EP1704323A1 - Piezoaktor mit mitteln zur kompensation der thermischen längenänderung und kraftstoff-einspritzventil mit piezoaktor - Google Patents

Piezoaktor mit mitteln zur kompensation der thermischen längenänderung und kraftstoff-einspritzventil mit piezoaktor

Info

Publication number
EP1704323A1
EP1704323A1 EP05701483A EP05701483A EP1704323A1 EP 1704323 A1 EP1704323 A1 EP 1704323A1 EP 05701483 A EP05701483 A EP 05701483A EP 05701483 A EP05701483 A EP 05701483A EP 1704323 A1 EP1704323 A1 EP 1704323A1
Authority
EP
European Patent Office
Prior art keywords
actuator
piezo actuator
housing
piezo
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05701483A
Other languages
English (en)
French (fr)
Other versions
EP1704323B1 (de
Inventor
Jürgen Dick
Heinz Lixl
Martin Simmet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1704323A1 publication Critical patent/EP1704323A1/de
Application granted granted Critical
Publication of EP1704323B1 publication Critical patent/EP1704323B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/886Additional mechanical prestressing means, e.g. springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/26Fuel-injection apparatus with elastically deformable elements other than coil springs

Definitions

  • Piezo actuator with means for compensating for the thermal change in length and fuel injection valve with piezo actuator
  • the invention relates to a piezo actuator and a fuel injection valve for an internal combustion engine with an actuator unit that is permanently connected to a valve housing and has at least one piezo actuator that is introduced into an actuator housing under pretension, with a compensating element to compensate for the piezo actuator and a top plate of the actuator housing different thermal change in length of the piezo actuator relative to the actuator housing is arranged.
  • High-pressure accumulator injection systems are increasingly being used for the fuel supply of internal combustion engines.
  • injection systems are common rail systems (for diesel engines) and. HPDI injection systems (for gasoline engines) known.
  • the fuel is pumped with a high-pressure pump into a pressure accumulator common to all cylinders of the engine, from which the injection valves on the individual cylinders are supplied.
  • the opening and closing of the injection valves can be controlled electromagnetically or electrically; In the present case, electrical piezo actuators are used for this.
  • the expansion in the axial direction that occurs when the piezo actuator is activated is used to control the injection needle for injecting fuel via a direct or indirect operative connection with the injection needle of the valve, a relatively sensitive adjustment between the piezo actuator and the injection valve being required. Due to the different thermal expansion coefficients of the piezo ceramic and the surrounding materials learn to compensate for the different linear expansions caused by the necessary wide temperature working range in a vehicle in order to prevent the valve lift from being misused.
  • a piezo control valve is known from DE 195 38 791 C2, in which the valve housing itself is designed as a two-part sleeve with sleeve parts arranged axially one behind the other, which consist of different materials with different expansion coefficients.
  • EP 0 869 278 AI two further, also mutually independent, but combinable compensation options are mentioned.
  • At least one shim with a relatively high expansion coefficient which is arranged between the piezo actuator and the cover plate of the actuator housing, is proposed, which is suitable for compensating for the lower expansion coefficient of the piezo actuator compared to the actuator housing.
  • a particular problem of the temperature compensation described occurs in connection with the necessary pretensioning of the piezo actuator in the actuator housing. Since tensile stresses in the piezoceramic actuator material must be avoided, the de-energized piezo actuator is preloaded in a defined manner by means of spring force. The energized piezo actuator must therefore expand against this bias. Typically, to generate this preload, as described in EP 0 869 278 A1 of the generic type, a spring is arranged between the base plate of the actuator housing and the associated end face of the piezoelectric actuator, which spring acts against the actuator Head plate of the actuator housing presses and thus preloaded. Likewise described is the possibility of including such a biasing spring or an associated actuator via the choice of material in the compensation of the different linear expansion.
  • injectors are also known in which the piezo actuator is prestressed within a tubular spring made of steel, which is welded on one side to a head plate and opposite, with pretension, to a base plate.
  • the actuator unit formed from this "housing”, together with the piezo actuator inserted under pretension, is firmly connected to a valve housing or installed in an injector body.
  • the known measures to compensate for the different linear expansion are not readily applicable to this construction.
  • compensation must take place between the piezo actuator and the "Bourdon tube housing", since otherwise there would be a temperature-dependent change in the pretension and thus an undesirable, temperature-dependent response behavior of the injection valve.
  • the invention is therefore based on the object of ensuring a temperature-constant preload in a generic injection valve with little structural outlay even if the piezo actuator is introduced into a tubular spring under preload.
  • the piezo actuator is arranged within a tubular spring in a generic injection valve.
  • the compensating element is designed as a compensating cylinder arranged within an extension tube.
  • the actuator housing comprises a two-part, from the Bourdon tube and the permanently connected extension tube, the extension tube end of which is firmly connected to the head plate and the end of the tube spring, with application of a defined preload on the parts arranged axially one behind the other, fixed to a base plate of the actuator housing.
  • the invention is therefore based on the idea of mounting the piezo actuator and the compensating cylinder in series in an "actuator housing” and jointly pretensioning them by means of a tubular spring extended to the "actuator housing".
  • the actuator housing consists of a head plate, extension tube, Bourdon tube and base plate. This results in a structure in which the sum of the thermal expansions of the inner parts (piezoceramic plus material of the compensating cylinder) is equal to the thermal expansion of the actuator housing.
  • the preload on the piezoceramic set during assembly changes only insignificantly when the temperature changes.
  • there is a stable construction of the actuator unit which in particular enables it to be stably fixed in the valve housing.
  • the parts of the actuator housing consist of steel, that is to say the actuator housing expands evenly and overall in a defined manner in all parts.
  • the compensating cylinder consists of aluminum. This material combines the desired expansion behavior with an advantageously high strength and a low weight.
  • the expansion behavior of the inner parts or the geometry of the actuator unit as a whole can be influenced in a simple manner by arranging an intermediate disk between the piezo actuator and the compensating cylinder.
  • openings are incorporated in the circumference of the extension tube, in each of which a spring plate is mounted in such a way that heat is transferred from the compensating cylinder to the valve housing in the case of an installed actuator unit.
  • the spring plates each consist of the material copper, copper beryllium or bronze.
  • Another embodiment of the invention is characterized in that a groove for caulking the actuator unit is incorporated in the valve housing in the top plate of the actuator housing.
  • FIG. 1 the actuator unit
  • FIG. 2 shows a longitudinal section through the actuator unit according to FIG. 1
  • FIG. 3 shows a further longitudinal section through the actuator unit according to FIG. 1
  • FIG. 4 shows an overview of an actuator unit according to FIGS. 1 to 3
  • FIG. 5 shows a partial section of an injection valve.
  • FIG. 1 The fully assembled actuator unit is shown in FIG. 1, the parts of the actuator housing, that is to say bottom plate 4, tubular spring 3 welded to it, extension tube 6 welded thereon and head plate 5 welded thereon, to be seen first.
  • the top plate 5 has bores from which connection pins 14 of the piezo actuator 1 are led out.
  • the weld seams 11, 12 and are also indicated in FIG 13 for connecting parts 5, 6, 3 and 4 of the actuator housing.
  • Shown in FIG. 1 are also openings made in the extension tube 6, into which spring plates 8 made of copper, copper beryllium or bronze are mounted. These spring plates 8 ensure rapid heat transfer between the internal (not recognizable) aluminum compensating cylinder and the valve housing, so that the function of length compensation can be optimally performed when the temperature changes.
  • FIG. 1 Also shown in FIG. 1 is a groove 10 machined into the top plate 5, which can be used to positively caulk the actuator unit in the valve housing.
  • FIG. 2 shows a cross section (perpendicular to the plane of the connecting pins 14) through the actuator unit.
  • the internal structure of the actuator unit can be seen, in which the piezo actuator 1, an intermediate disk 7 and the aluminum compensating cylinder 2 are mounted axially one behind the other.
  • These inner parts 1, 7 and 2 are enclosed by the actuator housing, which consists of the base plate 4, the Bourdon tube 3, the extension tube 6 and the cover plate 5, which advantageously consist of steel parts welded together, which results in a uniform, defined thermal linear expansion of the actuator housing as a whole results.
  • FIG. 2 also shows an O-ring 9 on the base plate 4, which facilitates the centering of the actuator unit in a bore in the injector housing.
  • FIG. 3 shows a cross section (along the plane formed by the connecting pins 14) through the actuator unit.
  • the connecting pins 14 of the piezo actuator 1 which are guided through the bores of the head plate 5 and are further guided in side slots 15 (cf. FIG. 4) of the aluminum compensating cylinder 2, can be seen particularly well.
  • Figure 4 shows an overview of the entire structure of the actuator unit.
  • the head plate 5 and the extension tube 6 can first be connected by a weld 11.
  • the tubular spring 3 is then welded to the extension tube 6 with the weld seam 12.
  • the internal parts that is to say the piezo actuator 1 with its connections or connecting pins 14, the intermediate disk 7 and the aluminum compensating cylinder 2, each with side slots 15 provided for the connecting pins 14, can also be found in the sleeve composed of the parts 3 and 6 already welded head plate 5 are mounted.
  • the base plate 4 can be connected to the tubular spring 3 by means of the weld seam 13, with application of a defined prestress on the inner parts, in particular on the piezo actuator 1.
  • FIG. 5 shows part of the housing 16 of the injection valve.
  • a fuel hole 17 is formed in the housing 16, which leads fuel to a nozzle needle.
  • the housing 16 is preferably arranged in the upper region of the injection valve and the piezo actuator 1 serves to actuate a servo valve which controls the pressure in a control chamber.
  • the nozzle needle is moved into an open or a closed position depending on the pressure in the control chamber. Fuel is dispensed in the open position.
  • the piezo actuator 1 can also control the nozzle needle directly.
  • an injection valve according to the invention results with a compact drive unit that can be fixed in the injector and whose piezo actuator has a temperature-constant preload.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Zum Ausgleich der unterschiedlichen thermischen Längenänderung des Piezoaktors 1 gegenüber dem Aktorgehäuse 4, 3, 6, 5 wird für eine Aktoreinheit, bei der der Piezoaktor 1 unter Vorspannung innerhalb einer Rohrfeder 3 angeordnet ist, vorgeschlagen, das Ausgleichselement als innerhalb eines Verlängerungsrohres 6 angeordneten Aluminium-Ausgleichszylinder 2 auszubilden. Der Piezoaktor 1 und der Ausgleichszylinder 2 werden in Reihe montiert und gemeinsam mittels der durch das Verlängerungsrohr 6 zum Aktorgehäuse verlängerten Rohrfeder 3 vorgespannt.

Description

Beschreibung
Piezoaktor mit Mitteln zur Kompensation der thermischen Längenänderung und Kraftstoff-Einspritzventil mit Piezoaktor
Die Erfindung betrifft einen Piezoaktor und ein Kraftstoff- Einspritzventil für eine Brennkraftmaschine mit einer fest mit einem Ventilgehäuse verbundenen Aktoreinheit, die mindestens einen unter Vorspannung in ein Aktorgehäuse eingebrach- ten Piezoaktor aufweist, wobei zwischen dem Piezoaktor und einer Kopfplatte des Aktorgehäuses ein Ausgleichselement zum Ausgleich der unterschiedlichen thermischen Längenänderung des Piezoaktors gegenüber dem Aktorgehäuse angeordnet ist.
Ein derartiges Einspritzventil ist bereits aus der EP 0 869 278 AI bekannt.
Für die KraftstoffVersorgung von Verbrennungsmotoren werden zunehmend Hochdruck-Speichereinspritzsysteme verwendet. Sol- ehe Einspritzsysteme sind als Common-Rail-Systeme (für Dieselmotoren) und. HPDI-Einspritzsysteme (für Ottomotoren) be- , kannt. Bei diesen Einspritzsystemen wird der Kraftstoff mit einer Hochdruckpumpe in einen allen Zylindern des Motors gemeinsamen Druckspeicher gefördert, von dem aus die Einspritz- ventile an den einzelnen Zylindern versorgt werden. Die Steuerung des Öffnens und Schließens der Einspritzventile kann elektromagnetisch oder elektrisch erfolgen; im vorliegenden Fall werden dazu elektrische Piezoaktuatoren herangezogen.
Die bei Ansteuerung des Piezoaktors erfolgende Ausdehnung in axialer Richtung wird ausgenutzt, um über eine direkte oder indirekte Wirkverbindung mit der Einspritznadel des Ventils die Einspritznadel zum Einspritzen von Kraftstoff zu steuern, wobei eine relativ empfindliche Justierung zwischen Piezoak- tor und Einspritzventil vorausgesetzt ist. Durch die unterschiedlichen thermischen Ausdehnungskoeffizienten der Piezo- keramik und der umgebenden Materialien ergibt sich das Prob- lern, die durch den notwendigen weiten Temperaturarbeitsbereich bei einem Fahrzeug hervorgerufenen unterschiedlichen Längenausdehnungen zu kompensieren, um eine De ustierung des Ventilhubs zu vermeiden.
Neben dem früher üblichen hydraulischen Ausgleichselement sind inzwischen auch verschiedene nichthydraulische Maßnahmen zum Ausgleich der Längenausdehnung des Piezoaktors und eines umgebenden Aktorgehäuses bzw. Ventilgehäuses bekannt. Bei- spielsweise ist aus der DE 195 38 791 C2 ein Piezosteuerven- til bekannt, bei dem das Ventilgehäuse selbst als zweiteilige Hülse mit axial hintereinander angeordneten Hülsenteilen ausgebildet ist, die aus verschiedenen Werkstoffen mit unterschiedlichen Ausdehnungskoeffizienten bestehen. In der gat- tungsgemäßen Patentanmeldung EP 0 869 278 AI werden zwei weitere, auch voneinander unabhängige, jedoch kombinierbare Ausgleichsmöglichkeiten genannt. Zum einen wird vorgeschlagen, für das Material des den Aktor umgebenden Aktorgehäuses einen Ausdehnungskoeffizienten zu wählen, der nahezu gleich dem Ausdehnungskoeffizient des Piezoaktors ist. Zum anderen wird mindestens eine zwischen dem Piezoaktor und der Deckplatte des Aktorgehäuses angeordnete Ausgleichsscheibe mit relativ hohem Ausdehnungskoeffizienten vorgeschlagen, die geeignet ist, den geringeren Ausdehnungskoeffizient des Piezoaktors gegenüber dem Aktorgehäuse auszugleichen.
Eine besondere Problematik der beschriebenen Temperaturkompensation tritt im Zusammenhang mit der notwendigen Vorspannung des Piezoaktors im Aktorgehäuse auf. Da Zugspannungen im piezokeramischen Aktormaterial unbedingt zu vermeiden sind, wird der unbestromte Piezoaktor mittels Federkraft in definierter Weise vorgespannt. Der bestromte Piezoaktor muss sich also gegen diese Vorspannung ausdehnen. Typischerweise wird zur Erzeugung dieser Vorspannung, wie in der gattungsgemäßen EP 0 869 278 AI beschrieben, eine zwischen der Bodenplatte des Aktorgehäuses und der zugeordneten Stirnseite des Piezoaktors angeordnete Feder eingesetzt, die den Aktor gegen die Kopfplatte des Aktorgehäuses drückt und somit vorspannt. E- benfalls beschrieben ist die Möglichkeit, eine derartige Vorspannfeder, bzw. ein zugeordnetes Stellglied, über die Materialwahl in die Kompensation der unterschiedlichen Längenaus- dehnung einzubeziehen.
Es sind jedoch auch Injektoren bekannt, bei denen der Piezoaktor innerhalb einer Rohrfeder aus Stahl vorgespannt ist, die an einer Seite mit einer Kopfplatte und gegenüberliegend, unter Vorspannung, mit einer Bodenplatte verschweißt ist. Die aus diesem "Gehäuse", zusammen mit dem darin unter Vorspannung eingebrachten Piezoaktor, gebildete Aktoreinheit wird mit einem Ventilgehäuse fest verbunden bzw. in einen Injektorkörper eingebaut. Die bekannten Maßnahmen zur Kompensation der unterschiedlichen Längenausdehnung sind bei dieser Konstruktion nicht ohne weiteres anwendbar. Andererseits muss eine Kompensation zwischen Piezoaktor und "Rohrfeder-Gehäuse" erfolgen, da sich sonst eine temperaturabhängige Änderung der Vorspannung und damit ein unerwünschtes, temperaturabhängiges Ansprechverhalten des Einspritzventils ergeben würde.
Der Erfindung liegt daher die Aufgabe zu Grunde, bei einem gattungsgemäßen Einspritzventil auch dann mit geringem baulichen Aufwand eine temperaturkonstante Vorspannung sicherzu- stellen, wenn der Piezoaktor unter Vorspannung in eine Rohrfeder eingebracht ist.
Diese Aufgabe wird erfindungsgemäß durch einen Piezoaktor gemäß Anspruch 1 und ein Einspritzventil gemäß Anspruch 9 ge- löst. Vorteilhafte Ausführungen der Erfindung sind den Unteransprüchen 2 bis 8 entnehmbar.
Erfindungsgemäß ist der Piezoaktor bei einem gattungsgemäßen Einspritzventil innerhalb einer Rohrfeder angeordnet. Außer- dem ist das Ausgleichselement als innerhalb eines Verlängerungsrohres angeordneter Ausgleichszylinder ausgebildet. Das Aktorgehäuse umfasst eine zweiteilige, aus der Rohrfeder und dem damit fest verbunden Verlängerungsrohr bestehende Hülse, deren verlängerungsrohrseitiges Ende fest mit der Kopfplatte und deren rohrfederseitiges Ende, unter Aufbringung einer definierten Vorspannung auf die innerhalb der Hülse axial hin- tereinander angeordneten Teile, fest mit einer Bodenplatte des Aktorgehäuses verbunden ist.
Der Erfindung liegt demnach der Gedanke zu Grunde, den Piezoaktor und den Ausgleichszylinder in Reihe in einem "Aktorge- häuse" zu montieren und gemeinsam mittels einer zum "Aktorgehäuse" verlängerten Rohrfeder vorzuspannungen. Das Aktorgehäuse besteht aus Kopfplatte, Verlängerungsrohr, Rohrfeder und Bodenplatte. Daraus ergibt sich ein Aufbau, bei dem die Summe der Wärmeausdehnungen der inneren Teile (Piezokeramik plus Material des Ausgleichszylinders) gleich der Wärmeausdehnung des Aktorgehäuses ist. Dadurch ändert sich die bei der Montage eingestellte Vorspannung auf die Piezokeramik bei Temperaturänderung nur unwesentlich. Außerdem ergibt sich ein stabiler Aufbau der Aktoreinheit, der insbesondere deren sta- bile Fixierung im Ventilgehäuse ermöglicht.
Bei einer Ausführungsform der Erfindung ist es von Vorteil, wenn die Teile des Aktorgehäuses aus Stahl bestehen, das Aktorgehäuse sich also in allen Teilen gleichmäßig und insge- samt auf definierte Weise ausdehnt.
Es ist weiterhin von Vorteil, die Teile des Aktorgehäuses an den Verbindungsstellen miteinander zu verschweißen, um die erforderliche Festigkeit der Verbindungen zwischen den Teilen des Aktorgehäuses zu erreichen.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung besteht der Ausgleichszylinder aus Aluminium. Dieses Material verbindet das angestrebte Ausdehnungsverhalten mit ei- ner vorteilhaft hohen Festigkeit sowie einem niedrigen Gewicht . Das Ausdehnungsverhalten der inneren Teile bzw. die Geometrie der Aktoreinheit insgesamt kann auf einfache Weise dadurch beeinflusst werden, dass zwischen Piezoaktor und Ausgleichszylinder eine Zwischenscheibe angeordnet ist.
Es ist von Vorteil, dass im Umfang des Verlängerungsrohres Durchbrüche eingearbeitet sind, in die jeweils ein Federblech derart montiert ist, dass bei einer eingebauten Aktoreinheit ein Wärmeübergang vom Ausgleichszylinder zum Ventilgehäuse gegeben ist. Dabei ist es auch von Vorteil, dass die Federbleche jeweils aus dem Material Kupfer, Kupfer-Beryllium oder Bronze bestehen.
Eine weitere Ausführungsform der Erfindung zeichnet sich da- durch aus, dass in der Kopfplatte des Aktorgehäuses eine Nut zur Verstemmung der Aktoreinheit im Ventilgehäuse eingearbeitet ist.
Ein Ausführungsbeispiel der Erfindung wird im Folgenden an- hand der Zeichnung näher erläutert. Es zeigen:
Figur 1 die Aktoreinheit,
Figur 2 einen Längsschnitt durch die Aktoreinheit gemäß Figur 1, Figur 3 einen weiteren Längsschnitt durch die Aktoreinheit gemäß Figur 1, Figur 4 ein Überblicksbild einer Aktoreinheit gemäß Figur 1 bis 3, und Figur 5 einen Teilausschnitt eines Einspritzventils.
In Figur 1 ist die fertig montierte Aktoreinheit dargestellt, wobei zunächst die Teile des Aktorgehäuses, also Bodenplatte 4, daran angeschweißte Rohrfeder 3, daran angeschweißtes Verlängerungsrohr 6 und daran angeschweißte Kopfplatte 5, er- kennbar sind. Die Kopfplatte 5 weist Bohrungen auf, aus denen Anschlussstifte 14 des Piezoaktors 1 herausgeführt sind. Angedeutet in Figur 1 sind ferner die Schweißnähte 11, 12 und 13 zur Verbindung der Teile 5, 6, 3 und 4 des Aktorgehäuses. Dargestellt in Figur 1 sind auch im Verlängerungsrohr 6 eingearbeitete Durchbrüche, in die Federbleche 8 aus Kupfer, Kupfer-Beryllium oder Bronze montiert werden. Diese Federbleche 8 sorgen für einen schnellen Wärmeübergang zwischen dem innenliegenden (hier nicht erkennbaren) Aluminium- Ausgleichszylinder und dem Ventilgehäuse, damit die Funktion der Längenkompensation bei Temperaturänderung optimal erfüllt werden kann .
Außerdem dargestellt in Figur 1 ist eine in die Kopfplatte 5 eingearbeitete Nut 10, die zur formschlüssigen Verstemmung der Aktoreinheit im Ventilgehäuse dienen kann.
Figur 2 zeigt einen Querschnitt (senkrecht zur Ebene der Anschlussstifte 14) durch die Aktoreinheit. Erkennbar ist insbesondere der innere Aufbau der Aktoreinheit, bei dem der Piezoaktor 1, eine Zwischenscheibe 7 und der Aluminium- Ausgleichszylinder 2 in Reihe, axial hintereinander montiert sind. Diese inneren Teile 1, 7 und 2 werden vom Aktorgehäuse umschlossen, das aus der Bodenplatte 4, der Rohrfeder 3, dem Verlängerungsrohr 6 und der Deckplatte 5 besteht, die günstiger Weise aus miteinander verschweißten Stahlteilen bestehen, wodurch eine einheitliche, definierte thermische Längenaus- dehnung des Aktorgehäuses insgesamt resultiert. Der Verband aus Piezokeramik 1 und Aluminium 2ist also von einem gemeinsamen Stahlgehäuse 4, 3, 6 und 5 umschlossen, wobei die Gesamtausdehnung der inneren Teile 1, 7 und 2 im Wesentlichen derjenigen des Aktorgehäuses 4, 3, 6 und 5 entspricht, so dass auch bei Temperaturänderungen die vorgegebene Vorspannung des Piezoaktors 1 invariant bleibt.
In Figur 2 ist außerdem ein O-Ring 9 an der Bodenplatte 4 dargestellt, der die Zentrierung der Aktoreinheit in einer Bohrung des Injektorgehäuses erleichtert. Figur 3 zeigt einen Querschnitt (entlang der von den Anschlussstiften 14 gebildete Ebene) durch die Aktoreinheit. In dieser Darstellung sind die durch die Bohrungen der Kopfplatte 5 hindurchgeführten und weiter in Seitenschlitzen 15 (vgl. Figur 4) des Aluminium-Ausgleichszylinders 2 geführten Anschlussstifte 14 des Piezoaktors 1 besonders gut zu erkennen.
Figur 4 zeigt den gesamten Aufbau der Aktoreinheit im Überblick. Zur Montage können zunächst die Kopfplatte 5 und das Verlängerungsrohr 6 durch eine Schweißnaht 11 verbunden werden. Danach wird die Rohrfeder 3 mit der Schweißnaht 12 an das Verlängerungsrohr 6 angeschweißt. Nun können die innenliegenden Teile, also der Piezoaktor 1 mit seinen Anschlüssen bzw. Anschlussstiften 14, die Zwischenscheibe 7 sowie der A- luminium-Ausgleichszylinder 2 mit jeweils für die Anschlussstifte 14 vorgesehenen Seitenschlitzen 15, in der aus den Teilen 3 und 6 zusammengesetzten Hülse mit bereits angeschweißter Kopfplatte 5 montiert werden. Schließlich kann die Bodenplatte 4 mittels der Schweißnaht 13, unter Aufbringung einer definierten Vorspannung auf die inneren Teile, insbesondere auf den Piezoaktor 1, mit der Rohrfeder 3 verbunden werden .
Abhängig von der gewählten Ausführungsform kann die Rohrfeder 3 und das Verlängerungsrohr 6 auch einstückig als ein Bauteil ausgeführt sein, wie in Figur 5 dargestellt ist. In Figur 5 ist ein Teil des Gehäuses 16 des Einspritzventils dargestellt. Im Gehäuse 16 ist eine Kraftstoffbohrung 17 ausgebildet, die Kraftstoff zu einer Düsennadel führt. Das Gehäuse 16 ist vorzugsweise im oberen Bereich des Einspritzventils angeordnet und der Piezoaktor 1 dient zur Betätigung eines Servo- ventils, das den Druck in einer Steuerkammer steuert. Die Düsennadel wird abhängig vom Druck in der Steuerkammer in eine Offen- oder eine Schließposition bewegt. In der Offenposition wird Kraftstoff abgegeben. Abhängig von der Ausführungsform kann der Piezoeaktor 1 die Düsennadel auch direkt steuern. Insgesamt resultiert ein erfindungsgemäßes Einspritzventil mit einer kompakten, stabil im Injektor fixierbaren Antriebseinheit, deren Piezoaktor eine temperaturkonstante Vorspannung aufweist.

Claims

Patentansprüche
1. Piezoaktor (1) für ein Kraftstoff-Einspritzventil, der unter Vorspannung in ein Aktorgehäuse eingebracht ist, wobei zwischen dem Piezoaktor (1) und einer Kopfplatte (5) des Aktorgehäuses ein Ausgleichselement zum Ausgleich der unterschiedlichen thermischen Längenänderung des Piezoaktors (1) gegenüber dem Aktorgehäuse angeordnet ist, dadurch gekennzeichnet, dass - der Piezoaktor (1) innerhalb einer Rohrfeder (3) angeordnet ist, - das Ausgleichselement als innerhalb eines Verlängerungsrohres (6) angeordneter Ausgleichszylinder (2) ausgebildet ist, - das Aktorgehäuse eine aus der Rohrfeder (3) und dem damit fest verbunden Verlängerungsrohr (6) bestehende Hülse (3, 6) umfasst, deren verlängerungsrohrseitiges Ende fest mit der Kopfplatte (5) und deren rohrfederseitiges Ende, unter Aufbringung einer definierten Vorspannung auf die in- nerhalb der Hülse (3, 6) axial hintereinander angeordneten Teile (1, 7, 2), fest mit einer Bodenplatte (4) des Aktorgehäuses (4, 3, 6, 5) verbunden ist.
2. Piezoaktor nach Anspruch 1, dadurch gekennzeichnet, dass die Teile des Aktorgehäuses (4,
3. 6, 5) aus Stahl bestehen.
3. Piezoaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Teile des Aktorgehäuses (4, 3, 6, 5) an den Verbindungsstellen miteinander verschweißt sind.
4. Piezoaktor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Ausgleichszylinder (2) aus Aluminium besteht.
5. Piezoaktor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwischen Piezoaktor (1) und Ausgleichszylinder (2) eine Zwischenscheibe (7) angeordnet ist.
6. Piezoaktor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass im Umfang des Verlängerungsrohres (6) Durchbrüche eingearbeitet sind, in die jeweils ein Federblech (8) derart montiert ist, dass bei einer eingebauten Aktoreinheit ein Wärmeübergang vom Ausgleichszylinder (2) zu einem Gehäuse (16) des Einspritzventils gegeben ist.
7. Piezoaktor nach Anspruch 6, dadurch gekennzeichnet, dass die Federbleche (8) jeweils aus dem Material Kupfer, Kupfer-Beryllium oder Bronze bestehen.
8. Piezoaktor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in der Kopfplatte (5) des Aktorgehäuses (4, 3, 6, 5) eine Nut (10) zur Verstemmung der Aktoreinheit im Ventilgehäuse eingearbeitet ist.
9. Einspritzventil mit einem Piezoaktor (1) gemäß einem der Ansprüche 1 bis 8.
EP05701483A 2004-01-12 2005-01-11 Piezoaktor mit mitteln zur kompensation der thermischen längenänderung und kraftstoff-einspritzventil mit piezoaktor Not-in-force EP1704323B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004001679A DE102004001679B4 (de) 2004-01-12 2004-01-12 Piezoaktor mit Mitteln zur Kompensation der thermischen Längenänderung und Kraftstoff-Einspritzventil mit Piezoaktor
PCT/EP2005/050092 WO2005066486A1 (de) 2004-01-12 2005-01-11 Piezoaktor mit mitteln zur kompensation der thermischen längenänderung und kraftstoff-einspritzventil mit piezoaktor

Publications (2)

Publication Number Publication Date
EP1704323A1 true EP1704323A1 (de) 2006-09-27
EP1704323B1 EP1704323B1 (de) 2008-11-19

Family

ID=34716471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05701483A Not-in-force EP1704323B1 (de) 2004-01-12 2005-01-11 Piezoaktor mit mitteln zur kompensation der thermischen längenänderung und kraftstoff-einspritzventil mit piezoaktor

Country Status (5)

Country Link
US (1) US7514847B2 (de)
EP (1) EP1704323B1 (de)
CN (1) CN100416084C (de)
DE (2) DE102004001679B4 (de)
WO (1) WO2005066486A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011455A1 (de) * 2003-06-04 2004-12-30 Robert Bosch Gmbh Rohrfeder für Aktor und Verfahren zur Montage der Rohrfeder
DE102004048395B4 (de) * 2004-10-05 2015-12-10 Continental Automotive Gmbh Piezo-Einspritzventil mit Kontaktelementen zur Wärmeableitung
DE102005063018A1 (de) * 2005-12-30 2007-07-05 Robert Bosch Gmbh Modul mit hochdruckgeeigneter Schweißnahtgestaltung
US7531944B2 (en) * 2007-02-09 2009-05-12 Delphi Technologies, Inc. Piezoelectric actuator and enclosure therefor
DE102007033033B4 (de) * 2007-07-16 2019-08-08 Continental Automotive Gmbh Aktoreinheit für ein Einspritzsystem einer Brennkraftmaschine
WO2011144610A1 (en) 2010-05-17 2011-11-24 Mindray Medical Sweden Ab Mechanical temperature compensation means, method for assembly said means and method for mechanically temperature compensating
US8664832B2 (en) 2010-05-18 2014-03-04 Mindray Medical Sweden Ab Mechanical temperature compensation methods and devices
WO2015001822A1 (ja) * 2013-07-03 2015-01-08 オリンパス株式会社 超音波振動デバイス、超音波振動デバイスの製造方法および超音波医療装置
DE102013219225A1 (de) * 2013-09-25 2015-03-26 Continental Automotive Gmbh Piezo-Injektor zur Kraftstoff-Direkteinspritzung
DE102014116708A1 (de) * 2014-07-23 2016-01-28 Physik Instrumente (Pi) Gmbh & Co. Kg Aktorvorrichtung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2135815T3 (es) * 1995-05-03 1999-11-01 Daimler Chrysler Ag Tobera de inyeccion.
DE19538791C2 (de) * 1995-10-18 1998-04-09 Daimler Benz Ag Piezosteuerventil für Kraftstoffeinspritzanlagen von Brennkraftmaschinen
DE19619319A1 (de) * 1996-05-14 1997-11-20 Ruediger Ufermann Piezoelektrische-Kraftstoff- Einspritzvorrichtung
DE19702066C2 (de) * 1997-01-22 1998-10-29 Daimler Benz Ag Piezoelektrischer Injektor für Kraftstoffeinspritzanlagen von Brennkraftmaschinen
EP0869278B1 (de) * 1997-04-04 2004-03-24 Siemens Aktiengesellschaft Einspritzventil mit Mitteln zur Kompensation der thermischen Längenänderung eines Piezoaktors
DE19807903C2 (de) * 1998-02-25 2001-11-29 Siemens Ag Vorrichtung und Verfahren zur Kraftübertragung
DE19940055C1 (de) * 1999-08-24 2001-04-05 Siemens Ag Dosierventil
DE10035168A1 (de) * 2000-07-19 2002-02-07 Siemens Ag Stellantrieb, Ventil sowie Verfahren zum Herstellen eines Stellantriebs
DE10039424A1 (de) * 2000-08-11 2002-02-28 Siemens Ag Dosierventil mit einem hydraulischen Übertragungselement
DE10159748B4 (de) * 2001-12-05 2014-11-13 Robert Bosch Gmbh Brennstoffeinspritzventil
DE50305852D1 (de) * 2002-04-04 2007-01-11 Siemens Ag Einspritzventil
DE10319600A1 (de) * 2003-05-02 2004-11-18 Robert Bosch Gmbh Aktoreinheit für ein piezogesteuertes Kraftstoffeinspritzventil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005066486A1 *

Also Published As

Publication number Publication date
CN100416084C (zh) 2008-09-03
DE502005005996D1 (de) 2009-01-02
DE102004001679B4 (de) 2009-01-08
CN1910363A (zh) 2007-02-07
EP1704323B1 (de) 2008-11-19
WO2005066486A1 (de) 2005-07-21
US7514847B2 (en) 2009-04-07
DE102004001679A1 (de) 2005-08-04
US20070113536A1 (en) 2007-05-24

Similar Documents

Publication Publication Date Title
EP1704323B1 (de) Piezoaktor mit mitteln zur kompensation der thermischen längenänderung und kraftstoff-einspritzventil mit piezoaktor
EP1115970B1 (de) Brennstoffeinspritzventil
EP0869278B1 (de) Einspritzventil mit Mitteln zur Kompensation der thermischen Längenänderung eines Piezoaktors
EP1135595B1 (de) Ventil zum steuern von flüssigkeiten
EP1567765B1 (de) Einspritzventil
DE102005009147A1 (de) Kraftstoffinjektor für Verbrennungskraftmaschinen
EP1135594B1 (de) Ventil zum steuern von flüssigkeiten
EP1135596A1 (de) Ventil zum steuern von flüssigkeiten
DE19918976A1 (de) Brennstoffeinspritzventil und Verfahren zu dessen Betätigung
EP2310662B1 (de) Kraftstoff-injektor
WO2009098100A1 (de) Einspritzventil, verfahren und vorrichtung zur steuerung eines einspritzventils
EP2013468B1 (de) Injektor
EP1927748A2 (de) Kraftstoffinjektor
EP1387945B1 (de) Piezoelektrisches aktormodul
DE10353045A1 (de) Kraftstoffeinspritzventil
DE10203655A1 (de) Brennstoffeinspritzventil
DE10123218A1 (de) Ventil zum Steuern von Flüssigkeiten
DE10159748B4 (de) Brennstoffeinspritzventil
EP1865195B1 (de) Vorrichtung zum Einspritzen von Kraftstoff
EP1803927B1 (de) Brennstoffeinspritzventil
DE102005045892A1 (de) Direktbetriebener, außenöffnender Injektor
EP1424492A2 (de) Ventil zum Steuern von Flüssigkeiten mit einem Düsen- und einem Steuerventil
WO2005024223A1 (de) Einspritzventil für die einspritzung von kraftstoff in eine verbrennungskraftmaschine
DE102005005552A1 (de) Brennstoffeinspritzventil
DE102006038534A1 (de) Kraftstoffinjektor mit Steuerventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005005996

Country of ref document: DE

Date of ref document: 20090102

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090820

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130213

Year of fee payment: 9

Ref country code: DE

Payment date: 20130131

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005005996

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005005996

Country of ref document: DE

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131