EP1718854B1 - Verfahren und vorrichtung zum bestimmen der ladeflanken eines piezoelektrischen aktors - Google Patents

Verfahren und vorrichtung zum bestimmen der ladeflanken eines piezoelektrischen aktors Download PDF

Info

Publication number
EP1718854B1
EP1718854B1 EP05701432A EP05701432A EP1718854B1 EP 1718854 B1 EP1718854 B1 EP 1718854B1 EP 05701432 A EP05701432 A EP 05701432A EP 05701432 A EP05701432 A EP 05701432A EP 1718854 B1 EP1718854 B1 EP 1718854B1
Authority
EP
European Patent Office
Prior art keywords
voltage
actuator
threshold
charging
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05701432A
Other languages
English (en)
French (fr)
Other versions
EP1718854A1 (de
Inventor
Wolfgang Stoecklein
Holger Rapp
Kai Sutter
Andreas Rau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1718854A1 publication Critical patent/EP1718854A1/de
Application granted granted Critical
Publication of EP1718854B1 publication Critical patent/EP1718854B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements

Definitions

  • the invention relates to a method and a device for determining the charging flank of a piezoelectric actuator of at least one injector, with which an amount of liquid is injected under high pressure into a cavity, in particular a combustion chamber of an internal combustion engine.
  • From the DE 100 32 022 A1 shows a method for determining the drive voltage for a piezoelectric actuator of an injection valve, in which before the next injection initially the pressure in a hydraulic coupler is measured indirectly.
  • the pressure is measured by the fact that the piezoelectric actuator is mechanically coupled to the hydraulic coupler, so that the pressure induces a corresponding voltage in the piezo-actuator.
  • This induced voltage is used before the next injection process to correct the drive voltage for the actuator.
  • injectors are used for example in common rail systems.
  • the pressure in the hydraulic coupler also depends on the rail pressure, so that the drive voltage is varied as a function of the rail pressure.
  • the voltage requirement of a piezoelectric actuator depends primarily on the pressure in the valve chamber and on the linear expansion of the piezoelectric actuator.
  • the voltage necessary for the proper operation of the injector at an operating point is the so-called voltage requirement, that is to say the relationship between voltage and stroke at a certain force, which is proportional to the rail pressure.
  • the derivation of the current voltage requirement of an injector from the voltage difference between maximum actuator voltage and stationary end voltage is for example from DE 103 15 815.4 known.
  • the charging edge It is also known to measure the charging edge to measure the voltage of the actuator shortly before the start of the discharge and regulate it to a desired value.
  • the manipulated variable used for this purpose is the so-called switch-off voltage, that is to say the voltage at which the charging process is terminated.
  • the duration of the charging edge is set to a predetermined nominal value of typically 100 microseconds.
  • a method for adjusting the charging voltage in which the voltage of a piezo stack is compared with a voltage stored in a sample-and-hold circuit, is compared by means of a comparison circuit.
  • a control circuit terminates a charge phase of the piezo stack.
  • the energy charged in the piezo stack can be made equal to the energy charged before the discharge. Even if the piezo stack is switched to a store when unloading, the energy of the piezo stack can be kept constant in this way.
  • the invention is based on the object to set the charging edge at each injector so that the influence of parameter tolerances, which influence the valve movement, can be kept as low as possible and in particular can be reduced compared to known from the prior art methods.
  • This object is achieved by a method and a device for determining the charging edge of a piezoelectric actuator of the type described above in that the difference between a cut-off voltage threshold and a stationary end voltage is detected and regulated to a predefinable setpoint.
  • the basic idea of the invention is accordingly to keep constant the difference between the switch-off voltage threshold, that is to say the voltage at which the charging process is terminated, and the stationary end voltage, that is to say the voltage of the actuator shortly before the discharge process starts.
  • the difference between the switch-off voltage threshold and the voltage of the actuator shortly before the start of the discharge process is a measure of the change in length of the actuator after the end of the charging edge and is thus again a measure of the way the switching valve after the end of the charging edge until it reaches its Must cover the stroke stop. If this difference is adjusted to a constant value, the switching valves of all injectors at the end of the loading flank have a uniform distance from their respective stroke stop.
  • the difference between the switch-off voltage threshold and the voltage of the actuator shortly before the start of the discharge by varying the switch-off threshold voltage to regulate the specifiable setpoint.
  • This embodiment is particularly suitable when the specification of the charging current can not be sufficiently finely quantized or given injector-individual. It is also advantageous that a variation of an already known and therefore not additionally detected size takes place.
  • the charging time is preferably adjusted to its desired value by varying the charging current.
  • the duration of the charging process is therefore regulated by varying the current threshold to a desired value. In this case, only the accuracy of the set charging time depends on how exactly the current threshold can be specified, and whether this injector-individual and thus cylinder-individually possible.
  • Fig. 1 shows a schematic representation of a known from the prior art injection valve 1 with a central bore.
  • a control piston 3 introduced with a piezoelectric actuator 2 in the central bore, wherein the actuating piston 3 is fixedly connected to the actuator 2.
  • the actuating piston 3 closes upwards a hydraulic coupler 4, while at the bottom an opening with a connecting channel to a first seat 6 is provided, in which a piston 5 is arranged with a valve closing member 12.
  • the valve closing member 12 is formed in this embodiment as a double-closing control valve, but it can also be designed as a simple closing control valve. It closes the first seat 6 when the actuator 2 is at rest.
  • a nozzle needle 11 is arranged in a corresponding channel, which closes or opens the outlet in a high pressure channel (common rail pressure) 13, depending on which control voltage U is present.
  • the high pressure is supplied through the medium to be injected, for example fuel for an internal combustion engine, via an inlet 9, via an inlet throttle 8 and an outlet throttle 10, the inflow amount of the medium in the direction of the nozzle needle 11 and the hydraulic coupler 4 is controlled.
  • the hydraulic coupler 4 has the task on the one hand to increase the stroke of the piston 5 and on the other hand to decouple the control valve from the static temperature expansion of the actuator 2. The refilling of the coupler 4 is not shown here.
  • a high pressure which may be in the common rail system, for example, between 200 and 2000 bar. This pressure acts against the nozzle needle 11 and keeps it closed, so that no fuel can escape. If, as a result of the control voltage U, the actuator 2 is actuated, and thus the closure member 12 is moved in the direction of the second seat, the pressure in the high-pressure region is reduced and the nozzle needle 11 releases the injection channel.
  • P 1 is the so-called coupler pressure, as it is present in the hydraulic coupler 4. In the coupler 4 is set without control U, a stationary pressure P 1 . After discharging the actuator 2, the coupler pressure P 1 is approximately 0 and is raised again by refilling.
  • the stroke and the force of the actuator 2 now correlate with the voltage with which the actuator 2 is charged. Since the force is proportional to the rail pressure, the voltage for a required Aktorhub for safe reaching the seat 7 must be adjusted depending on the rail pressure.
  • the voltage necessary for the proper operation of the injection valve or injector 1 at an operating point is the so-called voltage requirement, that is to say the relationship between voltage and stroke at a certain force, which is proportional to the rail pressure. From the DE 103 158 15.4 shows how can be derived from the voltage difference between maximum actuator voltage and steady-state voltage of the individual, current voltage requirement of an injector.
  • a voltage U rule of the actuator 2 is measured shortly before the start of the discharge process and adjusted to a desired value.
  • the manipulated variable used for this purpose is the so-called switch-off voltage threshold U switch-off, that is to say the voltage at which the charging process is terminated.
  • the duration of the charging edge is set to a setpoint ⁇ t L of typically 100 microseconds. This setting is done either by control or by controlling a switching threshold I s for the charging current, which thus serves as a manipulated variable. To vary the charging time .DELTA.t L so the charging current I is varied.
  • the switching valves of all injectors at the end of the loading flank have a uniform distance from their stroke stop. Moreover, if the duration of the charging process is kept constant, it is ensured that this uniform distance is achieved in each case at a defined time after the start of control.
  • the lifting movement of the switching valve 12 is practically independent of parameters such as actuator idle stroke, actuator stiffness, stiffness of the transmission chain actuator valve, seat diameter of the valve, etc. Or, in other words, the switching valve movements of different injectors can be set to a same course, namely without these parameters need to be known.
  • a first embodiment shown in FIG Fig. 3 the difference between the cut-off voltage and the voltage of the actuator 2 is controlled shortly before the start of the discharge by changing the manipulated variable I s , the duration of the charging edge is fixed by stopping the charging after a predetermined period of time .DELTA.t L.
  • a circuit unit 310 is provided for a feedforward control for the manipulated variable I s , to which the rail pressure P rail is supplied as an input variable.
  • a circuit unit 320 is provided, which shut a controller for the difference of the cut-off voltage U and the Voltage of the actuator 2 shortly before the start of the discharge process U rule forms, which is fed to a predefinable setpoint input.
  • the outputs of the circuit units 310 and 320 are added and fed to a drive module 330, which in turn drives a piezo output stage 335, which supplies the actuator voltage U and the actuator current I of the actuator 2.
  • the piezo output stage 335 supplies the switch- off voltage U switch-off and the voltage of the actuator 2 shortly before the start of the discharge process U rule , the difference of which is formed in a switching point 340. This difference is supplied to the circuit unit 320.
  • the regulation is now carried out by varying the manipulated variable I s . If this manipulated variable of the current increases, then the voltage to which the actuator 2 is charged increases, the remaining path of the valve after the end of the charging process drops and thus also the voltage difference to be adjusted.
  • the in Fig. 4 shown in FIG Fig. 4 , the schematic unit to a controller for the charging time 410, to which a predetermined setpoint can be fed.
  • a circuit unit 420 is s provided for the pilot control of the threshold current I which is supplied as an input variable to the rail pressure p rail and a circuit unit 430, which shut a controller for the difference of the Abschaltschreibsschwelle U and the voltage of the actuator 2 just before the start the discharging U rule comprises further a circuit unit 440 for pilot control of the U Abschaltschreibsschwelle shutdown.
  • the controller 430 becomes outputted value and the output from the feedforward control for the switch-off voltage 440 value U abschalt added and this value of the switch- off threshold U disconnected a control module 460 which controls the actuator 2 via a piezo amplifier 465, that is, the actuator voltage U and the actuator current I is available ,
  • the piezo output stage 465 also outputs a signal for the duration of the charging process, which is supplied to the circuit unit 410, which forms the regulator for the charging time.
  • the control circuit for the difference U shutoff - U rule is only activated when a control condition is met, for example, that it is checked whether the activation duration exceeds a threshold value or whether the injection quantity setpoint exceeds an injection amount threshold. If the controller is inactive, the manipulated variables are "frozen" as a function of the prevailing rail pressure. This avoids that the control reacts to after the end of the charging several hundred microseconds lasting ringing of the actuator 2, which are reflected in the voltage curve of the actuator.
  • the respective manipulated variable can set the difference U Abtician - U rule to introduce a rail horrine diagnostic threshold, when they reach the associated injector is detected as defective.
  • This information can be read out via a diagnostic interface, for example during maintenance of the internal combustion engine, and this greatly simplifies troubleshooting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Ein Verfahren zum Bestimmen der Ladeflanke eines piezoelektrischen Aktors (2) wenigstens eines Injektors, mit dem eine Flüssigkeitsmenge unter Hochdruck in einen Hohlraum, insbesondere in einen Brennraum einer Brennkratirnaschine eingespritzt wird, ist dadurch gekennzeichnet, daß die Differenz zwischen einer Abschaltspannungsschwelle (Uabschalt) und einer Spannung des Aktors (2) kurz vor Beginn des Entladevorgangs (URegel) auf einen vorgebbaren Sollwert geregelt wird.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Bestimmen der Ladeflanke eines piezoelektrischen Aktors wenigstens eines Injektors, mit dem eine Flüssigkeitsmenge unter Hochdruck in einen Hohlraum, insbesondere einen Brennraum einer Brennkraftmaschine eingespritzt wird.
  • Aus der DE 100 32 022 A1 geht ein Verfahren zur Bestimmung der Ansteuerspannung für einen piezoelektrischen Aktor eines Einspritzventils hervor, bei dem vor dem nächsten Einspritzvorgang zunächst indirekt der Druck in einem hydraulischen Koppler gemessen wird. Der Druck wird dadurch gemessen, dass der piezoelektrische Aktor mechanisch mit dem hydraulischen Koppler gekoppelt ist, so dass der Druck eine entsprechende Spannung im Piezo-Aktor induziert. Diese induzierte Spannung wird vor dem nächsten Einpritzvorgang zur Korrektur der Ansteuerspannung für den Aktor verwendet. Derartige Injektoren werden beispielsweise in Common-Rail-Systemen verwendet. Der Druck in dem hydraulischen Koppler hängt dabei unter anderem auch von dem Raildruck ab, so dass die Ansteuerspannung in Abhängigkeit von dem Raildruck variiert wird. Der Spannungsbedarf eines piezoelektrischen Aktors hängt in erster Linie vom Druck im Ventilraum sowie von der Längenausdehnung des piezoelektrischen Aktors ab. Die zum ordnungsgemäßen Betrieb des Injektors an einem Arbeitspunkt notwendige Spannung ist der sogenannte Spannungsbedarf, das heißt der Zusammenhang zwischen Spannung und Hub bei einer bestimmten Kraft, die proportional zum Raildruck ist. Die Ableitung des aktuellen Spannungsbedarfs eines Injektors aus der Spannungsdifferenz zwischen maximaler Aktorspannung und stationärer Endspannung ist zum Beispiel aus der DE 103 15 815.4 bekannt.
  • Bekannt ist auch, zum Bestimmen der Ladeflanke die Spannung des Aktors kurz vor Beginn des Entladevorgangs zu messen und auf einen Sollwert einzuregeln. Als Stellgröße hierfür dient die sogenannte Abschaltspannung, das heißt die Spannung, bei deren Erreichen der Ladevorgang abgebrochen wird. Dabei wird zusätzlich die Dauer der Ladeflanke auf einen vorgegebenen Sollwert von üblicherweise 100 Mikrosekunden eingestellt.
  • Aus der nicht vorveröffentlichten DE 103 40 137.7 ist es ferner bekannt, den Sollwert für die Spannung des Aktors kurz vor Beginn des Entladevorgangs für jeden Injektor individuell an seinen Spannungsbedarf anzupassen.
  • Aus der DE 103 03 975 A1 geht zur Minimierung des Einflusses von Toleranzen ein Verfahren zur Anpassung der Ladespannung hervor, bei dem die Spannung eines Piezostapels mit einer in einer Abtast-Halteschaltung gespeicherten Spannung mittels einer Vergleichsschaltung verglichen wird. Wenn die Spannung des Piezostapels die in der Abtast-Halte-Schaltung gespeicherte Spannung erreicht, beendet eine Steuerungsschaltung eine Ladephase des Piezostapels. Dadurch kann die in dem Piezostapel geladene Energie gleich zu der vor der Entladung geladenen Energie gemacht werden. Selbst wenn der Piezostapel beim Entladen auf ein Laden umgeschaltet wird, kann die Energie des Piezostapels auf diese Weise konstant gehalten werden.
  • Der Erfindung liegt nun die Aufgabe zugrunde, die Ladeflanke bei jedem Injektor so einzustellen, dass der Einfluss von Parametertoleranzen, welche die Ventilbewegung beeinflussen, so gering wie möglich gehalten werden kann und insbesondere gegenüber aus dem Stand der Technik bekannten Verfahren reduziert werden kann.
  • Vorteile der Erfindung
  • Diese Aufgabe wird durch ein Verfahren und eine Vorrichtung zum Bestimmen der Ladeflanke eines piezoelektrischen Aktors der eingangs beschriebenen Art dadurch gelöst, dass die Differenz zwischen einer Abschaltspannungsschwelle und einer stationären Endspannung erfasst und auf einen vorgebbaren Sollwert geregelt wird. Grundidee der Erfindung ist es demnach, die Differenz zwischen der Abschaltspannungsschwelle, das heißt der Spannung, bei deren Erreichen der Ladevorgang abgebrochen wird, und der stationären Endspannung, das heißt der Spannung des Aktors kurz vor Beginn des Entladevorgangs durch einen Regelkreis konstant zu halten. Die Differenz zwischen der Abschaltspannungsschwelle und der Spannung des Aktors kurz vor Beginn des Entladevorgangs stellt ein Maß für die Längenänderung des Aktors nach Ende der Ladeflanke dar und ist damit wiederum ein Maß für den Weg, den das Schaltventil nach Ende der Ladeflanke noch bis zum Erreichen seines Hubanschlags zurücklegen muss. Wird diese Differenz auf einen konstanten Wert eingeregelt, so weisen die Schaltventile aller Injektoren am Ende der Ladeflanke einen einheitlichen Abstand von ihrem jeweiligen Hubanschlag auf.
  • Bei einer vorteilhaften Ausführungsform ist vorgesehen, die Differenz durch Variation des Ladestroms in einem vorgebbaren Intervall der Ladezeit auf einen vorgebbaren Sollwert zu regeln. Durch Konstanthalten der Dauer des Ladevorgangs ist sichergestellt, dass der einheitliche Abstand der Schaltventile von dem Hubanschlag jeweils zu einem definierten Zeitpunkt nach Ansteuerbeginn erreicht wird. Damit wird praktisch die Hubbewegung des Schaltventils unabhängig von Parametern wie Aktor-Leerlaufhub, Aktorsteifigkeit, Steifigkeit der Übertragungskette Aktor-Ventil, Sitzdurchmesser des Ventils usw. bei jedem Injektor auf einen gleichen Verlauf eingestellt, und zwar ohne, dass diese Parameter hierzu bekannt sein müssen. Hierdurch ist es auch möglich, den Injektor-Spannungsabgleich sowie die Nominal-Spannungskalibrierung implizit durchzuführen.
  • Bei einer wiederum anderen Ausführungsform ist vorgesehen, die Differenz zwischen der Abschaltspannungsschwelle und der Spannung des Aktors kurz vor Beginn des Entladevorgangs durch Variation der Abschaltspannungsschwelle auf den vorgebbaren Sollwert zu regeln. Diese Ausführungsform eignet sich insbesondere dann, wenn die Vorgabe des Ladestroms nicht ausreichend fein quantisiert oder nicht injektorindividuell vorgegeben werden kann. Vorteilhaft ist hierbei auch, dass eine Variation einer bereits bekannten und daher nicht zusätzlich zu erfassenden Größe erfolgt.
  • Bevorzugt wird dabei zusätzlich die Ladezeit durch Variation des Ladestroms auf ihren Sollwert eingeregelt. Die Dauer des Ladevorgangs wird demnach durch Variation der Stromschwelle auf einen Sollwert geregelt. In diesem Fall ist nur die Genauigkeit der eingestellten Ladedauer abhängig davon, wie genau die Stromschwelle vorgegeben werden kann, und ob dies Injektor-individuell und damit Zylinder-individuell möglich ist.
  • Zeichnung
  • Weitere Vorteile und Merkmale sind Gegenstand der nachfolgenden Beschreibung sowie der zeichnerischen Darstellung von Ausführungsbeispielen der Erfindung.
  • In der Zeichnung zeigen:
  • Fig. 1
    den schematischen Aufbau eines aus dem Stand der Technik bekannten Einspritzventils;
    Fig. 2
    schematisch ein Schaubild der Aktorspannung sowie des Aktorstroms über der Zeit während einer Ansteuerung;
    Fig. 3
    schematisch ein Blockschaltbild einer von dem erfindungsgemäßen Ver- fahren Gebrauch machenden Regeleinrichtung und
    Fig.4
    schematisch ein Blockschaltbild einer weiteren, von dem erfindungsge- mäßen Verfahren Gebrauch machenden Regeleinrichtung.
    Beschreibung
  • Fig. 1 zeigt in schematischer Darstellung ein aus dem Stand der Technik bekanntes Einspritzventil 1 mit einer zentralen Bohrung. Im oberen Teil ist ein Stellkolben 3 mit einem piezoelektrischen Aktor 2 in die zentrale Bohrung eingebracht, wobei der Stellkolben 3 mit dem Aktor 2 fest verbunden ist. Der Stellkolben 3 schließt nach obenhin einen hydraulischen Koppler 4 ab, während nach unten eine Öffnung mit einem Verbindungskanal zu einem ersten Sitz 6 vorgesehen ist, in dem ein Kolben 5 mit einem Ventilschließglied 12 angeordnet ist. Das Ventilschließglied 12 ist in diesem Ausführungsbeispiel als doppelt schließendes Steuerventil ausgebildet, es kann aber auch als einfach schließendes Steuerventil ausgebildet sein. Es verschließt den ersten Sitz 6, wenn der Aktor 2 in Ruhephase ist. Bei Betätigung des Aktors 2, das heißt beim Anlegen einer Ansteuerspannung U an den Klemmen +, -, betätigt der Aktor 2 den Stellkolben 3 und drückt über den hydraulischen Koppler 4 den Kolben 5 mit dem Verschließglied 12 in Richtung auf einen zweiten Sitz 7. Unterhalb des zweiten Sitzes ist in einem entsprechenden Kanal eine Düsennadel 11 angeordnet, die den Auslauf in einem Hochdruckkanal (Common-Rail-Druck) 13 schließt oder öffnet, je nachdem, welche Ansteuerspannung U anliegt. Der Hochdruck wird durch das einzuspritzende Medium, beispielsweise Kraftstoff für einen Verbrennungsmotor, über einen Zulauf 9 zugeführt, über eine Zulaufdrossel 8 und eine Ablaufdrossel 10 wird die Zuflussmenge des Mediums in Richtung der Düsennadel 11 und des hydraulischen Kopplers 4 gesteuert. Der hydraulische Koppler 4 hat dabei die Aufgabe, einerseits den Hub des Kolbens 5 zu verstärken und andererseits das Steuerventil von der statischen Temperaturdehnung des Aktors 2 zu entkoppeln. Die Wiederbefüllung des Kopplers 4 ist hier nicht dargestellt.
  • Nachfolgend wird die Funktionsweise dieses Einspritzventils näher erläutert. Bei jeder Ansteuerung des Aktors 2 wird der Stellkolben 3 in Richtung des hydraulischen Kopplers 4 bewegt. Dabei bewegt sich auch der Kolben 5 mit dem Verschließglied 12 in Richtung auf den zweiten Sitz 7 zu. Über Leckspalte wird dabei ein Teil des im hydraulischen Kopplers 4 befindlichen Mediums, beispielsweise der Kraftstoff, herausgedrückt. Zwischen zwei Einspritzungen muss daher der hydraulische Koppler 4 wiederbefüllt werden, um seine Funktionssicherheit zu erhalten.
  • Über den Zulaufkanal 9 herrscht ein hoher Druck, der beim Common-Rail-System beispielsweise zwischen 200 und 2000 bar betragen kann. Dieser Druck wirkt gegen die Düsennadel 11 und hält sie geschlossen, so dass kein Kraftstoff austreten kann. Wird nun infolge der Ansteuerspannung U der Aktor 2 betätigt und damit das Verschlussglied 12 in Richtung des zweiten Sitzes bewegt, baut sich der Druck im Hochdruckbereich ab und die Düsennadel 11 gibt den Einspritzkanal frei. Mit P1 ist der sogenannte Kopplerdruck bezeichnet, wie er im hydraulischen Koppler 4 vorliegt. Im Koppler 4 stellt sich ohne Ansteuerung U ein stationärer Druck P1 ein. Nach dem Entladen des Aktors 2 ist der Kopplerdruck P1 näherungsweise 0 und wird durch Wiederbefüllung wieder angehoben.
  • Der Hub und die Kraft des Aktors 2 korrelieren nun mit der Spannung, mit der der Aktor 2 aufgeladen wird. Da die Kraft proportional zum Raildruck ist, muss die Spannung für einen geforderten Aktorhub zum sicheren Erreichen des Sitzes 7 raildruckabhängig angepasst werden. Die zum ordnungsgemäßen Betrieb des Einspritzventils oder Injektors 1 an einem Arbeitspunkt notwendige Spannung ist der sogenannte Spannungsbedarf, das heißt der Zusammenhang zwischen Spannung und Hub bei einer bestimmten Kraft, die proportional zum Raildruck ist. Aus der DE 103 158 15.4 geht hervor, wie aus der Spannungsdifferenz zwischen maximaler Aktorspannung und stationärer Endspannung der individuelle, aktuelle Spannungsbedarfs eines Injektors abgeleitet werden kann.
  • In Fig. 2 sind schematisch die Aktorspannung sowie der Aktorstrom über der Zeit aufgetragen.
  • Bei aus dem Stand der Technik bekannten Verfahren für die Bestimmung der Ladeflanke wird eine Spannung URegel des Aktors 2 kurz vor Beginn des Entladevorgangs gemessen und auf einen Sollwert eingeregelt. Als Stellgröße hierfür dient die sogenannte Abschaltspannungsschwelle Uabschalt, das heißt die Spannung, bei deren Erreichen der Ladevorgang abgebrochen wird. Zusätzlich wird die Dauer der Ladeflanke auf einen Sollwert ΔtL von üblicherweise 100 Mikrosekunden eingestellt. Diese Einstellung erfolgt entweder durch Steuerung oder durch Regelung einer Schaltschwelle Is für den Ladestrom, die somit als Stellgröße dient. Zur Variation der Ladezeit ΔtL wird also der Ladestrom I variiert.
  • Die Grundidee der Erfindung ist es nun, anstelle der Spannung des Aktors 2 kurz vor Beginn des Entladevorgangs, die Differenz zwischen der Abschaltspannungsschwelle Uabschalt und der Spannung des Aktors 2 kurz vor Beginn des Entladevorgangs URegel durch einen Regelkreis konstant zu halten und zweitens die Dauer der Ladeflanke durch eine Steuerung oder eine Regelung konstant zu halten. Die Differenz zwischen der Abschaltspannungsschwelle Uabschalt und der Spannung des Aktors 2 kurz vor Beginn des Endladevorgangs URegel stellt ein Maß dafür dar, welche Längenänderung der Aktor 2 nach Ende der Ladeflanke noch ausführt und ist damit wiederum ein Maß dafür, welchen Weg das Schaltventil 12 nach Ende der Abschaltflanke noch bis zum Erreichen seines Hubanschlags zurücklegt. Wird diese Differenz auf einen konstanten Wert eingeregelt, so weisen die Schaltventile aller Injektoren am Ende der Ladeflanke einen einheitlichen Abstand von ihrem Hubanschlag auf. Wenn zudem auch die Dauer des Ladevorgangs konstant gehalten wird, ist sichergestellt, dass dieser einheitliche Abstand jeweils zu einem definierten Zeitpunkt nach Ansteuerbeginn erreicht wird. Damit wird die Hubbewegung des Schaltventils 12 praktisch unabhängig von Parametern wie Aktor-Leerlaufhub, Aktorsteifigkeit, Steifigkeit der Übertragungskette Aktor-Ventil, Sitzdurchmesser des Ventils usw.. Oder es können anders ausgedrückt die Schaltventilbewegungen unterschiedlicher Injektoren auf jeweils einen gleichen Verlauf eingestellt werden, und zwar ohne dass diese Parameter bekannt sein müssen.
  • Ein einer ersten Ausführungsform, dargestellt in Fig. 3, wird die Differenz zwischen der Abschaltspannung und der Spannung des Aktors 2 kurz vor Beginn des Entladevorgangs durch Änderung der Stellgröße Is geregelt, wobei die Dauer der Ladeflanke fest eingestellt wird durch Beenden des Ladevorgangs nach Ablauf einer vorgebbaren Zeitdauer ΔtL. Hierzu ist eine Schaltungseinheit 310 für eine Vorsteuerung für die Stellgröße Is vorgesehen, der der Raildruck PRail als Eingangsgröße zugeführt wird. Ferner ist eine Schaltungseinheit 320 vorgesehen, welche einen Regler für die Differenz der Abschaltspannung Uabschalt und der Spannung des Aktors 2 kurz vor Beginn des Entladevorgangs URegel bildet, der ein vorgebbarer Sollwert als Eingangsgröße zugeführt wird. Die Ausgänge der Schaltungseinheiten 310 und 320 werden addiert und einem Ansteuerbaustein 330 zugeführt, der wiederum eine Piezoendstufe 335 ansteuert, die die Aktorspannung U und den Aktorstrom I des Aktors 2 liefert. Die Piezoendstufe 335 liefert darüber hinaus die Abschaltspannung Uabschalt und die Spannung des Aktors 2 kurz vor Beginn des Entladevorgangs URegel, deren Differenz in einem Schaltpunkt 340 gebildet wird. Diese Differenz wird der Schaltungseinheit 320 zugeführt. Die Regelung erfolgt nun durch Variation der Stellgröße Is. Steigt diese Stellgröße des Stromes, so steigt die Spannung, auf die der Aktor 2 geladen wird, der verbleibende Weg des Ventils nach Ende des Ladevorgangs sinkt und damit auch die einzuregelnde Spannungsdifferenz. Da in diesem Falle die Abschaltspannung Uabschalt nicht von außen vorgegeben wird, sondern sich aufgrund des Ladestroms Is und der Ladezeit ΔtL einstellt, muss die Spannung zum Endzeitpunkt des Ladevorgangs gemessen werden und es muss dann dieser Messwert als Abschaltspannungsschwelle verwendet werden. Ferner ist Voraussetzung, dass die Regelung der Stellgröße Is ausreichend fein quantisiert und injektorindividuell und damit zylinderindividuell vorgegeben werden kann.
  • Bei einer anderen Ausführungsform, dargestellt in Fig. 4, wird die einzuregelnde Spannungsdifferenz zwischen der Abschaltspannungsschwelle Uabschalt und der Spannung des Aktors 2 kurz vor Beginn des Entladevorgangs URegel durch Variation der bereits bekannten Abschaltspannungsschwelle Uabschalt selbst vorgenommen. Die Variation der Abschaltspannungsschwelle Uabschalt erfordert eine Variation des Ladevorgangs. Aus diesem Grunde weist die in Fig. 4 dargestellte Schaltungseinheit einen Regler für die Ladezeit 410 auf, der ein vorgebbarer Sollwert zuführbar ist. Dabei ist auch bei dieser Vorrichtung eine Schaltungseinheit 420 zur Vorsteuerung der Stromschwelle Is vorgesehen, die als Eingangsgröße dem Raildruck PRail zugeführt wird sowie eine Schaltungseinheit 430, welche einen Regler für die Differenz der Abschaltspannungsschwelle Uabschalt und der Spannung des Aktors 2 kurz vor Beginn des Entladevorgangs URegel umfasst, ferner eine Schaltungseinheit 440 zur Vorsteuerung der Abschaltspannungsschwelle Uabschalt. In einem Schaltungspunkt 450 werden der von dem Regler 430 ausgegebene Wert und der von der Vorsteuerung für die Abschaltspannung 440 ausgegebene Wert Uabschalt addiert und dieser Wert der Abschaltspannungsschwelle Uabschalt einem Ansteuerbaustein 460 zugeführt, der über eine Piezoendstufe 465 den Aktor 2 ansteuert, das heißt die Aktorspannung U und den Aktorstrom I zur Verfügung stellt. Die Piezoendstufe 465 gibt ferner ein Signal für die Dauer des Ladevorgangs aus, welches der Schaltungseinheit 410, die den Regler für die Ladezeit bildet, zugeführt wird. Ferner wird - wie bereits in Verbindung mit Fig. 3 beschrieben - die Abschaltspannungsschwelle Uabschalt sowie die Spannung des Aktors 2 kurz vor Beginn des Entladevorgangs URegel in einem Schaltungspunkt 470 voneinander subtrahiert und diese Differenz der Schaltungseinheit 430, welche den Regler für die Differenz der Abschaltspannungsschwelle und der Spannung kurz vor Beginn des Entladevorgangs URegel umfasst, zugeführt. Die Dauer des Ladevorgangs ΔtL wird nun auf einen vorgebbaren Sollwert durch die Schaltungseinheit 410 durch Variation der Stromschwelle Is geregelt. In diesem Falle ist nur die Genauigkeit der eingestellten Ladedauer abhängig davon, wie genau die Stromschwelle Is vorgegeben werden kann, und ob dies injektorindividuell und damit zylinderindividuell möglich ist. Die Genauigkeit des Regelkreises für die Spannungsdifferenz wird hierdurch jedoch nicht beeinträchtigt.
  • In einer Weiterbildung dieser in Fig. 3 und Fig. 4 dargestellten Ausführungsformen, wird der Regelkreis für die Differenz Uabschalt - URegel nur dann aktiv geschaltet, wenn eine Regelbedingung erfüllt ist, die beispielsweise darin bestehen, dass geprüft wird, ob die Ansteuerdauer einen Schwellwert überschreitet oder ob der Einspritzmengensollwert einen Einspritzmengenschwellwert überschreitet. Bei inaktivem Regler werden die Stellgrößen als Funktion des jeweils vorherrschenden Raildrucks "eingefroren". Dadurch wird vermieden, dass die Regelung auf nach Ende des Ladevorgangs einige hunderte Mikrosekunden andauernde Nachschwingungen des Aktors 2 reagiert, welche sich im Spannungsverlauf des Aktors widerspiegeln.
  • Ferner kann vorgesehen sein, für die jeweilige Stellgröße zur Einstellung der Differenz Uabschaft - URegel eine raildruckabhängige Diagnoseschwelle einzuführen, bei deren Erreichen der zugehörige Injektor als defekt erkannt wird. Diese Information kann über eine Diagnoseschnittstelle, beispielsweise bei einer Wartung der Brennkraftmaschine ausgelesen und hierdurch die Fehlersuche stark vereinfacht werden.

Claims (11)

  1. Verfahren zum Bestimmen der Ladeflanke eines piezoelektrischen Aktors (2) wenigstens eines Injektors, mit dem eine Flüssigkeitsmenge unter Hochdruck in einen Hohlraum, insbesondere in einen Brennraum einer Brennkraftmaschine eingespritzt wird, dadurch gekennzeichnet, dass die Differenz zwischen einer Abschaltspannungsschwelle (Uabschalt das heißt die Spannung, bei deren Erreichen der Ladevorgang abgebrochen wird, und einer Spannung des Aktors (2) kurz vor Beginn des Entladevorgangs (URegel) auf einen vorgebbaren Sollwert geregelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Regelung der Differenz zwischen der Abschaltspannungsschwelle (Uabschalt) und der Spannung des Aktors (2) kurz vor Beginn des Entladevorgangs (URegel) auf den vorgebbaren Sollwert durch Variation einer Ladestromschwelle (Is) in einem vorgebbaren Intervall der Ladezeit (ΔtL) erfolgt.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Regelung der Differenz zwischen der Abschaltspannungsschwelle (Uabschalt) und der Spannung des Aktors (2) kurz vor Beginn des Entladevorgangs (URegel) auf den vorgebbaren Sollwert durch Variation der Abschaltspannungsschwelle (Uab-schalt) erfolgt.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Ladezeit (ΔtL) durch Variation der Ladestromschwelle (Is) variiert oder auf einen Sollwert eingeregelt wird.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Ladestromschwelle (Is) und/oder die Ladezeit (ΔtL) und/oder die Abschaltspannungsschwelle (Uabschalt) mit vorgebbaren Diagnoseschwellenwerten verglichen werden, bei deren Erreichen der Injektor als defekt erkannt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Regelung für die Differenz zwischen der Abschaltspannung und der Spannung kurz vor Beginn des Entladevorgangs nur dann erfolgt, wenn eine Regelbedingung erfüllt ist und dass dann, wenn die Regelbedingung nicht erfüllt ist, als Stellgrößen der Regelkreise jeweils der Wert der Stellgröße verwendet wird, der gültig war, als die Brennkraftmaschine zuletzt im aktuellen Raildruckbereich mit erfüllter Regelbedingung betrieben wurde.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Regelbedingung das Ergebnis eines Vergleichs der Ansteuerdauer mit einem Ansteuerdauerschwellwert überschreitet.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Regelbedingung erfüllt ist, wenn die Ansteuerdauer größer ist als der Ansteuerdauerschwellwert.
  9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Regelbedingung das Ergebnis eines Vergleichs des Einspritzmengensollwerts mit einem Einspritzmengenschwellwert verwendet wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Regelbedingung erfüllt ist, wenn der Einspritzmengensollwert größer ist als der Einspritzmengenschwellwert.
  11. Vorrichtung zum Bestimmen der Ladeflanke eines piezoelektrischen Aktors (2) wenigstens eines Injektors, mit dem eine Flüssigkeitsmenge unter Hochdruck in einen Hohlraum, insbesondere in einen Brennraum einer Brennkraftmaschine einspritzbar ist, gekennzeichnet durch eine Schaltungseinheit zur Regelung der Differenz zwischen einer Abschaltspannungsschwelle (Uab-schal das heißt die Spannung, bei deren Erreichen der Ladevorgang abgebrochen wird, und einer Spannung des Aktors (2) kurz vor Beginn des Entladevorgangs auf einen vorgebbaren Sollwert.
EP05701432A 2004-02-18 2005-01-04 Verfahren und vorrichtung zum bestimmen der ladeflanken eines piezoelektrischen aktors Expired - Fee Related EP1718854B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410007798 DE102004007798A1 (de) 2004-02-18 2004-02-18 Verfahren und Vorrichtung zum Bestimmen der Ladeflanken eines piezoelektrischen Aktors
PCT/EP2005/050017 WO2005080776A1 (de) 2004-02-18 2005-01-04 Verfahren und vorrichtung zum bestimmen der ladeflanken eines piezoelektrischen aktors

Publications (2)

Publication Number Publication Date
EP1718854A1 EP1718854A1 (de) 2006-11-08
EP1718854B1 true EP1718854B1 (de) 2009-03-11

Family

ID=34832753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05701432A Expired - Fee Related EP1718854B1 (de) 2004-02-18 2005-01-04 Verfahren und vorrichtung zum bestimmen der ladeflanken eines piezoelektrischen aktors

Country Status (5)

Country Link
EP (1) EP1718854B1 (de)
JP (1) JP4130840B2 (de)
CN (1) CN1922397B (de)
DE (2) DE102004007798A1 (de)
WO (1) WO2005080776A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059070A1 (de) * 2006-12-14 2008-06-19 Robert Bosch Gmbh Kraftstoffeinspritzsystem und Verfahren zum Ermitteln eines Nadelhubanschlags in einem Kraftstoffeinspritzventil
DE102007008201B3 (de) 2007-02-19 2008-08-14 Siemens Ag Verfahren zur Regelung einer Einspritzmenge eines Injektors einer Brennkraftmaschine
DE102007022591A1 (de) 2007-05-14 2008-11-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP4911197B2 (ja) * 2009-06-01 2012-04-04 株式会社デンソー 直動式燃料噴射弁の制御装置
DE102012207747A1 (de) 2012-05-09 2013-11-14 Robert Bosch Gmbh Verfahren zum Betreiben eines Piezoaktors

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536114B2 (ja) * 1989-01-18 1996-09-18 トヨタ自動車株式会社 圧電素子の駆動装置
DE60011993T2 (de) * 2000-04-01 2004-12-09 Robert Bosch Gmbh Apparat und Methode für das Ermitteln einer Verringerung der Kapazität während des Antriebes von piezoelektrischen Elementen
EP1139442B1 (de) * 2000-04-01 2008-07-30 Robert Bosch GmbH Vorrichtung und Verfahren zur Erkennung eines Kurzschlusses zur Batteriespannung während der Ansteuerung piezoelektrischer Elemente
DE60022734T2 (de) * 2000-04-01 2006-07-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Brennstoffeinspritzverfahrens
EP1167729B2 (de) * 2000-07-01 2009-09-09 Robert Bosch Gmbh Piezoelektrischer Aktor eines Einspritzventils
DE10032022B4 (de) 2000-07-01 2009-12-24 Robert Bosch Gmbh Verfahren zur Bestimmung der Ansteuerspannung für ein Einspritzentil mit einem piezoelektrischen Aktor
JP4023665B2 (ja) * 2002-02-01 2007-12-19 株式会社日本自動車部品総合研究所 ピエゾアクチュエータ制御装置、ピエゾアクチュエータ制御方法および燃料噴射制御システム
DE10315815A1 (de) 2003-04-07 2004-10-21 Robert Bosch Gmbh Verfahren zur Ermittlung der individuellen Ansteuerspannung eines piezoelektrischen Elements
DE10340137A1 (de) 2003-09-01 2005-04-07 Robert Bosch Gmbh Verfahren zur Bestimmung der Ansteuerspannung eines piezoelektrischen Aktors eines Einspritzventils

Also Published As

Publication number Publication date
DE502005006809D1 (de) 2009-04-23
CN1922397A (zh) 2007-02-28
JP2006525455A (ja) 2006-11-09
DE102004007798A1 (de) 2005-09-08
WO2005080776A1 (de) 2005-09-01
EP1718854A1 (de) 2006-11-08
JP4130840B2 (ja) 2008-08-06
CN1922397B (zh) 2010-09-08

Similar Documents

Publication Publication Date Title
EP1841963B1 (de) Verfahren zum betreiben einer kraftstoff-einspritzvorrichtung einer brennkraftmaschine
DE102008023373B4 (de) Verfahren zum Steuern eines Einspritzventils, Kraftstoff-Einspritzanlage und Verbrennungsmotor
DE102011075732B4 (de) Regelverfahren für ein Einspritzventil und Einspritzsystem
EP1825124B1 (de) Verfahren zum steuern eines piezoelektrischen aktors und steuereinheit zum steuern eines piezoelektrischen aktors
DE102011005285B4 (de) Verfahren zur Bestimmung des Leerhubes eines Piezoinjektors mit direkt betätigter Düsennadel
EP1664511B1 (de) Verfahren zur bestimmung der ansteuerspannung eines piezoelektrischen aktors eines einspritzventils
DE10002270C1 (de) Ventil zum Steuern von Flüssigkeiten
DE102008027516B3 (de) Verfahren zur Einspritzmengenabweichungsdetektion und zur Korrektur einer Einspritzmenge sowie Einspritzsystem
EP1172541B1 (de) Piezoelektrischer Aktor eines Einspritzventils sowie Kraftstoffeinspritzsystem
EP2022969A2 (de) Verfahren zum Betreiben eines piezoelektrisch betätigten Einspritzventils
DE102006048979B4 (de) Verfahren und Einspritzsystem zum Einspsritzen eines Fluids
EP1718854B1 (de) Verfahren und vorrichtung zum bestimmen der ladeflanken eines piezoelektrischen aktors
WO2010133415A1 (de) Verfahren zur ansteuerung von injektoren in einer brennkraftmaschine
WO2010023041A1 (de) Verfahren zum betreiben einer kraftstoffeinspritzvorrichtung einer brennkraftmaschine
EP1551065A2 (de) Verfahren und Vorrichtung zur Bestimmung der Ansteuerspannung für einen piezoelektrischen Aktor eines Einspritzventils
EP1613851A1 (de) Verfahren zur ermittlung der individuellen ansteuerspannung eines piezoelektrischen elements
WO2010133416A1 (de) Verfahren zur ansteuerung von injektoren in einer brennkraftmaschine
DE10305525B4 (de) Verfahren und Vorrichtung zur Adaption der Druckwellenkorrektur in einem Hochdruck-Einspritzsystem eines Kraftfahrzeuges im Fahrbetrieb
DE102014212010A1 (de) Verfahren zum Betrieb eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
DE10301822B4 (de) Verfahren zur Bestimmung der Längenausdehnung eines piezoelektrischen Aktors
DE102006046470B4 (de) Verfahren zum Betrieb eines Einspritzventils
EP3258091B1 (de) Verfahren zum betreiben eines aktors eines injektors sowie ein entsprechender aktor
DE102013201777A1 (de) Verfahren zur Ansteuerung eines Einspritzventils einer Brennkraftmaschine
DE102015212378B4 (de) Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Einspritzventils eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
DE10306458A1 (de) Verfahren zur Bestimmung der Ansteuerspannung eines piezoelektrischen Aktors eines Einspritzventils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070122

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005006809

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120126

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130122

Year of fee payment: 9

Ref country code: FR

Payment date: 20130207

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140325

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140104

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140104

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006809

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140104