EP1711996A1 - Moteur electrique a commutation electronique et procede de commande dudit moteur - Google Patents

Moteur electrique a commutation electronique et procede de commande dudit moteur

Info

Publication number
EP1711996A1
EP1711996A1 EP04804298A EP04804298A EP1711996A1 EP 1711996 A1 EP1711996 A1 EP 1711996A1 EP 04804298 A EP04804298 A EP 04804298A EP 04804298 A EP04804298 A EP 04804298A EP 1711996 A1 EP1711996 A1 EP 1711996A1
Authority
EP
European Patent Office
Prior art keywords
electric motor
duration
pulse
power
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04804298A
Other languages
German (de)
English (en)
Inventor
Konstantin Dornhof
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst St Georgen GmbH and Co KG
Original Assignee
Ebm Papst St Georgen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst St Georgen GmbH and Co KG filed Critical Ebm Papst St Georgen GmbH and Co KG
Publication of EP1711996A1 publication Critical patent/EP1711996A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current

Definitions

  • the invention relates to an electronically commutated electric motor and a method for controlling such a motor.
  • the losses that occur at the output stage of the motor driver essentially consist of losses when switching the power transistors on and off (switching losses) and losses at the internal resistance R DS of the power transistors in the conductive state (master losses).
  • a change in the motor current is achieved by changing the duty cycle t / T.
  • the period T remains constant. This applies equally to the size of the switching losses.
  • the conduction losses depend on the pulse duration t and increase in proportion to the engine power.
  • the object of the present invention is to reduce the power loss of an electronically commutated electric motor. This object is achieved by an electric motor according to claim 1 or by a method according to claim 9.
  • a basic idea of the invention is to keep the value Tt, ie the duration of the pulse pauses, constant or at least over a substantial working range.
  • a change in the motor current is achieved according to the invention by adapting the period T or pulse duration t with a constant variable Tt. In other words, in contrast to conventional PWM methods, both period T and pulse duration t can be set variably.
  • the level of the switching losses depends on the engine power.
  • the method can be used particularly efficiently in the case of comparatively high engine outputs, since, due to the extended period T and the associated reduction in the clock frequency 1 / T of the switching signal, the switching losses decrease proportionally with increasing engine outputs.
  • the simultaneous increasing conduction losses at the internal resistance of the power transistors are partially compensated for.
  • the value of the pulse pause T-t is preferably set such that a low-noise mode of operation is ensured. This is particularly the case with period durations T ⁇ 50 ⁇ s. It is particularly advantageous if the constant duration of the pulse pause T-t can be variably set depending on the application.
  • the very high power at the edge of the work area ie close to 100% of the maximum power Duration of the pulse pause "soft" reduced to zero. This has the advantage that the maximum power of the motor is available.
  • the pulse duration t is kept constant at very low powers, that is to say in a low power range from 0 to 5% of the maximum power. This has the advantage that even such low outputs can be easily regulated.
  • FIG. 1 shows a greatly simplified circuit diagram of an electronically commutated electric motor
  • FIG. 2 shows a pulse diagram according to the PWM method (prior art)
  • Fig. 3 is a timing diagram according to a method according to the invention.
  • the electronically commutated direct current motor 10 has two stator winding strands 12, 14 and a permanent magnet rotor 16 (only shown symbolically), in the vicinity of which a Hall generator 18 is arranged.
  • the strand 12 is in series with a first power transistor (MOSFET) 20 and the strand 14 is in series with a second power transistor (MOSFET) 22.
  • the source connections of the field effect transistors 20, 22 and the emitters in bipolar transistors are common Source or emitter resistor 24 connected to a negative line 26.
  • the strands 12, 14 are connected to a positive line 28. Plus line 28 and minus line 26 are in Operation connected to a power supply (not shown) or a battery.
  • the strands 12, 14 are usually coupled to one another via the iron of the stator laminated core.
  • the output signal of the Hall generator 18 is fed to the two inputs IN1 and IN2 of a microcontroller ( ⁇ C) 30.
  • the ⁇ C 30 is connected with its VCC connection to the plus line 28 and with its GND connection to the minus line 26.
  • the ⁇ C 30 generates signals OUT1 and OUT2 for controlling the power transistors 20, 22 and at the same time causes the motor to lock.
  • the signal OUT1 is supplied to the gate of the transistor 20 via a resistor 32.
  • the signal OUT2 is supplied to the gate of the transistor 22 via a resistor 34.
  • the gate of the first transistor 20 is connected to the negative line 26 via a resistor 36.
  • the gate of the second transistor 22 is connected to the negative line 26 via a resistor 38.
  • the signals OUT1 and OUT2 are control signals according to a control method according to the invention.
  • the power transistors 20, 22 are therefore driven with an essentially constant pulse pause Tt.
  • the control signals U G for controlling the gate connections of the field effect transistors 20, 22 and the resulting drain voltage U D at the drain connection of the field effect transistor 20 are shown schematically.
  • a speed controller (in ⁇ C 30) is preferably used to control the electric motor 10, with the aid of which the pulse duration t of the control pulses is influenced as a relevant manipulated variable.
  • a torque controller can of course also be used.
  • the control signals are generated by means of program or control routines running in the ⁇ C 30.
  • the control method according to the invention is based on a conventional electric motor without major ones Modifications applicable. Only a corresponding change in the configuration or programming of the ⁇ C 30 is required.
  • the ⁇ C 30 can be designed such that it changes between the method according to the invention and a PWM method or another control method depending on a predetermined or dynamically determined limit value during operation of the engine.
  • the ⁇ C 30 can be designed such that control signals OUT1 and OUT2 with a constant pulse duration t are supplied to the power transistors 20, 22 at very low powers, in particular in a range from 0 to 5% of the maximum power.
  • the ⁇ C 30 can be designed such that the control signals OUT1 and OUT2 have no pulse pauses T-t at all in the range of the maximum power of 100%, which is also referred to as block control.
  • the electric motor 10 has the following preferred characteristic values:
  • a DC motor with a maximum power of 10-50W pulse pauses Tt of 10 ⁇ s have proven to be particularly advantageous.
  • the losses for a conventional PWM method are calculated as follows: p _
  • a special feature of the circuit according to FIG. 1 is that due to the transformer coupling of the stator winding phases, an effective torque only occurs in the electric motor 10 at a pulse pause ratio t to Tt of 50% to 50%, and this produces an output.
  • This type of circuit is advantageous because it generates little noise.
  • the circuit of FIG. 1 can be modified by inserting a feedback diode or by being designed as a full bridge circuit. In these cases, the motor generates an output P> 0 with a pulse pause ratio t> 0% to T-t.
  • FIG. 2 shows the voltage characteristic of a motor control, in which the voltage U D at the drain connection of the field effect transistor 20 or 22 is plotted as a function of the time t, and which is operated using the PWM method known from the prior art ,
  • the characteristic is characterized by a constant period T PWM .
  • the duration t PWM of the pulses 40, 42, 44 and thus also the duration T PWM - t PWM of the pulse pause 46, 48, 50 varies depending on the desired engine power.
  • the level of switching losses is constant because exactly two switching processes take place in each period.
  • the level of the conduction losses occurring at the internal resistance R DS of the power transistor 20, 22 depends on the pulse duration t PWM during which the power transistor 20, 22 conducts the current.
  • FIG. 3 shows a voltage characteristic curve, in which the voltage U D (cf. FIG. 1) is plotted on the drain connection of the field effect transistor 20 or 22 as a function of the time t, for a motor control according to the method according to the invention. While the period T and the duration t of the pulses 52, 54, 56 are variable, the duration T-t of the pulse pause 58, 60, 62 is kept constant. The level of the switching losses is no longer constant, but depends on the engine power. The switching losses are particularly low with high engine outputs.
  • the line losses at the internal resistance of the power transistors which increase with increasing motor power, are more than compensated for by the significant decrease in switching losses.
  • the total losses in the method according to the invention are lower from a power of approximately 30W than in a conventional PWM method.
  • a control of the electric motor using the PWM method can be provided up to a power of 30W.
  • the method according to the invention is then used for higher engine outputs. Tests have shown that the method according to the invention can be used particularly efficiently in a power range above 50% of the maximum power.
  • the method according to the invention is particularly efficient in a power range above 60% of the maximum power of the electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

La présente invention concerne un moteur électrique (10) à commutation électronique comportant au moins un faisceau d'enroulements (12, 14) de stator, et un procédé de commande dudit moteur. Selon la présente invention, pour réduire les pertes de puissance, un moteur électrique (10) et un procédé de commande sont ainsi conçus que la durée (T-t) des intervalles entre impulsions des signaux de commande pour l'alimentation électrique du faisceau d'enroulements (12, 14) de stator au moins est essentiellement constant.
EP04804298A 2004-02-03 2004-12-24 Moteur electrique a commutation electronique et procede de commande dudit moteur Withdrawn EP1711996A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004006448 2004-02-03
PCT/EP2004/014707 WO2005076455A1 (fr) 2004-02-03 2004-12-24 Moteur electrique a commutation electronique et procede de commande dudit moteur

Publications (1)

Publication Number Publication Date
EP1711996A1 true EP1711996A1 (fr) 2006-10-18

Family

ID=34745229

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04804298A Withdrawn EP1711996A1 (fr) 2004-02-03 2004-12-24 Moteur electrique a commutation electronique et procede de commande dudit moteur

Country Status (3)

Country Link
EP (1) EP1711996A1 (fr)
DE (1) DE102005002327A1 (fr)
WO (1) WO2005076455A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
EP2868970B1 (fr) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Dispositif de régulation
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US10920627B2 (en) 2016-09-22 2021-02-16 Schaeffler Technologies AG & Co. KG Adjusting unit of an internal combustion engine
EP3299595A1 (fr) 2016-09-22 2018-03-28 Schaeffler Technologies GmbH & Co. KG Déphaseur d'arbre à cames
DE102016218192B3 (de) * 2016-09-22 2018-01-25 Schaeffler Technologies AG & Co. KG Nockenwellenversteller
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4757241A (en) * 1987-10-19 1988-07-12 General Electric Company PWM system for ECM motor
US5502361A (en) * 1993-02-17 1996-03-26 Pitney Bowes Inc. Load current limiting circuit for PWM controlled brushless motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005076455A1 *

Also Published As

Publication number Publication date
WO2005076455A1 (fr) 2005-08-18
DE102005002327A1 (de) 2005-08-11

Similar Documents

Publication Publication Date Title
EP1711996A1 (fr) Moteur electrique a commutation electronique et procede de commande dudit moteur
EP1797634B1 (fr) Procede et dispositif de commande de l'alimentation en courant d'un moteur a commutation electronique
EP1499008B1 (fr) Méthode et système de commande pour la commutation électronique d'un moteur DC sans balais
EP1608057A1 (fr) Circuit de protection pour réduire des perturbations électriques en actionnant un moteur de C.C
EP1683259A1 (fr) Moteur a commutation electronique, et procede pour le commander
DE10156939B4 (de) Schaltungsanordnung zum Betreiben einer elektrischenMaschine
DE3819062C3 (de) Verfahren zur Steuerung von bürstenlosen Elektromotoren sowie Steuerschaltung hierfür
DE3819064C3 (de) Verfahren zur Steuerung von bürstenlosen Elektromotoren sowie Steuerschaltung hierfür
DE10234397A1 (de) Gebremster Reihenschlussmotor und Verfahren zum Bremsen eines Reihenschlussmotors
DE102018108193A1 (de) Steuereinrichtung und Steuerungsverfahren eines Schrittmotors
DE1538556A1 (de) Wechselstrommotor-Steuersystem
EP2792061B1 (fr) Commande sélective d'un moteur à courant alternatif ou d'un moteur à courant continu
DE102009011275A1 (de) Elektromagnetventilantriebssteuervorrichtung und Verfahren zum Antreiben eines Elektromagnetventils
EP3375087A1 (fr) Interface
DE102005001319B4 (de) Elektrischer Türöffner
DE4323504B4 (de) Schaltung zur Bestromung eines bürstenlosen Gleichstrommotors
EP2680432B1 (fr) Procédé destiné à la commande d'un moteur pas à pas
DE20305771U1 (de) Schaltungsanordnung zum Betreiben von Schrittmotoren
DE112006001125T5 (de) Motorstromumformung
EP0190240B1 (fr) Moteur a courant continu depourvu de collecteur
DE102014208066A1 (de) Verfahren zur Stromregelung einer induktiven Last
DE102005007511A1 (de) System für das Steuern der Geschwindigkeit eines Motors
EP2510609B1 (fr) Procédé pour faire fonctionner une machine à courant continu sans balais et machine à courant continu
DE102013206445A1 (de) Verfahren zum Betrieb eines Niederdruck-Kraftstofffördersystems und ein Niederdruck-Kraftstofffördersystem
DE19943542A1 (de) Verfahren und Anordnung zur Regelung des Stroms in einer geschalteten Reluktanzmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EBM-PAPST ST. GEORGEN GMBH & CO. KG

17Q First examination report despatched

Effective date: 20070530

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110701