figure 1A dans lequel le substrat est constitué par du « Rogers Ro4003 » de permittivité relative εr=3.38 et les métallisations sont en cuivre d'épaisseur 17.5 µm. Dans ce cas, la structure à bandes interdites photoniques est composée de douze disques métalliques 4 périodiquement espacés d'une distance a = 12,7 mm correspondant à la création d'une bande interdite centrée à Fc(BI) = 8,3 GHz, et les disques 4 présentent un rayon r tel que le ratio r/a = 0,25.To implement the filtering phenomenon of such a device, a device of the type represented in FIG. Figure 1A in which the substrate consists of "Rogers Ro4003" of relative permittivity εr = 3.38 and the metallizations are made of copper with a thickness of 17.5 μm. In this case, the photonic bandgap structure is composed of twelve metal disks 4 periodically spaced a distance a = 12.7 mm corresponding to the creation of a forbidden band centered at Fc (BI) = 8.3 GHz, and the discs 4 have a radius r such that the ratio r / a = 0.25.

Comme représenté sur la figure 2 qui donne les coefficients de transmission S12 et de réflexion S11 en fonction de la fréquence, on obtient une bande interdite ayant une largeur de 900 MHz et centrée sur 8,25 GHz. Dans ce cas, la réjection à la fréquence centrale de 8,25 GHz est de -17dB.As shown on the figure 2 which gives the transmission coefficients S12 and reflection S11 as a function of the frequency, a forbidden band having a width of 900 MHz and centered on 8.25 GHz is obtained. In this case, the central frequency rejection of 8.25 GHz is -17 dB.

La présente invention concerne un perfectionnement à la structure ci-dessus. Ce perfectionnement permet entre autres de renforcer l'effet de la bande interdite photonique, en tirant pleinement profit de la ligne-fente sur laquelle intervient la structure BIP. Ainsi, à encombrement constant, il est possible d'augmenter la réjection de la bande interdite, ou, à réjection constante, de minimiser l'encombrement de la structure.The present invention relates to an improvement to the above structure. This enhancement makes it possible, among other the effect of the photonic forbidden band, taking full advantage of the line-slot on which the BIP structure intervenes. Thus, with constant space, it is possible to increase the rejection of the forbidden band, or, constant rejection, to minimize the bulk of the structure.

Par ailleurs, l'utilisation de deux substrats différents offre un degré de liberté supplémentaire pour l'ajustement de la rejection du filtre ainsi que de la fréquence centrale et de la largeur de la bande interdite.Moreover, the use of two different substrates offers an additional degree of freedom for adjusting the rejection of the filter as well as the center frequency and the width of the forbidden band.

La présente invention concerne donc un dispositif micro-ondes du type ligne-fente avec une structure à bandes interdites photoniques (BIP) caractérisé en ce qu'il comprend, au moins :

  • un premier substrat en un matériau diélectrique présentant une première permittivité εr1,
  • un deuxième substrat en un matériau diélectrique présentant une deuxième permittivité εr2, et
  • entre les deux substrats, une couche conductrice dans laquelle est gravée au moins une ligne-fente,
  • avec, sur la face des premier et second substrats opposée à la face en contact avec la couche conductrice, en regard de la ligne-fente, des motifs métalliques périodiques.
The present invention thus relates to a microwave device of the line-slot type with a photonic bandgap (BIP) structure, characterized in that it comprises, at least:
  • a first substrate made of a dielectric material having a first permittivity εr1,
  • a second substrate made of a dielectric material having a second permittivity εr2, and
  • between the two substrates, a conductive layer in which is etched at least one line-slot,
  • with, on the face of the first and second substrates opposite the face in contact with the conductive layer, opposite the slot line, periodic metal patterns.

Selon d'autres caractéristiques de la présente invention, les permittivités εr1 et εr2 des premier et second substrats peuvent être égales ou différentes. D'autre part, la période entre deux motifs métalliques est égale à kλg/2 où λg est la longueur d'onde guidée dans la fente à la fréquence centrale de la bande interdite photonique et k est un entier positif supérieur ou égal à 1. De plus, les motifs périodiques ont une surface équivalente fonction de la largeur et de la profondeur de la bande interdite.According to other characteristics of the present invention, the permittivities εr1 and εr2 of the first and second substrates may be equal or different. On the other hand, the period between two metallic patterns is equal to kλg / 2 where λg is the guided wavelength in the slot at the center frequency of the photonic forbidden band and k is a positive integer greater than or equal to 1. In addition, the periodic patterns have an equivalent area depending on the width and depth of the band gap.

Selon une autre caractéristique de l'invention, la période des motifs réalisés sur le premier substrat est identique à la période des motifs réalisés sur le second substrat. D'autre part, les motifs périodiques réalisés sur le premier substrat sont en regard des motifs réalisés sur le second substrat ou, selon une variante, les motifs réalisés sur le premier substrat sont décalés par rapport aux motifs périodiques réalisés sur le second substrat.According to another characteristic of the invention, the period of the patterns made on the first substrate is identical to the period of the patterns made on the second substrate. On the other hand, the periodic patterns made on the first substrate are opposite patterns made on the second substrate or, alternatively, the patterns made on the first substrate. are offset with respect to the periodic patterns made on the second substrate.

Selon une autre caractéristique de la présente invention, la structure à bandes interdites photoniques décrite ci-dessus peut être utilisée avec une ligne-fente gravée dans la couche conductrice, cette ligne-fente ayant une largeur variant selon une loi périodique. Cette forme de ligne-fente est connue sous la dénomination « Wiggly-slotline ». D'une manière générale, cette structure peut être utilisée avec tout autre dispositif à base de ligne fente (filtre,...). Dans le cas d'une ligne fente de type « wiggly » , cette invention permet de renforcer la fonction de filtrage.According to another characteristic of the present invention, the photonic bandgap structure described above can be used with a slot line etched in the conductive layer, this line-slot having a width varying according to a periodic law. This form of line-slot is known under the name "Wiggly-slotline". In general, this structure can be used with any other device based on line slot (filter, ...). In the case of a "wiggly" type slot line, this invention makes it possible to reinforce the filtering function.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description de différents modes de réalisation, cette description étant faite avec référence aux dessins ci-annexés dans lesquels :

  • Figures 1A et 1B sont respectivement une vue schématique en perspective et une vue en coupe d'un dispositif micro-ondes du type ligne-fente muni d'une structure à bandes interdites photoniques selon l'art antérieur.
  • Figure 2 représente des courbes donnant les paramètres S en fonction de la fréquence obtenus en simulant une structure telle que représentée à la figure 1A.
  • Figures 3A et 3B sont respectivement une vue schématique en perspective et une vue en coupe d'un dispositif micro-ondes du type ligne-fente muni de structures BIP conformément à un mode de réalisation de la présente invention.
  • Figure 4 représente des courbes donnant les paramètres S en fonction de la fréquence d'un dispositif simulé tel que le dispositif de la figure 3A.
  • Figure 5 est une vue en perspective schématique d'un autre mode de réalisation de la présente invention.
  • Figure 6 représente des courbes donnant les paramètres S en fonction de la fréquence obtenue en simulant une structure telle que celle représentée à la figure 5.
  • Figures 7A et 7B sont des vues en coupe d'un autre mode de réalisation d'un dispositif conforme à la présente invention.
Other characteristics and advantages of the present invention will appear on reading the description of various embodiments, this description being made with reference to the attached drawings in which:
  • Figures 1A and 1B are respectively a schematic perspective view and a sectional view of a microwave line-slot device provided with a photonic bandgap structure according to the prior art.
  • Figure 2 represents curves giving the parameters S as a function of the frequency obtained by simulating a structure as represented in FIG. Figure 1A .
  • Figures 3A and 3B are respectively a schematic perspective view and a sectional view of a line-slot microwave device provided with BIP structures according to an embodiment of the present invention.
  • Figure 4 represents curves giving the parameters S as a function of the frequency of a simulated device such as the device of the figure 3A .
  • Figure 5 is a schematic perspective view of another embodiment of the present invention.
  • Figure 6 represents curves giving the parameters S as a function of the frequency obtained by simulating a structure such as that represented in FIG. figure 5 .
  • Figures 7A and 7B are sectional views of another embodiment of a device according to the present invention.

Un premier dispositif micro-ondes conforme à la présente invention est représenté schématiquement sur les figures 3A et 3B. De manière plus précise, ce dispositif comporte un premier substrat 10 en un matériau diélectrique tel que le Rogers Ro4003. Ce premier substrat présente une permittivité εr1.A first microwave device according to the present invention is schematically represented on the Figures 3A and 3B . More specifically, this device comprises a first substrate 10 made of a dielectric material such as the Rogers Ro4003. This first substrate has a permittivity εr1.

De manière connue, une des faces du substrat 10 a été recouverte d'une couche conductrice 12, plus particulièrement d'une couche métallique telle qu'une couche de cuivre dans laquelle a été gravée une ligne-fente 13.In known manner, one of the faces of the substrate 10 has been covered with a conductive layer 12, more particularly with a metal layer such as a copper layer in which a line-slot 13 has been etched.

Comme représenté sur les figures, conformément à la présente invention, un second substrat 11 en matériau diélectrique présentant une permittivité εr2 a été déposé sous la couche 12. Dans ce cas, les permittivités εr1 et εr2 des deux substrats peuvent être identiques ou différentes. L'utilisation d'une permittivité différente donne un degré de liberté supplémentaire dans la réalisation du filtre souhaité en terme de réjection, largeur et fréquence centrale de la bande interdite. Le fait d'utiliser deux substrats différents modifie εeff vu par la ligne ; or cette valeur intervient dans la relation qui lie la fréquence centrale de la bande interdite au dimensionnement de la structure BIP. a = λ 0 2 ε eff = C 2 f ε eff

Figure imgb0001
As shown in the figures, according to the present invention, a second substrate 11 of dielectric material having a permittivity εr2 has been deposited under the layer 12. In this case, the permittivities εr1 and εr2 of the two substrates may be identical or different. The use of a different permittivity gives an additional degree of freedom in the realization of the desired filter in terms of rejection, width and central frequency of the forbidden band. The fact of using two different substrates modifies εeff seen by the line; this value is involved in the relationship between the central frequency of the forbidden band and the design of the BIP structure. at = λ 0 2 ε eff = VS 2 f ε eff
Figure imgb0001

Ainsi, pour un même dimensionnement BIP, si la permittivité est plus grande, alors la bande interdite est décalée vers les fréquences basses.Thus, for the same BIP dimensioning, if the permittivity is greater, then the forbidden band is shifted to the low frequencies.

Conformément à la présente invention, sur la structure décrite ci-dessus a été réalisée une première structure à bandes interdites photoniques constituée par des motifs métalliques 14 gravés sur la face du premier substrat 10 opposée à la face portant la couche métallique 12. Les motifs 14 sont constitués, dans le mode de réalisation représenté, par des pastilles en forme de disque, à savoir cinq pastilles métalliques. Les pastilles 14 sont espacées d'une distance a' qui donne la période de répétition du motif. Cette distance fixe la fréquence centrale de la bande interdite lorsque les motifs sont identiques. De ce fait, la distance a' entre les motifs est de l'ordre de k'λg/2 où λg est la longueur d'onde guidée dans la fente 13 à la fréquence centrale de la bande interdite choisie et k' un entier positif supérieur ou égal à 1.According to the present invention, on the structure described above was made a first photonic bandgap structure formed by metal patterns 14 etched on the face of the first substrate 10 opposite the face carrying the metal layer 12. The patterns 14 are constituted, in the embodiment shown, by disc-shaped pellets, namely five metal pellets. The pellets 14 are spaced a distance a 'which gives the repetition period of the pattern. This distance sets the center frequency of the forbidden band when the patterns are identical. As a result, the distance a 'between the patterns is of the order of k'λg / 2 where λg is the guided wavelength in the slot 13 at the central frequency of the chosen forbidden band and k' is a positive integer greater than or equal to 1.

D'autre part, comme représenté clairement sur la figure 3B, des motifs métalliques périodiques 15 ont été gravés sur la face du substrat 11 opposée à la face en contact avec la couche métallique 12. Cette structure formée par les motifs 15 est, dans ce mode de réalisation, identique à la structure formée par les motifs 14 et les motifs 14 et 15 sont en regard les uns des autres. Dans la structure à bandes interdites photoniques des figures 3A et 3B, on a réalisé des motifs identiques des deux côtés de la fente 13, à savoir l'espace entre les motifs 14 ou 15 et le nombre de motifs a été conservé. Un dispositif tel que représenté aux figures 3A et 3B a été simulé en excitant directement la ligne fente. Les deux substrats utilisés sont identiques (Ro4003 de permittivité er=3.38 et de hauteur h=0.81 mm). Les motifs BIPs sont également identiques au dessus et en dessous de la ligne fente. (5 pastilles espacée de a'=12.7mm et de rayon r'=3mm).On the other hand, as clearly represented on the figure 3B , periodic metal patterns 15 have been etched on the face of the substrate 11 opposite the face in contact with the metal layer 12. This structure formed by the patterns 15 is, in this embodiment, identical to the structure formed by the patterns. 14 and patterns 14 and 15 are opposite each other. In the photonic band gap structure of Figures 3A and 3B identical patterns were made on both sides of the slot 13, ie the space between the patterns 14 or 15 and the number of patterns was retained. A device as represented in Figures 3A and 3B was simulated by directly exciting the slit line. The two substrates used are identical (Ro4003 of permittivity er = 3.38 and height h = 0.81 mm). The BIP patterns are also identical above and below the slit line. (5 pellets spaced a '= 12.7mm and radius r' = 3mm).

Dans ce cas, les paramètres S de transmission et de réflexion sont présentés à la figure 4. Sur cette figure, la bande interdite a une largeur de 1.4 GHz et est centrée à 8.3 GHz. Cette bande est donc plus large que la bande obtenue avec un dispositif selon les figures 1A et 1B. D'autre part, la réjection à la fréquence centrale de la bande interdite est alors de -23dB, soit une amélioration de 6dB par rapport à la structure des figures 1A et 1B.In this case, the parameters S of transmission and reflection are presented to the figure 4 . In this figure, the forbidden band has a width of 1.4 GHz and is centered at 8.3 GHz. This band is therefore wider than the band obtained with a device according to the Figures 1A and 1B . On the other hand, central frequency rejection of the forbidden band is then -23dB, an improvement of 6dB compared to the structure of the Figures 1A and 1B .

On décrira maintenant avec référence à la figure 5, un autre mode de réalisation du dispositif micro-ondes conforme à la présente invention.We will now describe with reference to the figure 5 another embodiment of the microwave device according to the present invention.

Dans ce cas, la ligne-fente 21 réalisée dans la couche métallique 20 est constituée par une ligne présentant une largeur modulée périodiquement. Dans le présent cas, les modulations sont constituées par des cercles 21A espacés périodiquement sur la ligne 21.In this case, the line-slot 21 made in the metal layer 20 is constituted by a line having a width modulated periodically. In this case, the modulations are constituted by circles 21A spaced periodically on the line 21.

Comme pour le mode de réalisation des figures 3A et 3B, de chaque côté de la couche métallique 20 est prévu un substrat diélectrique. Sur la face du substrat opposée à la face portant la couche 20 ont été réalisées des structures à bandes interdites photoniques constituées par des pastilles métalliques 22 espacées périodiquement en vis-à-vis de la fente 21, selon une période a". Cette structure a été simulée en utilisant pour la période a", une valeur de 12.7 mm, cette périodicité étant utilisée aussi pour les cercles 21 a. D'autre part, pour la simulation, la ligne présente douze cercles 21 a.As for the embodiment of Figures 3A and 3B on each side of the metal layer 20 is provided a dielectric substrate. On the face of the substrate opposite the face carrying the layer 20 have been formed photonic bandgap structures constituted by metal pellets 22 spaced periodically vis-à-vis the slot 21, according to a period. was simulated using for the period a ", a value of 12.7 mm, this periodicity being used also for the circles 21 a. On the other hand, for the simulation, the line has twelve circles 21 a.

Les résultats de la simulation sont donnés sur la figure 6. Les paramètres S sont donnés en fonction de la fréquence. On obtient donc une bande interdite centrée sur 8.3 GHz et cette bande interdite présente une largeur de 5.2 GHz et montre une réjection à la fréquence centrale de -78dB.The results of the simulation are given on the figure 6 . S parameters are given as a function of frequency. This results in a bandgap centered on 8.3 GHz and this bandgap has a width of 5.2 GHz and shows a rejection at the center frequency of -78dB.

On décrira maintenant avec références aux figures 7A, 7B, un autre mode de réalisation du dispositif micro-ondes conforme à la présente invention.We will now describe with references to Figures 7A, 7B another embodiment of the microwave device according to the present invention.

Dans le cas représenté sur les figure 7A et 7B, le dispositif est constitué par deux substrats 30, 31 en un matériau diélectrique présentant des permittivités respectives εr1 et εr2. Entre les deux substrats est prévue une couche métallique 32 dans laquelle a été réalisée par gravure une ligne-fente 33. Sur les faces opposées à la face en contact avec la couche 32, ont été réalisées des structures à bandes interdites photoniques 34 et 35.In the case represented on the Figure 7A and 7B the device consists of two substrates 30, 31 in a dielectric material having respective permittivities εr1 and εr2. Between the two substrates is provided a metal layer 32 in which was made by etching a line-slot 33. On the faces opposite to the face in contact with the layer 32, were made photonic bandgap structures 34 and 35.

Comme représenté sur la figure 7B, la structure à bandes interdites photoniques 35 est constituée par des motifs espacés les uns des autres d'une distance a1 qui donne la périodicité des motifs. D'autre part, les motifs 34 présentent eux aussi une périodicité a1 mais ils ne sont pas en vis-à-vis des motifs 35. Les motifs sont en fait décalés au-dessus et en dessous de la ligne fente.As shown on the Figure 7B , the photonic bandgap structure 35 is constituted by patterns spaced from each other by a distance a 1 which gives the periodicity of the patterns. On the other hand, the patterns 34 also have a periodicity to 1 but they are not vis-à-vis the patterns 35. The patterns are actually shifted above and below the slit line.

Comme le montre des simulations complémentaires, l'effet obtenu est assez complexe. Par exemple, décaler les pastilles métalliques peut être vu comme une modification de la forme/surface de la cellule élémentaire notamment quand les pastilles au dessus et en dessous de la ligne fente se recouvrent partiellement.As complementary simulations show, the effect is rather complex. For example, shifting the metal pellets can be seen as a modification of the shape / surface of the elementary cell especially when the pellets above and below the slot line partially overlap.

C'est pourquoi, le décalage entre la couche de pastilles métalliques au dessus et en dessous de la ligne fente offre un degré de liberté supplémentaire que ce soit avec deux substrats identiques ou différents.Therefore, the gap between the layer of metal pellets above and below the slot line offers an additional degree of freedom whether with two identical or different substrates.

La présente invention a été décrite en se référant à des motifs ayant la forme de disque. Toutefois l'invention s'applique aussi à des motifs de forme quelconque, sachant que la surface équivalente du motif détermine la largeur et/ou la profondeur de la bande interdite.The present invention has been described with reference to disk-shaped patterns. However, the invention also applies to patterns of any shape, knowing that the equivalent surface of the pattern determines the width and / or depth of the band gap.

La présente invention est applicable notamment pour :

  • => renforcer le filtrage sur une structure de type fente.
  • => compacter la structure filtrante.
  • => offrir un degré de liberté supplémentaire dans le dessins des bandes interdites.
The present invention is applicable in particular for:
  • => Reinforce filtering on a slot-like structure.
  • => compact the filter structure.
  • => offer an additional degree of freedom in the prohibited band designs.

Claims (7)

  1. Microwave device of the slot-line type with a photonic band gap (PBG) structure performing a filtering or a frequency adaptation characterized in that it comprises at least:
    - a first substrate (10, 30) in a dielectric material having a first permittivity εr1,
    - characterized in that it comprises at least a second substrate (11, 31) in a dielectric material having a second permittivity εr2, different from the first permittivity εr1,
    - a conductive layer (12, 20, 32) between the first and the second substrate in which a slot-line (13, 21, 33) is engraved,
    - with, on each face of the first and of the second substrate opposite the face of the first and second substrates in contact with the conductive layer, facing the slot-line, periodic metal patterns (14, 15, 22; 34, 31).
  2. Device according to claim 1, characterized in that the period between two metal patterns is equal to kλg/2 where λg is the guided wavelength in the slot at the central frequency of the photonic band gap and k is a positive integer greater than or equal to 1.
  3. Device according to one of claims 1 or 2, characterized in that the periodic patterns have an equivalent surface determined by the width and/or the depth of the band gap.
  4. Device according to one of claims 1 to 3, characterized in that the period of the patterns realized on the first substrate is identical to the period of the patterns realized on the second substrate.
  5. Device according to one of claims 1 to 4, characterized in that the periodic patterns realized on the first substrate are facing the periodic patterns realized on the second substrate.
  6. Device according to one of claims 1 to 4, characterized in that the periodic patterns realized on the first substrate are offset in relation to the periodic patterns realized on the second substrate.
  7. Device according to one of claims 1 to 6, characterized in that the slot-line engraved in the conductive layer has a periodically modulated width.
EP05717648.9A 2004-01-07 2005-01-03 Slot-line-type microwave device with a photonic band gap structure Expired - Fee Related EP1719201B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450036A FR2864864B1 (en) 2004-01-07 2004-01-07 MICROWAVE DEVICE OF THE LINE-SLIT TYPE WITH A PHOTONIC PROHIBITED BAND STRUCTURE
PCT/FR2005/050001 WO2005067094A2 (en) 2004-01-07 2005-01-03 Slot-line-type microwave device with a photonic band gap structure

Publications (2)

Publication Number Publication Date
EP1719201A2 EP1719201A2 (en) 2006-11-08
EP1719201B1 true EP1719201B1 (en) 2013-07-31

Family

ID=34673938

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05717648.9A Expired - Fee Related EP1719201B1 (en) 2004-01-07 2005-01-03 Slot-line-type microwave device with a photonic band gap structure

Country Status (7)

Country Link
US (1) US8264304B2 (en)
EP (1) EP1719201B1 (en)
JP (1) JP4448143B2 (en)
KR (1) KR101126652B1 (en)
CN (1) CN1954458A (en)
FR (1) FR2864864B1 (en)
WO (1) WO2005067094A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100588030C (en) * 2005-08-31 2010-02-03 同济大学 Photon crystal microstrip line having microstrip line closed loop
US8766855B2 (en) * 2010-07-09 2014-07-01 Semiconductor Components Industries, Llc Microstrip-fed slot antenna

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577211B1 (en) * 1999-07-13 2003-06-10 Murata Manufacturing Co., Ltd. Transmission line, filter, duplexer and communication device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489881A (en) * 1992-10-14 1996-02-06 Matsushita Electric Industrial Co., Ltd. Stripline resonator filter including cooperative conducting cap and film
JP3140385B2 (en) 1996-12-18 2001-03-05 京セラ株式会社 High frequency semiconductor device
JP3439969B2 (en) 1997-12-15 2003-08-25 京セラ株式会社 High frequency input / output terminal and high frequency semiconductor element storage package
JP3440909B2 (en) * 1999-02-23 2003-08-25 株式会社村田製作所 Dielectric resonator, inductor, capacitor, dielectric filter, oscillator, dielectric duplexer, and communication device
FR2797352B1 (en) * 1999-08-05 2007-04-20 Cit Alcatel STORED ANTENNA OF RESONANT STRUCTURES AND MULTIFREQUENCY RADIOCOMMUNICATION DEVICE INCLUDING THE ANTENNA
JP3521834B2 (en) * 2000-03-07 2004-04-26 株式会社村田製作所 Resonator, filter, oscillator, duplexer and communication device
JP3735510B2 (en) * 2000-04-18 2006-01-18 株式会社村田製作所 Transmission line connection structure, high-frequency module, and communication device
US6518930B2 (en) * 2000-06-02 2003-02-11 The Regents Of The University Of California Low-profile cavity-backed slot antenna using a uniplanar compact photonic band-gap substrate
FR2845828B1 (en) * 2002-10-11 2008-08-22 Thomson Licensing Sa METHOD FOR PRODUCING A PHOTONIC PROHIBITED BAND STRUCTURE (BIP) ON A MICROWAVE DEVICE AND SLIT-TYPE ANTENNAS USING SUCH A STRUCTURE
US7277065B2 (en) * 2003-09-02 2007-10-02 Jay Hsing Wu Tunable photonic band gap structures for microwave signals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577211B1 (en) * 1999-07-13 2003-06-10 Murata Manufacturing Co., Ltd. Transmission line, filter, duplexer and communication device

Also Published As

Publication number Publication date
FR2864864B1 (en) 2006-03-17
KR20060126689A (en) 2006-12-08
FR2864864A1 (en) 2005-07-08
WO2005067094A2 (en) 2005-07-21
WO2005067094A3 (en) 2006-09-21
US8264304B2 (en) 2012-09-11
CN1954458A (en) 2007-04-25
EP1719201A2 (en) 2006-11-08
KR101126652B1 (en) 2012-03-26
US20100039190A1 (en) 2010-02-18
JP4448143B2 (en) 2010-04-07
JP2007518329A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
EP2564466B1 (en) Compact radiating element having resonant cavities
EP2571098B1 (en) Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips
FR2763177A1 (en) FILTER EMPLOYING A FREQUENCY SELECTIVITY SURFACE AND ANTENNA USING THE SAME
EP1145379B1 (en) Antenna provided with an assembly of filtering materials
FR3070224A1 (en) PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA
WO2008065311A2 (en) Multi-sector antenna
EP2636096B1 (en) Artificial magnetic conductor, and antenna
EP1550182B1 (en) Microwave slot-type device and slot-type antennas employing a photonic bandgap structure
WO2014072431A1 (en) Flattened dihedral shaped device possessing an adapted (maximised or minimised) equivalent radar cross section
EP2643886B1 (en) Planar antenna having a widened bandwidth
EP3417507B1 (en) Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
EP1719201B1 (en) Slot-line-type microwave device with a photonic band gap structure
WO2016083747A1 (en) Filtering device and filtering array having an electrically conductive strip structure
EP3840124A1 (en) Antenna with leakage wave in afsiw technology
EP3485534B1 (en) Controllable multifunctional frequency selective surface
FR2903235A1 (en) Slit-type longitudinal end-fire antenna e.g. Vivaldi type antenna, has slit formed by profiles, where one of profiles is in corrugated shape according to periodic function/hamming type mathematical rule to form photonic band gap structure
WO2005050773A1 (en) Method of producing a photonic bandgap structure
EP0022401A1 (en) Broad-band polariser with low ellipticity-ratio and microwave equipment with the same
FR3072832B1 (en) OPTICALLY TRANSPARENT AGILE ANTENNA SYSTEM
WO2011036418A1 (en) Miniature antenna
FR2858469A1 (en) Antenna for e.g. motor vehicle obstacles detecting radar, has assembly with two zones of active material layer that are controlled by respective polarization zones defined by metallic patterned layers
FR2830987A1 (en) Waveguide-fed antenna, for microwave or millimeter wave communications, has metallic surface at end of guide with at least one central
FR3092201A1 (en) A method of manufacturing a radio frequency device comprising a solid three-dimensional network of dielectric meshes
EP1825565A1 (en) Optimisation of forbidden photon band antennae

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 20060608

17Q First examination report despatched

Effective date: 20071115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20130806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005040625

Country of ref document: DE

Effective date: 20130926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602005040625

Country of ref document: DE

Effective date: 20130802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005040625

Country of ref document: DE

Effective date: 20140502

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160128

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160201

Year of fee payment: 12

Ref country code: FR

Payment date: 20160128

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005040625

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103