EP1702029A1 - Method for the catalytic purification of light hydrocarbons - Google Patents

Method for the catalytic purification of light hydrocarbons

Info

Publication number
EP1702029A1
EP1702029A1 EP04805711A EP04805711A EP1702029A1 EP 1702029 A1 EP1702029 A1 EP 1702029A1 EP 04805711 A EP04805711 A EP 04805711A EP 04805711 A EP04805711 A EP 04805711A EP 1702029 A1 EP1702029 A1 EP 1702029A1
Authority
EP
European Patent Office
Prior art keywords
metal
cation
metal cation
solid
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04805711A
Other languages
German (de)
French (fr)
Other versions
EP1702029B1 (en
Inventor
Walter Vermeiren
François SEIJNHAEVE
Christophe Dujardin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Total Marketing Services SA
Original Assignee
Total France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total France SA filed Critical Total France SA
Publication of EP1702029A1 publication Critical patent/EP1702029A1/en
Application granted granted Critical
Publication of EP1702029B1 publication Critical patent/EP1702029B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/06Metal salts, or metal salts deposited on a carrier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • the present invention relates to a process for the purification of light hydrocarbons containing sulfur and / or nitrogen compounds refractory to conventional catalytic hydrotreatments, such as thiophene compounds and pyrrole type compounds, by oxidative polymerization of these compounds. It also relates to the regeneration and reactivation of the oxidizing agent used in this process. This process is intended more particularly for the treatment of gasolines, in particular gasolines from catalytic cracking, and hydrocarbons from steam cracking of naphthas containing refractory compounds.
  • thiophene By compounds refractory to the usual catalytic hydrotreatments is meant thiophene, benzothiophene and their alkylated derivatives, as well as pyrrole and its derivatives, benzopyrrole and carbazole, optionally alkylated.
  • thiophenic essences are introduced into more desulphurized direct distillation essences, which are sold in service station networks, and it is essentially these thiophenic compounds contained in thiophenic essences that generate sulfur dioxide from automobile exhaust.
  • the nitrogen compounds present in these products are known for their harmful effect with regard to the activity and the lifetime of the catalysts used.
  • these refractory compounds are well known to manufacturers for the difficulty that there is in eliminating them.
  • the preferred solvents are generally compounds capable of complexing aromatic compounds contained in hydrocarbons, such as alkylene carbonates, benzonitriles, sulfolanes or alternatively derivatives of morpholine.
  • hydrocarbons such as alkylene carbonates, benzonitriles, sulfolanes or alternatively derivatives of morpholine.
  • salts tetraalkylammonium salts are used, such as fluoroborates, fluorophosphates or halides.
  • the Applicant it has studied a process for the purification of light hydrocarbons containing sulfur and / or nitrogen compounds refractory to catalytic hydrotreatments, which aims to weigh down these compounds by oxidative polymerization thereof, in order to extract them more easily from these hydrocarbons .
  • the Applicant seeks both desulfurization and denitrogenation, but also the regeneration of the activity of the oxidizing agent used, by combining the oxidation reaction with a regeneration and activation process. the oxidizing agent used.
  • the metal cations are introduced in liquid form, dispersed or dissolved in an aqueous or organic liquid or else supported on a solid.
  • the method according to the invention is therefore a multiphase method with two or three phases, depending on whether the metal cations are deposited or not on a solid support before the start of the reaction implemented in this process, namely a polymerization of the sulfur and / or nitrogen compounds.
  • the polymerization reaction is carried out at ambient temperature, under atmospheric pressure, at an hourly space velocity (wh) of at least minus O. l - 1 .
  • the oxidizing metal cation must have a redox potential greater than that of the molecule to be oxidized / polymerized in the reaction medium.
  • the metal cation is chosen from the cations of metallic elements from the group consisting of iron, copper, molybdenum, cerium, manganese and vanadium, each of these metals to be present in the reaction with an oxidation state of at least 2.
  • metal cations are used in the form of salts of the group consisting of halides, nitrates, citrates, carboxylates, phosphates, sulfates, persulfates, borates, perborates and bi- and polydentate complexes in linear or cyclic form, comprising nitrogen, sulfur and / or oxygen atoms as a coordinating element.
  • bi- and polydentate complexes is meant, without this having a limiting character, phthalocyanines, porphyrins, cyclams, bi-pyridines and Saler complexes.
  • the polymerization reaction is biphasic liquid / liquid (organic / aqueous), and the polymers formed and the oxidizing cations can be eliminated by decantation of separate phases. , by filtration and / or extraction according to techniques known per se to those skilled in the art.
  • the process is carried out in the presence of a solid chosen from the group consisting of carbon, clays, zeolites, molecular sieves, amorphous silica aluminas, alkali silicates , silica-borates, silica-magnesia, and aluminophosphates.
  • This solid can withstand the salts of the metal cations necessary for the invention, whether or not there is ionic interaction between these cations and these solids.
  • the protons initially present on the support were exchanged for the metal cations, then these metal cations were oxidized before use, which makes it possible to obtain a higher oxidation state of these metals or equal to two.
  • This oxidation state is essential for the polymerization reaction to occur in hydrocarbons, as M. Bein had already observed for less complex media than hydrocarbons from petroleum distillation, in his article in Studies in Surface Science and Catalysis, vol. 102, 1996, pp 295-319.
  • the advantage of a process using the metal cation in the form of a counterion of a solid support is to be able to carry out the polymerization reaction under usual refining conditions, that is to say with a catalytic bed. of the type used in refining.
  • Another advantage is to be able to envisage the in situ or ex situ regeneration of the metal cations used as an oxidizing agent.
  • As support for these metal cations it is possible to choose crystalline or amorphous solids, cation exchangers, containing at least one metal from the group of elements consisting of silicon, aluminum, zirconium, titanium, germanium, gallium. and boron, taken alone or in combination, and whose specific surface is at least 10 cm / g.
  • these supports are chosen from clays, including bentonites, and zeolites, including Sapo, Alpo and Beta, and mesoporous, for example of the MCM 41 type, molecular sieves, amorphous alumina silicas, alkali silicates , silica-borates, silica-magnesia, these solids having a pore size of between 1.5 nm and 200 nm.
  • metal cation salts in the form of an aqueous or organic solution
  • the salts being chosen from nitrates, carboxylates, sulfates, persulfates, citrates, phosphates, borates, perborates and halides of metals, including iron, copper, molybdenum, manganese, vanadium and cerium.
  • Preferred salts are chosen from ferric chloride, cuprous chloride, molybdenum chloride, vanadium oxychloride and cerium chloride.
  • the amount of metal cation present on the support can vary from 0.1% to 30% by weight of the metal corresponding to said cation.
  • Such supported cations can act in a fixed bed, moving bed, fluidized bed or suspension in a liquid process.
  • the polymers formed are entrained in suspension in the hydrocarbon or deposited on the solid. They can therefore be extracted, decanted, filtered or even distilled, in order to be eliminated from the hydrocarbon thus purified.
  • the elimination step consists in extracting the polymers deposited on the support by washing with solvent, in particular by filler, by desorption by a current of inert gas chosen from helium, l nitrogen, carbon dioxide and water vapor, at a temperature above 100 ° C, and / or by combustion by injection of air or oxygen, preferably after removal of the light hydrocarbons still present on the particles of support.
  • solvent in particular by filler
  • inert gas chosen from helium, l nitrogen, carbon dioxide and water vapor
  • This step of oxidizing the metal cation, supported or not, consists in putting the metal cations in an oxidation state of at least 2, by oxidation, by injecting air or liquids containing peroxides or other more oxidizing metal cations, possibly by simultaneously increasing the temperature of the oxidizing agent.
  • steps taken alone or in combination combine in a continuous or discontinuous process.
  • the oxidized metal cation is directly reused for a new oxidative polymerization step.
  • this process can be used for the desulfurization / denitrogenation of gasolines produced by catalytic cracking and of steam cracker effluents, in particular pyrolysis gasolines.
  • This process can also be applied as a finishing treatment for aromatic effluents such as benzene, toluene and xylene.
  • aromatic effluents such as benzene, toluene and xylene.
  • EXAMPLE The present example describes several forms of implementation of the process of the invention, using various oxidative cations, and, their efficiency with respect to desulfurization and / or denitrogenation.
  • Test I A FeCl3 powder is suspended in a catalytic cracking gasoline or LCCS by mixing at a temperature of 25 ° C. The Fe / S ratio (total sulfur in the LCCS) is 16 Fe atoms per sulfur atom (16 atoms / atom).
  • Test III Anhydrous FeCl ⁇ is deposited on activated charcoal: the supported cation thus formed is mixed with LCCS at 40 ° C. The Fe / S ratio is 13 atoms / atom.
  • Test IV A sodium ⁇ zeolite is charged, in the form of particles of 0.15 to 0.5 mm, exchanged with copper acetate, in a reactor tubular, and LCCS is circulated therein at an hourly space velocity of 1.2b- 1 and at a temperature of about 25 ° C, at atmospheric pressure.
  • Test V A sodium zeolite ⁇ is charged in the form of particles from 0.15 to 0.5 mm, exchanged with copper acetate, in a tubular reactor, and LCCS is circulated therein at an hourly space velocity of 1.2b ⁇ 1 and at a temperature of approximately 150 ° C., under atmospheric pressure.
  • the sulfur and / or nitrogen analyzes on the effluent are carried out after 1.5 hours of circulation and after 2 pm
  • Test VI Test V is repeated four times, each test lasting 7 hours The supported cation is reactivated according to steps 2 and 3 described above, these steps being simultaneous and carried out under circulation air, during
  • Test VII A zeolite ⁇ initially in protonated form, of particle size varying from 0.15 to 0.5 mm, is exchanged with copper acetate, then is mixed with LCCS at a temperature of approximately 40 °. C, at atmospheric pressure.
  • the Cu / S ratio is 0.96 atom / atom.
  • TEST VIII A ⁇ zeolite with sodium is mixed in the form of particles from 0.15 to 0.5 mm, exchanged with copper acetate, with LCCS at 40 ° C. The Cu / S ratio is 10.3 atoms / atom. The sulfur and / or nitrogen analyzes on the effluent are carried out after 6 hours.
  • TEST IX A ⁇ zeolite is mixed with sodium, in the form of 0.15 to 0.5 mm particles, exchanged with copper acetate, with LCCS at 40 ° C. The Cu / S ratio is 30.8 atoms / atom.
  • TEST X A sodium zeolite ⁇ is mixed at 40 ° C., in the form of particles of 0.15 to 0.5 mm, exchanged with copper acetate, with a model fluid containing, in% by weight, 0 , 5% thiophene, 0.5% dodecane and 99% toluene.
  • the Cu / S ratio is 1.5 atom / atom.
  • the analyzes of thiophene and mercaptans on the effluent are carried out after 6 hours 30 minutes.
  • TEST XI 202 g of organic solution containing, by weight%, 99% of toluene, 0.5% of pyrrole and 0.5% of n-decane, are emulsified at room temperature with 112 g of aqueous FeCta solution at 6.4% by weight. The Fe / N ratio is 2.94 atoms / atom. Total nitrogen analyzes are done after 5 hours.
  • TEST XII 200 g of organic solution are emulsified at room temperature containing, in% by weight, 99% of toluene, 0.5% of pyrrole and 0.5% of n-decane, with an aqueous solution of Ce (S ⁇ 4 ) 2 to 30% by weight.
  • the Ce / N ratio is 4.7 atoms / atom.
  • Total nitrogen analyzes are done after 40 minutes.
  • TEST XIII 4.3 g of anhydrous FeCb powder are dispersed in 183 g of a solution containing, in% by weight, 99.25% of toluene, 0.5% of thiophene and 0.25% of dodecane, 30 ° C.
  • the Fe / S ratio is 2.45 atoms / atom.
  • Total sulfur analyzes are done after 2 hours.
  • TEST XIV A ⁇ zeolite, initially in protonated form, in powder form, is exchanged with copper acetate, then is mixed with 200 g of a solution containing, in% by weight, 99.25% of toluene, 0, 5% thiophene and 0.25% dodecane, at a temperature of around 40 ° C and at atmospheric pressure.
  • the Cu / S ratio is 0.8 atom / atom.
  • Total sulfur analyzes are done after 4 hours. The desulphurization and denitrogenation results are given in the table below, where the sulfur and nitrogen contents are expressed in ppm. Board

Abstract

The invention relates to a method for the purification of light hydrocarbons having a cut point of between 20 and 250 DEG C and containing sulphur and/or nitrogen compounds which are refractory to standard hydrotreating. The inventive method is characterised in that it comprises the following steps, namely: (a) a step involving the oxidative polymerisation of compounds containing a -X-CH= group in a 5- or 6-membered hydrocarbon ring, wherein X denotes a sulphur or nitrogen atom, in the presence of at least one oxidising agent selected from metal cations; (b) a step involving the separation of the formed polymers and the oxidising agent from the light hydrocarbons; and (c) a step involving the oxidation of the metal cation, said steps being performed in the above order. Moreover, each of the aforementioned steps can be combined with at least the step following same.

Description

Procédé catalytique de purification des hydrocarbures légers Catalytic process for the purification of light hydrocarbons
La présente invention concerne un procédé de purification des hydrocarbures légers contenant des composés soufrés et/ ou azotés réfractaires aux hydrotraitements catalytiques usuels, comme les composés thiophèniques et les composés de type pyrrole, par polymérisation oxydative de ces composés. Elle concerne également la régénération et réactivation de l'agent oxydant utilisé dans ce procédé. Ce procédé est destiné plus particulièrement au traitement des essences, notamment des essences issues du craquage catalytique, et des hydrocarbures issus du vapocraquage des naphtas contenant des composés réfractaires. Par composés réfractaires aux hydrotraitements catalytiques usuels, on entend le thiophène, le benzothiophène et leurs dérivés alkylés, ainsi que le pyrrole et ses dérivés, benzopyrrole et carbazole, éventuellement alkylés. Usuellement, des quantités non négligeables de ces essences thiophèniques sont introduites dans des essences de distillation directe plus désulfurées, qui sont vendues dans les réseaux de stations services, et ce sont, pour l'essentiel, ces composés thiophèniques contenus dans les essences thiophèniques qui génèrent du dioxyde de soufre à l'échappement des automobiles. Les composés azotés présents dans ces produits sont connus, eux, pour leur effet néfaste au regard de l'activité et de la durée de vie des catalyseurs utilisés. Par ailleurs, ces composés réfractaires sont bien connus des industriels pour la difficulté qu'il y a à les éliminer. Il est cependant de plus en plus nécessaire d'éliminer ces composés des hydrocarbures légers, car, notamment pour les composés soufrés réfractaires, les restrictions environnementales, aussi bien en Europe qu'aux USA ou au Japon, et même ailleurs, sur les rejets de soufre à l'atmosphère, deviennent de plus en plus drastiques. Actuellement, la limite maximum tolérée dans les essences est de 150 ppm en soufre total. Les organismes internationaux demandent toutefois de limiter le soufre dans les essences à moins de 50 ppm de soufre total à l'horizon 2005 et prévoient une limitation à moins de 10 ppm de soufre total dès 2009 pour la totalité des productions. Dans les hydrocarbures thiophèniques, par exemple essences ou naphtas, ces teneurs sont bien supérieures à 100 ppm et, en général, elles sont comprises entre 100 et 1000 ppm de soufre total. La formation de mélanges avec des essences désulfurées et déazotées est le seul moyen pour éliminer les stocks d'essences issues du craquage catalytique à l'état fluide ou FCC ou encore les essences de pyrolyse. Pour enlever le thiophêne et ses dérivés des essences thiophèniques, il a été proposé, dans le brevet U.S. N°6.338.788, d'extraire les composés thiophèniques de la charge en mélangeant celle- ci avec un électrolyte et un solvant. Le mélange ainsi formé est introduit dans une cellule électrochimique, de façon à oligomériser les composés thiophèniques. Ces oligomères sont éliminés ultérieurement de la charge. Le mélange électrolyte/ solvant récupéré peut être recyclé dans un nouveau mélange avec la charge à traiter. Les solvants préférés sont généralement des composés aptes à complexer des composés aromatiques contenus dans les hydrocarbures, tels que des carbonates d'alkylènes, des benzonitriles, des sulfolanes ou encore des dérivés de la morpholine. Comme sels, les sels de tétraalkylammonium sont utilisés, comme les fluoroborates, les fluorophosphates ou les halogènures. Outre la difficulté à mettre en œuvre cette technique avec une cellule électrochimique à l'échelle industrielle, un tel procédé devient rédhibitoire pour des raffineurs, quand il est nécessaire de se procurer les solvants et électrolytes nécessaires, mais aussi de les recycler pour des questions de protection de l'environnement. Une autre solution possible est celle qui a été exposée dans le brevet U.S. N°4.188.285. On y propose de retirer les thiophènes des essences, en mettant en contact l'essence de Cs à C7 avec un catalyseur constitué d'une zéolithe de type faujasite Y échangée avec de l'argent, à une température comprise entre 20 et 370 °C, et à une vitesse spatiale horaire comprise entre 0, 1 et 20. Ici, l'atome d'argent est échangé sur la faujasite. Dans une telle opération, le taux d'oléfines reste inchangé avant et après traitement de l'essence. Dans ce brevet, il s'agit d'adsorber le thiophêne et ses dérivés alkylés sur la zéolithe Y échangée avec les ions Ag+ et Cu2+ en utilisant les phénomènes de complexation utilisant la formation de liaisons π, le cuivre étant réduit en Cu+ comme décrit par Ralph T.Yang et collaborateurs, dans Science & Technology, vol.301, p.79, et dans Ind.Eng.Chem.Res. 2001, 40,6236-6239, ou encore par A.Hernandez-Maldonado et collaborateurs, dans Ind.Chem.Res. 2003, 42, 3103-3110. La Demanderesse, elle, a étudié un procédé de purification des hydrocarbures légers contenant des composés soufrés et/ ou azotés réfractaires aux hydrotraitements catalytiques, qui vise à alourdir ces composés par polymérisation oxydative de ceux-ci, afin de les extraire plus facilement de ces hydrocarbures. Dans ce procédé de purification, la Demanderesse vise à la fois la désulfuration et la déazotation, mais aussi la régénération de l'activité de l'agent oxydant utilisé, en combinant la réaction d'oxydation à un procédé de régénération et d'activation de l'agent oxydant utilisé. La présente invention a donc pour objet un procédé de purification des hydrocarbures légers de point de coupe compris entre 20 et 250°C, contenant des composés soufrés et/ ou azotés réfractaires aux hydrotraitements usuels, caractérisé en ce qu'il comprend (a) une étape de polymérisation oxydative des composés comprenant un groupement -X-CH= dans un cycle hydrocarboné de 5 ou 6 chaînons, où X représente un atome de soufre ou d'azote, en présence d'au moins un agent oxydant choisi parmi les cations métalliques, (b) une étape de séparation des polymères formés et de l'agent oxydant d'avec les hydrocarbures légers, et (c) une étape d'oxydation du cation métallique, ces étapes étant réalisées dans cet ordre, chacune de ces étapes pouvant être combinée avec au moins l'étape suivante. Dans le cadre de la présente invention, les composés comprenant un groupement -X-CH= dans un cycle hydrocarboné de 5 à 6 chaînons sont des composés thiophèniques, allant du thiophêne à ses dérivés alkylés ou arylalkylés, et des composés pyrroliques, allant du pyrrole à ses dérivés alkylés ou arylalkylés, généralement présents dans les hydrocarbures et constituant des produits réfractaires à la désulfuration et/ ou déazotation par des traitements d'hydrogénation catalytique classiques. Pour mettre en oeuvre l'invention, les cations métalliques sont introduits sous forme liquide, dispersés ou dissous dans un liquide aqueux ou organique ou encore supportés sur un solide. Le procédé selon l'invention est donc un procédé polyphasique à deux ou trois phases, selon que les cations métalliques sont déposés ou non sur un support solide avant le début de la réaction mise en oeuvre dans ce procédé, à savoir une polymérisation des composés soufrés et/ ou azotés. Dans le cadre de la présente invention, lorsque les cations métalliques sont fixés sur un support solide en lit fixe ou mobile, la réaction de polymérisation se fait dès la température ambiante, sous pression atmosphérique, à une vitesse spaciale horaire (wh) d'au moins O. l -1. De façon générale, pour que les cations métalliques polymérisent les composés soufrés et/ ou azotés, le cation métallique oxydant doit présenter un potentiel rédox supérieur à celui de la molécule à oxyder/ polymériser dans le milieu réactionnel. Pour atteindre de tels potentiels rédox permettant la polymérisation des composés thiophèniques ou pyrroliques, le cation métallique est choisi parmi les cations d'éléments métalliques du groupe constitué par le fer, le cuivre, le molybdène, le cérium, le manganèse et le vanadium, chacun de ces métaux devant être présent dans la réaction avec un degré d'oxydation d'au moins 2. Ces cations métalliques sont utilisés sous forme de sels du groupe constitué par les halogénures, les nitrates, les citrates, les carboxylates, les phosphates, les sulfates, les persulfates, les borates, les perborates et les complexes bi- et polydentates sous forme linéaire ou cyclique, comprenant des atomes d'azote, de soufre et/ ou d'oxygène comme élément de coordination. Par complexes bi- et polydentates, on entend, sans que ceci ait un caractère limitatif, les phtalocyanines, les porphyrines, les cyclames, les bi-pyridines et les complexes de Saler. Lorsque le cation métallique est introduit à l'état dispersé ou en solution dans l'eau, la réaction de polymérisation est biphasique liquide /liquide (organique /aqueux), et les polymères formés et les cations oxydants peuvent être éliminés par décantation de phases séparées, par filtration et/ ou extraction selon des techniques connues en soi de l'homme du métier. Dans une autre forme de réalisation de l'invention, le procédé est mis en œuvre en présence d'un solide choisi dans le groupe constitué par le charbon, les argiles, les zéolithes, les tamis moléculaires, les silices alumines amorphes, les silicates alcalins, les silices-borates, les silices-magnésies, et les aluminophosphates. Ce solide peut supporter les sels des cations métalliques nécessaires à l'invention, qu'il y ait ou non interaction ionique entre ces cations et ces solides. Dans une forme de mise en œuvre préférée, les protons initialement présents sur le support ont été échangés contre les cations métalliques, puis ces cations métalliques ont été oxydés avant utilisation, ce qui permet d'obtenir un état d'oxydation de ces métaux supérieur ou égal à deux. Cet état d'oxydation est essentiel pour que la réaction de polymérisation se produise dans les hydrocarbures, comme l'avait déjà constaté M. Bein pour des milieux moins complexes que les hydrocarbures issus de la distillation du pétrole, dans son article de Studies in Surface Science and Catalysis, vol.102, 1996, pp 295-319. L'avantage d'un procédé utilisant le cation métallique sous forme de contre-ion d'un support solide est de pouvoir mettre en oeuvre la réaction de polymérisation dans des conditions habituelles du raffinage, c'est-à-dire avec un lit catalytique du type de ceux utilisés en raffinage. Un autre avantage est de pouvoir envisager la régénération in situ ou ex situ des cations métalliques utilisés en tant qu'agent oxydant. Comme support de ces cations métalliques, on peut choisir des solides cristallins ou amorphes, échangeurs de cations, contenant au moins un métal du groupe d'éléments constitué par le silicium, l'aluminium, le zirconium, le titane, le germanium, le gallium et le bore, pris seuls ou en combinaison, et dont la surface spécifique est d'au moins 10 cm /g. De préférence, ces supports sont choisis parmi les argiles, dont les bentonites, et les zéolithes, dont les Sapo, Alpo et Beta, et les mésoporeux, par exemple du type MCM 41, les tamis moléculaires, les silices alumines amorphes, les silicates alcalins, les silices-borates, les silices-magnésies, ces solides présentant une taille de pores comprise entre 1,5 nm et 200 nm. Pour obtenir de tels cations supportés, il est nécessaire de mettre en contact le solide avec des sels de cation métallique sous forme d'une solution aqueuse ou organique, les sels étant choisis parmi les nitrates, carboxylates, sulfates, persulfates, citrates, phosphates, borates, perborates et halogènures de métaux, dont le fer, le cuivre, le molybdène, le manganèse, le vanadium et le cérium. Les sels préférés sont choisis parmi le chlorure ferrique, le chlorure cuivreux, le chlorure de molybdène, l'oxychlorure de vanadium et le chlorure de cérium. De préférence, la quantité de cation métallique présente sur le support peut varier de 0, 1 % à 30 % en poids du métal correspondant au dit cation. De tels cations supportés peuvent agir dans un procédé en lit fixe, en lit mobile, en lit fluidisé ou en suspension dans un liquide. Au cours de la polymérisation des composés soufrés et/ ou azotés, les polymères formés sont entraînés en suspension dans l'hydrocarbure ou déposés sur le solide. Ils peuvent donc être extraits, décantés, filtrés ou même distillés, afin d'être éliminés de l'hydrocarbure ainsi purifié. Lorsque les polymères formés sont déposés sur le solide, l'étape d'élimination consiste à extraire les polymères déposés sur le support par lavage au solvant, notamment par la charge, par désorption par un courant de gaz inerte choisi parmi l'hélium, l'azote, le dioxyde de carbone et la vapeur d'eau, à une température supérieure à 100°C, et/ ou par combustion par injection d'air ou d'oxygène, de préférence après élimination des hydrocarbures légers encore présents sur les particules de support. Pour ramener ou maintenir le cation supporté dans un état d'oxydation suffisant pour que la réaction de polymérisation se produise normalement, on oxyde le cation métallique. Cette étape d'oxydation du cation métallique, supporté ou non, consiste à remettre les cations métalliques dans un degré d'oxydation d'au moins 2, par oxydation, en injectant de l'air ou des liquides contenant des peroxydes ou d'autres cations métalliques plus oxydants, éventuellement en augmentant simultanément la température de l'agent oxydant. Dans une forme préférée de mise en œuvre de l'invention, il est possible que des étapes prises seules ou en combinaison se combinent en un procédé continu ou discontinu. Ainsi, à la fin de l'étape d'oxydation des métaux, le cation métallique oxydé est directement réutilisé pour une nouvelle étape de polymérisation oxydative. En outre, on ne sortirait pas du cadre de l'invention en mettant en œuvre simultanément certaines étapes du procédé, comme, par exemple, la première étape de polymérisation oxydative et la deuxième étape d'élimination des polymères obtenus, qui sont présents dans la phase liquide et/ ou sur le support, lorsqu'un support est utilisé. Il en est de même si on combine l'étape d'élimination de polymères obtenus et la troisième étape d'oxydation du cation métallique. Entre également dans le cadre de la présente invention une forme de mise en œuvre du procédé combinant simultanément la troisième et la première étape, ou même les trois étapes selon le type de lit fixe ou mobile qu'il est possible de mettre en œuvre. Un autre objet de l'invention est l'application de ce procédé au traitement de finition des flux industriels contenant des composés réfractaires soufrés et/ ou azotés. Plus particulièrement, ce procédé peut être utilisé pour la désulfuration/ déazotation des essences produites par le craquage catalytique et des effluents de vapocraqueur, notamment des essences de pyrolyse. Ce procédé peut également être appliqué comme traitement de finition des effluents aromatiques de type benzène, toluène et xylène. L'Exemple donné ci-après, vise à illustrer l'invention, sans toutefois vouloir en limiter la portée.The present invention relates to a process for the purification of light hydrocarbons containing sulfur and / or nitrogen compounds refractory to conventional catalytic hydrotreatments, such as thiophene compounds and pyrrole type compounds, by oxidative polymerization of these compounds. It also relates to the regeneration and reactivation of the oxidizing agent used in this process. This process is intended more particularly for the treatment of gasolines, in particular gasolines from catalytic cracking, and hydrocarbons from steam cracking of naphthas containing refractory compounds. By compounds refractory to the usual catalytic hydrotreatments is meant thiophene, benzothiophene and their alkylated derivatives, as well as pyrrole and its derivatives, benzopyrrole and carbazole, optionally alkylated. Usually, non-negligible quantities of these thiophenic essences are introduced into more desulphurized direct distillation essences, which are sold in service station networks, and it is essentially these thiophenic compounds contained in thiophenic essences that generate sulfur dioxide from automobile exhaust. The nitrogen compounds present in these products are known for their harmful effect with regard to the activity and the lifetime of the catalysts used. Furthermore, these refractory compounds are well known to manufacturers for the difficulty that there is in eliminating them. It is however more and more necessary to eliminate these compounds from light hydrocarbons, because, in particular for refractory sulfur compounds, environmental restrictions, both in Europe than in the USA or in Japan, and even elsewhere, on the discharges of sulfur to the atmosphere, become more and more drastic. Currently, the maximum limit tolerated in gasolines is 150 ppm in total sulfur. However, international organizations are requesting to limit the sulfur in gasoline to less than 50 ppm of total sulfur by 2005 and provide for a limitation to less than 10 ppm of total sulfur from 2009 for all productions. In thiophene hydrocarbons, for example gasolines or naphthas, these contents are much higher than 100 ppm and, in general, they are between 100 and 1000 ppm of total sulfur. The formation of mixtures with desulfurized and denitrogenated gasolines is the only way to eliminate the stocks of gasolines resulting from catalytic cracking in the fluid state or FCC or else the pyrolysis gasolines. To remove thiophene and its derivatives from thiophenic essences, it has been proposed, in US Pat. No. 6,338,788, to extract the thiophene compounds from the charge by mixing the latter with an electrolyte and a solvent. The mixture thus formed is introduced into an electrochemical cell, so as to oligomerize the thiophene compounds. These oligomers are subsequently removed from the charge. The recovered electrolyte / solvent mixture can be recycled into a new mixture with the charge to be treated. The preferred solvents are generally compounds capable of complexing aromatic compounds contained in hydrocarbons, such as alkylene carbonates, benzonitriles, sulfolanes or alternatively derivatives of morpholine. As salts, tetraalkylammonium salts are used, such as fluoroborates, fluorophosphates or halides. In addition to the difficulty in implementing this technique with an electrochemical cell on an industrial scale, such a process becomes prohibitive for refiners, when it is necessary to obtain the necessary solvents and electrolytes, but also to recycle them for questions of Environmental Protection. Another possible solution is that which has been set out in US Patent No. 4,188,285. It is proposed to remove the thiophenes from the essences, by bringing the essence of Cs to C7 into contact with a catalyst consisting of a faujasite Y type zeolite exchanged with silver, at a temperature between 20 and 370 ° C. , and at an hourly space speed between 0, 1 and 20. Here, the silver atom is exchanged on the faujasite. In such an operation, the rate of olefins remains unchanged before and after treatment of the gasoline. In this patent, it is a question of adsorbing the thiophene and its alkylated derivatives on the zeolite Y exchanged with the Ag + and Cu 2+ ions using the complexing phenomena using the formation of π bonds, the copper being reduced to Cu + as described by Ralph T. Yang et al., in Science & Technology, vol.301, p.79, and in Ind.Eng.Chem.Res. 2001, 40.6236-6239, or again by A.Hernandez-Maldonado et al., in Ind.Chem.Res. 2003, 42, 3103-3110. The Applicant, it has studied a process for the purification of light hydrocarbons containing sulfur and / or nitrogen compounds refractory to catalytic hydrotreatments, which aims to weigh down these compounds by oxidative polymerization thereof, in order to extract them more easily from these hydrocarbons . In this purification process, the Applicant seeks both desulfurization and denitrogenation, but also the regeneration of the activity of the oxidizing agent used, by combining the oxidation reaction with a regeneration and activation process. the oxidizing agent used. The present invention therefore relates to a process for the purification of light hydrocarbons with a cutting point between 20 and 250 ° C., containing sulfur and / or nitrogenous compounds refractory to usual hydrotreatments, characterized in that it comprises (a) a oxidative polymerization step of the compounds comprising a group -X-CH = in a 5 or 6-membered hydrocarbon ring, where X represents a sulfur or nitrogen atom, in the presence of at least one oxidizing agent chosen from metal cations , (b) a step of separating the polymers formed and the oxidizing agent from light hydrocarbons, and (c) a step of oxidizing the metal cation, these steps being carried out in this order, each of these steps possibly be combined with at least the next step. In the context of the present invention, the compounds comprising a -X-CH = group in a 5 to 6-membered hydrocarbon ring are thiophene compounds, ranging from thiophene to its alkylated or arylalkylated derivatives, and pyrrolic compounds, ranging from pyrrole to its alkylated or arylalkylated derivatives, generally present in hydrocarbons and constituting products refractory to desulfurization and / or denitrogenation by conventional catalytic hydrogenation treatments. To implement the invention, the metal cations are introduced in liquid form, dispersed or dissolved in an aqueous or organic liquid or else supported on a solid. The method according to the invention is therefore a multiphase method with two or three phases, depending on whether the metal cations are deposited or not on a solid support before the start of the reaction implemented in this process, namely a polymerization of the sulfur and / or nitrogen compounds. In the context of the present invention, when the metal cations are fixed on a solid support in a fixed or mobile bed, the polymerization reaction is carried out at ambient temperature, under atmospheric pressure, at an hourly space velocity (wh) of at least minus O. l - 1 . In general, for the metal cations to polymerize the sulfur and / or nitrogen compounds, the oxidizing metal cation must have a redox potential greater than that of the molecule to be oxidized / polymerized in the reaction medium. To reach such redox potentials allowing the polymerization of thiophenic or pyrrolic compounds, the metal cation is chosen from the cations of metallic elements from the group consisting of iron, copper, molybdenum, cerium, manganese and vanadium, each of these metals to be present in the reaction with an oxidation state of at least 2. These metal cations are used in the form of salts of the group consisting of halides, nitrates, citrates, carboxylates, phosphates, sulfates, persulfates, borates, perborates and bi- and polydentate complexes in linear or cyclic form, comprising nitrogen, sulfur and / or oxygen atoms as a coordinating element. By bi- and polydentate complexes is meant, without this having a limiting character, phthalocyanines, porphyrins, cyclams, bi-pyridines and Saler complexes. When the metal cation is introduced in the dispersed state or in solution in water, the polymerization reaction is biphasic liquid / liquid (organic / aqueous), and the polymers formed and the oxidizing cations can be eliminated by decantation of separate phases. , by filtration and / or extraction according to techniques known per se to those skilled in the art. In another embodiment of the invention, the process is carried out in the presence of a solid chosen from the group consisting of carbon, clays, zeolites, molecular sieves, amorphous silica aluminas, alkali silicates , silica-borates, silica-magnesia, and aluminophosphates. This solid can withstand the salts of the metal cations necessary for the invention, whether or not there is ionic interaction between these cations and these solids. In a preferred embodiment, the protons initially present on the support were exchanged for the metal cations, then these metal cations were oxidized before use, which makes it possible to obtain a higher oxidation state of these metals or equal to two. This oxidation state is essential for the polymerization reaction to occur in hydrocarbons, as M. Bein had already observed for less complex media than hydrocarbons from petroleum distillation, in his article in Studies in Surface Science and Catalysis, vol. 102, 1996, pp 295-319. The advantage of a process using the metal cation in the form of a counterion of a solid support is to be able to carry out the polymerization reaction under usual refining conditions, that is to say with a catalytic bed. of the type used in refining. Another advantage is to be able to envisage the in situ or ex situ regeneration of the metal cations used as an oxidizing agent. As support for these metal cations, it is possible to choose crystalline or amorphous solids, cation exchangers, containing at least one metal from the group of elements consisting of silicon, aluminum, zirconium, titanium, germanium, gallium. and boron, taken alone or in combination, and whose specific surface is at least 10 cm / g. Preferably, these supports are chosen from clays, including bentonites, and zeolites, including Sapo, Alpo and Beta, and mesoporous, for example of the MCM 41 type, molecular sieves, amorphous alumina silicas, alkali silicates , silica-borates, silica-magnesia, these solids having a pore size of between 1.5 nm and 200 nm. To obtain such supported cations, it is necessary to bring the solid into contact with metal cation salts in the form of an aqueous or organic solution, the salts being chosen from nitrates, carboxylates, sulfates, persulfates, citrates, phosphates, borates, perborates and halides of metals, including iron, copper, molybdenum, manganese, vanadium and cerium. Preferred salts are chosen from ferric chloride, cuprous chloride, molybdenum chloride, vanadium oxychloride and cerium chloride. Preferably, the amount of metal cation present on the support can vary from 0.1% to 30% by weight of the metal corresponding to said cation. Such supported cations can act in a fixed bed, moving bed, fluidized bed or suspension in a liquid process. During the polymerization of sulfur and / or nitrogen compounds, the polymers formed are entrained in suspension in the hydrocarbon or deposited on the solid. They can therefore be extracted, decanted, filtered or even distilled, in order to be eliminated from the hydrocarbon thus purified. When the polymers formed are deposited on the solid, the elimination step consists in extracting the polymers deposited on the support by washing with solvent, in particular by filler, by desorption by a current of inert gas chosen from helium, l nitrogen, carbon dioxide and water vapor, at a temperature above 100 ° C, and / or by combustion by injection of air or oxygen, preferably after removal of the light hydrocarbons still present on the particles of support. To return or maintain the supported cation in an oxidation state sufficient for the polymerization reaction to occur normally, the metal cation is oxidized. This step of oxidizing the metal cation, supported or not, consists in putting the metal cations in an oxidation state of at least 2, by oxidation, by injecting air or liquids containing peroxides or other more oxidizing metal cations, possibly by simultaneously increasing the temperature of the oxidizing agent. In a preferred embodiment of the invention, it is possible that steps taken alone or in combination combine in a continuous or discontinuous process. Thus, at the end of the metal oxidation step, the oxidized metal cation is directly reused for a new oxidative polymerization step. In addition, it would not be departing from the scope of the invention to simultaneously implement certain stages of the process, such as, for example, the first stage of oxidative polymerization and the second stage of elimination of the polymers obtained, which are present in the liquid phase and / or on the support, when a support is used. So is even if the step of removing the polymers obtained is combined with the third step of oxidizing the metal cation. Also within the scope of the present invention is a form of implementation of the method simultaneously combining the third and the first step, or even the three steps depending on the type of fixed or movable bed that it is possible to implement. Another object of the invention is the application of this process to the finishing treatment of industrial streams containing sulfur and / or nitrogenous refractory compounds. More particularly, this process can be used for the desulfurization / denitrogenation of gasolines produced by catalytic cracking and of steam cracker effluents, in particular pyrolysis gasolines. This process can also be applied as a finishing treatment for aromatic effluents such as benzene, toluene and xylene. The example given below aims to illustrate the invention, without however wanting to limit its scope.
EXEMPLE Le présent exemple décrit plusieurs formes de mise en œuvre du procédé de l'invention, utilisant divers cations oxydants, et, leur efficacité vis-à-vis de la désulfuration et/ ou de la déazotation. Essai I : Une poudre de FeCl3 est mise en suspension dans une essence de craquage catalytique ou LCCS par mélange à une température de 25°C. Le rapport Fe/S (soufre total dans le LCCS) est de 16 atomes de Fe par atome de soufre (16 atomes/ atome). Essai II ; Du FeCk anhydre est déposé sur de la silice : le cation supporté ainsi formé est mis en mélange avec du LCCS à 40°C. Le rapport Fe/S est de 13 atomes/ atome. Essai III : Du FeClβ anhydre est déposé sur du charbon activé : le cation supporté ainsi formé est mis en mélange avec du LCCS à 40°C. Le rapport Fe/S est de 13 atomes/atome. Essai IV : On charge une zéolite β au sodium, sous forme de particules de 0,15 à 0,5 mm, échangée avec de l'acétate de cuivre, dans un réacteur tubulaire, et on y fait circuler du LCCS à une vitesse spatiale horaire de 1,2b"1 et à une température d'environ 25°C, à la pression atmosphérique. Les analyses de soufre et/ ou d'azote sur l'effluent sont réalisées après 3 heures de circulation et après 15 heures. Essai V : On charge une zéolite β au sodium sous forme de particules de 0, 15 à 0,5 mm, échangée avec de l'acétate de cuivre, dans un réacteur tubulaire, et on y fait circuler du LCCS à une vitesse spatiale horaire de 1,2b-1 et à une température d'environ 150°C, sous pression atmosphérique. Les analyses de soufre et/ ou d'azote sur l'effluent sont réalisées après lh30 de circulation et après 14 heures. Essai VI : On répète l'essai V quatre fois, chaque essai durant 7 heures. Le cation supporté est réactivé selon les étapes 2 et 3 décrites ci-dessus, ces étapes étant simultanées et réalisées sous circulation d'air, pendantEXAMPLE The present example describes several forms of implementation of the process of the invention, using various oxidative cations, and, their efficiency with respect to desulfurization and / or denitrogenation. Test I: A FeCl3 powder is suspended in a catalytic cracking gasoline or LCCS by mixing at a temperature of 25 ° C. The Fe / S ratio (total sulfur in the LCCS) is 16 Fe atoms per sulfur atom (16 atoms / atom). Trial II; Anhydrous FeCk is deposited on silica: the supported cation thus formed is mixed with LCCS at 40 ° C. The Fe / S ratio is 13 atoms / atom. Test III: Anhydrous FeClβ is deposited on activated charcoal: the supported cation thus formed is mixed with LCCS at 40 ° C. The Fe / S ratio is 13 atoms / atom. Test IV: A sodium β zeolite is charged, in the form of particles of 0.15 to 0.5 mm, exchanged with copper acetate, in a reactor tubular, and LCCS is circulated therein at an hourly space velocity of 1.2b- 1 and at a temperature of about 25 ° C, at atmospheric pressure. Sulfur and / or nitrogen analyzes on the effluent are carried out after 3 hours of circulation and after 15 hours Test V: A sodium zeolite β is charged in the form of particles from 0.15 to 0.5 mm, exchanged with copper acetate, in a tubular reactor, and LCCS is circulated therein at an hourly space velocity of 1.2b − 1 and at a temperature of approximately 150 ° C., under atmospheric pressure. The sulfur and / or nitrogen analyzes on the effluent are carried out after 1.5 hours of circulation and after 2 pm Test VI: Test V is repeated four times, each test lasting 7 hours The supported cation is reactivated according to steps 2 and 3 described above, these steps being simultaneous and carried out under circulation air, during
5 heures, à 350°C. On charge la zéolite β au sodium échangée au cuivre II ainsi réactivée dans un réacteur tubulaire et on y fait circuler de nouveau du LCCS à une vitesse spatiale horaire de l,2h-1 et à une température d'environ 150°C, sous pression atmosphérique. Les analyses de soufre et/ ou d'azote sur l'effluent sont réalisées après lh.30 de circulation et après 3,5 heures. Essai VII : Une zéolite β initialement sous forme protonée, de taille de particules variant de 0, 15 à 0,5 mm, est échangée avec de l'acétate de cuivre, puis est mélangée avec du LCCS à une température d'environ 40°C, sous pression atmosphérique. Le rapport Cu/S est de 0,96 atome /atome. Les analyses de soufre et/ ou d'azote sur l'effluent sont réalisées après 7 heures. ESSAI VIII : On mélange une zéolite β au sodium sous forme de particules de 0, 15 à 0,5 mm, échangée avec de l'acétate de cuivre, avec du LCCS à 40°C. Le rapport Cu/S est de 10,3 atomes/atome. Les analyses de soufre et/ ou d'azote sur l'effluent sont réalisées après 6 heures. ESSAI IX : On mélange une zéolite β au sodium, sous forme de particules de 0, 15 à 0,5 mm, échangée avec de l'acétate de cuivre, avec du LCCS à 40°C. Le rapport Cu/S est de 30,8 atomes/ atome. Les analyses de soufre et/ ou d'azote sur l'effluent sont réalisées après 5 heures 30 minutes. ESSAI X : On mélange à 40°C une zéolite β au sodium, sous forme de particules de 0, 15 à 0,5 mm, échangée avec de l'acétate de cuivre, avec un fluide modèle contenant, en % en poids, 0,5 % de thiophêne, 0,5 % de dodécane et 99 % de toluène. Le rapport Cu/S est de 1,5 atome /atome. Les analyses de thiophêne et de mercaptans sur l'effluent sont réalisées après 6 heures 30 minutes. ESSAI XI : On met en émulsion à température ambiante 202g de solution organique contenant en % en poids, 99 % de toluène, 0,5 % de pyrrole et 0,5 % de n-décane, avec 112 g de solution aqueuse de FeCta à 6,4 % en poids. Le rapport Fe/N est de 2,94 atomes/atome. Les analyses d'azote total sont faites après 5 heures. ESSAI XII : On met en émulsion à température ambiante 200g de solution organique contenant, en % en poids, 99 % de toluène, 0,5 % de pyrrole et 0,5% de n-décane, avec une solution aqueuse de Ce(Sθ4)2 à 30 % en poids. Le rapport Ce/N est de 4,7 atomes/atome. Les analyses d'azote total sont faites après 40 minutes. ESSAI XIII : On disperse 4,3 g de FeCb anhydre en poudre dans 183 g d'une solution contenant, en % en poids, 99,25% de toluène, 0,5% de thiophêne et 0,25% de dodécane, à 30°C. Le rapport Fe/S est de 2,45 atomes/atome. Les analyses de soufre total sont faites après 2 heures. ESSAI XIV : Une zéolite β, initialement sous forme protonée, en poudre, est échangée avec de l'acétate de cuivre, puis est mélangée avec 200g d'une solution contenant, en % en poids, 99,25% de toluène, 0,5% de thiophêne et 0,25% de dodécane, à une température d'environ 40°C et à pression atmosphérique. Le rapport Cu/S est de 0,8 atome/ atome. Les analyses de soufre total sont faites après 4 heures. Les résultats en désulfuration et en déazotation sont donnés dans le Tableau ci-après, où les teneurs en soufre et en azote sont exprimées en p. p. m. Tableau5 hours at 350 ° C. The sodium zeolite exchanged with copper II thus reactivated is loaded into a tubular reactor and LCCS is again circulated there at an hourly space velocity of 1.2 h -1 and at a temperature of approximately 150 ° C. under pressure. atmospheric. The sulfur and / or nitrogen analyzes on the effluent are carried out after 1.5 hours of circulation and after 3.5 hours. Test VII: A zeolite β initially in protonated form, of particle size varying from 0.15 to 0.5 mm, is exchanged with copper acetate, then is mixed with LCCS at a temperature of approximately 40 °. C, at atmospheric pressure. The Cu / S ratio is 0.96 atom / atom. The sulfur and / or nitrogen analyzes on the effluent are carried out after 7 hours. TEST VIII: A β zeolite with sodium is mixed in the form of particles from 0.15 to 0.5 mm, exchanged with copper acetate, with LCCS at 40 ° C. The Cu / S ratio is 10.3 atoms / atom. The sulfur and / or nitrogen analyzes on the effluent are carried out after 6 hours. TEST IX: A β zeolite is mixed with sodium, in the form of 0.15 to 0.5 mm particles, exchanged with copper acetate, with LCCS at 40 ° C. The Cu / S ratio is 30.8 atoms / atom. The sulfur and / or nitrogen analyzes on the effluent are carried out after 5 hours 30 minutes. TEST X: A sodium zeolite β is mixed at 40 ° C., in the form of particles of 0.15 to 0.5 mm, exchanged with copper acetate, with a model fluid containing, in% by weight, 0 , 5% thiophene, 0.5% dodecane and 99% toluene. The Cu / S ratio is 1.5 atom / atom. The analyzes of thiophene and mercaptans on the effluent are carried out after 6 hours 30 minutes. TEST XI: 202 g of organic solution containing, by weight%, 99% of toluene, 0.5% of pyrrole and 0.5% of n-decane, are emulsified at room temperature with 112 g of aqueous FeCta solution at 6.4% by weight. The Fe / N ratio is 2.94 atoms / atom. Total nitrogen analyzes are done after 5 hours. TEST XII: 200 g of organic solution are emulsified at room temperature containing, in% by weight, 99% of toluene, 0.5% of pyrrole and 0.5% of n-decane, with an aqueous solution of Ce (Sθ4 ) 2 to 30% by weight. The Ce / N ratio is 4.7 atoms / atom. Total nitrogen analyzes are done after 40 minutes. TEST XIII: 4.3 g of anhydrous FeCb powder are dispersed in 183 g of a solution containing, in% by weight, 99.25% of toluene, 0.5% of thiophene and 0.25% of dodecane, 30 ° C. The Fe / S ratio is 2.45 atoms / atom. Total sulfur analyzes are done after 2 hours. TEST XIV: A β zeolite, initially in protonated form, in powder form, is exchanged with copper acetate, then is mixed with 200 g of a solution containing, in% by weight, 99.25% of toluene, 0, 5% thiophene and 0.25% dodecane, at a temperature of around 40 ° C and at atmospheric pressure. The Cu / S ratio is 0.8 atom / atom. Total sulfur analyzes are done after 4 hours. The desulphurization and denitrogenation results are given in the table below, where the sulfur and nitrogen contents are expressed in ppm. Board

Claims

REVENDICATIONS
1. Procédé de purification des hydrocarbures légers de point de coupe compris entre 20 et 250°C, contenant des composés soufrés et/ ou azotés réfractaires aux hydrotraitements usuels, caractérisé en ce qu'il comprend (a) une étape de polymérisation oxydative des composés comprenant un groupement -X-CH= dans un cycle hydrocarboné de 5 ou 6 chaînons, où X représente un atome de soufre ou d'azote, en présence d'au moins un agent oxydant choisi parmi les cations métalliques, (b) une étape de séparation des polymères formés et de l'agent oxydant d'avec les hydrocarbures légers, et (c) une étape d'oxydation du cation métallique, ces étapes étant réalisées dans cet ordre, chacune de ces étapes pouvant être combinée avec au moins l'étape suivante. 1. Process for the purification of light hydrocarbons with a cutting point between 20 and 250 ° C., containing sulfur and / or nitrogen compounds refractory to the usual hydrotreatments, characterized in that it comprises (a) a step of oxidative polymerization of the compounds comprising a group -X-CH = in a 5 or 6-membered hydrocarbon ring, where X represents a sulfur or nitrogen atom, in the presence of at least one oxidizing agent chosen from metal cations, (b) a step for separating the polymers formed and the oxidizing agent from light hydrocarbons, and (c) a step for oxidizing the metal cation, these steps being carried out in this order, each of these steps can be combined with at least 1 'next step.
2. Procédé selon la revendication 1, caractérisé en ce que les cations métalliques sont introduits sous forme liquide, à l'état dispersé ou dissous dans un liquide aqueux ou organique, ou encore supportés sur un solide. 2. Method according to claim 1, characterized in that the metal cations are introduced in liquid form, in the dispersed state or dissolved in an aqueous or organic liquid, or else supported on a solid.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que le cation métallique oxydant présente un potentiel rédox supérieur à celui de la molécule à polymériser dans le milieu réactionnel. 3. Method according to one of claims 1 and 2, characterized in that the oxidizing metal cation has a redox potential greater than that of the molecule to be polymerized in the reaction medium.
4. Procédé selon l'une des revendications 1 et 2 , caractérisé en ce que le cation métallique est un cation d'un élément métallique du groupe constitué par le fer, le cuivre, le molybdène, le manganèse, le cérium et le vanadium, avec un degré d'oxydation d'au moins 2. 4. Method according to one of claims 1 and 2, characterized in that the metal cation is a cation of a metal element from the group consisting of iron, copper, molybdenum, manganese, cerium and vanadium, with an oxidation state of at least 2.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le cation métallique est utilisé sous forme dtialogénure, de nitrate, de citrate, de carboxylate, de phosphate, de sulfate, de persulfate, de borate, de perborate, de complexe bi- et polydentate sous forme linéaire ou cyclique, comprenant des atomes d'azote, de soufre et/ ou d'oxygène comme élément de coordination. 5. Method according to one of claims 1 to 4, characterized in that the metal cation is used in the form of dialialide, nitrate, citrate, carboxylate, phosphate, sulfate, persulfate, borate, perborate, of a bi- and polydentate complex in linear or cyclic form, comprising nitrogen, sulfur and / or oxygen atoms as a coordinating element.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que, lorsque le cation métallique est introduit dispersé ou en solution dans l'eau, la réaction de polymérisation est biphasique, et les polymères formés et les cations oxydants sont éliminés par décantation, filtration et/ ou extraction. 6. Method according to one of claims 1 to 5, characterized in that, when the metal cation is introduced dispersed or in solution in water, the polymerization reaction is biphasic, and the polymers formed and the oxidative cations are removed by decantation, filtration and / or extraction.
7. Procédé selon la revendication 6, caractérisé en ce que la réaction de polymérisation est effectuée en présence d'un solide choisi dans le groupe constitué par le charbon, les argiles, les zéolithes, les tamis moléculaires, les silices alumines amorphes, les silicates alcalins, les silices-borates, les silices-magnésies, et les aluminophosphates. 7. Method according to claim 6, characterized in that the polymerization reaction is carried out in the presence of a solid chosen from the group consisting of carbon, clays, zeolites, molecular sieves, amorphous silica aluminas, silicates alkaline, silica-borates, silica-magnesia, and aluminophosphates.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le cation métallique est supporté sur un solide cristallin ou amorphe échangeur de cations, contenant au moins un métal du groupe d'éléments constitué par le silicium, l'aluminium, le zirconium, le titane, le germanium, le gallium et le bore, seuls ou en combinaison, et dont la surface spécifique est d'au moins 10 cm2 /g. 8. Method according to one of claims 1 to 7, characterized in that the metal cation is supported on a crystalline or amorphous solid cation exchanger, containing at least one metal from the group of elements consisting of silicon, aluminum , zirconium, titanium, germanium, gallium and boron, alone or in combination, and whose specific surface is at least 10 cm 2 / g.
9. Procédé selon la revendication 8, caractérisé en ce que le solide est choisi parmi les argiles, dont les bentonites, les zéolithes, dont les9. Method according to claim 8, characterized in that the solid is chosen from clays, including bentonites, zeolites, including
Sapo, Alpo et Beta et les mésoporeux, les tamis moléculaires, les silices alumines amorphes, les silicates alcalins, les silices-borates, les silices- magnésies, ce solide présentant une taille de pores variant de 1,5 nm à 200 nm. Sapo, Alpo and Beta and mesoporous, molecular sieves, amorphous silica aluminas, alkali silicates, silica-borates, silica-magnesia, this solid having a pore size varying from 1.5 nm to 200 nm.
10. Procédé selon les revendications 8 et 9, caractérisé en ce que le cation métallique supporté est obtenu en mettant en contact le solide avec des sels de cation métallique sous forme d'une solution aqueuse ou organique, les sels étant choisis parmi les nitrates, carboxylates, sulfates, persulfates, borates, perborates, citrates, phosphates et halogénures de métaux, dont le fer, le cuivre, le molybdène, le manganèse, le vanadium et le cérium. 10. Method according to claims 8 and 9, characterized in that the supported metal cation is obtained by bringing the solid into contact with metal cation salts in the form of an aqueous or organic solution, the salts being chosen from nitrates, carboxylates, sulfates, persulfates, borates, perborates, citrates, phosphates and metal halides, including iron, copper, molybdenum, manganese, vanadium and cerium.
11. Procédé selon la revendication 10, caractérisé en ce que le sel métallique est choisi parmi le chlorure ferrique, le chlorure cuivreux, le chlorure de molybdène, l'oxychlorure de vanadium et le chlorure de cérium. 11. Method according to claim 10, characterized in that the metal salt is chosen from ferric chloride, cuprous chloride, molybdenum chloride, vanadium oxychloride and cerium chloride.
12. Procédé selon l'une des revendications 8 à 11, caractérisé en ce que le cation métallique supporté contient de 0, 1 % à 30 % en poids du métal correspondant au dit cation. 12. Method according to one of claims 8 to 11, characterized in that the supported metal cation contains from 0.1% to 30% by weight of the metal corresponding to said cation.
13. Procédé selon l'une des revendications 8 à 12, caractérisé en ce que le cation supporté est utilisé en lit fixe, en lit mobile, en lit fluidisé ou en suspension dans un liquide. 13. Method according to one of claims 8 to 12, characterized in that the supported cation is used in a fixed bed, in a moving bed, in a fluidized bed or in suspension in a liquid.
14. Procédé selon l'une des revendications 8 à 13, caractérisé en ce que l'étape d'élimination des polymères déposés sur le solide supportant le cation consiste à extraire ces polymères par lavage au solvant, notamment par la charge, par désorption par un courant gazeux inerte choisi parmi l'hélium, l'azote, le dioxyde de carbone et la vapeur d'eau, à une température supérieure à 100°C, et/ ou par combustion par injection d'air ou d'oxygène, de préférence après élimination des hydrocarbures légers encore présents sur le support solide. 14. Method according to one of claims 8 to 13, characterized in that the step of eliminating the polymers deposited on the solid supporting the cation consists in extracting these polymers by washing with solvent, in particular by the filler, by desorption by an inert gas stream chosen from helium, nitrogen, carbon dioxide and water vapor, at a temperature above 100 ° C, and / or by combustion by injection of air or oxygen, preferably after removal of the light hydrocarbons still present on the solid support.
15. Procédé selon les revendications 8 à 14, caractérisé en ce que l'étape de polymérisation des composés réfractaires est suivie par une élimination des polymères formés présents dans l'hydrocarbure traité, soit par décantation, soit par filtration, soit par extraction au solvant, soit encore par distillation. 15. Method according to claims 8 to 14, characterized in that the step of polymerization of the refractory compounds is followed by an elimination of the polymers formed present in the treated hydrocarbon, either by decantation, or by filtration, or by solvent extraction , or again by distillation.
16. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que l'étape d'oxydation du cation métallique, supporté ou non, consiste à remettre les cations métalliques dans un degré d'oxydation d'au moins 2 par oxydation, en injectant de l'air ou des liquides contenant des peroxydes ou d'autres cations métalliques plus oxydants, éventuellement en augmentant simultanément la température de l'agent oxydant. 16. Method according to one of claims 1 to 15, characterized in that the step of oxidation of the metal cation, supported or not, consists in putting the metal cations in an oxidation state of at least 2 by oxidation , by injecting air or liquids containing peroxides or other more oxidizing metal cations, possibly by simultaneously increasing the temperature of the oxidizing agent.
17. Procédé selon l'une des revendications 1 à 16, caractérisé en ce que les étapes du procédé, prises seules ou en combinaison, se combinent en un procédé continu ou discontinu. 17. Method according to one of claims 1 to 16, characterized in that the process steps, taken alone or in combination, combine in a continuous or discontinuous process.
18. Procédé selon l'une des revendications 1 à 17, caractérisé en ce que le cation métallique, supporté ou non, est réutilisé dans la première étape du procédé. 18. Method according to one of claims 1 to 17, characterized in that the metal cation, supported or not, is reused in the first step of the process.
19. Application du procédé selon l'une des revendications 1 à 18, comme traitement de finition des flux industriels contenant des composés réfractaires soufrés et/ ou azotés. 19. Application of the method according to one of claims 1 to 18, as a finishing treatment for industrial streams containing sulfur and / or nitrogenous refractory compounds.
20. Application selon la revendication 19 aux essences de FCC et aux effluents de vapocraqueur, notamment aux essences de pyrolyse. 20. Application according to claim 19 to FCC gasolines and to steam cracker effluents, in particular to pyrolysis gasolines.
21. Application selon la revendication 19, comme traitement de finition des effluents aromatiques de type benzène, toluène et xylêne. 21. Application according to claim 19, as a finishing treatment for aromatic effluents of the benzene, toluene and xylene type.
EP04805711A 2003-12-19 2004-12-15 Method for the catalytic purification of light hydrocarbons Not-in-force EP1702029B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0315048A FR2864101B1 (en) 2003-12-19 2003-12-19 CATALYTIC METHOD FOR PURIFYING LIGHT HYDROCARBONS
PCT/FR2004/003232 WO2005061674A1 (en) 2003-12-19 2004-12-15 Method for the catalytic purification of light hydrocarbons

Publications (2)

Publication Number Publication Date
EP1702029A1 true EP1702029A1 (en) 2006-09-20
EP1702029B1 EP1702029B1 (en) 2008-02-13

Family

ID=34630376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805711A Not-in-force EP1702029B1 (en) 2003-12-19 2004-12-15 Method for the catalytic purification of light hydrocarbons

Country Status (9)

Country Link
US (1) US20070131588A1 (en)
EP (1) EP1702029B1 (en)
KR (1) KR20060130106A (en)
CN (1) CN1894363A (en)
AT (1) ATE386095T1 (en)
CA (1) CA2548885A1 (en)
DE (1) DE602004011831D1 (en)
FR (1) FR2864101B1 (en)
WO (1) WO2005061674A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882259B1 (en) * 2006-10-12 2009-02-09 주식회사 코캣 A process for reducing sulfur, nitrogen and producing useful oxygenates via selective oxidation in a single step from hydrogen carbon materials
WO2014096223A1 (en) * 2012-12-20 2014-06-26 Solvay Sa A process for manufacturing a purified aqueous hydrogen peroxide solution
FR3015514B1 (en) 2013-12-23 2016-10-28 Total Marketing Services IMPROVED PROCESS FOR DESAROMATIZATION OF PETROLEUM CUTTERS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352777A (en) * 1964-12-09 1967-11-14 Universal Oil Prod Co Oxidation of mercaptans
US3326798A (en) * 1965-04-01 1967-06-20 Exxon Research Engineering Co Denitrification with cupric chloride and an alcohol
US3491020A (en) * 1967-02-14 1970-01-20 Gulf Research Development Co Sweetening process utilizing a catalyst composite with available lattice oxygen
US3746637A (en) * 1971-07-15 1973-07-17 Gulf Research Development Co Oxidative sweetening of hydrocarbons with a calcined cogelled precipitate of iron and copper salts with silica sol
DE3270205D1 (en) * 1982-02-16 1986-05-07 Exxon Research Engineering Co Method for selectively removing basic nitrogen compounds from lube oils using transition metal halides and transition metal tetrafluoroborates
JP2000162286A (en) * 1998-12-01 2000-06-16 Advantest Corp Electron beam tester and image-processing device
US6338788B1 (en) * 1999-06-11 2002-01-15 Exxonmobil Research And Engineering Company Electrochemical oxidation of sulfur compounds in naphtha
FR2818990B1 (en) * 2000-12-28 2004-09-24 Total Raffinage Distribution PROCESS AND DEVICE FOR DESULFURIZING HYDROCARBONS FILLED WITH THIOPHENIC DERIVATIVES
JP3720728B2 (en) * 2001-05-11 2005-11-30 理学電機工業株式会社 X-ray irradiation desulfurization equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005061674A1 *

Also Published As

Publication number Publication date
WO2005061674A1 (en) 2005-07-07
CA2548885A1 (en) 2005-07-07
US20070131588A1 (en) 2007-06-14
KR20060130106A (en) 2006-12-18
ATE386095T1 (en) 2008-03-15
FR2864101A1 (en) 2005-06-24
DE602004011831D1 (en) 2008-03-27
EP1702029B1 (en) 2008-02-13
FR2864101B1 (en) 2006-03-17
CN1894363A (en) 2007-01-10

Similar Documents

Publication Publication Date Title
EP1346009B1 (en) Method for desulphurising hydrocarbons containing thiophene derivatives
Bhutto et al. Oxidative desulfurization of fuel oils using ionic liquids: A review
US7276152B2 (en) Oxidative desulfurization and denitrogenation of petroleum oils
EP1246889B1 (en) Method for desulphurizing thiopene derivatives contained in fuels
US7666297B2 (en) Oxidative desulfurization and denitrogenation of petroleum oils
US3252892A (en) Oxidation of mercapto compounds using corrinoid catalyst
EA016125B1 (en) Diesel oil desulfurization by oxidation and extraction
KR20070091297A (en) Oxidative desulfurization process
AU2002321984B2 (en) Process for oxygenation of components for refinery blending of transportation fuels
CA1257243A (en) Regeneration of a spent catalyst by means of an aqueous solution of hydrogen peroxyde stabilized by an organic compound
FR2930262A1 (en) PROCESS FOR PURIFYING SULFURED COMBUSTIBLE OIL
JPS63200804A (en) Removal of basic nitrogen compound from extracted oil using acidic polarity adsorbent and regeneration of said adsorbent
FR2875235A1 (en) PROCESS FOR SEPARATING OXYGEN COMPOUNDS CONTAINED IN A HYDROCARBONATED LOAD USING AN IONIC LIQUID
FR2929620A1 (en) PROCESS FOR PURIFYING SULFURED COMBUSTIBLE OIL
JP2004501216A (en) Removal of mercaptans from oil streams
EP1702029B1 (en) Method for the catalytic purification of light hydrocarbons
FR2814172A1 (en) Removal of nitrogen-containing compounds to purify petroleum comprises complexing nitrogen compounds with electron-accepting compound
EP0169828B1 (en) Process for the removal of carbonyl sulfide from liquid olefinic hydrocarbon charges
JP3723841B2 (en) Oil reforming method
Rafiee et al. Deep Extractive Oxidative Desulfurization of Model Oil by Magnetically Recoverable Polyoxometalate-Based Nano Catalyst
FR2662371A1 (en) NOVEL METHOD FOR REGENERATING A CATALYST USED BY AN AQUEOUS SOLUTION OF HYDROGEN PEROXIDE STABILIZED BY AN ORGANIC COMPOUND AND COMPOSITION USED IN THIS METHOD.
FR2619822A1 (en) PROCESS FOR CONTINUOUS SOFTENING OF LIQUID PHASE OIL CUTTERS
AU2007201847B2 (en) Process for oxygenation of components for refinery blending of transportation fuels
WO2003093203A1 (en) Method of desulphurising a mixture of hydrocarbons
BE901355A (en) Propylene purificn. e.g. for use in ziegler polymerisation - by passing over high-purity alumina treated with aluminium tri:alkyl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004011831

Country of ref document: DE

Date of ref document: 20080327

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080613

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080524

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20080617

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080513

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081216

Year of fee payment: 5

BERE Be: lapsed

Owner name: TOTAL FRANCE

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231