EP1719201A2 - Slot-line-type microwave device with a photonic band gap structure - Google Patents

Slot-line-type microwave device with a photonic band gap structure

Info

Publication number
EP1719201A2
EP1719201A2 EP05717648A EP05717648A EP1719201A2 EP 1719201 A2 EP1719201 A2 EP 1719201A2 EP 05717648 A EP05717648 A EP 05717648A EP 05717648 A EP05717648 A EP 05717648A EP 1719201 A2 EP1719201 A2 EP 1719201A2
Authority
EP
European Patent Office
Prior art keywords
substrate
patterns
line
slot
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05717648A
Other languages
German (de)
French (fr)
Other versions
EP1719201B1 (en
Inventor
Nicolas Boisbouvier
Ali Louzir
Françoise Le Bolzer
Anne-Claude Tarot
Kouroch Mahdjoubi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1719201A2 publication Critical patent/EP1719201A2/en
Application granted granted Critical
Publication of EP1719201B1 publication Critical patent/EP1719201B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2005Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/18Waveguides; Transmission lines of the waveguide type built-up from several layers to increase operating surface, i.e. alternately conductive and dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/2016Slot line filters; Fin line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor

Definitions

  • the present invention relates to a new microwave device of the slot type or slot-based structure (slot-line, wiggly slotline, etc.) comprising at least one structure with photonic bandgap (BIP)
  • BIP photonic bandgap
  • BIP photonic Band Gap Structure
  • PBG Photonic Band Gap Structure
  • ASA Hardmonic-less Annular Slot Antenna
  • FIGS. 1A and 1B such a microwave device comprises a substrate 1, one face 2 of which has been metallized.
  • a slit line 3 is produced by etching the metal layer.
  • the substrate 1 has a height h and is made of a known dielectric material such as the materials known under the name "Ro4003" or "FR4", the metallic layer preferably being made of copper or any other conductive material.
  • the BIP structure is obtained by making patterns
  • the patterns or pellets 4 are generally produced by etching a metallic layer and are located opposite the slot-line
  • the patterns 4 are repeated periodically and are spaced apart by a distance which gives the repetition period of the pattern. This distance fixes the central frequency of the forbidden band when the patterns are identical. Therefore, the distance a is of the order of k ⁇ g / 2 where ⁇ g is the guided wavelength in the slit-line 3 at the center frequency of the photonic band gap and k is a positive integer greater than or equal to 1.
  • Pattern 4 can be of any shape. However, the equivalent surface of the pattern determines the width and / or the depth of the prohibited band.
  • the rejection at the central frequency of 8.25 GHz is -17dB.
  • the present invention relates to an improvement to the above structure. This improvement allows, among other things, to strengthen the effect of the photonic band gap, taking full advantage of the slit line on which the BIP structure intervenes. Thus, at constant bulk, it is possible to increase the rejection of the forbidden band, or, at constant rejection, to minimize the bulk of the structure.
  • the use of two different substrates offers an additional degree of freedom for adjusting the rejection of the filter as well as the central frequency and the width of the band gap.
  • the present invention therefore relates to a microwave device of the slit line type with a photonic band gap structure (BIP) characterized in that it comprises, at least: - a first substrate made of a dielectric material having a first permittivity ⁇ r1, - a second substrate made of a dielectric material having a second permittivity ⁇ r2, and - between the two substrates, a conductive layer in which is etched at least one slit line, - with, on the face of the first and second substrates opposite the face in contact with the conductive layer, facing the slit line, periodic metallic patterns.
  • the permittivities ⁇ r1 and ⁇ r2 of the first and second substrates can be equal or different.
  • the period between two metallic patterns is equal to k ⁇ g / 2 where ⁇ g is the guided wavelength in the slot at the center frequency of the photonic band gap and k is a positive integer greater than or equal to 1.
  • the periodic patterns have an equivalent surface depending on the width and depth of the forbidden band.
  • the period of the patterns produced on the first substrate is identical to the period of the patterns produced on the second substrate.
  • the periodic patterns produced on the first substrate are opposite the patterns produced on the second substrate or, according to a variant, the patterns produced on the first substrate are offset from the periodic patterns made on the second substrate.
  • the photonic band gap structure described above can be used with a slit line etched in the conductive layer, this slit line having a width varying according to a periodic law.
  • This form of slot-line is known under the name “Wiggly-slotline”.
  • this structure can be used with any other device based on a slit line (filter, etc.).
  • a “wiggly” type slot line this invention makes it possible to strengthen the filtering function.
  • FIG. 1A and 1B are respectively a schematic perspective view and a sectional view of a microwave device of the slit-line type provided with a structure with photonic bandgaps according to the prior art.
  • "" Figure 2 represents curves giving the parameters S as a function of the frequency obtained by simulating a structure as shown in Figure 1A.
  • Figures 3A and 3B are respectively a schematic perspective view and a sectional view of a microwave device of the slit-line type provided with BIP structures in accordance with an embodiment of the present invention.
  • FIG. 4 represents curves giving the parameters S as a function of the frequency of a simulated device such as the device of FIG. 3A.
  • Figure 5 is a schematic perspective view of another embodiment of the present invention.
  • FIG. 1A and 1B are respectively a schematic perspective view and a sectional view of a microwave device of the slit-line type provided with a structure with photonic bandgaps according to the prior art.
  • Figure 2 represents curves giving the
  • FIGS. 7A and 7B are section views of another embodiment of a device conforming to the present invention.
  • a first microwave device according to the present invention is shown diagrammatically in FIGS. 3A and 3B. More specifically, this device comprises a first substrate 10 made of a dielectric material such as Rogers Ro4003. This first substrate has a permittivity ⁇ r1.
  • a conductive layer 12 In known manner, one of the faces of the substrate 10 has been covered with a conductive layer 12, more particularly with a metal layer such as a copper layer in which a slot line 13 has been etched.
  • a second substrate 11 of dielectric material having a permittivity ⁇ r2 has been deposited under the layer 12.
  • the permittivities ⁇ r1 and ⁇ r2 of the two substrates can be identical or different.
  • the use of a different permittivity gives an additional degree of freedom in the realization of the desired filter in terms of rejection, width and central frequency of the forbidden band.
  • the fact of using two different substrates modifies ⁇ eff seen by the line; however this value intervenes in the relation which links the central frequency of the forbidden band to the dimensioning of the BIP structure. .lambda.o
  • the patterns 14 are constituted, in the embodiment shown, by disc-shaped pellets, namely five metallic pellets.
  • the pads 14 are spaced a distance a 'which gives the repetition period of the pattern. This distance fixes the central frequency of the forbidden band when the patterns are identical.
  • the distance a 'between the patterns is of the order of k' ⁇ g / 2 where ⁇ g is the wavelength guided in the slot 13 at the center frequency of the selected band gap and k' a positive integer greater than or equal to 1.
  • periodic metallic patterns 15 have been etched on the face of the substrate 11 opposite the face in contact with the metallic layer 12.
  • This structure formed by the patterns 15 is, in this embodiment, identical to the structure formed by the patterns 14 and the patterns 14 and 15 are opposite one another.
  • identical patterns have been produced on both sides of the slot 13, namely the space between the patterns 14 or 15 and the number of patterns has been preserved.
  • 3A and 3B has been simulated by directly exciting the slit line.
  • the transmission and reflection parameters S are presented in FIG. 4.
  • the forbidden band has a width of 1.4 GHz and is centered at 8.3 GHz.
  • This strip is therefore wider than the strip obtained with a device according to FIGS. 1A and 1B.
  • the rejection at the center frequency of the band gap is then -23dB, an improvement of 6dB compared to the structure of Figures 1 A and 1 B.
  • Figure 5 another embodiment of the device microwave according to the present invention.
  • the 20 is constituted by a line having a width modulated periodically.
  • the modulations consist of circles 21 A spaced periodically on line 21.
  • a dielectric substrate is provided on each side of the metal layer 20.
  • photonic bandgap structures have been produced constituted by metal pellets 22 periodically spaced opposite the slot 21, according to a period a ".
  • This structure has was simulated using for the period a ", a value of 12.7 mm, this periodicity being used also for the circles 21a.
  • the line has twelve circles 21a. The results of the simulation are given in FIG. 6.
  • the parameters S are given as a function of the frequency.
  • the device consists of two substrates 30, 31 made of a dielectric material having respective permittivities ⁇ r1 and ⁇ r2. Between the two substrates is provided a metal layer 32 in which a slit line 33 has been produced by etching. On the faces opposite the face in contact with the layer 32, structures with photonic band gaps 34 and 35 have been produced. As shown in FIG.
  • the photonic band gap structure 35 consists of patterns spaced from each other by a distance ai which gives the periodicity of the patterns.
  • the patterns 34 also have a periodicity a ⁇ but they are not opposite the patterns 35.
  • the patterns are in fact offset above and below the slit line.
  • the effect obtained is quite complex.
  • shifting the metal pellets can be seen as a modification of the shape / surface of the elementary cell, especially when the pellets above and below the slit line partially overlap.
  • the offset between the layer of metal pellets above and below the slit line offers an additional degree of freedom, whether with two identical or different substrates.
  • the present invention has been described with reference to patterns in the form of a disc. However, the invention also applies to patterns of any shape, knowing that the equivalent surface of the pattern determines * ⁇ , the width and or the depth of the prohibited band. "J * 20

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Details Of Aerials (AREA)

Abstract

The invention relates to a slot-line-type microwave device with a photonic band gap structure (PBG), consisting of at least: a first substrate (10) which is made from a dielectric material having a first permittivity er1, a second substrate (11) which is made form a dielectric material having a second permittivity er2, and a conducting layer (12) which is disposed between the two substrates and in which at least one slot-line (13) is provided. In addition, periodic metal patterns (14, 15) are disposed on the face of the first and second substrates opposite that which is in contact with the conducting layer, facing the slot-line. The invention can be used to produce a compact filter structure.

Description

DISPOSITIF MICRO-ONDES DU TYPE LIGNE-FENTE AVEC UNE STRUCTURE A BANDES INTERDITES PHOTONIQUES MICROWAVE DEVICE OF THE SLOT-LINE TYPE WITH A PHOTONIC BAND STRUCTURE
La présente invention concerne un nouveau dispositif micro- ondes du type fente ou structure à base de fente (slot-line, wiggly slotline,...) comportant au moins une structure à bandes interdites photoniques (BIP) Les structures à bandes interdites photoniques (BIP) connues de manière plus générale sous le terme « Photonic Band Gap Structure » ou PBG en langue anglaise, sont des structures périodiques qui interdisent la propagation des ondes pour certaines bandes de fréquences. Depuis quelques années, des recherches et études ont été effectuées pour l'utilisation de ces structures dans des gammes de fréquences telles que celles utilisées dans les dispositifs micro-ondes. Un procédé de réalisation de structure de ce type a déjà été proposé par la demanderesse, notamment dans la demande de brevet français n° 02 12656 du 11 octobre 2002 et dans l'article intitulé « Harmonic- less Annular Slot Antenna (ASA) using a novel PBG structure for slot-line printed device » IEEE AP-S 2003. Ces ^documents décrivent donc un procédé de réalisation d'une structure BIP sur un dispositif micro-ondes de type ligne-fente réalisé sur un substrat métallisé, ainsi que des antennes du type fente annulaire ou des antennes de type Vivaldi utilisant de telles structures pour réaliser un filtrage ou une adaptation en fréquence de ladite antenne. Comme représenté sur les figures 1A et 1B, un tel dispositif micro-ondes comporte un substrat 1 dont une face 2 a été métallisée. Une ligne fente 3 est réalisée par gravure de la couche métallique. Comme représenté sur les figures 1A et 1B, le substrat 1 présente une hauteur h et est réalisé en un matériau diélectrique connu tel que les matériaux connus sous la dénomination « Ro4003 » ou du « FR4 », la couche métallique étant réalisée préférentiellement, en cuivre ou en tout autre matériau conducteur. . Dans ce cas, la structure BIP est obtenue en réalisant des motifsThe present invention relates to a new microwave device of the slot type or slot-based structure (slot-line, wiggly slotline, etc.) comprising at least one structure with photonic bandgap (BIP) The structures with photonic bandwidth ( BIP) known more generally under the term "Photonic Band Gap Structure" or PBG in English, are periodic structures which prohibit the propagation of waves for certain frequency bands. In recent years, research and studies have been carried out for the use of these structures in frequency ranges such as those used in microwave devices. A process for producing a structure of this type has already been proposed by the applicant, in particular in French patent application No. 02 12656 of October 11, 2002 and in the article entitled "Harmonic-less Annular Slot Antenna (ASA) using a novel PBG structure for slot-line printed device »IEEE AP-S 2003. These ^ documents therefore describe a process for producing a BIP structure on a line-slot type microwave device produced on a metallized substrate, as well as antennas of the annular slot type or Vivaldi type antennas using such structures to perform filtering or frequency adaptation of said antenna. As shown in FIGS. 1A and 1B, such a microwave device comprises a substrate 1, one face 2 of which has been metallized. A slit line 3 is produced by etching the metal layer. As shown in FIGS. 1A and 1B, the substrate 1 has a height h and is made of a known dielectric material such as the materials known under the name "Ro4003" or "FR4", the metallic layer preferably being made of copper or any other conductive material. . In this case, the BIP structure is obtained by making patterns
4, à savoir des pastilles, sur la face du substrat 1 opposée à la face portant la couche métallique 2. Les motifs ou pastilles 4 sont en général réalisés par gravure d'une couche métallique et se trouvent en vis-à-vis de la ligne-fente4, namely pellets, on the face of the substrate 1 opposite the face carrying the metallic layer 2. The patterns or pellets 4 are generally produced by etching a metallic layer and are located opposite the slot-line
3. De manière connue, pour obtenir une structure à bandes interdites photoniques, les motifs 4 se répètent périodiquement et sont espacés d'une distance a qui donne la période de répétition du motif. Cette distance fixe la fréquence centrale de la bande interdite lorsque les motifs sont identiques. De ce fait, la distance a est de l'ordre de kλg/2 où λg est la longueur d'onde guidée dans la ligne-fente 3 à la fréquence centrale de la bande interdite photonique et k est un entier positif supérieur ou égal à 1. Le motif 4 peut être de forme quelconque. Toutefois, la surface équivalente du motif détermine la largeur et/ou la profondeur de la bande interdite. Pour mettre en œuvre le phénomène de filtrage d'un tel dispositif, on a simulé un dispositif du type de celui représenté à la figure 1A dans lequel le substrat est constitué par du « Rogers Ro4003 » de permittivité relative εr=3.38 et les métallisations sont en cuivre d'épaisseur 17.5 μm.3. In a known manner, to obtain a structure with photonic bandgap, the patterns 4 are repeated periodically and are spaced apart by a distance which gives the repetition period of the pattern. This distance fixes the central frequency of the forbidden band when the patterns are identical. Therefore, the distance a is of the order of kλg / 2 where λg is the guided wavelength in the slit-line 3 at the center frequency of the photonic band gap and k is a positive integer greater than or equal to 1. Pattern 4 can be of any shape. However, the equivalent surface of the pattern determines the width and / or the depth of the prohibited band. To implement the filtering phenomenon of such a device, a device of the type shown in FIG. 1A has been simulated in which the substrate consists of "Rogers Ro4003" with relative permittivity εr = 3.38 and the metallizations are made of 17.5 μm thick copper.
Dans ce cas, la structure à bandes interdites photoniques est composée de douze disques métalliques 4 périodiquement espacés d'une distance a =In this case, the photonic band gap structure is composed of twelve metal discs 4 periodically spaced by a distance a =
12,7 mm correspondant à la création d'une bande interdite centrée à Fc(BI) = 8,3 GHz, et les disques 4 présentent un rayon r tel que le ratio r/a = 0,25. Comme représenté sur la figure 2 qui donne les coefficients de transmission S12 et de réflexion S11 en fonction de la fréquence, on obtient une bande interdite ayant une largeur de 900 MHz et centrée sur 8,25 GHz.12.7 mm corresponding to the creation of a forbidden band centered at Fc (BI) = 8.3 GHz, and the discs 4 have a radius r such that the ratio r / a = 0.25. As shown in FIG. 2 which gives the transmission coefficients S12 and of reflection S11 as a function of the frequency, a forbidden band is obtained having a width of 900 MHz and centered on 8.25 GHz.
Dans ce cas, la réjection à la fréquence centrale de 8,25 GHz est de -17dB. La présente invention concerne un perfectionnement à la structure ci-dessus. Ce perfectionnement permet entre autres de renforcer l'effet de la bande interdite photonique, en tirant pleinement profit de la ligne-fente sur laquelle intervient la structure BIP. Ainsi, à encombrement constant, il est possible d'augmenter la réjection de la bande interdite, ou, à réjection constante, de minimiser l'encombrement de la structure. Par ailleurs, l'utilisation de deux substrats différents offre un degré de liberté supplémentaire pour l'ajustement de la réjection du filtre ainsi que de la fréquence centrale et de la largeur de la bande interdite. La présente invention concerne donc un dispositif micro-ondes du type ligne-fente avec une structure à bandes interdites photoniques (BIP) caractérisé en ce qu'il comprend, au moins : - un premier substrat en un matériau diélectrique présentant une première permittivité εr1 , - un deuxième substrat en un matériau diélectrique présentant une deuxième permittivité εr2, et - entre les deux substrats, une couche conductrice dans laquelle est gravée au moins une ligne-fente, - avec, sur la face des premier et second substrats opposée à la face en contact avec la couche conductrice, en regard de la ligne -fente, des motifs métalliques périodiques. *.» Selon d'autres caractéristiques de la présente invention, les permittivités εr1 et εr2 des premier et second substrats peuvent être égales ou différentes. D'autre part, la période entre deux motifs métalliques est égale à kλg/2 où λg est la longueur d'onde guidée dans la fente à la fréquence centrale de la bande interdite photonique et k est un entier positif supérieur ou égal à 1. De plus, les motifs périodiques ont une surface équivalente fonction de la largeur et de la profondeur de la bande interdite. Selon une autre caractéristique de l'invention, la période des motifs réalisés sur le premier substrat est identique à la période des motifs réalisés sur le second substrat. D'autre part, les motifs périodiques réalisés sur le premier substrat sont en regard des motifs réalisés sur le second substrat ou, selon une variante, les motifs réalisés sur le premier substrat sont décalés par rapport aux motifs périodiques réalisés sur le second substrat. Selon une autre caractéristique de la présente invention, la structure à bandes interdites photoniques décrite ci-dessus peut être utilisée avec une ligne-fente gravée dans la couche conductrice, cette ligne-fente ayant une largeur variant selon une loi périodique. Cette forme de ligne- fente est connue sous la dénomination « Wiggly-slotline ». D'une manière générale, cette structure peut être utilisée avec tout autre dispositif à base de ligne fente (filtre,...). Dans le cas d'une ligne fente de type « wiggly » , cette invention permet de renforcer la fonction de filtrage. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description de différents modes de réalisation, cette description étant faite avec référence aux dessins ci-annexés dans lesquels : Figures 1A et 1B sont respectivement une vue schématique en perspective et une vue en coupe d'un dispositif micro-ondes du type ligne- fente muni d'une structure à bandes interdites photoniques selon l'art antérieur. «« Figure 2 représente des courbes donnant les paramètres S en fonction de la fréquence obtenus en simulant une structure telle que représentée à la figure 1A. Figures 3A et 3B sont respectivement une vue schématique en perspective et une vue en coupe d'un dispositif micro-ondes du type ligne- fente muni de structures BIP conformément à un mode de réalisation de la présente invention. Figure 4 représente des courbes donnant les paramètres S en fonction de la fréquence d'un dispositif simulé tel que le dispositif de la figure 3A. Figure 5 est une vue en perspective schématique d'un autre mode de réalisation de la présente invention. Figure 6 représente des courbes donnant les paramètres S en fonction de la fréquence obtenue en simulant une structure telle que celle représentée à la figure 5. Figures 7A et 7B sont des vues en coupe d'un autre mode de réalisation d'un dispositif conforme à la présente invention. Un premier dispositif micro-ondes conforme à la présente invention est représenté schématiquement sur les figures 3A et 3B. De manière plus précise, ce dispositif comporte un premier substrat 10 en un matériau diélectrique tel que le Rogers Ro4003. Ce premier substrat présente une permittivité εr1. De manière connue, une des faces du substrat 10 a été recouverte d'une couche conductrice 12, plus particulièrement d'une couche métallique telle qu'une couche de cuivre dans laquelle a été gravée une ligne-fente 13. Comme représenté sur les figures, conformément à la présente invention, un second substrat 11 en matériau diélectrique présentant une permittivité εr2 a été déposé sous la couche 12. Dans ce cas, les permittivités εr1 et εr2 des deux substrats peuvent être identiques ou différentes. L'utilisation d'une permittivité différente donne un degré de liberté supplémentaire dans la réalisation du filtre souhaité en terme de réjection, largeur et fréquence centrale de la bande interdite. Le fait d'utiliser deux substrats différents modifie εeff vu par la ligne ; or cette valeur intervient dans la relation qui lie la fréquence centrale de la bande interdite au dimensionnement de la structure BIP. λOIn this case, the rejection at the central frequency of 8.25 GHz is -17dB. The present invention relates to an improvement to the above structure. This improvement allows, among other things, to strengthen the effect of the photonic band gap, taking full advantage of the slit line on which the BIP structure intervenes. Thus, at constant bulk, it is possible to increase the rejection of the forbidden band, or, at constant rejection, to minimize the bulk of the structure. In addition, the use of two different substrates offers an additional degree of freedom for adjusting the rejection of the filter as well as the central frequency and the width of the band gap. The present invention therefore relates to a microwave device of the slit line type with a photonic band gap structure (BIP) characterized in that it comprises, at least: - a first substrate made of a dielectric material having a first permittivity εr1, - a second substrate made of a dielectric material having a second permittivity εr2, and - between the two substrates, a conductive layer in which is etched at least one slit line, - with, on the face of the first and second substrates opposite the face in contact with the conductive layer, facing the slit line, periodic metallic patterns. *. ”According to other characteristics of the present invention, the permittivities εr1 and εr2 of the first and second substrates can be equal or different. On the other hand, the period between two metallic patterns is equal to kλg / 2 where λg is the guided wavelength in the slot at the center frequency of the photonic band gap and k is a positive integer greater than or equal to 1. In addition, the periodic patterns have an equivalent surface depending on the width and depth of the forbidden band. According to another characteristic of the invention, the period of the patterns produced on the first substrate is identical to the period of the patterns produced on the second substrate. On the other hand, the periodic patterns produced on the first substrate are opposite the patterns produced on the second substrate or, according to a variant, the patterns produced on the first substrate are offset from the periodic patterns made on the second substrate. According to another characteristic of the present invention, the photonic band gap structure described above can be used with a slit line etched in the conductive layer, this slit line having a width varying according to a periodic law. This form of slot-line is known under the name “Wiggly-slotline”. In general, this structure can be used with any other device based on a slit line (filter, etc.). In the case of a “wiggly” type slot line, this invention makes it possible to strengthen the filtering function. Other characteristics and advantages of the present invention will appear on reading the description of various embodiments, this description being made with reference to the accompanying drawings in which: FIGS. 1A and 1B are respectively a schematic perspective view and a sectional view of a microwave device of the slit-line type provided with a structure with photonic bandgaps according to the prior art. "" Figure 2 represents curves giving the parameters S as a function of the frequency obtained by simulating a structure as shown in Figure 1A. Figures 3A and 3B are respectively a schematic perspective view and a sectional view of a microwave device of the slit-line type provided with BIP structures in accordance with an embodiment of the present invention. FIG. 4 represents curves giving the parameters S as a function of the frequency of a simulated device such as the device of FIG. 3A. Figure 5 is a schematic perspective view of another embodiment of the present invention. FIG. 6 represents curves giving the parameters S as a function of the frequency obtained by simulating a structure such as that represented in FIG. 5. FIGS. 7A and 7B are section views of another embodiment of a device conforming to the present invention. A first microwave device according to the present invention is shown diagrammatically in FIGS. 3A and 3B. More specifically, this device comprises a first substrate 10 made of a dielectric material such as Rogers Ro4003. This first substrate has a permittivity εr1. In known manner, one of the faces of the substrate 10 has been covered with a conductive layer 12, more particularly with a metal layer such as a copper layer in which a slot line 13 has been etched. As shown in the figures , in accordance with the present invention, a second substrate 11 of dielectric material having a permittivity εr2 has been deposited under the layer 12. In this case, the permittivities εr1 and εr2 of the two substrates can be identical or different. The use of a different permittivity gives an additional degree of freedom in the realization of the desired filter in terms of rejection, width and central frequency of the forbidden band. The fact of using two different substrates modifies εeff seen by the line; however this value intervenes in the relation which links the central frequency of the forbidden band to the dimensioning of the BIP structure. .lambda.o
Ainsi, pour un même dimensionnement BIP, si la permittivité est plus grande, alors la bande interdite est décalée vers les fréquences basses. Conformément à la présente invention, sur la structure décrite ci- dessus a été réalisée une première structure à bandes interdites photoniques constituée par des motifs métalliques 14 gravés sur la face du premier substrat 10 opposée à la face portant la couche métallique 12. Les motifs 14 sont constitués, dans le mode de réalisation représenté, par des pastilles en forme de disque, à savoir cinq pastilles métalliques. Les pastilles 14 sont espacées d'une distance a' qui donne la période de répétition du motif. Cette distance fixe la fréquence centrale de la bande interdite lorsque les motifs sont identiques. De ce fait, la distance a' entre les motifs est de l'ordre de k'λg/2 où λg est la longueur d'onde guidée dans la fente 13 à la fréquence centrale de la bande interdite choisie et k' un entier positif supérieur ou égal à 1. D'autre part, comme représenté clairement sur la figure 3B, des motifs métalliques périodiques 15 ont été gravés sur la face du substrat 11 opposée à la face en contact avec la couche métallique 12. Cette structure formée par les motifs 15 est, dans ce mode de réalisation, identique à la structure formée par les motifs 14 et les motifs 14 et 15 sont en regard les uns des autres. Dans la structure à bandes interdites photoniques des figures 3A et 3B, on a réalisé des motifs identiques des deux côtés de la fente 13, à savoir l'espace entre les motifs 14 ou 15 et le nombre de motifs a été conservé. Un dispositif tel que représenté aux figures 3A et 3B a été simulé en excitant directement la ligne fente. Les deux substrats utilisés sont identiques (Ro4003 de permittivité er=3.38 et de hauteur h=0.81mm). Les motifs BIPs sont également identiques au dessus et en dessous de la ligne fente. (5 pastilles espacée de a -12.7mm et de rayon r'=3mm).Thus, for the same BIP sizing, if the permittivity is greater, then the band gap is shifted towards the low frequencies. In accordance with the present invention, on the structure described above was produced a first structure with photonic bandgap formed by metallic patterns 14 etched on the face of the first substrate 10 opposite the face carrying the metallic layer 12. The patterns 14 are constituted, in the embodiment shown, by disc-shaped pellets, namely five metallic pellets. The pads 14 are spaced a distance a 'which gives the repetition period of the pattern. This distance fixes the central frequency of the forbidden band when the patterns are identical. Therefore, the distance a 'between the patterns is of the order of k'λg / 2 where λg is the wavelength guided in the slot 13 at the center frequency of the selected band gap and k' a positive integer greater than or equal to 1. On the other hand, as shown clearly in FIG. 3B, periodic metallic patterns 15 have been etched on the face of the substrate 11 opposite the face in contact with the metallic layer 12. This structure formed by the patterns 15 is, in this embodiment, identical to the structure formed by the patterns 14 and the patterns 14 and 15 are opposite one another. In the photonic bandgap structure of FIGS. 3A and 3B, identical patterns have been produced on both sides of the slot 13, namely the space between the patterns 14 or 15 and the number of patterns has been preserved. A device as shown in FIGS. 3A and 3B has been simulated by directly exciting the slit line. The two substrates used are identical (Ro4003 with permittivity er = 3.38 and height h = 0.81mm). The BIPs patterns are also identical above and below the slit line. (5 pads spaced a -12.7mm and radius r '= 3mm).
Dans ce cas, les paramètres S de transmission et de réflexion sont présentés à la figure 4. Sur cette figure, la bande interdite a une largeur de 1.4 GHz et est centrée à 8.3 GHz. Cette bande est donc plus large que la bande obtenue avec un dispositif selon les figures 1A et 1B. D'autre part, la réjection à la fréquence centrale de la bande interdite est alors de -23dB, soit une amélioration de 6dB par rapport à la structure des figures 1 A et 1 B. On décrira maintenant avec référence à la figure 5, un autre mode de réalisation du dispositif micro-ondes conforme à la présente invention. Dans ce cas, la ligne-fente 21 réalisée dans la couche métalliqueIn this case, the transmission and reflection parameters S are presented in FIG. 4. In this figure, the forbidden band has a width of 1.4 GHz and is centered at 8.3 GHz. This strip is therefore wider than the strip obtained with a device according to FIGS. 1A and 1B. On the other hand, the rejection at the center frequency of the band gap is then -23dB, an improvement of 6dB compared to the structure of Figures 1 A and 1 B. We will now describe with reference to Figure 5, another embodiment of the device microwave according to the present invention. In this case, the slit line 21 produced in the metal layer
20 est constituée par une ligne présentant une largeur modulée périodiquement. Dans le présent cas, les modulations sont constituées par des cercles 21 A espacés périodiquement sur la ligne 21. Comme pour le mode de réalisation des figures 3A et 3B, de chaque côté de la couche métallique 20 est prévu un substrat diélectrique. Sur la face du substrat opposée à la face portant la couche 20 ont été réalisées des structures à bandes interdites photoniques constituées par des pastilles métalliques 22 espacées périodiquement en vis-à-vis de la fente 21, selon une période a". Cette structure a été simulée en utilisant pour la période a", une valeur de 12.7 mm, cette périodicité étant utilisée aussi pour les cercles 21a. D'autre part, pour la simulation, la ligne présente douze cercles 21a. Les résultats de la simulation sont donnés sur la figure 6. Les paramètres S sont donnés ep fonction de la fréquence. On obtient donc une bande interdite centrée sur 8.3 GHz et cette bande interdite présente une largeur de 5.2 GHz et montre une réjection à la fréquence centrale de -78dB. On décrira maintenant avec références aux figures 7A, 7B, un autre mode de réalisation du dispositif micro-ondes conforme à la présente invention. Dans le cas représenté sur les figure 7A et 7B, le dispositif est constitué par deux substrats 30, 31 en un matériau diélectrique présentant des permittivités respectives εr1 et εr2. Entre les deux substrats est prévue une couche métallique 32 dans laquelle a été réalisée par gravure une ligne-fente 33. Sur les faces opposées à la face en contact avec la couche 32, ont été réalisées des structures à bandes interdites photoniques 34 et 35. Comme représenté sur la figure 7B, la structure à bandes interdites photoniques 35 est constituée par des motifs espacés les uns des autres d'une distance a-i qui donne la périodicité des motifs. D'autre part, les motifs 34 présentent eux aussi une périodicité a^ mais ils ne sont pas en vis- 5 à-vis des motifs 35. Les motifs sont en fait décalés au-dessus et en dessous de la ligne-fente.20 is constituted by a line having a width modulated periodically. In the present case, the modulations consist of circles 21 A spaced periodically on line 21. As for the embodiment of FIGS. 3A and 3B, a dielectric substrate is provided on each side of the metal layer 20. On the face of the substrate opposite to the face carrying the layer 20, photonic bandgap structures have been produced constituted by metal pellets 22 periodically spaced opposite the slot 21, according to a period a ". This structure has was simulated using for the period a ", a value of 12.7 mm, this periodicity being used also for the circles 21a. On the other hand, for the simulation, the line has twelve circles 21a. The results of the simulation are given in FIG. 6. The parameters S are given as a function of the frequency. We thus obtain a forbidden band centered on 8.3 GHz and this forbidden band has a width of 5.2 GHz and shows a rejection at the center frequency of -78dB. Another embodiment of the microwave device according to the present invention will now be described with reference to FIGS. 7A, 7B. In the case shown in FIGS. 7A and 7B, the device consists of two substrates 30, 31 made of a dielectric material having respective permittivities εr1 and εr2. Between the two substrates is provided a metal layer 32 in which a slit line 33 has been produced by etching. On the faces opposite the face in contact with the layer 32, structures with photonic band gaps 34 and 35 have been produced. As shown in FIG. 7B, the photonic band gap structure 35 consists of patterns spaced from each other by a distance ai which gives the periodicity of the patterns. On the other hand, the patterns 34 also have a periodicity a ^ but they are not opposite the patterns 35. The patterns are in fact offset above and below the slit line.
Comme le montre des simulations complémentaires, l'effet obtenu est assez complexe. Par exemple, décaler les pastilles métalliques peut être 10 vu comme une modification de la forme/surface de la cellule élémentaire notamment quand les pastilles au dessus et en dessous de la ligne fente se recouvrent partiellement. C'est pourquoi, le décalage entre la couche de pastilles métalliques au dessus et en dessous de la ligne fente offre un degré de liberté 15 supplémentaire que ce soit avec deux substrats identiques ou différents. La présente invention a été décrite en se référant à des motifs ayant la forme de disque. Toutefois l'invention s'applique aussi à des motifs de forme quelconque, sachant que la surface équivalente du motif détermine *Φ, la largeur et ou la profondeur de la bande interdite. «j* 20 La présente invention est applicable notamment pour : => renforcer le filtrage sur une structure de type fente. => compacter la structure filtrante. => offrir un degré de liberté supplémentaire dans le dessins des bandes interdites.As shown in additional simulations, the effect obtained is quite complex. For example, shifting the metal pellets can be seen as a modification of the shape / surface of the elementary cell, especially when the pellets above and below the slit line partially overlap. This is why the offset between the layer of metal pellets above and below the slit line offers an additional degree of freedom, whether with two identical or different substrates. The present invention has been described with reference to patterns in the form of a disc. However, the invention also applies to patterns of any shape, knowing that the equivalent surface of the pattern determines * Φ, the width and or the depth of the prohibited band. "J * 20 The present invention is applicable in particular for: => strengthening filtering on a structure of the slit type. => compact the filter structure. => offer an additional degree of freedom in the design of the prohibited bands.
25 25

Claims

REVENDICATIONS
1 ) Dispositif micro-ondes du type ligne-fente avec une structure à bandes interdites photoniques (BIP), caractérisé en ce qu'il comprend au moins : - un premier substrat (10,30) en un matériau diélectrique présentant une première permittivité εr1 , - un deuxième substrat (11 ,31) en un matériau diélectrique présentant une deuxième permittivité εr2, et - une couche conductrice (12,20,32) entre les deux substrats dans laquelle est gravée au moins une ligne-fente (13,21 ,33), - avec, sur la face des premier et second substrats opposée à la face en contact avec la couche conductrice, en regard de la ligne-fente, des motifs (14,15,22 ;34,31) métalliques périodiques.1) Microwave device of the slit-line type with a photonic band gap structure (BIP), characterized in that it comprises at least: - a first substrate (10,30) made of a dielectric material having a first permittivity εr1 , - a second substrate (11, 31) of a dielectric material having a second permittivity εr2, and - a conductive layer (12,20,32) between the two substrates in which is etched at least one slit line (13,21 , 33), - with, on the face of the first and second substrates opposite the face in contact with the conductive layer, facing the slit line, periodic metallic patterns (14,15,22; 34,31).
2) Dispositif selon la revendication 1 , caractérisé en ce que les permittivités εr1 et εr2 des premier et second substrats sont égales ou différentes. 3) Dispositif selon l'une quelconque des revendications 1 et 2, caractérisé en ce que la période entre deux motifs métalliques est égale à kλg/2 où λg est la longueur d'onde guidée dans la fente à la fréquence centrale de la bande interdite photonique et k est un entier positif, supérieur ou égal à 1.2) Device according to claim 1, characterized in that the permittivities εr1 and εr2 of the first and second substrates are equal or different. 3) Device according to any one of claims 1 and 2, characterized in that the period between two metallic patterns is equal to kλg / 2 where λg is the wavelength guided in the slot at the center frequency of the band gap photonics and k is a positive integer, greater than or equal to 1.
4) Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que les motifs périodiques ont une surface équivalente fonction de la largeur et de la profondeur de la bande interdite. 5) Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la période des motifs réalisés sur le premier substrat est identique à la période des motifs réalisés sur le second substrat. 6) Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que les motifs périodiques réalisés sur le premier substrat sont en regard des motifs périodiques réalisés sur le second substrat.4) Device according to one of claims 1 to 3, characterized in that the periodic patterns have an equivalent surface depending on the width and depth of the prohibited band. 5) Device according to any one of claims 1 to 4, characterized in that the period of the patterns made on the first substrate is identical to the period of the patterns made on the second substrate. 6) Device according to one of claims 1 to 5, characterized in that the periodic patterns made on the first substrate are opposite the periodic patterns made on the second substrate.
7) Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que les motifs périodiques réalisés sur le premier substrat sont décalés par rapport aux motifs périodiques réalisés sur le second substrat.7) Device according to one of claims 1 to 6, characterized in that the periodic patterns made on the first substrate are offset from the periodic patterns made on the second substrate.
8) Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la ligne-fente gravée dans la couche conductrice présente une largeur suivant une loi périodique. 8) Device according to any one of claims 1 to 7, characterized in that the slit line etched in the conductive layer has a width according to a periodic law.
EP05717648.9A 2004-01-07 2005-01-03 Slot-line-type microwave device with a photonic band gap structure Expired - Fee Related EP1719201B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450036A FR2864864B1 (en) 2004-01-07 2004-01-07 MICROWAVE DEVICE OF THE LINE-SLIT TYPE WITH A PHOTONIC PROHIBITED BAND STRUCTURE
PCT/FR2005/050001 WO2005067094A2 (en) 2004-01-07 2005-01-03 Slot-line-type microwave device with a photonic band gap structure

Publications (2)

Publication Number Publication Date
EP1719201A2 true EP1719201A2 (en) 2006-11-08
EP1719201B1 EP1719201B1 (en) 2013-07-31

Family

ID=34673938

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05717648.9A Expired - Fee Related EP1719201B1 (en) 2004-01-07 2005-01-03 Slot-line-type microwave device with a photonic band gap structure

Country Status (7)

Country Link
US (1) US8264304B2 (en)
EP (1) EP1719201B1 (en)
JP (1) JP4448143B2 (en)
KR (1) KR101126652B1 (en)
CN (1) CN1954458A (en)
FR (1) FR2864864B1 (en)
WO (1) WO2005067094A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100588030C (en) * 2005-08-31 2010-02-03 同济大学 Photon crystal microstrip line having microstrip line closed loop
US8766855B2 (en) * 2010-07-09 2014-07-01 Semiconductor Components Industries, Llc Microstrip-fed slot antenna

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617476B1 (en) * 1992-10-14 2000-03-29 Matsushita Electric Industrial Co., Ltd. Filter and method for its manufacture
JP3140385B2 (en) 1996-12-18 2001-03-05 京セラ株式会社 High frequency semiconductor device
JP3439969B2 (en) 1997-12-15 2003-08-25 京セラ株式会社 High frequency input / output terminal and high frequency semiconductor element storage package
JP3440909B2 (en) * 1999-02-23 2003-08-25 株式会社村田製作所 Dielectric resonator, inductor, capacitor, dielectric filter, oscillator, dielectric duplexer, and communication device
JP3650957B2 (en) * 1999-07-13 2005-05-25 株式会社村田製作所 Transmission line, filter, duplexer and communication device
FR2797352B1 (en) * 1999-08-05 2007-04-20 Cit Alcatel STORED ANTENNA OF RESONANT STRUCTURES AND MULTIFREQUENCY RADIOCOMMUNICATION DEVICE INCLUDING THE ANTENNA
JP3521834B2 (en) * 2000-03-07 2004-04-26 株式会社村田製作所 Resonator, filter, oscillator, duplexer and communication device
JP3735510B2 (en) * 2000-04-18 2006-01-18 株式会社村田製作所 Transmission line connection structure, high-frequency module, and communication device
US6518930B2 (en) * 2000-06-02 2003-02-11 The Regents Of The University Of California Low-profile cavity-backed slot antenna using a uniplanar compact photonic band-gap substrate
FR2845828B1 (en) * 2002-10-11 2008-08-22 Thomson Licensing Sa METHOD FOR PRODUCING A PHOTONIC PROHIBITED BAND STRUCTURE (BIP) ON A MICROWAVE DEVICE AND SLIT-TYPE ANTENNAS USING SUCH A STRUCTURE
US7277065B2 (en) * 2003-09-02 2007-10-02 Jay Hsing Wu Tunable photonic band gap structures for microwave signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005067094A3 *

Also Published As

Publication number Publication date
US20100039190A1 (en) 2010-02-18
WO2005067094A2 (en) 2005-07-21
US8264304B2 (en) 2012-09-11
CN1954458A (en) 2007-04-25
FR2864864B1 (en) 2006-03-17
EP1719201B1 (en) 2013-07-31
JP2007518329A (en) 2007-07-05
KR101126652B1 (en) 2012-03-26
JP4448143B2 (en) 2010-04-07
FR2864864A1 (en) 2005-07-08
WO2005067094A3 (en) 2006-09-21
KR20060126689A (en) 2006-12-08

Similar Documents

Publication Publication Date Title
EP2564466B1 (en) Compact radiating element having resonant cavities
EP0123350B1 (en) Plane microwave antenna with a totally suspended microstrip array
FR2763177A1 (en) FILTER EMPLOYING A FREQUENCY SELECTIVITY SURFACE AND ANTENNA USING THE SAME
EP2571098B1 (en) Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips
EP0783189A1 (en) Microwave planar antenna array for communicating with geostationary television satellites
EP1145379B1 (en) Antenna provided with an assembly of filtering materials
FR2810164A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS FOR SATELLITE TELECOMMUNICATIONS SYSTEMS
WO2008065311A2 (en) Multi-sector antenna
EP3540853B1 (en) Antenna with broadband transmitter network
EP1550182B1 (en) Microwave slot-type device and slot-type antennas employing a photonic bandgap structure
EP3840124B1 (en) Antenna with leaky wave in afsiw technology
WO2003028157A1 (en) Broadband or multiband antenna
EP3417507A1 (en) Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
EP1719201B1 (en) Slot-line-type microwave device with a photonic band gap structure
EP0595726A1 (en) Phase shifter for electromagnetic waves and application in an antenna with electronic scanning
EP3485534B1 (en) Controllable multifunctional frequency selective surface
WO2005050773A1 (en) Method of producing a photonic bandgap structure
FR2858469A1 (en) Antenna for e.g. motor vehicle obstacles detecting radar, has assembly with two zones of active material layer that are controlled by respective polarization zones defined by metallic patterned layers
WO2011036418A1 (en) Miniature antenna
FR2830987A1 (en) Waveguide-fed antenna, for microwave or millimeter wave communications, has metallic surface at end of guide with at least one central
FR2908561A1 (en) AGILE ANTENNA IN POLARIZATION AND FREQUENCY.
FR2707441A1 (en) Component for receiver or for differential direct spectrum spread spectrum signal transceiver and corresponding transceiver.
EP1825565A1 (en) Optimisation of forbidden photon band antennae

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 20060608

17Q First examination report despatched

Effective date: 20071115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20130806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005040625

Country of ref document: DE

Effective date: 20130926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602005040625

Country of ref document: DE

Effective date: 20130802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005040625

Country of ref document: DE

Effective date: 20140502

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160128

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160201

Year of fee payment: 12

Ref country code: FR

Payment date: 20160128

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005040625

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103