EP1709378A1 - Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air - Google Patents

Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air

Info

Publication number
EP1709378A1
EP1709378A1 EP04816555A EP04816555A EP1709378A1 EP 1709378 A1 EP1709378 A1 EP 1709378A1 EP 04816555 A EP04816555 A EP 04816555A EP 04816555 A EP04816555 A EP 04816555A EP 1709378 A1 EP1709378 A1 EP 1709378A1
Authority
EP
European Patent Office
Prior art keywords
air
motor
column
speed
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04816555A
Other languages
German (de)
English (en)
French (fr)
Inventor
Jean-Jacques Chollat
Alain Guillard
Alain Libarre
Xavier Pontone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1709378A1 publication Critical patent/EP1709378A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04139Combination of different types of drivers mechanically coupled to the same compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Definitions

  • the present invention relates to an air separation device, with the aid of an air separation device, an integrated air separation and metal production device and a method of starting such an air separation device.
  • an integrated air separation and metal production apparatus and a method for starting such an air separation apparatus As described in the article "Optimized Steel Production with Oxygen for Blast Fumaces at ILVA, Taranto Works, Italy" by Capogrosso et al., Steel Times International, February-March, 2003, it is known to at least partially power a device separation of air into compressed air from the blower of a blast furnace. The oxygen produced by the device is then mixed with the rest of the air from the blower, heated and sent to the blast furnace.
  • Air separation devices suitable for supplying a blast furnace are described in US-A-5244489, US-A-6089040, US-A-6119482 and US-A-6122932.
  • the air pressure gradually increases to a pressure which allows the booster compressing the air intended for air separation to start. It is obviously important to be able to quickly start this booster in order to supply the customer with oxygen as soon as possible, so that the blast furnace can operate normally.
  • An object of the present invention is to reduce the minimum air pressure at which the booster can start to operate.
  • an air separation device comprising a column system, means for supplying the device at least partially with compressed air coming from at least one booster, means for purifying and cooling the air, means to send it to a column of the column system, means for withdrawing a gaseous product from a column of the column system characterized in that the booster is driven by a variable speed motor with at least two nominal rotational speeds.
  • the variation of the network frequency and / or of the load means that the motor having a nominal speed of x revolutions will actually turn around this speed in a range of plus or minus 5% at most.
  • an integrated air separation and metal production apparatus comprising the apparatus comprises an air separation apparatus, a metal production apparatus, a compressor which compresses air intended for the air separation apparatus and air intended for the metal production apparatus, the air separation apparatus being of the type defined above, means for sending air from the compressor to the booster and means for sending the gaseous product from the air separation apparatus to the metal production unit.
  • a method for starting an air separation and metal production apparatus comprising a column system, means for supplying a booster with compressed air and means for sending air from the booster to at least one column of the column system and means for withdrawing a gaseous product from a column of the column system to send it to the production of metal, characterized in that the booster is driven by a variable speed motor and that, during a period of starting the metal production apparatus, the motor speed is greater than the motor speed during the stable operation of the apparatus.
  • the engine runs at one of two speeds, the engine running at a first speed when starting the metal production apparatus and at a second speed during stable operation of the device, the first speed being greater than the second speed;
  • the motor is supplied by an alternating current at a higher frequency when the metal production apparatus starts up than the frequency of the current during the stable operation of the apparatus;
  • the motor is supplied by a variable frequency current;
  • the motor includes several coils, coupled differently depending on the operation of the device;
  • Adjustment of the motor speed can be obtained by various means: - the number of pole pairs can be acted on, with single primary winding machines (with coupling of Dahlander type windings) or machines with several primary windings. -one can act on the frequency of the stator supply voltage with electromechanical frequency converters or static converters. -we can act on the slip by acting on the stator supply voltage, by using a slip rheostat to the rotor or by using a recovery cascade. All the pressures mentioned are absolute pressures. The invention will be described in more detail with reference to the drawings, which are block diagrams of an air separation installation according to the invention integrated with a blast furnace. FIG.
  • FIG. 1 represents a metal processing unit, in this example an FM blast furnace, and an air distillation apparatus comprising an exchange line LE, a double column DC and a mixing column CM, the blast furnace and the air distillation apparatus being supplied with air by a blower S typically producing more than 100,000 Nm3 / h of air at a pressure of less than 6 bars, typically between 3 and 5.5 bars.
  • the blower S can supply other devices.
  • the air for the FM blast furnace is heated and sent to the blast furnace after being mixed with a flow of oxygen O coming from the air separation device.
  • the air distillation apparatus shown in FIG. 1 is intended to produce, on a first step, low purity oxygen, for example having a purity of 80 to 97% and preferably 85 to 95% under a determined pressure.
  • the double distillation column DC itself comprising a medium pressure column MP, a low pressure column BP and a main condenser-vaporizer.
  • the columns MP and BP typically operate at approximately 6 bars and approximately 1.2 bars respectively.
  • a mixing column is a column which has the same structure as a distillation column but which is used to mix in a manner close to reversibility a relatively volatile gas, introduced at its base, and a less volatile liquid, introduced at its top. .
  • the booster C2 is driven by a motor M with variable speed of rotation with at least two nominal speeds.
  • This engine can be of the Dahlander type with two or even three speeds, as described in Memotech Electrotechnique by Bourgeois and Cogniel, ed. Educalivre, page 295.
  • the motor speed is higher than the motor speed during stable operation of the apparatus.
  • the booster can be driven by a turbine, such as a steam turbine.
  • Liquid oxygen is withdrawn from the tank of the column BP, carried by a pump W at a pressure P1, slightly higher than the pressure P above to take account of the losses load (P1-P for example less than 1 x 10 5 Pa), and introduced at the top of the column CM.
  • P1 is therefore advantageously between 4-6 x 10 5 Pa and 30 x 10 5 Pa, preferably between 8 x 10 5 Pa and 16 x 10 5 Pa.
  • the pressurized air is then purified in a purification unit E, cooled, divided into two. Part of the air is boosted at the pressure of the mixing column CM in a booster c, coupled to the blowing turbine t which is supplied by part of the rest of the air.
  • the other elements of the figure are identical to those of Figure 1.
  • Figure 3 as in Figure 2, all the air intended for distillation is compressed in a booster C1 driven by a motor at speed M of variable rotation.
  • the pressurized air is then purified in a purification unit E and a part L of the purified air is pressurized at the pressure of the mixing column in a second booster C2 also coupled to a motor M 'optionally at rotational speed variable.
  • This air cools in the exchange line LE and is sent to the mixing column CM.
  • the rest J of the air coming from the purification is partially cooled and divided in two. Part of the air is sent to a turbine t and then to the low pressure column BP. The rest of the air continues to cool in the LE exchange line and is sent in gaseous form to the medium pressure column.
  • the turbine t is driven by a low pressure nitrogen compressor c. It is also conceivable that the double column is supplied from the blower while the mixing column is supplied from a dedicated compressor or the opposite.
  • the booster can be used to feed the mixing column and / or the mixing column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation By Low-Temperature Treatments (AREA)
EP04816555A 2003-12-22 2004-12-16 Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air Withdrawn EP1709378A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0351157A FR2864214B1 (fr) 2003-12-22 2003-12-22 Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air
PCT/FR2004/050702 WO2005064251A1 (fr) 2003-12-22 2004-12-16 Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air

Publications (1)

Publication Number Publication Date
EP1709378A1 true EP1709378A1 (fr) 2006-10-11

Family

ID=34630612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04816555A Withdrawn EP1709378A1 (fr) 2003-12-22 2004-12-16 Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air

Country Status (8)

Country Link
US (1) US20070186582A1 (ja)
EP (1) EP1709378A1 (ja)
JP (1) JP4809243B2 (ja)
CN (1) CN100473929C (ja)
BR (1) BRPI0417962A (ja)
FR (1) FR2864214B1 (ja)
RU (1) RU2006126668A (ja)
WO (1) WO2005064251A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2185879A1 (en) * 2007-08-10 2010-05-19 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US20110197630A1 (en) * 2007-08-10 2011-08-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'e Xploitation Des Procedes Georges Claude Process and Apparatus for the Separation of Air by Cryogenic Distillation
US7975490B2 (en) * 2008-07-28 2011-07-12 General Electric Company Method and systems for operating a combined cycle power plant
WO2010091166A2 (en) 2009-02-05 2010-08-12 Carrier Corporation Direct drive system with booster compressor
FR2961586B1 (fr) * 2010-06-18 2014-02-14 Air Liquide Installation et procede de separation d'air par distillation cryogenique
US20160053764A1 (en) * 2012-10-03 2016-02-25 Ahmed F. Abdelwahab Method for controlling the compression of an incoming feed air stream to a cryogenic air separation plant
US10385861B2 (en) 2012-10-03 2019-08-20 Praxair Technology, Inc. Method for compressing an incoming feed air stream in a cryogenic air separation plant
US10443603B2 (en) 2012-10-03 2019-10-15 Praxair Technology, Inc. Method for compressing an incoming feed air stream in a cryogenic air separation plant
DE102015226210A1 (de) 2015-12-21 2017-06-22 Ksb Aktiengesellschaft PM-Line-Start Motor und Einschaltverfahren für diesen
US20220196325A1 (en) * 2020-12-17 2022-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L?Exploitation Des Procedes Georges Claude Method and apparatus for improving start-up for an air separation apparatus

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1755553A1 (de) * 1968-05-22 1971-08-26 Licentia Gmbh Strassenfahrzeug mit einem Elektroantrieb
US4022030A (en) * 1971-02-01 1977-05-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal cycle for the compression of a fluid by the expansion of another fluid
JPS5893987A (ja) * 1981-11-27 1983-06-03 Kureha Chem Ind Co Ltd 送風機の風量制御方法
CH663644A5 (de) * 1982-02-22 1987-12-31 Bbc Brown Boveri & Cie Turboverdichter.
DE3334133A1 (de) * 1983-09-19 1985-04-04 Bernd El.-Ing.(grad.) 1000 Berlin Lehmann Polumschaltung an drehstrommotoren unter verwendung von kondensatoren
US4787211A (en) * 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
JPH0356979A (ja) * 1989-07-26 1991-03-12 Canon Inc 像形成装置
FR2677667A1 (fr) * 1991-06-12 1992-12-18 Grenier Maurice Procede d'alimentation d'un haut-fourneau en air enrichi en oxygene, et installation de reduction de minerai de fer correspondante.
FR2718518B1 (fr) * 1994-04-12 1996-05-03 Air Liquide Procédé et installation pour la production de l'oxygène par distillation de l'air.
US5454227A (en) * 1994-08-17 1995-10-03 The Boc Group, Inc. Air separation method and apparatus
US5593478A (en) * 1994-09-28 1997-01-14 Sequal Technologies, Inc. Fluid fractionator
US5560208A (en) * 1995-07-28 1996-10-01 Halimi; Edward M. Motor-assisted variable geometry turbocharging system
JP3056979B2 (ja) * 1995-08-25 2000-06-26 株式会社神戸製鋼所 クイックスタート空気分離装置
SE509877C3 (sv) * 1995-12-11 1999-04-19 Abb Carbon Ab Kraftanlaeggning
FR2753638B1 (fr) * 1996-09-25 1998-10-30 Procede pour l'alimentation d'une unite consommatrice d'un gaz
JP3414756B2 (ja) * 1996-12-20 2003-06-09 帝人株式会社 改良された流体分別器
FR2774159B1 (fr) * 1998-01-23 2000-03-17 Air Liquide Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
FR2774158B1 (fr) * 1998-01-23 2000-03-17 Air Liquide Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
FR2774157B1 (fr) * 1998-01-23 2000-05-05 Air Liquide Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
FR2784308B1 (fr) * 1998-10-09 2001-11-09 Air Liquide Procede et installation de separation de gaz avec production d'un debit gazeux variable
US6239523B1 (en) * 1999-07-01 2001-05-29 General Electric Company Cutout start switch
US6227005B1 (en) * 2000-03-01 2001-05-08 Air Products And Chemicals, Inc. Process for the production of oxygen and nitrogen
US6579078B2 (en) * 2001-04-23 2003-06-17 Elliott Turbomachinery Co., Inc. Multi-stage centrifugal compressor driven by integral high speed motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2005064251A1 *

Also Published As

Publication number Publication date
JP2007515617A (ja) 2007-06-14
BRPI0417962A (pt) 2007-03-27
FR2864214B1 (fr) 2017-04-21
US20070186582A1 (en) 2007-08-16
CN100473929C (zh) 2009-04-01
JP4809243B2 (ja) 2011-11-09
CN1898515A (zh) 2007-01-17
WO2005064251A1 (fr) 2005-07-14
FR2864214A1 (fr) 2005-06-24
RU2006126668A (ru) 2008-01-27

Similar Documents

Publication Publication Date Title
EP0676373B1 (fr) Procédé et installation de production de monoxyde de carbone
EP0628778B2 (fr) Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air
EP0689019B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0531182B1 (fr) Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie
EP0848220B1 (fr) Procédé et installation de fourniture d'un débit variable d'un gaz de l'air
EP2344821B1 (fr) Procédé de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en hélium et d'un courant d'hydrocarbures déazoté et installation associée
LU88132A1 (fr) Procede d'alimentation d'un haut-fourneau en air enrichi en oxygene,et installation de reduction de minerai de fer correspondante
EP1709378A1 (fr) Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air
EP1102953B1 (fr) Installation de production d'electricite basse tension integree a une unite de separation des gaz de l'air
FR2828729A1 (fr) Installation de production d'oxygene sous haute pression par distillation d'air
FR2711778A1 (fr) Procédé et installation de production d'oxygène et/ou d'azote sous pression.
EP1721016B1 (fr) Procede de renovation d'une installation combinee d'un haut fourneau et d'une unite de separation de gaz de l'air
FR2774159A1 (fr) Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
EP0932006A1 (fr) Installation combinée d'un four et d'un appareil de distillation d'air et procédé de mise en oeuvre
EP1188843B1 (fr) Procédé et installation d'alimentation en air enrichi en oxygène d'une unité de production de métal non-ferreux
EP1409937B1 (fr) Procede de production de vapeur d'eau et de distillation d'air
WO2005045340A1 (fr) Procede et installation de fourniture d'oxygene a haute purete par distillation cryogenique d'air
FR2800859A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR2827186A1 (fr) Procede et installation de distillation d'air et de production de vapeur d'eau
EP1697690A2 (fr) Procede et installation d enrichissement d'un flux gazeux en l'un de ses constituants
EP0982554A1 (fr) Procédé et installation de production d'oxygène impur par distillation d'air
FR2860286A1 (fr) Procede de separation d'air par distillation cryogenique
FR2825453A1 (fr) Procede et installation de separation par distillation
FR2787562A1 (fr) Procede et installation de distillation d'air avec production d'argon

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PONTONE, XAVIER

Inventor name: LIBARRE, ALAIN

Inventor name: CHOLLAT, JEAN-JACQUES

Inventor name: GUILLARD, ALAIN

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

17Q First examination report despatched

Effective date: 20070726

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170609

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171020