EP1188843B1 - Procédé et installation d'alimentation en air enrichi en oxygène d'une unité de production de métal non-ferreux - Google Patents

Procédé et installation d'alimentation en air enrichi en oxygène d'une unité de production de métal non-ferreux Download PDF

Info

Publication number
EP1188843B1
EP1188843B1 EP01402174A EP01402174A EP1188843B1 EP 1188843 B1 EP1188843 B1 EP 1188843B1 EP 01402174 A EP01402174 A EP 01402174A EP 01402174 A EP01402174 A EP 01402174A EP 1188843 B1 EP1188843 B1 EP 1188843B1
Authority
EP
European Patent Office
Prior art keywords
air
oxygen
converter
compressor
enriched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01402174A
Other languages
German (de)
English (en)
Other versions
EP1188843A1 (fr
Inventor
Didier Magnet
Norbert Rieth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1188843A1 publication Critical patent/EP1188843A1/fr
Application granted granted Critical
Publication of EP1188843B1 publication Critical patent/EP1188843B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • C22B15/0041Bath smelting or converting in converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • F25J3/04515Simultaneously changing air feed and products output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Definitions

  • the present invention relates to a method for supplying enriched air in oxygen from a non-ferrous metal production unit, comprising, share, an ore concentrate smelting unit of said metal supplied by continuous injection of oxygen-enriched air, on the other hand, a conversion unit mattes from the melting unit, fed by variable-rate injection of oxygen-enriched air, and to an installation for the implementation of this process.
  • the invention applies in particular to the production of copper.
  • Copper production units are conventionally made up of a continuous operation melter, such as a Flash oven, a Noranda oven or a Teniente oven, and a discontinuous conversion unit such as a Pierce converter or a Hoboken converter.
  • a continuous operation melter such as a Flash oven, a Noranda oven or a Teniente oven
  • a discontinuous conversion unit such as a Pierce converter or a Hoboken converter.
  • the raw material composed of copper ore concentrate, is charged in the melting unit, in which it is enriched with copper.
  • a mixture rich in copper called matte, containing about 60 to 70% in weight of copper.
  • This matte is then further enriched in copper in the unit of conversion and is transformed into copper known as "blister" containing approximately 99% of copper.
  • the bag When the bag is emptied, a slight flow of air is enriched with oxygen to maintain the flame of the burners of the conversion unit.
  • the rate oxygen enrichment of the air depends on the composition of the material first and expected production. Generally the air flow supplying the melting unit is enriched with up to 28% oxygen and the air flow feeding the unit conversion is enriched with 50 to 60% oxygen.
  • each unit has an air blower whose air flow is enriched by injecting oxygen produced by an installation independent of the two air blowers.
  • the consumption of oxygen-enriched air in the melting unit being constant, the air blower connected to the fuser constantly produces a air flow corresponding to the maximum flow of the copper production cycle.
  • the consumption of oxygen-enriched air in the conversion unit being variable, the difference between the air flow produced by the blower connected to the conversion unit, which operates continuously, and the one consumed by this unit conversion is generally vented.
  • the oxygen production installation consists of a compressor air and an air separation unit capable of delivering a variable flow oxygen, to enrich the blower air flow with a constant flow of oxygen of the melting unit, and enriching the unit's air flow with a variable oxygen flow conversion.
  • Compressor here means a compressor proper or several compressors mounted in parallel and having a common discharge.
  • This process for producing oxygen-enriched air by an installation comprising two independent air blowers connected to a oxygen production has various drawbacks such as congestion significant, significant energy consumption, as well as a loss significant energy due to the venting of air supplied by one of the blowers.
  • the invention therefore aims to provide a method and a supply system for oxygen-enriched air from a production unit non-ferrous metal, which involves a reduced bulk and which allows significantly reduce energy costs.
  • the invention essentially consists in combining the production of air and oxygen in order to produce more economically oxygen-enriched air to supply the melting unit and the conversion unit a non-ferrous metal production unit.
  • a copper production plant which includes a single air compressor 1 with three levels of compression (i.e. for example 4 or 5 stages) respectively supplying compressed air to a firstly a fusion unit 2 via a first pipe 3, secondly a air separation 4 via a second line 5, and finally, a conversion unit 6 or a buffer tank 7 via a third pipe 8.
  • the separation unit air 4 producing oxygen has two separate output circuits delivering oxygen at different pressures, one 9 supplying the melting unit 2, the other 10 supplying the conversion unit 6. Each circuit 9, 10 has a flow rate constant.
  • Buffer 7 is capable of storing compressed air as well as the oxygen of the second circuit 10 when the consumption of air enriched in oxygen in conversion unit 6 is low, i.e. below a threshold predetermined.
  • An expansion valve 11, constituted by a pressure regulator downstream, is placed on a line 12 which connects the conversion unit and the buffer capacity 7, so that the oxygen-enriched air flow circulates in the circuit 12 and either injected into the conversion unit 6, when the consumption of this unit 6 is high, that is to say greater than said threshold.
  • Figure 2 differs from the previous one in that the unit air separation unit 4 is here equipped with a so-called “toggle” system, described below, allowing to deliver a variable flow of oxygen to the conversion unit 6 while unit 4 processes a constant air flow.
  • the expansion valve 11 is placed between the capacity 7 and the point 13 of arrival of the oxygen produced by the circuit 10 on line 12 for supply of enriched air to the conversion unit 6.
  • Part of the air from one of the following compression levels (e.g. example, the second level of compression) of compressor 1 goes into the air separation unit 4.
  • This provides on the one hand a flow of oxygen 9 to a pressure from 1.2 to 1.7 bar supplying the fuser 2, and on the other hand a second oxygen flow 10 at a pressure of 5 to 10 bars intended for the conversion unit 6.
  • the rest 8 of the compressed air is extracted from the last stage of compressor 1 at a pressure of about 5 to 10 bars and is combined with the oxygen flow 10 above.
  • the air enriched thus obtained feeds either buffer capacity 7 when consumption in enriched air is low, i.e. the conversion unit 6 through the expansion valve 11 when the consumption of enriched air is high.
  • the air separation unit 4 provides a first flow of oxygen 9 at constant flow rate at a pressure of 1.2 to 1.7 bar, feeding the melting unit 2. It also provides a second flow of oxygen 10 to a pressure of approximately 1.5 bar which feeds the conversion unit 6, a rocker being provided to supply oxygen at a variable rate depending on the consumption of enriched air from the conversion unit 6.
  • the rest 8 of the compressed air is extracted from the last stage of the compressor at a pressure of around 5 to 10 bars.
  • this air is partially stored in the buffer capacity 7.
  • an air flow equal to the difference between the enriched air flow required by the conversion unit 6 and the oxygen flow 10 through the expansion valve.
  • the air produced by the air compressor and feeding the air separation unit and the capacity 7 is at a pressure corresponding to an economic optimum and energy between the energy spent on air compression and the cost corresponding to the investment of the buffer capacity allowing the supply discontinuous in enriched air from the conversion unit.
  • the air pressure produced by the air compressor to supply the air separation unit is preferably 5 to 6 bar, and the air pressure produced by the air compressor to supply the gas capacity is preferably from 5 to 10 bars.
  • the double column 23 is of the minaret type and has a medium pressure column 26 surmounted by a low pressure column 27, this extending upwards by a short distillation section or minaret 28 of smaller diameter.
  • a vaporizer-condenser main 29 puts the overhead vapor (approximately pure nitrogen) from the column 26 in indirect heat exchange relationship with the tank liquid (liquid oxygen) from column 27.
  • the double column 23 produces at constant flow rates of liquid oxygen 31 in the tank of the column 27, low pressure nitrogen gas 32 at the head of minaret 28, and medium pressure liquid nitrogen 33 at the head of medium pressure column 26.
  • the liquid oxygen withdrawn from the low pressure column is stored in the buffer capacity 21 and, from there, is compressed to the pressure of circuit 10 by the pump 20, then sprayed against the current with a constant flow of air overpressed in 16.
  • the air thus liquefied is, after expansion at medium pressure in an expansion valve 34, stored in the buffer capacity 22 before being partly introduced in the liquid state in the lower part of column 26 and, for the rest, relaxed at low pressure in an expansion valve 35 and introduced at an intermediate level of column 27.
  • Unit 4 also produces a constant flow of gaseous oxygen for the circuit 9, for example from another oxygen withdrawal line 36 liquid from column 27, then vaporization / reheating at 15 and possibly compression of the resulting gaseous oxygen.
  • Unit 4 still produces a low pressure nitrogen gas flow from minaret 28 and heated in 24 then in 15, as well as a high nitrogen gas flow pressure obtained by pumping medium pressure liquid nitrogen at 25 then by vaporization / reheating in 15. These two nitrogen streams serve for inerting and / or conveying in the copper production facility.
  • the turbo-compressor group 18.19 operating by overpressure and expansion of part of the incoming air, used to keep the unit cool 4.
  • An air separation unit like the one in Figure 3 provides a rate of variation of the oxygen flow produced at 10 which is typically of around 5% per minute.
  • the invention can also be applied to the production of metals non-ferrous other than copper, such as nickel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

La présente invention est relative à un procédé d'alimentation en air enrichi en oxygène d'une unité de production de métal non ferreux, comprenant, d'une part, une unité de fusion de concentré de minerai dudit métal alimentée par injection continue d'air enrichi en oxygène, d'autre part, une unité de conversion des mattes issues de l'unité de fusion, alimentée par injection à débit variable d'air enrichi en oxygène, et à une installation pour la mise en oeuvre de ce procédé. L'invention s'applique en particulier à la production de cuivre.
Les pressions dont il est question ci-dessous sont des pressions absolues.
Les unités de production de cuivre sont classiquement constituées d'une unité de fusion à fonctionnement continu, telle qu'un four Flash, un four Noranda ou un four Teniente, et d'une unité de conversion à fonctionnement discontinu telle qu'un convertisseur Pierce ou un convertisseur Hoboken.
La matière première, composée de concentré de minerai de cuivre, est chargée dans l'unité de fusion, dans laquelle elle s'enrichit en cuivre. On obtient alors une mixture riche en cuivre appelée matte, contenant environ 60 à 70% en poids de cuivre. Cette matte est ensuite encore enrichie en cuivre dans l'unité de conversion et est transformée en cuivre dit " blister " contenant environ 99% de cuivre.
Afin que la fusion et la conversion s'effectuent dans de bonnes conditions, les deux unités sont alimentées par des flux d'air enrichi en oxygène. L'unité de fusion consomme un flux constant d'air enrichi en oxygène. En revanche, l'unité de conversion consomme un flux variable d'air enrichi en oxygène. Ce flux peut d'ailleurs être proche de zéro au moment où, la transformation en cuivre blister étant terminée, on vide la poche de l'unité de conversion pour récupérer le cuivre blister et pouvoir ainsi commencer un nouveau cycle de production de cuivre. Typiquement, un cycle de production de cuivre dure environ deux heures réparties comme suit :
  • on injecte de l'air enrichi en oxygène dans l'unité de conversion pendant environ une heure ;
  • on stoppe l'injection, on retire le laitier surnageant à la surface du cuivre liquide, on vide la poche pour récupérer le cuivre, à la suite de quoi on recharge de mattes la poche et on recommence un nouveau cycle.
Lorsque l'on vide la poche, on maintient un léger flux d'air enrichi en oxygène pour maintenir la flamme des brûleurs de l'unité de conversion. Le taux d'enrichissement en oxygène de l'air dépend de la composition de la matière première et de la production attendue. Généralement le flux d'air alimentant l'unité de fusion est enrichi jusqu'à 28% d'oxygène et le flux d'air alimentant l'unité de conversion est enrichi à 50 à 60% d'oxygène.
Conventionnellement, chaque unité possède une soufflante d'air dont le flux d'air est enrichi par injection d'oxygène produit par une installation indépendante des deux soufflantes d'air.
La consommation en air enrichi en oxygène de l'unité de fusion étant constante, la soufflante d'air reliée à l'unité de fusion produit en permanence un débit d'air correspondant au débit maximal du cycle d'élaboration du cuivre. En revanche, la consommation en air enrichi en oxygène de l'unité de conversion étant variable, la différence entre le débit d'air produit par la soufflante reliée à l'unité de conversion, qui fonctionne en continu, et celui consommé par cette unité de conversion est généralement mise à l'air.
L'installation de production d'oxygène est constituée d'un compresseur d'air et d'une unité de séparation d'air capable de délivrer un débit variable d'oxygène, afin d'enrichir d'un flux d'oxygène constant le flux d'air de la soufflante de l'unité de fusion, et d'enrichir d'un flux d'oxygène variable le flux d'air de l'unité de conversion.
On entend ici par " compresseur " un compresseur proprement dit ou plusieurs compresseurs montés en parallèle et ayant un refoulement commun.
Ce procédé de production d'air enrichi en oxygène par une installation comprenant deux soufflantes d'air indépendantes reliées à une unité de production d'oxygène présente divers inconvénients comme un encombrement important, une consommation énergétique importante, ainsi qu'une perte d'énergie non négligeable due à la mise à l'air de l'air délivré par l'une des soufflantes.
L'invention a donc pour but de proposer un procédé ainsi qu'une installation d'alimentation d'air enrichi en oxygène d'une unité de production de métal non ferreux, qui implique un encombrement réduit et qui permette de réduire sensiblement les dépenses énergétiques.
L'invention a donc pour objet un procédé d'alimentation en air enrichi en oxygène d'une unité de production de métal non ferreux, comprenant, d'une part, une unité de fusion de concentré dudit métal alimenté par injection continue d'air enrichi en oxygène, d'autre part, une unité de conversion des mattes issues de l'unité de fusion, alimentée par injection à débit variable d'air enrichi en oxygène, caractérisé en ce que :
  • l'on comprime la totalité de l'air dans un compresseur unique susceptible d'alimenter l'unité de fusion et l'unité de conversion ;
  • l'on traite une partie de cet air comprimé dans une unité de séparation d'air pour obtenir deux flux d'oxygène qu'on injecte respectivement dans l'air comprimé destiné à alimenter l'unité de fusion et dans l'air comprimé destiné à alimenter l'unité de conversion ;et
  • l'on stocke de l'air comprimé ou de l'air comprimé enrichi en oxygène destiné à l'unité de conversion dans une capacité-tampon lorsque la consommation en air enrichi en oxygène de l'unité de conversion est inférieure à un seuil déterminé, et l'on prélève de l'air comprimé ou de l'air comprimé enrichi en oxygène dans la capacité-tampon lorsque la consommation en air enrichi en oxygène de l'unité de conversion est supérieure audit seuil ;
Selon d'autres caractéristiques de ce procédé :
  • on alimente l'unité de fusion en mélangeant de l'air comprimé par le premier niveau de compression du compresseur avec de l'oxygène produit par l'unité de séparation d'air sensiblement à la même pression ;
  • on alimente l'unité de séparation d'air avec de l'air comprimé par un niveau de compression du compresseur situé derrière le premier niveau de compression de ce compresseur ;
  • on alimente l'unité de conversion en mélangeant de l'air comprimé par le compresseur à une pression supérieure à la pression d'alimentation de cette unité de conversion avec de l'oxygène produit par l'unité de séparation d'air sensiblement à la même pression, en stockant l'air enrichi en oxygène dans ladite capacité-tampon lorsque la consommation en air enrichi en oxygène par l'unité de conversion est inférieure audit seuil, et en prélevant de l'air enrichi en oxygène dans cette capacité-tampon à travers un organe de détente lorsque la consommation en air enrichi en oxygène par l'unité de conversion est supérieure audit seuil.
  • on stocke de l'air comprimé par le dernier étage du compresseur à une pression supérieure à la pression d'alimentation de l'unité de conversion dans ladite capacité-tampon lorsque la consommation en air enrichi en oxygène par cette unité de conversion est inférieure audit seuil, et on alimente l'unité de conversion en mélangeant de l'air stocké dans la capacité-tampon et/ou de l'air comprimé par le dernier étage du compresseur, prélevés à travers un organe de détente, avec de l'oxygène produit par l'unité de séparation d'air à un débit variable et à une pression sensiblement égale à la pression d'alimentation de l'unité de conversion ;
  • l'air destiné à l'unité de conversion est comprimé par le dernier étage du compresseur.
L'invention a également pour objet une installation pour la mise en oeuvre du procédé défini ci-dessus. Cette installation est caractérisée en ce qu'elle comprend :
  • une unité de séparation d'air adaptée pour fournir de l'oxygène aux unités de fusion et de conversion ;
  • un compresseur d'air unique dont le refoulement est relié à l'unité de fusion, à l'unité de séparation d'air et à l'unité de conversion par des première, deuxième et troisième conduite respectivement ; et
  • une capacité-tampon reliée à ladite troisième conduite.
Selon d'autres caractéristiques de cette installation :
  • la capacité-tampon est également reliée d'une part à une sortie d'oxygène de l'unité de séparation destinée à l'unité de conversion et d'autre part à cette unité de conversion à travers un organe de détente. La capacité tampon est également reliée à l'unité de conversion à travers un organe de détente et une sortie d'oxygène de l'unité de séparation destinée à l'unité de conversion débouche dans la conduite qui relie cet organe de détente à l'unité de conversion ;
  • l'unité de séparation d'air comporte deux circuits de production d'oxygène, l'un alimentant l'unité de fusion, l'autre l'unité de conversion ;
  • le circuit de production d'oxygène alimentant l'unité de conversion est muni de moyens de réglage du débit d'oxygène ;
  • l'unité de séparation d'air comprimé est une unité de distillation d'air à double colonne qui comporte un système à bascule afin de produire un flux d'oxygène variable par distillation d'un débit d'air constant ;
  • le compresseur d'air comprend au moins deux niveaux de compression, le refoulement du premier niveau étant relié à ladite première conduite et celui du ou des niveaux suivants étant reliés auxdites deuxième et troisième conduite ;
  • le compresseur comporte trois niveaux de compression dont les refoulements sont reliés respectivement auxdites première, deuxième et troisième conduites.
Comme on l'aura compris, l'invention consiste essentiellement à combiner la production d'air et d'oxygène afin de produire de manière plus économique de l'air enrichi en oxygène pour alimenter l'unité de fusion et l'unité de conversion d'une unité de production de métal non ferreux.
Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés sur lesquels :
  • la Figure 1 représente schématiquement une installation de production d'air enrichi en oxygène alimentant une unité de fusion et une unité de conversion de cuivre ; et
  • la Figure 2 représente une alternative de l'installation de la Figure 1 ; et
  • la Figure 3 représente une unité de séparation d'air destinée à l'installation de la Figure 2.
Sur la Figure 1, on a représenté une installation de production de cuivre qui comprend un compresseur d'air unique 1 à trois niveaux de compressions (soit par exemple 4 ou 5 étages) alimentant respectivement en air comprimé d'une part une unité de fusion 2 via une première conduite 3, d'autre part une unité de séparation d'air 4 via une deuxième conduite 5, et enfin, une unité de conversion 6 ou une capacité-tampon 7 via une troisième conduite 8. L'unité de séparation d'air 4 produisant l'oxygène possède deux circuits de sortie distincts délivrant de l'oxygène à des pressions différentes, l'une 9 alimentant l'unité de fusion 2 , l'autre 10 alimentant l'unité de conversion 6. Chaque circuit 9, 10 est à débit constant.
La capacité-tampon 7 est capable de stocker l'air comprimé ainsi que l'oxygène du deuxième circuit 10 lorsque la consommation en air enrichi en oxygène de l'unité de conversion 6 est faible, c'est-à-dire inférieure à un seuil prédéterminé. Une vanne de détente 11, constituée par un régulateur de pression aval, est placée sur une conduite 12 qui relie l'unité de conversion et la capacité-tampon 7, pour que le flux d'air enrichi en oxygène circule dans le circuit 12 et soit injecté dans l'unité de conversion 6, lorsque la consommation de cette unité 6 est élevée, c'est-à-dire supérieure audit seuil.
L'installation de la Figure 2 diffère de la précédente par le fait que l'unité de séparation d'air 4 est ici équipée d'un système dit " à bascule ", décrit plus loin, permettant de délivrer un débit variable d'oxygène vers l'unité de conversion 6 alors que l'unité 4 traite un débit d'air constant. De plus, la vanne de détente 11 est disposée entre la capacité 7 et le point 13 d'arrivée de l'oxygène produit par le circuit 10 sur la conduite 12 d'alimentation en air enrichi de l'unité de conversion 6.
En fonctionnement, dans le cas de la Figure 1, la totalité de l'air nécessaire au fonctionnement de l'unité de production du cuivre est comprimée dans le compresseur 1.
Une partie de cet air, extraite du refoulement du premier niveau de compression du compresseur 1, à une pression constante comprise entre 1,2 et 1,7 bar, est injectée à débit constant dans l'unité de fusion 2 après avoir été enrichie par un flux d'oxygène 9, à une pression sensiblement égale à celle du flux d'air, produit à débit constant par l'unité de séparation d'air 4.
Une partie de l'air issu d'un des niveaux de compression suivants (par exemple, le deuxième niveau de compression) du compresseur 1 passe dans l'unité de séparation d'air 4. Celle-ci fournit d'une part un flux d'oxygène 9 à une pression de 1,2 à 1,7 bar alimentant l'unité de fusion 2, et d'autre part un second flux d'oxygène 10 à une pression de 5 à 10 bars destiné à l'unité de conversion 6. Le reste 8 de l'air comprimé est extrait du dernier étage du compresseur 1 à une pression d'environ 5 à 10 bars et est réuni au flux d'oxygène 10 précité. L'air enrichi ainsi obtenu alimente soit la capacité-tampon 7 lorsque la consommation en air enrichi est faible, soit l'unité de conversion 6 à travers la vanne de détente 11 lorsque la consommation en air enrichi est élevée.
Selon la variante de la Figure 2, l'unité de séparation d'air 4 fournit un premier flux d'oxygène 9 à débit constant à une pression de 1,2 à 1,7 bar, alimentant l'unité de fusion 2. Elle fournit aussi un deuxième flux d'oxygène 10 à une pression d'environ 1,5 bar qui alimente l'unité de conversion 6, une bascule étant prévue afin de fournir l'oxygène à un débit variable en fonction de la consommation en air enrichi de l'unité de conversion 6.
Le reste 8 de l'air comprimé est extrait du dernier étage du compresseur à une pression d'environ 5 à 10 bars. Lorsque la consommation en air enrichi en oxygène de l'unité de conversion 6 est faible, cet air est partiellement stocké dans la capacité-tampon 7. A chaque instant, un débit d'air égal à la différence entre le débit d'air enrichi demandé par l'unité de conversion 6 et le débit d'oxygène 10 traverse la vanne de détente.
Afin de satisfaire aux critères d'économie évoqués précédemment, l'air produit par le compresseur d'air et alimentant l'unité de séparation d'air et la capacité 7 est à une pression correspondant à un optimum économique et énergétique entre l'énergie dépensée pour la compression de l'air et le coût correspondant à l'investissement de la capacité-tampon permettant l'alimentation discontinue en air enrichi de l'unité de conversion.
Ainsi, la pression de l'air produit par le compresseur d'air pour alimenter l'unité de séparation d'air est de préférence de 5 à 6 bars, et la pression de l'air produit par le compresseur d'air pour alimenter la capacité gazeuse est de préférence de 5 à 10 bars.
L'unité de séparation d'air 4 représentée sur la Figure 3, du type classique dit " à bascule", est destinée à fournir un débit variable d'oxygène à la conduite 10 de la Figure 2. Elle comprend essentiellement le compresseur d'air 1 à trois niveaux de compression, un appareil 14 de dessication - décarbonatation d'air par adsorption, une ligne d'échange thermique principale 15, un surpresseur d'air 16, un échangeur de chaleur auxiliaire 17, un groupe turbo-compresseur comprenant une turbine 18 couplée à un compresseur 19, une pompe d'oxygène liquide 20 à débit variable, une capacité-tampon d'oxygène liquide 21, une capacité-tampon d'air liquide 22, une double colonne de distillation d'air 23, un sous-refroidisseur 24 et une pompe d'azote liquide 25. La double colonne 23 est du type à minaret et comporte une colonne moyenne pression 26 surmontée d'une colonne basse pression 27, celle-ci se prolongeant vers le haut par un court tronçon de distillation ou minaret 28 de plus petit diamètre. Un vaporiseur-condenseur principal 29 met la vapeur de tête (azote à peu près pur) de la colonne 26 en relation d'échange thermique indirect avec le liquide de cuve (oxygène liquide) de la colonne 27.
En fonctionnement, un débit constant d'air issu du second niveau de compression du compresseur 1, ramené au voisinage de la température ambiante en 30 et épuré en 14, puis est refroidi jusqu'au voisinage de son point de rosée en 15, est injecté en cuve de la colonne 26.
Suivant le procédé de distillation à double colonne classique, la double colonne 23 produit à débits constants de l'oxygène liquide 31 en cuve de la colonne 27, de l'azote gazeux basse pression 32 en tête du minaret 28, et de l'azote liquide moyenne pression 33 en tête de la colonne moyenne pression 26.
L'oxygène liquide soutiré de la colonne basse pression est stocké dans la capacité-tampon 21 et, de là, est comprimé à la pression du circuit 10 par la pompe 20, puis vaporisé à contre-courant d'un flux d'air à débit constant surpressé en 16. L'air ainsi liquéfié est, après détente à la moyenne pression dans une vanne de détente 34, stocké dans la capacité-tampon 22 avant d'être pour partie introduit à l'état liquide dans la partie inférieure de la colonne 26 et, pour le reste, détendu à la basse pression dans une vanne de détente 35 et introduit à un niveau intermédiaire de la colonne 27.
De façon classique, lorsque le débit d'oxygène gazeux nécessaire dans le circuit 10 est inférieur à 21% du débit d'air distillé, la pompe 20 est ralentie de façon correspondante, et le niveau d'oxygène liquide monte dans la capacité 21. Simultanément, un débit moindre d'air étant liquéfié, le niveau de l'air liquide descend dans la capacité 22. Les phénomènes s'inversent en cas d'augmentation du débit d'oxygène en 10 au delà de 21% du débit d'air distillé.
L'unité 4 produit par ailleurs un débit constant d'oxygène gazeux pour le circuit 9, par exemple à partir d'une autre conduite 36 de soutirage d'oxygène liquide de la colonne 27, puis vaporisation/réchauffage en 15 et éventuellement compression de l'oxygène gazeux résultant.
L'unité 4 produit encore un flux d'azote gazeux basse pression provenant du minaret 28 et réchauffé en 24 puis en 15, ainsi qu'un flux d'azote gazeux haute pression obtenu par pompage d'azote liquide moyenne pression en 25 puis par vaporisation/réchauffage en 15. Ces deux flux d'azote servent à l'inertage et/ou au convoyage dans l'installation de production de cuivre.
Le groupe turbo-compresseur 18,19, fonctionnant par surpression et détente d'une partie de l'air entrant, sert au maintien en froid de l'unité 4.
Une unité de séparation d'air telle que celle de la Figure 3 permet d'obtenir une vitesse de variation du débit d'oxygène produit en 10 qui est typiquement de l'ordre de 5% par minute.
L'invention peut s'appliquer également à la production de métaux non ferreux autres que le cuivre, tels que le nickel.

Claims (14)

  1. Procédé d'alimentation en air enrichi en oxygène d'une unité de production de métal non ferreux, comprenant, d'une part, une unité de fusion (2) de concentré de minerai dudit métal alimentée par injection continue d'air enrichi en oxygène, d'autre part, une unité de conversion (6) des mattes issues de l'unité de fusion, alimentée par injection à débit variable d'air enrichi en oxygène, caractérisé en ce que:
    l'on comprime la totalité de l'air dans un compresseur (1) unique susceptible d'alimenter l'unité de fusion (2) et l'unité de conversion (6) ;
    l'on traite une partie de cet air comprimé dans une unité de séparation d'air (4) pour obtenir deux flux d'oxygène (9, 10) qu'on injecte respectivement dans l'air comprimé destiné à alimenter l'unité de fusion (2) et l'unité de conversion (6) ; et
    l'on stocke de l'air comprimé ou de l'air comprimé enrichi en oxygène destiné à l'unité de conversion (6) dans une capacité-tampon (7) lorsque la consommation en air enrichi en oxygène de l'unité de conversion est inférieure à un seuil prédéterminé, et l'on prélève de l'air comprimé ou de l'air comprimé enrichi en oxygène dans la capacité-tampon (7) lorsque la consommation en air enrichi en oxygène de l'unité de conversion (6) est supérieure audit seuil.
  2. Procédé selon la revendication 1, caractérisé en ce que l'on alimente l'unité de fusion (2) en mélangeant de l'air comprimé par le premier niveau de compression du compresseur (1) avec de l'oxygène produit par l'unité de séparation d'air (4) sensiblement à la même pression .
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'on alimente l'unité de séparation d'air (4) avec de l'air comprimé par un niveau de compression du compresseur (1) situé derrière le premier niveau de compression de ce compresseur.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on alimente l'unité de conversion (6) en mélangeant de l'air comprimé par le compresseur (1) à une pression supérieure à la pression d'alimentation de cette unité de conversion (6) avec de l'oxygène produit par l'unité de séparation d'air (4) sensiblement à la même pression, en stockant l'air enrichi en oxygène dans ladite capacité-tampon (7) lorsque la consommation en air enrichi en oxygène par l'unité de conversion (6) est inférieure audit seuil, et en prélevant de l'air enrichi en oxygène dans cette capacité-tampon (7) à travers un organe de détente (11) lorsque la consommation en air enrichi en oxygène par l'unité de conversion (6) est supérieure audit seuil.
  5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'on stocke de l'air comprimé par le dernier étage du compresseur (1) à une pression supérieure à la pression d'alimentation de l'unité de conversion (6) dans ladite capacité-tampon (7) lorsque la consommation en air enrichi en oxygène par cette unité de conversion (5) est inférieure audit seuil, et l'on alimente l'unité de conversion en mélangeant de l'air stocké dans la capacité-tampon (7) et/ou de l'air comprimé par le dernier étage du compresseur (1), prélevés à travers un organe de détente (11), avec de l'oxygène produit par l'unité de séparation d'air (4) à un débit variable et à une pression sensiblement égale à la pression d'alimentation de l'unité de conversion (6).
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'air destiné à l'unité de conversion (6) est comprimé par le dernier étage du compresseur (1).
  7. Installation d'alimentation en air enrichi en oxygène d'une unité de production de métal non ferreux comprenant une unité de fusion (2) et une unité de conversion (6) pour la mise en oeuvre d'un procédé selon l'une quelconque des revendications 1 à 6, comprenant :
    une unité de séparation d'air (4) adaptée pour fournir de l'oxygène aux unités de fusion (2) et de conversion (6) ;
    un compresseur d'air (1) unique dont le refoulement est relié à l'unité de fusion (2), à l'unité de séparation d'air (4) et à l'unité de conversion (6) par des première, deuxième et troisième conduites (3, 5, 8); et
    une capacité-tampon (7) reliée à ladite troisième conduite (8).
  8. Installation d'alimentation selon la revendication 7, caractérisée en ce que la capacité-tampon (7) est également reliée d'une part à une sortie d'oxygène (10) de l'unité de séparation (4) destinée à l'unité de conversion (6), et d'autre part à cette unité de conversion (6) à travers un organe de détente (11).
  9. Installation d'alimentation selon la revendication 7 , caractérisée en ce que la capacité-tampon (7) est également reliée à l'unité de conversion (6) à travers un organe de détente (11), et en ce qu'une sortie d'oxygène de l'unité de séparation (4) destinée à l'unité de conversion (6) débouche dans la conduite (12) qui relie cet organe de détente à l'unité de conversion (6).
  10. Installation d'alimentation selon l'une quelconque des revendications 7 à 9, caractérisée en ce que l'unité de séparation d'air (4) comporte deux circuits de production d'oxygène, l'un (9) alimentant l'unité de fusion (2), l'autre (10) alimentant l'unité de conversion (6).
  11. Installation d'alimentation selon les revendications 9 et 10 prises ensemble, caractérisée en ce que le circuit de production d'oxygène alimentant l'unité de conversion (6) est muni de moyens de réglage (20) du débit d'oxygène.
  12. Installation d'alimentation selon la revendication 11, caractérisée en ce que l'unité de séparation d'air (4) est une unité de distillation d'air à double colonne qui comporte un système à bascule (16, 20 à 22) afin de produire un flux d'oxygène variable par distillation d'un débit d'air constant.
  13. Installation d'alimentation selon l'une quelconque des revendications 7 à 12, caractérisée en ce que le compresseur d'air (1) comprend au moins deux niveaux de compression, le refoulement du premier niveau étant relié à ladite première conduite (3) et celui du ou des niveaux suivants étant reliés auxdites deuxième et troisième conduites (5, 8).
  14. Installation d'alimentation selon la revendication 13, caractérisée en ce que le compresseur (1) comporte trois niveaux de compression dont les refoulements sont reliés respectivement auxdites première, deuxième et troisième conduites.
EP01402174A 2000-09-18 2001-08-14 Procédé et installation d'alimentation en air enrichi en oxygène d'une unité de production de métal non-ferreux Expired - Lifetime EP1188843B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0011878 2000-09-18
FR0011878A FR2814178B1 (fr) 2000-09-18 2000-09-18 Alimentation en air enrichi en oxygene d'une unite de production de metal non-ferreux

Publications (2)

Publication Number Publication Date
EP1188843A1 EP1188843A1 (fr) 2002-03-20
EP1188843B1 true EP1188843B1 (fr) 2004-05-19

Family

ID=8854412

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01402174A Expired - Lifetime EP1188843B1 (fr) 2000-09-18 2001-08-14 Procédé et installation d'alimentation en air enrichi en oxygène d'une unité de production de métal non-ferreux

Country Status (9)

Country Link
US (1) US6576040B2 (fr)
EP (1) EP1188843B1 (fr)
JP (1) JP2002155321A (fr)
CN (1) CN1227380C (fr)
AU (1) AU773575B2 (fr)
CA (1) CA2357371A1 (fr)
DE (1) DE60103339T2 (fr)
FR (1) FR2814178B1 (fr)
ZA (1) ZA200107030B (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2842124B1 (fr) * 2002-07-09 2005-03-25 Air Liquide Procede de conduite d'une installation de production de gaz alimentee en electricite et cette installation de production
FR2853407B1 (fr) * 2003-04-02 2012-12-14 Air Liquide Procede et installation de fourniture de gaz sous pression
FR2862004B3 (fr) * 2003-11-10 2005-12-23 Air Liquide Procede et installation d'enrichissement d'un flux gazeux en l'un de ses constituants
FR2862128B1 (fr) * 2003-11-10 2006-01-06 Air Liquide Procede et installation de fourniture d'oxygene a haute purete par distillation cryogenique d'air
CN102168804B (zh) * 2011-02-11 2012-10-10 安徽淮化股份有限公司 一种富氧空气配送设备
TWI480814B (zh) * 2012-01-13 2015-04-11 China Steel Corp 氧氣生產決策支援系統
JP6115887B2 (ja) * 2013-03-15 2017-04-19 住友金属鉱山株式会社 酸素圧縮機切替流量測定方法
JP6575499B2 (ja) * 2016-12-15 2019-09-18 Jfeスチール株式会社 製鉄プロセスにおける酸素供給装置およびその方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1296616A1 (ru) * 1985-10-14 1987-03-15 Государственный Научно-Исследовательский Институт Автоматизации Производственных Процессов Химической Промышленности И Цветной Металлургии Способ конвертировани медных штейнов
US5194213A (en) * 1991-07-29 1993-03-16 Inco Limited Copper smelting system
FR2680114B1 (fr) * 1991-08-07 1994-08-05 Lair Liquide Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie.
FR2712383B1 (fr) * 1993-11-12 1995-12-22 Air Liquide Installation combinée d'une unité de production de métal et d'une unité de séparation de l'air.
FR2745821B1 (fr) * 1996-03-11 1998-04-30 Air Liquide Procede de conduite d'une installation comprenant une unite de traitement de metal et une unite de traitement de gaz
FR2753638B1 (fr) * 1996-09-25 1998-10-30 Procede pour l'alimentation d'une unite consommatrice d'un gaz
FR2774157B1 (fr) * 1998-01-23 2000-05-05 Air Liquide Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
JPH11335751A (ja) * 1998-05-22 1999-12-07 Mitsui Mining & Smelting Co Ltd 銅転炉の操業方法

Also Published As

Publication number Publication date
CA2357371A1 (fr) 2002-03-18
AU6556701A (en) 2002-03-21
CN1348015A (zh) 2002-05-08
FR2814178B1 (fr) 2002-10-18
AU773575B2 (en) 2004-05-27
ZA200107030B (en) 2002-02-25
JP2002155321A (ja) 2002-05-31
CN1227380C (zh) 2005-11-16
DE60103339D1 (de) 2004-06-24
EP1188843A1 (fr) 2002-03-20
US20020033566A1 (en) 2002-03-21
US6576040B2 (en) 2003-06-10
FR2814178A1 (fr) 2002-03-22
DE60103339T2 (de) 2005-04-14

Similar Documents

Publication Publication Date Title
BE1006334A3 (fr) Procede d'alimentation d'un haut-fourneau en air enrichi en oxygene, et installation de reduction de minerai de fer correspondante.
EP0628778B1 (fr) Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air
EP0689019B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0547946B2 (fr) Procédé de production d'oxygène impur
EP0676373B1 (fr) Procédé et installation de production de monoxyde de carbone
EP0848220B1 (fr) Procédé et installation de fourniture d'un débit variable d'un gaz de l'air
EP2655671B1 (fr) Procede d'operation d'une installation de haut fourneau avec recyclage de gaz de gueulard et haut fourneau
EP1188843B1 (fr) Procédé et installation d'alimentation en air enrichi en oxygène d'une unité de production de métal non-ferreux
EP2122282A2 (fr) Procédé de séparation d'un mélange de monoxyde de carbone, de méthane, d'hydrogène et éventuellement d'azote par distillation cryogénique
EP0531182A1 (fr) Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie
EP0789208A1 (fr) Procédé et installation de production d'oxygène gazeux sous haute pression
WO2005064251A1 (fr) Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air
WO2022184794A1 (fr) Procédé de liquéfaction d'un courant riche en co2
CA2146831A1 (fr) Procede et installation pour la production de l'oxygene par distillation de l'air
EP1721016A2 (fr) Procede de renovation d'une installation combinee d'un haut fourneau et d'une unite de separation de gaz de l'air
FR2831249A1 (fr) Procede et installation de separation d'air par distillation cryogenique
FR2701553A1 (fr) Procédé et installation de production d'oxygène sous pression.
EP1651915B1 (fr) Procédé et installation d'alimentation d'une unité de séparation d'air au moyen d'une turbine a gaz
EP1697690A2 (fr) Procede et installation d enrichissement d'un flux gazeux en l'un de ses constituants
EP1690054A1 (fr) Procede et installation de fourniture d'oxygène à haute purete par distillation cryognique d'air
FR2860286A1 (fr) Procede de separation d'air par distillation cryogenique
EP2652291B1 (fr) Procede et appareil integres de compression d'air et de production d'un fluide riche en dioxyde de carbone
WO2009136077A2 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR3110685A1 (fr) Procédé et appareil de séparation d’air par distillation cryogénique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): DE FI FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

17P Request for examination filed

Effective date: 20020920

AKX Designation fees paid

Free format text: DE FI FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60103339

Country of ref document: DE

Date of ref document: 20040624

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040827

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080725

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20080717

Year of fee payment: 8

Ref country code: FR

Payment date: 20080714

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090814

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090814