EP1717415B1 - Module de turbine pour moteur à turbine à gaz - Google Patents

Module de turbine pour moteur à turbine à gaz Download PDF

Info

Publication number
EP1717415B1
EP1717415B1 EP06113242A EP06113242A EP1717415B1 EP 1717415 B1 EP1717415 B1 EP 1717415B1 EP 06113242 A EP06113242 A EP 06113242A EP 06113242 A EP06113242 A EP 06113242A EP 1717415 B1 EP1717415 B1 EP 1717415B1
Authority
EP
European Patent Office
Prior art keywords
module
compressor
bolts
turbine
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06113242A
Other languages
German (de)
English (en)
Other versions
EP1717415A1 (fr
Inventor
Michel Brault
Maurice Judet
Patrick Pasquis
Thomas Langevin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1717415A1 publication Critical patent/EP1717415A1/fr
Application granted granted Critical
Publication of EP1717415B1 publication Critical patent/EP1717415B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/027Arrangements for balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/066Connecting means for joining rotor-discs or rotor-elements together, e.g. by a central bolt, by clamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/301Retaining bolts or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/34Balancing of radial or axial forces on regenerative rotors

Definitions

  • the present invention relates to the field of gas turbine engines and aims in particular a turbine module, in particular the high pressure module.
  • An axial gas turbine engine includes a rotary compressor assembly, supplying a stationary combustion chamber which itself delivers hot gases to a rotating turbine assembly.
  • a turbine rotor integral with a compressor rotor forms a body and the motor may comprise one or more bodies, generally two or three rotating at different speeds.
  • a dual-body engine comprises a low pressure body LP and an HP high pressure body.
  • its architecture is often divided into modules. For example, for the high-pressure body of a double-body engine, all the parts constituting the compressor are arranged in an HP compressor module and all the parts constituting the turbine rotor into an HP turbine module.
  • This latter module consists of only rotating parts, for example a turbine disc on which are bolted a labyrinth sealing assembly and a ferrule with upstream assembly flange, and a sealing assembly associated with a downstream bearing. .
  • the HP compressor and HP turbine modules are assembled via specific flanges; these flanges transmit the engine torque of the turbine to the compressor.
  • the connection by these flanges must be sufficiently resistant to fulfill this function.
  • US 5,816,776 for example, describes this state of the art.
  • the modules must be provided to the assembly being perfectly balanced in rotation.
  • an upstream balancing plan and a downstream balancing plan are provided.
  • the balancing plane is that in which balancing weights are available at a distance from the axis and at a given angle.
  • the flange that is at the The boundary of the module constitutes an appropriate balancing plan. Balancing weights are therefore available in the area of the boundary flange. This is particularly the case at the boundary between the HP compressor module and the HP turbine module.
  • Each module is presented to the assembly being balanced in this way.
  • the applicant has therefore set itself the goal of developing a turbine module that satisfies these constraints.
  • the gas turbine engine turbine module comprising at least one turbine disk and a disk-shaped component mounted upstream on the turbine disk with respect to the gas flow, said module comprising a means of assembly between the compressor of said engine and the turbine disk, is characterized in that the component, before assembly of the module to the compressor, is pre-assembled to the turbine disk, by bolting to a fastening flange integral with the turbine disk.
  • the means for assembling the compressor to the turbine disk comprises said fixing flange.
  • the component is disc-shaped with a web between its hub and its periphery, and is mounted to said flange by bolting through first holes in the web, second holes are formed in the web for assembly by bolting from the turbine module to the compressor.
  • the component is fixed to said flange by bolts whose number is between 2 and 8 distributed over the circumference.
  • the bolts are retained by nuts crimped on the flange, downstream side, together with nuts for assembly of the module to the compressor.
  • the fastening bolts of the component more particularly have a specific shaped head which differs from the heads of the fastening bolts of the compressor.
  • the component comprises an upstream balancing device disposed on said component independently of the assembly means to the compressor.
  • the invention applies in particular to a module whose component is a support disc of labyrinth sealing elements.
  • the invention also covers the compressor associated with the module to form a gas turbine engine, comprising a downstream flange for attachment to the module. On this flange housing or passages are formed for the heads of bolts of fixings already in place on the module.
  • This module comprises a turbine disk 3, with a hub with axial section increasing in thickness close to the axis, and at the periphery of which are mounted the turbine blades 4. These are housed in axial recesses formed on the rim of the disc.
  • a component 5 is mounted on the disc 3 upstream, that is to say on the left in the figure. Upstream and downstream are defined with respect to the flow of gases in the engine.
  • the component is here a symmetrical disk of revolution relative to the axis of the machine.
  • This disc comprises a hub of increasing thickness towards the axis of the motor, a portion forming a web 51 towards the periphery.
  • the disc at its periphery carries radial annular blades 53 forming the rotating portion of labyrinth seals. Their counterpart is not represented.
  • the disc 5 is fixed to the disc 3 by bolting to a fastening flange 31 secured to the disc upstream thereof.
  • the bolts 7 comprise a head 71, a rod 72 passing through an orifice formed in the web 51 and a bore machined in the flange 31, and cooperate with a nut 73.
  • a disc 6 On the downstream side of the module there is a disc 6 with a journal 61 forming a support for a downstream bearing 62.
  • the disk is bolted to a downstream mounting flange 33.
  • the bolts 64 are fixed all around the disc. It also has sealing elements 63 for a labyrinth seal.
  • Disk 6 forms a downstream balancing plane. Balancing weights are fitted with the fixing bolts.
  • the module as represented on the figure 1 is pre-assembled ready to be assembled and assembled to a compressor.
  • the function of the bolts 7 is to maintain the component 5 integral with the turbine disk during handling.
  • the bolts 7 are preferably four in number and equidistant on the circumference. Their number can be between 2 and 8. In fact, you have to take into account the fastening bolts of the compressor to the disc. The bolts 7 do not come to disturb the tiering between the disc 3 and the disc 5.
  • FIG. 2 the bolting detail is seen after the turbine module has been attached to a compressor attachment flange 9.
  • the latter is not represented.
  • the fixing flange 9 is annular and constitutes the downstream boundary of the compressor.
  • the figure 2 represents a partial axial section taken along a bolt 7 for fixing the component 5 to the disc 3.
  • the figure 3 represents a partial axial section taken along a bolt 8 for fixing the flange 9 to the disk 3.
  • the heads 71 of the bolts 7 are engaged in wide scallops of the flange 9 in such a way that they engage the disc of the component 5 directly. These bolts therefore have no effect on the connection of the flange 9.
  • Bolts 8 of the figure 3 each participate in fixing the flange 9 to the disc 3.
  • the heads 81 bear against the upstream surface of the flange 9 which is held tight against the disk 5 by the nut 83 applied against the downstream face of the flange 31.
  • the rod 82 of the bolt 8 passes through the disk of the component 5 and the two flanges 9 and 31.
  • annular flange 9 is shown as seen from the upstream side. It comprises notches in the form of scallops to allow it to bypass the heads 71 of the bolts 7, and abut against the disk of the component 5. It also includes holes for the passage of the rods 82 of the bolts 8, whose head 81 comes to bear on the edge of the holes.
  • the component 5 has the same holes in the sail 51 capable of passing either the bolts 7 or the bolts 8.
  • this type of head while also providing the keying, has the further advantage of avoiding seizing, at the time of the modular disassembly of the compressor and the turbine, the bolts 8. If the bolts 8 remain blocked, the specific heads 81 of the bolts 8 are capable of withstanding a violent over-torque for shearing the shaft 82 of the head 81. In all cases, the modular disassembly is ensured.
  • the flange 31 is shown from the downstream side.
  • the nuts 73 and 83 are preferably mounted and crimped on site before assembling the parts. It is noted that they have a tongue 731 respectively 831 of rectangular shape so as to ensure mutual locking in rotation. This facilitates the screwing of bolts 7 and 8 during assembly.
  • the nuts 73 and 83 crimped on the flange 31 are identical.
  • fastening bolts 8 and 7 are in a concrete example of 28 and 4, respectively. It was verified that the 28 bolts could safely secure the attachment of the compressor to the disc. The difference of 4 with respect to an assembly at 32 does not affect. Calculations have demonstrated this in particular for: the passage torque, mechanical stresses, the life of parts, etc ....
  • a module comprising this balancing device is represented on the figure 7 .
  • the module comprises a flange 10 for hooking the weights on this face.
  • the flange 10 is annular with a face perpendicular to the axis of the module, and comprises a plurality of machining for assembling weights.
  • the number of machining is preferably equal to that of the number of fins mounted on the turbine disk.
  • the figure 7 shows a weight 11 in place held by bolts 111. In this case, the installation of these weights allows the return of the upstream balancing plane rotor HP turbine module. This contributes to one of the delivery conditions of a so-called clean module.
  • a module according to the present invention does not degrade the maintenance of the surrounding modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • La présente invention concerne le domaine des moteurs à turbine à gaz et vise en particulier un module de turbine, notamment le module haute pression.
  • Un moteur à turbine à gaz axial comprend un ensemble rotatif formant compresseur, alimentant une chambre de combustion fixe qui elle-même délivre des gaz chauds à un ensemble rotatif formant turbine. Un rotor de turbine solidaire d'un rotor de compresseur forme un corps et le moteur peut comprendre un ou plusieurs corps, généralement deux ou trois tournant à des vitesses différentes. Ainsi un moteur à double corps, comprend un corps basse pression BP et un corps haute pression HP. Afin de rendre le montage du moteur plus aisé et de réduire les temps de montage et démontage, son architecture est souvent divisée en modules. Par exemple pour le corps haute pression d'un moteur à double corps, on dispose l'ensemble des pièces constituant le compresseur en un module de compresseur HP et l'ensemble des pièces constituant le rotor de turbine en un module de turbine HP.
  • Ce dernier module est constitué de seules pièces tournantes, par exemple un disque de turbine sur lequel sont boulonnés un ensemble d'étanchéité à labyrinthes et une virole avec bride d'assemblage en amont, et un ensemble d'étanchéité associé à un palier en aval.
  • Généralement, les modules compresseur HP et turbine HP sont assemblés par l'intermédiaire de brides spécifiques ; ces brides transmettent le couple moteur de la turbine au compresseur. La liaison par ces brides doit donc être suffisamment résistante pour remplir cette fonction. Le document US 5 816 776 , par exemple, décrit cet état de la technique.
  • En outre les modules se doivent d'être fournis au montage en étant parfaitement équilibrés en rotation. Dans le cas d'un module du type de celui de la turbine HP, on prévoit un plan d'équilibrage amont et un plan d'équilibrage aval. Le plan d'équilibrage est celui dans lequel on dispose les masselottes d'équilibrage à une distance de l'axe et selon un angle déterminés. Dans la solution avec bride d'assemblage, la bride qui est à la frontière du module constitue un plan d'équilibrage approprié. On dispose donc les masselottes d'équilibrage dans la zone de la bride frontière. C'est le cas en particulier à la frontière entre le module de compresseur HP et le module de turbine HP. Chaque module est donc présenté au montage en étant équilibré de cette manière.
  • L'emploi de brides spécifiques d'assemblage est commode mais est pénalisant en poids. On a donc cherché à développer un module dont le montage au compresseur puisse être assuré sans bride spécifique d'assemblage. En particulier on a examiné la possibilité d'assurer l'assemblage au compresseur directement sur le disque de turbine du module.
  • Il se pose alors le problème du pré-assemblage du module de turbine et de sa livraison en étant parfaitement équilibré. En effet il est important que les monteurs chargés de l'assemblage des modules n'aient pas à intervenir sur le module lui-même, sinon l'intérêt de la modularité en serait amoindri.
  • La demanderesse s'est donc fixé comme objectif de développer un module de turbine qui satisfasse à ces contraintes.
  • Conformément à l'invention, le module de turbine pour moteur à turbine à gaz comprenant au moins un disque de turbine et un composant en forme de disque monté en amont sur le disque de turbine par rapport à l'écoulement des gaz, ledit module comportant un moyen d'assemblage entre le compresseur dudit moteur et le disque de turbine, est caractérisé par le fait que le composant, avant assemblage du module au compresseur, est pré-assemblé au disque de turbine, par boulonnage à une bride de fixation solidaire du disque de turbine.
  • Ainsi par la solution de l'invention qui consiste à fixer directement le module compresseur sur le disque de turbine et à lier le composant, disposé entre le compresseur et le disque de turbine, au disque de turbine séparément, on permet une réduction de masse sans perdre en sécurité d'assemblage ainsi qu'un pré-assemblage en module pouvant être éventuellement équilibré.
  • De préférence le moyen d'assemblage du compresseur au disque de turbine comprend ladite bride de fixation.
  • Notamment lorsque le composant est en forme de disque avec un voile entre son moyeu et sa périphérie, et est monté à ladite bride par boulonnage à travers des premiers perçages dans le voile, des deuxièmes perçages sont ménagés dans le voile pour l'assemblage par boulonnage du module de turbine au compresseur.
  • Conformément à une autre caractéristique le composant est fixé à ladite bride par des boulons dont le nombre est compris entre 2 et 8 répartis sur la circonférence.
  • Avantageusement, les boulons sont retenus par des écrous sertis sur la bride, côté aval, ensemble avec des écrous pour l'assemblage du module au compresseur. Les boulons de fixation du composant ont plus particulièrement une tête de forme spécifique qui se distingue des têtes des boulons de fixation du compresseur.
  • Conformément à une autre caractéristique le composant comprend un dispositif d'équilibrage amont disposé sur ledit composant indépendamment du moyen d'assemblage au compresseur.
  • L'invention s'applique en particulier à un module dont le composant est un disque support d'éléments d'étanchéité à labyrinthes.
  • L'invention couvre également le compresseur associé au module pour former un moteur à turbine à gaz, comprenant une bride aval de fixation au module. Sur cette bride des logements ou des passages sont ménagés pour les têtes des boulons de fixations déjà en place sur le module.
  • L'invention va maintenant être présentée plus en détail dans la description qui suit d'un mode de réalisation non limitatif en référence aux dessins annexés sur lesquels :
    • la figure 1 montre en coupe axiale un demi module de turbine haute pression conforme à l'invention,
    • la figure 2 montre le détail de la fixation préalable du composant au disque de turbine, vu en coupe axiale,
    • la figure 3 montre le détail de la fixation de la bride aval du compresseur au disque de turbine, vu en coupe axiale,
    • la figure 4 montre en détail l'arrangement de la bride du compresseur HP, vu du côté amont,
    • la figure 5 montre une variante de réalisation de la bride aval du compresseur HP,
    • la figure 6 est une coupe selon VI-VI de la figure 2 ou 3 et montre le détail du montage des écrous sur la bride de fixation solidaire du disque de turbine, vu du côté aval,
    • la figure 7 montre une variante du module de turbine de la figure 1, le module étant équipé d'un dispositif d'équilibrage amont.
  • En se reportant à la figure 1, on voit une moitié de module de turbine HP en coupe axiale. Ce module comprend un disque de turbine 3, avec un moyeu à section axiale allant en épaisseur croissante à proximité de l'axe, et à la périphérie duquel sont montées les aubes 4 de turbine. Celles-ci sont logées dans des alvéoles axiales ménagées sur la jante du disque. Un composant 5 est monté sur le disque 3 en amont, c'est-à-dire à gauche sur la figure. L'amont et l'aval étant définis par rapport à l'écoulement des gaz dans le moteur. Le composant est ici un disque à symétrie de révolution par rapport à l'axe de la machine. Ce disque comprend un moyeu allant en épaisseur croissante vers l'axe du moteur, une partie formant un voile 51 en allant vers la périphérie. Le disque à sa périphérie porte des lames 53 annulaires radiales formant la partie tournante de joints d'étanchéité à labyrinthes. Leur contrepartie n'est pas représentée.
  • Le disque 5 est fixé au disque 3 par boulonnage sur une bride de fixation 31 solidaire du disque en amont de celui-ci. Les boulons 7 comprennent une tête 71, une tige 72 traversant un orifice ménagé dans le voile 51 et un perçage usiné dans la bride 31, et coopèrent avec un écrou 73.
  • Sur le flanc aval du module on distingue un disque 6 avec un tourillon 61 formant support pour un palier aval 62. Le disque est boulonné sur une bride de fixation aval 33. Les boulons 64 de fixation sont répartis sur tout le pourtour du disque. Il comporte également des éléments d'étanchéité 63 pour un joint d'étanchéité à labyrinthes. Le disque 6 forme un plan d'équilibrage aval. Des masselottes d'équilibrage sont montées avec les boulons de fixation.
  • Le module tel que représenté sur la figure 1 est pré-assemblé prêt à être monté et assemblé à un compresseur. La fonction des boulons 7 est de maintenir le composant 5 solidaire du disque de turbine pendant les manipulations. Les boulons 7 sont de préférence au nombre de quatre et sont équidistants sur la circonférence. Leur nombre peut être compris entre 2 et 8. Il faut tenir compte en fait des boulons de fixation du compresseur au disque. Les boulons 7 ne viennent pas perturber le tierçage entre le disque 3 et le disque 5.
  • En se reportant aux figures 2 et 3, on voit le détail du boulonnage après que le module de turbine a été fixé à une bride 9 de fixation du compresseur. Ce dernier n'est pas représenté. La bride de fixation 9 est annulaire et constitue la frontière aval du compresseur. La figure 2 représente une coupe axiale partielle réalisée le long d'un boulon 7 de fixation du composant 5 au disque 3. La figure 3 représente une coupe axiale partielle réalisée le long d'un boulon 8 de fixation de la bride 9 au disque 3.
  • Les têtes 71 des boulons 7 sont engagées dans de larges festons de la bride 9 de telle manière qu'elles viennent en prise avec le disque du composant 5 directement. Ces boulons n'on donc aucun effet sur la liaison de la bride 9.
  • Les boulons 8 de la figure 3 participent chacun à la fixation de la bride 9 au disque 3. Les têtes 81 sont en appui contre la surface amont de la bride 9 qui est maintenue serrée contre le disque 5 par l'écrou 83 appliqué contre la face aval de la bride 31. La tige 82 du boulon 8 traverse le disque du composant 5 et les deux brides 9 et 31.
  • Sur la figure 4 on a représenté la bride annulaire 9, vue du côté amont. Elle comprend des encoches en forme de festons pour lui permettre de contourner les têtes 71 des boulons 7, et venir en appui contre le disque du composant 5. Elle comprend également des perçages pour le passage des tiges 82 des boulons 8, dont la tête 81 vient en appui sur le bord des perçages.
  • Sur la figure 5 on a représenté une variante 9' de bride de fixation du compresseur. Pour le passage des têtes 71 des boulons de fixation du disque 5, au lieu de festons on a limité le passage à un orifice circulaire de diamètre légèrement supérieur à celui des têtes 71.
  • Le composant 5 possède les mêmes perçages dans le voile 51 capable de laisser passer soit les boulons 7 soit les boulons 8.
  • Pour assurer la fonction de détrompeur entre les boulons 7 et 8, on peut prévoir des têtes 71 et 81 de boulons avec des formes différentes.
  • Par exemple, on peut prévoir des têtes cannelées pour les uns et des têtes larges (une tête large est une tête plus large que l'opération de vissage nécessite ; elle correspond à celle d'un fût plus large) pour les autres ou inversement.
  • L'emploi de ce type de têtes tout en assurant également le détrompage, présente en outre l'avantage d'éviter le grippage, au moment du démontage modulaire du compresseur et de la turbine, des boulons 8. Si les boulons 8 restent bloqués, les têtes spécifiques 81 des boulons 8 sont capables de supporter un violent sur-couple pour cisailler le fût 82 de la tête 81. Dans tous les cas, le démontage modulaire est assuré.
  • Sur la figure 6 on a représenté la bride 31 vue du côté aval. Les écrous 73 et 83 sont de préférence montés et sertis sur place avant assemblage des pièces. On note qu'ils présentent une languette 731 respectivement 831 de forme rectangulaire de manière à assurer un blocage mutuel en rotation. Cela facilite le vissage des boulons 7 et 8 lors du montage. Les écrous 73 et 83 sertis sur la bride 31 sont identiques.
  • Les nombres de boulons de fixation 8 et 7 sont dans un exemple concret respectivement de 28 et 4. On a vérifié que les 28 boulons pouvaient assurer avec sécurité la fixation du compresseur au disque. La différence de 4 par rapport à un montage à 32 n'a pas d'incidence. Les calculs l'ont ainsi démontré notamment pour : le passage couple, les contraintes mécaniques, la durée de vie des pièces, etc....
  • On observe enfin que cette disposition permet le tierçage entre le module compresseur et le module de turbine.
  • Afin de permettre l'équilibrage du module, on prévoit de disposer des masselottes sur la face amont du disque du composant 5 qui constitue alors avantageusement le plan d'équilibrage amont. Un module comportant ce dispositif d'équilibrage est représenté sur la figure 7. Le module comprend une bride 10 d'accrochage des masselottes sur cette face. La bride 10 est annulaire avec une face perpendiculaire à l'axe du module, et comprend une pluralité d'usinages pour le montage de masselottes. Le nombre d'usinages est de préférence égal à celui du nombre d'ailettes montées sur le disque de turbine.
  • La figure 7 montre une masselotte 11 en place maintenu par des boulons 111. Dans ce cas, l'installation de ces masselottes permet la restitution du plan amont d'équilibrage du rotor module turbine HP. Cela contribue à l'une des conditions de livraison d'un module dit propre.
  • Un module selon la présente invention ne vient pas dégrader la maintenance des modules environnants.

Claims (12)

  1. Module de turbine pour moteur à turbine à gaz comprenant au moins un disque (3) de turbine et un composant (5) en forme de disque monté sur le disque de turbine en amont par rapport à l'écoulement des gaz, ledit module comportant un moyen d'assemblage au compresseur dudit moteur, caractérisé par le fait que le composant (5) est pré-assemblé au disque (3) de turbine, avant assemblage du module au compresseur, par boulonnage à une bride (31) de fixation solidaire du disque (3) de turbine.
  2. Module selon la revendication 1, dont le moyen d'assemblage au compresseur comprend ladite bride (31) de fixation.
  3. Module selon la revendication 2 dont le composant est en forme de disque avec un voile (51) entre son moyeu et sa périphérie, et est monté à ladite bride (31) par boulonnage (7) à travers des premiers perçages dans le voile (51), des deuxièmes perçages étant ménagés dans le voile pour l'assemblage par boulonnage (8) du module de turbine (3) au compresseur.
  4. Module selon la revendication 3 dont le composant (5) possède les mêmes perçages dans le voile (51) capable de laisser passer soit les boulons (7) soit les boulons (8).
  5. Module selon la revendication 3 ou 4 dont le composant est fixé à ladite bride (31) par des boulons (7) dont le nombre est compris entre 2 et 8 répartis sur la circonférence.
  6. Module selon l'une des revendications 2 à 5 dont les boulons (7) sont retenus par des écrous (73) sertis sur la bride (31), côté aval, ensemble avec des écrous (83) pour l'assemblage du module au compresseur.
  7. Module selon la revendication 6 dont les écrous (73) et (83) sertis sur la bride (31) sont identiques.
  8. Module selon l'une des revendications 2 à 5 dont les boulons (7) de fixation du composant ont une tête spécifique qui se distingue des têtes des boulons (8) de fixation du compresseur.
  9. Module selon l'une des revendications 2 à 8 comprenant un dispositif d'équilibrage (10, 11) amont disposé sur ledit composant (5) indépendamment du moyen d'assemblage au compresseur.
  10. Module selon l'une des revendications 2 à 9 dont le composant (5) est un disque support d'éléments d'étanchéité à labyrinthes.
  11. Ensemble comprenant un compresseur et un module selon l'une des revendications précédentes pour former un moteur à turbine à gaz, le compresseur comprenant une bride (9) aval de fixation au module sur laquelle des logements ou des passages sont ménagés pour les têtes des boulons (71) de fixation déjà en place sur le module.
  12. Moteur à turbine à gaz comportant un module de turbine selon l'une des revendications 1 à 10.
EP06113242A 2005-04-29 2006-04-27 Module de turbine pour moteur à turbine à gaz Active EP1717415B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0551124A FR2885167B1 (fr) 2005-04-29 2005-04-29 Module de turbine pour moteur a turbine a gaz

Publications (2)

Publication Number Publication Date
EP1717415A1 EP1717415A1 (fr) 2006-11-02
EP1717415B1 true EP1717415B1 (fr) 2008-06-11

Family

ID=35169522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06113242A Active EP1717415B1 (fr) 2005-04-29 2006-04-27 Module de turbine pour moteur à turbine à gaz

Country Status (9)

Country Link
US (1) US7364402B2 (fr)
EP (1) EP1717415B1 (fr)
CN (1) CN1854485B (fr)
CA (1) CA2544784C (fr)
DE (1) DE602006001430D1 (fr)
ES (1) ES2310887T3 (fr)
FR (1) FR2885167B1 (fr)
RU (1) RU2403401C2 (fr)
UA (1) UA88281C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092012B2 (en) 2017-03-27 2021-08-17 MTU Aero Engines AG Turbomachine component arrangement

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167547B2 (en) * 2007-03-05 2012-05-01 United Technologies Corporation Gas turbine engine with canted pocket and canted knife edge seal
FR2914008B1 (fr) * 2007-03-21 2009-10-09 Snecma Sa Ensemble rotatif d'une soufflante de turbomachine
FR2921422B1 (fr) * 2007-09-26 2009-12-18 Snecma Piece annulaire de turbomachine portant des ecrous a jupe de sertissage
FR2931873B1 (fr) * 2008-05-29 2010-08-20 Snecma Ensemble d'un disque de turbine d'un moteur a turbine a gaz et d'un tourillon support de palier,circuit de refroidissement d'un disque de turbine d'un tel ensemble.
FR2931869B1 (fr) * 2008-05-29 2014-12-12 Snecma Bride annulaire de fixation d'un element de rotor ou de stator
FR2938292B1 (fr) * 2008-11-07 2010-12-24 Snecma Bride annulaire de fixation d'un element de rotor ou de stator dans une turbomachine
FR2939836B1 (fr) * 2008-12-12 2015-05-15 Snecma Joint d'etancheite de plateforme dans un rotor de turbomachine
FR2946083B1 (fr) * 2009-05-28 2011-06-17 Snecma Turbine basse-pression
FR2974865B1 (fr) * 2011-05-04 2013-07-05 Snecma Rotor haute pression pour turbomachine d'aeronef, comprenant des moyens de detrompage associes a des boulons de prefixation de module de turbine
BR112015007733B1 (pt) 2012-10-08 2022-05-03 United Technologies Corporation Motores de turbina a gás, e, método para distribuir peso entre um conjunto de propulsor e um conjunto de gerador de gás de um motor de turbina a gás
FR3001515B1 (fr) * 2013-01-25 2015-03-20 Snecma Assemblage de masselotte d'equilibrage a un element de rotor
FR3002585B1 (fr) * 2013-02-27 2016-07-15 Snecma Equilibrage d'un ensemble rotatif dans une turbomachine
EP2986824B1 (fr) 2013-04-18 2020-05-27 United Technologies Corporation Amortisseur à minidisque de turbine pour turbine à gaz
ES2698966T3 (es) * 2013-07-08 2019-02-06 MTU Aero Engines AG Dispositivo, conjunto de dispositivo y álabes, procedimiento, así como turbomáquina
DE102013216377A1 (de) 2013-08-19 2015-03-12 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zum Auswuchten und zur Montage eines Turbinenrotors
RU2532390C1 (ru) * 2013-09-10 2014-11-10 Открытое акционерное общество "Авиадвигатель" Ротор турбины высокого давления
FR3021066B1 (fr) * 2014-05-19 2019-05-10 Safran Aircraft Engines Disque de rotor equilibre, et procede d'equilibrage
EP3081919B1 (fr) 2015-04-16 2018-11-21 Thilo Kraemer Appareil de contrôle pour mettre en oeuvre des mesures de dureté
DE202015101878U1 (de) 2015-04-16 2015-04-30 Thilo Kraemer Prüfgerät
EP3091179B1 (fr) * 2015-05-07 2021-06-30 MTU Aero Engines AG Système de rotor pour une turbomachine et compresseur
WO2016187600A1 (fr) 2015-05-20 2016-11-24 Other Lab, Llc Compresseur/détendeur quasi-isotherme
CN105401981A (zh) * 2015-12-29 2016-03-16 中国航空工业集团公司沈阳发动机设计研究所 一种高转速低压涡轮转子结构
CN107932060B (zh) * 2017-11-23 2019-03-22 中国航发沈阳黎明航空发动机有限责任公司 一种控制燃机低压一级涡轮盘磨损的方法
FR3078363B1 (fr) * 2018-02-23 2021-02-26 Safran Aircraft Engines Anneau mobile d'etancheite
US11448081B2 (en) 2019-10-18 2022-09-20 Raytheon Technologies Corporation Balanced circumferential seal
CN111485955A (zh) * 2020-04-16 2020-08-04 中国航发沈阳发动机研究所 一种转子轮盘装配结构
US11549373B2 (en) 2020-12-16 2023-01-10 Raytheon Technologies Corporation Reduced deflection turbine rotor
US11578599B2 (en) * 2021-02-02 2023-02-14 Pratt & Whitney Canada Corp. Rotor balance assembly
FR3119647B1 (fr) * 2021-02-11 2023-01-13 Safran Aircraft Engines Procédé de réparation d’une bride de rotor de turbomachine
RU208145U1 (ru) * 2021-06-07 2021-12-06 Публичное Акционерное Общество "Одк-Сатурн" Узел ротора турбины высокого давления
CN114215611B (zh) * 2021-12-01 2023-07-14 东方电气集团东方汽轮机有限公司 一种燃气轮机透平动叶轴向定位用气封装配体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275534A (en) * 1991-10-30 1994-01-04 General Electric Company Turbine disk forward seal assembly
US5562404A (en) * 1994-12-23 1996-10-08 United Technologies Corporation Vaned passage hub treatment for cantilever stator vanes
FR2744761B1 (fr) * 1996-02-08 1998-03-13 Snecma Disque labyrinthe avec raidisseur incorpore pour rotor de turbomachine
US6893222B2 (en) * 2003-02-10 2005-05-17 United Technologies Corporation Turbine balancing
FR2857419B1 (fr) * 2003-07-11 2005-09-23 Snecma Moteurs Liaison amelioree entre disques aubages sur la ligne rotor d'un compresseur

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092012B2 (en) 2017-03-27 2021-08-17 MTU Aero Engines AG Turbomachine component arrangement

Also Published As

Publication number Publication date
RU2403401C2 (ru) 2010-11-10
CA2544784C (fr) 2014-01-28
FR2885167B1 (fr) 2007-06-29
CN1854485A (zh) 2006-11-01
CN1854485B (zh) 2011-05-25
FR2885167A1 (fr) 2006-11-03
US7364402B2 (en) 2008-04-29
EP1717415A1 (fr) 2006-11-02
CA2544784A1 (fr) 2006-10-29
DE602006001430D1 (de) 2008-07-24
ES2310887T3 (es) 2009-01-16
US20070059164A1 (en) 2007-03-15
UA88281C2 (ru) 2009-10-12
RU2006114654A (ru) 2007-11-10

Similar Documents

Publication Publication Date Title
EP1717415B1 (fr) Module de turbine pour moteur à turbine à gaz
EP1564352B1 (fr) Turboréacteur dont l'arbre d'entraînement de la soufflante est supporté par deux paliers
EP2555973B1 (fr) Hélice non carénée pour turbomachine
EP1561907B1 (fr) Turboréacteur à soufflante solidaire d'un arbre d'entraînement supporté par un premier et un deuxième paliers
EP2834475B1 (fr) Système de transmission de puissance pour une turbomachine et procédé correspondant
CA2641017C (fr) Perfectionnement a un anneau de commande de calage des aubes fixes d'une turbomachine
CA2733935C (fr) Turbine haute-pression de turbomachine avec secteur de distributeur glissant
FR3032941A1 (fr) Soufflante non carenee de turbomachine d'aeronef
FR2943312A1 (fr) Helice non carenee a pales a calage variable pour une turbomachine
FR3017163A1 (fr) Dispositif pour une helice non carenee a pales a calage variable d'une turbomachine
CA2755653A1 (fr) Helice non carenee a pales a calage variable pour une turbomachine
EP2071141B1 (fr) Étanchéité de fixation de support de palier dans une turbomachine
EP2060751B1 (fr) Etage de turbine ou de compresseur d'un turboréacteur
WO2012114032A1 (fr) Rotor de soufflante et turboréacteur associé
WO2013190246A1 (fr) Moteur a turbine a gaz comportant un cône d'échappement fixe au carter d'échappement
EP1617046B1 (fr) Ensemble comprenant un arbre rotatif et un palier à roulement
FR2968363A1 (fr) Rotor de turbomachine avec une cale anti-usure entre un disque et un anneau
CA2769696A1 (fr) Moyeu d'helice a pales a calage variable
CA2766661A1 (fr) Moyeu d'helice
FR2990001A1 (fr) Assemblage d'un echangeur thermique au sein d'un carter intermediaire de turboreacteur
CA2619422C (fr) Chambre de combustion d'une turbomachine
FR2915550A1 (fr) Vanne a clapet pour un systeme de refroidissement dans une turbomachine
WO2021058888A1 (fr) Ensemble de soufflante de turbomachine comprenant un roulement a rouleaux et un roulement a double rangee de billes a contact oblique
EP3763932B1 (fr) Reducteur mécanique pour une turbomachine d'aéronef
EP3935273B1 (fr) Turbine à gaz contrarotative pour aéronef à double rotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602006001430

Country of ref document: DE

Date of ref document: 20080724

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2310887

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120410

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130428

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230322

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 19