EP1699582A1 - Method for the generation of hot strips of light gauge steel - Google Patents

Method for the generation of hot strips of light gauge steel

Info

Publication number
EP1699582A1
EP1699582A1 EP04802997A EP04802997A EP1699582A1 EP 1699582 A1 EP1699582 A1 EP 1699582A1 EP 04802997 A EP04802997 A EP 04802997A EP 04802997 A EP04802997 A EP 04802997A EP 1699582 A1 EP1699582 A1 EP 1699582A1
Authority
EP
European Patent Office
Prior art keywords
content
strip
steel
conveyor belt
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04802997A
Other languages
German (de)
French (fr)
Other versions
EP1699582B1 (en
Inventor
Joachim Kroos
Karl-Heinz Spitzer
Georg Frommeyer
Volker Flaxa
Udo BRÜX
Klaus Brockmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAX PLANCK INSTITUET fur EISE
Max Planck Institut fuer Eisenforschung
Salzgitter Flachstahl GmbH
Original Assignee
MAX PLANCK INSTITUET fur EISE
Max Planck Institut fuer Eisenforschung
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004061284A external-priority patent/DE102004061284A1/en
Application filed by MAX PLANCK INSTITUET fur EISE, Max Planck Institut fuer Eisenforschung, Salzgitter Flachstahl GmbH filed Critical MAX PLANCK INSTITUET fur EISE
Publication of EP1699582A1 publication Critical patent/EP1699582A1/en
Application granted granted Critical
Publication of EP1699582B1 publication Critical patent/EP1699582B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • C21D8/0415Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling

Definitions

  • the invention relates to a method for producing hot strips from a deformable, in particular good cold deep-drawing lightweight structural steel according to the preamble of claim 1.
  • the high degree of forming is achieved through TRIP (Transformation Induced Plasticity) and TWIP (Twinning Induced Plasticity) properties of the steel.
  • Steels with high Mn contents tend to segregate, as occurs in conventional continuous casting through bending, bulging of the strand, sedimentation and suction segregation in the swamp tip area.
  • the invention has for its object to provide a method for producing hot strips from a formable, in particular good cold deep-drawing lightweight steel that avoids the disadvantages described above.
  • the steel has contents in mass% for C 0.04 to ⁇ 1.0 AI 0.05 to ⁇ 4.0 Si 0.05 to ⁇ 6.0 Mn 9.0 to ⁇ 30.0 , Remainder iron including usual steel accompanying elements and in which a melt is cast in a horizontal strip caster close to the final dimensions as well as calmed and free of bending to a preliminary strip in the range between 6 and 15 mm and then fed to a further treatment.
  • Remainder iron including usual steel accompanying elements and in which a melt is cast in a horizontal strip caster close to the final dimensions as well as calmed and free of bending to a preliminary strip in the range between 6 and 15 mm and then fed to a further treatment.
  • Cr, Cu, Ti, Zr, V and Nb can optionally be added to the molten steel.
  • the steel according to the invention is characterized either as a stabilized ⁇ -crystal or as a partially stabilized ⁇ -mixed crystal with a defined stacking error energy, which has a z. T. shows multiple TRIP effect.
  • the advantage of the proposed lightweight steel can be seen in the fact that through a targeted alloy composition and choice of process parameters such as degree of deformation and heat treatment, a wide range of strength and ductility requirements can be covered, whereby tensile strengths of up to 1400 MPa are possible.
  • the addition of carbon plays a key role here.
  • the invention overcomes this prejudice by proposing a balanced ratio of the addition of aluminum and manganese, which also allows a targeted addition of carbon.
  • the hydrogen content in the steel plays an important role.
  • the phenomenon manifests itself in the fact that e.g. B. cracks appear on deep-drawn cups after some time in the edge area.
  • the cracking process can take several days. For this reason it is proposed to limit the hydrogen content to ⁇ 20 ppm, preferably to ⁇ 5 ppm. This can be achieved by careful handling during the melting process, e.g. B. by a special rinsing and vacuum treatment.
  • the lightweight steel mainly with TRIP or with TWIP properties it may be necessary to equip the lightweight steel mainly with TRIP or with TWIP properties.
  • the easiest way to do this is to control the Mn content. If the lower range of approximately 9-18% is selected, then an end product with predominantly TRIP properties is to be expected, whereas the upper range with approximately 22-30% is preferred, the TWIP properties predominate. As mentioned before, this control is also possible by adding other elements, ⁇ especially carbon. In this context it should be mentioned that from the point of view of sufficient corrosion resistance, a higher Cr content is advantageous for the lower Mn range specified and a lower Cr content for the upper Mn range.
  • the bending during solidification which is considered to be disadvantageous, is avoided in that the underside of the casting belt receiving the melt is supported on a plurality of rollers lying next to one another.
  • the support is strengthened in such a way that a negative pressure is generated in the region of the casting belt, so that the casting belt is pressed firmly onto the rollers.
  • the length of the conveyor belt is selected so that at the end of the conveyor belt, the preliminary belt is largely solidified before it is deflected.
  • a homogenization zone which is used for temperature compensation and possible voltage reduction.
  • a further treatment which can be a direct coiling of the preliminary strip or consists of an upstream rolling process in order to apply the required deformation of at least 50%, preferably of> 70%.
  • the direct coiling of the pre-strip has the advantage that you can choose the casting speed with regard to optimal solidification conditions, regardless of the cycle of the subsequent rolling process.
  • the strand shell When the strand shell is formed at the beginning of the solidification, the strand shell may be lifted locally from the circulating belt of the strip casting installation. Under certain circumstances, this leads to impermissible unevenness in the underside of the pre-strip produced. In order to avoid this, it is necessary to ensure that the cooling conditions are as equal as possible for all surface elements of the strand shell of a strip extending over the width of the conveyor belt. This can be achieved by conditioning the top of the circulating belt, e.g. B. by a targeted structuring or by applying a thermally insulating separation layer.
  • One of the aforementioned structuring measures is e.g. B. sandblasting or brushing the top of the circulating belt.
  • An example of the thermally insulating separating layer is the coating by plasma spraying with, for example, aluminum oxide or zirconium oxide.
  • Another embodiment of a structuring is the embossing of a knob structure, e.g. B. with upwardly directed knobs of a few 100 microns in height and a few millimeters in diameter and a distance of the knobs of a few millimeters.
  • the tensile test lying in the rolling direction gave a tensile strength of 1046 MPa and an elongation (A80) of 35%. Depending on the degree of deformation and heat treatment, the tensile strength can be increased to over 1100 MPa and the elongation (A80) over 40%.
  • a second example shows the possibility of shifting the strength and ductility properties against each other by increasing the carbon content with almost the same Mn content.
  • the cold strip of 1.0 mm made from this steel was under protective gas annealed at 1050 ° C and a holding time of 15 minutes.
  • the tensile strength has dropped to 817 MPa, but the A80 elongation has increased to 60%. This means that despite the low Mn content, the higher carbon addition has moved the steel more into the TWIP range.
  • the average tensile strength was 632 MPa and the A80 elongation was 57%.
  • This example also clearly shows that with high Mn contents the elongation can be increased significantly, but this is always detrimental to the strength as long as the carbon content is low.
  • the three examples show the range of variation in terms of strength and elongation, with the Mn and C content playing a key role.
  • the influence of analysis is also overlaid by treatments of the hot strip in the form of annealing and / or by combined cold forming (e.g. rolling, stretching, deep drawing) and intermediate annealing or final annealing.

Abstract

The invention relates to a method for the generation of hot strips, made from a workable light gauge steel which is particularly easy to cold deep draw, comprising the main elements Si, Al and Mn, with high tensile strength and good TRIP and/or TWIP properties. The mass % are as follows for C 0.04 to < 1.0, Al 0.05 to < 4.0, SI 0.05 TO< 6.0; Mn 9.0 to < 30.0, the rest being iron with the usual elements present in steel. The melt is cast in a horizontal strip casting unit, close to the final measurements, free of bends and with a killed-flow to give a pre-strip in the range of 6 to 15 mm and then introduced to a further processing.

Description

52 780-1 52 780-1
Verfahren zum Erzeugen von Warmbändern aus LeichtbaustahlProcess for producing hot strips from lightweight steel
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zum Erzeugen von Warmbändern aus einem umformbaren, insbesondere gut kalt tiefziehfahigen Leichtbaustahl gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a method for producing hot strips from a deformable, in particular good cold deep-drawing lightweight structural steel according to the preamble of claim 1.
Der heiß umkämpfte Autqmobilmarkt zwingt die Hersteller ständig nach Lösungen zur Senkung des Flottenverbrauches unter Beibehaltung eines höchstmöglichen Komforts zu suchen. Dabei spielt die Gewichtsersparnis eine entscheidende Rolle, Diesem Wunsch versuchen die Lieferanten insbesondere für den Karosseriebereich dadurch Rechnung zu tragen, dass durch den Einsatz höherfester Stähle die Wanddicken reduziert werden können, ohne Einbußen der Beulsteifigkeit sowie der Umformung durch Tief- und/oder Streckziehen und der Beschichtung in Kauf nehmen zu müssen.The hotly contested automotive market is forcing manufacturers to constantly look for solutions to reduce fleet consumption while maintaining the highest possible level of comfort. The weight saving plays a decisive role here. Suppliers try to meet this wish, particularly for the bodywork area, by using higher-strength steels to reduce the wall thicknesses without sacrificing buckling stiffness and forming through deep and / or stretch drawing and the like To have to accept coating.
Ein Lösungsansatz dazu ist in der EP 0 889 144 A1 veröffentlicht. In dieser Schrift wird ein kaltumformbarer, insbesondere gut tiefziehfähiger, austenitischer Leichtbaustahl vorgeschlagen, der eine Zugfestigkeit bis 1100 Pa aufweist. Die Hauptelemente dieses Stahles sind Si, AI und Mn im Bereich 1 - 6 % Si, 1 bis 8 % AI und 10 bis 30 % Mn, Rest Eisen einschließlich üblicher Stahlbegleitelemente.A solution to this is published in EP 0 889 144 A1. In this document, a cold-formable, in particular good deep-drawing, austenitic lightweight steel is proposed, which has a tensile strength of up to 1100 Pa. The main elements of this steel are Si, Al and Mn in the range 1 - 6% Si, 1 to 8% Al and 10 to 30% Mn, the rest iron including common steel elements.
Der hohe Umformgrad wird durch TRIP- (Transformation Induced Plasticity) und TWIP- (Twinning Induced Plasticity) Eigenschaften des Stahles erreicht. Stähle mit hohen Mn- Gehalten neigen zu Seigerungen, wie sie beim konventionellen Stranggießen durch Biegung, Ausbauchung des Stranges, Sedimentation und Saugseigerung im Sumpfspitzenbereich vorkommen.The high degree of forming is achieved through TRIP (Transformation Induced Plasticity) and TWIP (Twinning Induced Plasticity) properties of the steel. Steels with high Mn contents tend to segregate, as occurs in conventional continuous casting through bending, bulging of the strand, sedimentation and suction segregation in the swamp tip area.
Die auf diese Weise entstehende Makroseigerung, die auch zu intermetallischen Phasen führen kann, führt zu schwerwiegenden Bandfehlern beim Warmwalzen. Hochlegierte Stähle neigen grundsätzlich auch zu Innenrissen, die letztlich Markroseigerungsfehler darstellen. Diese resultieren z. B. aus Biegebeanspruchungen während des Herstellungsprozesses.The resulting macro increase, which can also lead to intermetallic phases, leads to serious strip errors during hot rolling. Highly alloyed steels also generally have a tendency to crack inside, which ultimately represent marrow separation errors. These result, for. B. from bending stresses during the manufacturing process.
Stähle mit hohen AI-Gehalten lassen sich mit konventionellen Gießpulvern nicht vergießen, da AI im besonderen Maße das SiO2 im Gießpulver reduziert und somit zu einer verschlechterten Reibung zwischen Strangschale und Kokille führt.Steels with high AI contents cannot be cast with conventional casting powders, since AI reduces the SiO 2 in the casting powder to a particular extent and thus leads to a worsened friction between the strand shell and the mold.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Erzeugen von Warmbändern aus einem umformbaren, insbesondere gut kalt tiefziehfähigem Leichtbaustahl anzugeben, das die zuvor geschilderten Nachteile vermeidet.The invention has for its object to provide a method for producing hot strips from a formable, in particular good cold deep-drawing lightweight steel that avoids the disadvantages described above.
Diese Aufgabe wird ausgehend vom Oberbegriff in Verbindung mit den kennzeichnenden Merkmalen des Anspruches 1 gelöst.This object is achieved on the basis of the preamble in conjunction with the characterizing features of claim 1.
Nach der Lehre der Erfindung weist der Stahl Gehalte in Masse % für C 0,04 bis ≤ 1 ,0 AI 0,05 bis < 4,0 Si 0,05 bis ≤ 6,0 Mn 9,0 bis < 30,0 auf, Rest Eisen einschließlich üblicher Stahlbegleitelemente und bei dem eine Schmelze in einer horizontalen Bandgießanlage endabmessungsnah sowie strömungsberuhigt und biegefrei zu einem Vorband im Bereich zwischen 6 und 15 mm vergossen und anschließend einer Weiterbehandlung zugeführt wird. Optional können je nach Anforderung Cr, Cu, Ti, Zr, V und Nb der Stahlschmelze zugegeben werden.According to the teaching of the invention, the steel has contents in mass% for C 0.04 to ≤ 1.0 AI 0.05 to <4.0 Si 0.05 to ≤ 6.0 Mn 9.0 to <30.0 , Remainder iron including usual steel accompanying elements and in which a melt is cast in a horizontal strip caster close to the final dimensions as well as calmed and free of bending to a preliminary strip in the range between 6 and 15 mm and then fed to a further treatment. Depending on the requirements, Cr, Cu, Ti, Zr, V and Nb can optionally be added to the molten steel.
Der erfindungsgemäße Stahl ist gefügemäßig entweder als stabilisierter γ-Kristall oder als teilstabilisierter γ-Mischkristall mit definierter Stapelfehlerenergie ausgeprägt, der einen z. T. multiplen TRIP-Effekt zeigt.The steel according to the invention is characterized either as a stabilized γ-crystal or as a partially stabilized γ-mixed crystal with a defined stacking error energy, which has a z. T. shows multiple TRIP effect.
Der letztgenannte Effekt ist die spannungs- oder dehnungsinduzierte Umwandlung eines flächenzentrierten γ-Mischkristalls in ein martensitisches ε-Gefüge mit hexagonaler dichtester Kugelpackung, der dann zum Teil in einen raumzentrierten α-Martensit und Restaustenit transformiert. „ Ms Λ, Ms ' ru hcp bcc fcc = face centred cubic bcc = body centred cubic hcp = hexogonal clbsed packedThe latter effect is the stress or strain-induced transformation of a face-centered γ mixed crystal into a martensitic ε structure with a hexagonal, densest spherical packing, which then partially transforms into a body-centered α-martensite and residual austenite. "Ms Λ , Ms' ru hcp bcc fcc = face centered cubic bcc = body centered cubic hcp = hexogonal clbsed packed
Zahlreiche Versuche haben zur Erkenntnis geführt, dass im komplexen Zusammenspiel zwischen AI, Si und Mn dem Kohlenstoffgehalt eine überragende Bedeutung zukommt. Es erhöht zum Einen die Stapelfehlerenergie und erweitert zum Anderen den metastabilen Austenitbereich. Dadurch wird die verformungsinduzierte Martensitbildung und die damit verbundene Verfestigung gehemmt und auch die Duktilität gesteigert.Numerous experiments have led to the realization that the carbon content is of paramount importance in the complex interplay between Al, Si and Mn. It increases the stack fault energy on the one hand and extends the metastable austenite range on the other. This inhibits the deformation-induced formation of martensite and the associated solidification and also increases ductility.
Weitere Verbesserungen lassen sich erreichen durch gezielte Zugaben von Kupfer und/oder Chrom. Mit der Zugabe von Kupfer wird der ε-Martensit stabilisiert und die Verzinkbarkeit verbessert. Zudem erhöht Kupfer die Korrosionsbeständigkeit des Stahles. Auch Chrom stabilisiert den ε-Martensit und verbessert die Korrosionsbeständigkeit.Further improvements can be achieved by adding copper and / or chromium. With the addition of copper, the ε-martensite is stabilized and the galvanizability is improved. Copper also increases the corrosion resistance of the steel. Chromium also stabilizes ε-martensite and improves corrosion resistance.
Der Vorteil des vorgeschlagenen Leichtbaustahles ist darin zu sehen, dass durch gezielte Legierungszusammensetzung und Wahl der Prozessparameter wie Umformgrad und Wärmebehandlung ein breites Spektrum von Festigkeits- und Duktilitätsanforderungen abgedeckt werden kann, wobei Zugfestigkeiten bis 1400 MPa möglich sind. Dabei spielt die Kohlenstoffzugabe eine Schlüsselrolle.The advantage of the proposed lightweight steel can be seen in the fact that through a targeted alloy composition and choice of process parameters such as degree of deformation and heat treatment, a wide range of strength and ductility requirements can be covered, whereby tensile strengths of up to 1400 MPa are possible. The addition of carbon plays a key role here.
Bislang wurde, in der Fachwelt die Meinung vertreten, den Kohlenstoffgehalt möglichst aufSo far, the opinion expressed in the professional world, the carbon content as possible
Null zu setzen, um die Bildung von -Karbiden zu vermeiden. Die Erfindung überwindet dieses Vorurteil durch den Vorschlag eines ausgewogenen Verhältnisses der Zugabe von Aluminium und Mangan, das auch eine gezielte Zugabe von Kohlenstoff gestattet.Set zero to avoid carbide formation. The invention overcomes this prejudice by proposing a balanced ratio of the addition of aluminum and manganese, which also allows a targeted addition of carbon.
Für das Phänomen "delayed fracture", das bei Stählen mit überwiegend TRIP-Eigenschaften auftreten kann,. spielt der Wasserstoffgehalt im Stahl eine wichtige Rolle. Das Phänomen äußert sich darin, dass z. B. an tiefgezogenen Näpfen nach einiger Zeit im Kantenbereich Risse auftreten. Der Rissbildungsvorgang kann sich über mehrere Tage hinziehen. Aus diesem Grunde wird vorgeschlagen, den Wasserstoffgehalt auf < 20 ppm vorzugsweise auf < 5 ppm zu begrenzen. Dieses lässt sich durch eine sorgfältige Behandlung während der Erschmelzung erreichen, z. B. durch eine spezielle Spül- und Vakuumbehandlung.For the phenomenon "delayed fracture", which can occur in steels with predominantly TRIP properties. The hydrogen content in the steel plays an important role. The phenomenon manifests itself in the fact that e.g. B. cracks appear on deep-drawn cups after some time in the edge area. The cracking process can take several days. For this reason it is proposed to limit the hydrogen content to <20 ppm, preferably to <5 ppm. This can be achieved by careful handling during the melting process, e.g. B. by a special rinsing and vacuum treatment.
Je nach Anforderung kann es erforderlich sein, den Leichtbaustahl überwiegend mit TRIP oder mit TWIP-Eigenschaften auszustatten. Dies kann man am einfachsten durch Steuerung des Mn-Gehaltes erreichen. Wird der untere Bereich von etwa 9 - 18 % gewählt, dann ist ein Endprodukt mit überwiegend TRIP-Eigenschaften zu erwarten, wird hingegen der obere Bereich mit etwa 22 - 30 % bevorzugt, überwiegen die TWIP-Eigenschaften. Wie schon zuvor erwähnt, ist diese Steuerung auch durch gezielte Zugabe anderer Elemente, < insbesondere Kohlenstoff, möglich. In diesem Zusammenhang sei erwähnt, dass unter dem Blickwinkel einer ausreichenden Korrosionsbeständigkeit für den unteren angegebenen Mn- Bereich ein höherer Cr-Gehalt und für den oberen Mn-Bereich ein niedrigerer Cr-Gehalt vorteilhaft ist.Depending on the requirements, it may be necessary to equip the lightweight steel mainly with TRIP or with TWIP properties. The easiest way to do this is to control the Mn content. If the lower range of approximately 9-18% is selected, then an end product with predominantly TRIP properties is to be expected, whereas the upper range with approximately 22-30% is preferred, the TWIP properties predominate. As mentioned before, this control is also possible by adding other elements, <especially carbon. In this context it should be mentioned that from the point of view of sufficient corrosion resistance, a higher Cr content is advantageous for the lower Mn range specified and a lower Cr content for the upper Mn range.
Verfahrenstechnisch wird vorgeschlagen, die Strömungsberuhigung dadurch zu erreichen, dass eine mitlaufende elektromagnetische Bremse eingesetzt wird, die dafür sorgt, dass im Idealfall die Geschwindigkeit des Schmelzenzulaufs gleich der Geschwindigkeit des umlaufenden Förderbandes ist.In terms of process engineering, it is proposed to achieve the flow stabilization by using a rotating electromagnetic brake, which ensures that, ideally, the speed of the melt feed is equal to the speed of the rotating conveyor belt.
Die als nachteilig angesehene Biegung während der Erstarrung wird dadurch vermieden, dass die Unterseite des die Schmelze aufnehmenden Gießbandes sich auf einer Vielzahl von nebeneinander liegenden Rollen abstützt. Verstärkt wird die Abstützung in der Weise, dass im Bereich des Gießbandes ein Unterdruck erzeugt wird, so dass das Gießband fest auf die Rollen gedrückt wird.The bending during solidification, which is considered to be disadvantageous, is avoided in that the underside of the casting belt receiving the melt is supported on a plurality of rollers lying next to one another. The support is strengthened in such a way that a negative pressure is generated in the region of the casting belt, so that the casting belt is pressed firmly onto the rollers.
Um diese Bedingungen während der kritischen Phase der Erstarrung aufrecht zu erhalten, wird die Länge des Förderbandes so gewählt, dass am Ende des Förderbandes vor dessen Umlenkung das Vorband weitestgehend durcherstarrt ist.In order to maintain these conditions during the critical phase of solidification, the length of the conveyor belt is selected so that at the end of the conveyor belt, the preliminary belt is largely solidified before it is deflected.
Am Ende des Förderbandes schließt sich eine Homogenisierungszone an, die für einen Temperaturausgleich und möglichen Spannungsabbau genutzt wird. Danach folgt eine Weiterbehandlung, die ein direktes Aufcoilen des Vorbandes sein kann oder aus einem vorgeschalteten Walzprozess besteht, um die erforderliche Umformung von mindestens 50 % vorzugsweise von > 70% aufzubringen. Das direkte Aufcoilen des Vorbandes hat den Vorteil, dass man die Gießgeschwindigkeit hinsichtlich optimaler Erstarrungsbedingungen wählen kann, unabhängig vom Takt des nachfolgenden Walzprozesses.At the end of the conveyor belt there is a homogenization zone, which is used for temperature compensation and possible voltage reduction. This is followed by a further treatment, which can be a direct coiling of the preliminary strip or consists of an upstream rolling process in order to apply the required deformation of at least 50%, preferably of> 70%. The direct coiling of the pre-strip has the advantage that you can choose the casting speed with regard to optimal solidification conditions, regardless of the cycle of the subsequent rolling process.
Andererseits kann es insbesondere aus wirtschaftlichen Gründen (hohe Produktivität) vorteilhaft sein, den erfindungsgemäßen Werkstoff direkt nach dem Gießen inline ganz oder teilweise bis auf seine endgültige Dicke zu walzen.On the other hand, it may be advantageous, particularly for economic reasons (high productivity), to roll the material according to the invention entirely or partially to its final thickness directly after casting.
Bei der Bildung der Strangschale zu Beginn der Erstarrung kann es lokal zu Abhebungen der Strangschale vom umlaufenden Band der Bandgießanlage kommen. Dies führt unter Umständen zu unzulässigen Unebenheiten der Unterseite des erzeugten Vorbandes. Um dies zu vermeiden, ist es erforderlich für alle Flächenelemente der sich bildenden Strangschale eines sich über die Breite des Förderbandes erstreckenden Streifens möglichst gleiche Abkühlbedingungen zu gewährleisten. Dies kann man durch eine Konditionierung der Oberseite des umlaufenden Bandes erreichen, z. B. durch eine gezielte Strukturierung oder durch Aufbringen einer thermisch isolierenden Trennschicht.When the strand shell is formed at the beginning of the solidification, the strand shell may be lifted locally from the circulating belt of the strip casting installation. Under certain circumstances, this leads to impermissible unevenness in the underside of the pre-strip produced. In order to avoid this, it is necessary to ensure that the cooling conditions are as equal as possible for all surface elements of the strand shell of a strip extending over the width of the conveyor belt. This can be achieved by conditioning the top of the circulating belt, e.g. B. by a targeted structuring or by applying a thermally insulating separation layer.
Eine der vorgenannten Strukturierungsmaßnahmen ist z. B. ein Sandstrahlen oder Bürsten der Oberseite des umlaufenden Bandes. Ein Beispiel für die thermisch isolierende Trennschicht ist die Beschichtung durch Plasmaspritzen mit beispielsweise Aluminiumoxid oder Zirkonoxid. Ein weiteres Ausführungsbeispiel für eine Strukturierung ist das Aufprägen einer Noppenstruktur, z. B. mit nach oben gerichteten Noppen von einigen 100 μm Höhe und einigen Millimeter Durchmesser sowie einem Abstand der Noppen von einigen Millimetern.One of the aforementioned structuring measures is e.g. B. sandblasting or brushing the top of the circulating belt. An example of the thermally insulating separating layer is the coating by plasma spraying with, for example, aluminum oxide or zirconium oxide. Another embodiment of a structuring is the embossing of a knob structure, e.g. B. with upwardly directed knobs of a few 100 microns in height and a few millimeters in diameter and a distance of the knobs of a few millimeters.
Anhand eines Ausführungsbeispieles werden die erreichbaren Werte demonstriert. Ausgehend von einem Stahl mit der AnalyseThe achievable values are demonstrated using an exemplary embodiment. Starting from a steel with the analysis
C = 0,06 % Mn = 15,5 % AI = 2,0 % Si = 2,6 % H2 = 4 ppm wurde ein Warmband mit einer Dicke von 2,5 mm erzeugt.C = 0.06% Mn = 15.5% Al = 2.0% Si = 2.6% H 2 = 4 ppm, a hot strip with a thickness of 2.5 mm was produced.
Die in Walzrichtung liegende Zugprobe ergab eine Zugfestigkeit von 1046 MPa und eine Dehnung (A80) von 35 %. In Abhängigkeit vom Umformgrad und Wärmebehandlung kann die Zugfestigkeit bis über 1100 MPa und die Dehnung (A80) über 40 % gesteigert werden. Ein zweites Beispiel zeigt die Möglichkeit, wie man durch Anhebung des Kohlenstoffgehaltes bei nahezu gleichem Mn-Gehalt die Festigkeits- und Duktilitätseigenschaften gegeneinander verschieben kann.The tensile test lying in the rolling direction gave a tensile strength of 1046 MPa and an elongation (A80) of 35%. Depending on the degree of deformation and heat treatment, the tensile strength can be increased to over 1100 MPa and the elongation (A80) over 40%. A second example shows the possibility of shifting the strength and ductility properties against each other by increasing the carbon content with almost the same Mn content.
Der Stahl dieses Ausführungsbeispiels weist folgende Gehalte auf C = 0,7 % Mn = 15 % AI = 2,5 % Si = 2,5 % ' H2 = 3 ppm Das aus diesem Stahl hergestellte Kaltband von 1 ,0 mm wurde unter Schutzgas bei 1050 °C und einer Haltezeit von 15 Minuten rekristallisierend geglüht. Die Zugfestigkeit ist auf 817 MPa abgesunken, dafür aber die A80-Dehnung auf 60 % gestiegen. Dies bedeutet, dass trotz des niedrigen Mn-Gehaltes durch die höhere Kohlenstoffzugabe der Stahl mehr in den Bereich mit TWIP-Eigenschaften verschoben worden ist.The steel of this exemplary embodiment has the following contents: C = 0.7% Mn = 15% Al = 2.5% Si = 2.5% ' H 2 = 3 ppm The cold strip of 1.0 mm made from this steel was under protective gas annealed at 1050 ° C and a holding time of 15 minutes. The tensile strength has dropped to 817 MPa, but the A80 elongation has increased to 60%. This means that despite the low Mn content, the higher carbon addition has moved the steel more into the TWIP range.
Ein weiteres Beispiel zeigt die Ergebnisse mit hohem Mn-Gehalt und niedrigem Kohlenstoffgehalt. Die Gehalte betrugenAnother example shows the results with high Mn content and low carbon content. The salaries were
C = 0,041 % Mn = 25 % AI = 3,4 % Si = 2,54 % H2 = 4 ppmC = 0.041% Mn = 25% AI = 3.4% Si = 2.54% H 2 = 4 ppm
Nach einer vergleichbaren Wärmebehandlung wie zuvor beschrieben, betrug die Zugfestigkeit im Mittel 632 MPa und die A80-Dehnung 57 %. Auch dieses Beispiel zeigt deutlich, dass man mit hohen Mn-Gehalten die Dehnung stark steigern kann, dies aber immer zulasten der Festigkeit geht, solange der Kohlenstoffgehalt niedrig ist.After a comparable heat treatment as described above, the average tensile strength was 632 MPa and the A80 elongation was 57%. This example also clearly shows that with high Mn contents the elongation can be increased significantly, but this is always detrimental to the strength as long as the carbon content is low.
Insgesamt zeigen die drei Beispiele die Variationsbreite hinsichtlich Festigkeit und Dehnung, wobei dem Mn- und C-Gehalt eine Schlüsselrolle zukommt. Überlagert wird der Analyseneinfluss noch durch Behandlungen des Warmbandes in Form von Glühen und/oder durch kombiniertes Kaltumformen (z. B. Walzen, Strecken, Tiefziehen) und Zwischenglühen bzw. Endglühen. Overall, the three examples show the range of variation in terms of strength and elongation, with the Mn and C content playing a key role. The influence of analysis is also overlaid by treatments of the hot strip in the form of annealing and / or by combined cold forming (e.g. rolling, stretching, deep drawing) and intermediate annealing or final annealing.

Claims

Patentansprüche claims
1. Verfahren zum Erzeugen von Warmbändern aus einem umformbaren, insbesondere gut kalt tiefziehfahigen Leichtbaustahl, bestehend aus den Hauptelementen Si, AI und Mn, der eine hohe Zugfestigkeit und TRIP- und/oder TWIP-Eigenschaften aufweist dadurch gekennzeichnet, dass die Gehalte in Masse-% für C 0,04 bis ≤ 1 ,0 AI 0,05 bis < 4,0 Si 0,05 bis ≤ 6,0 Mn 9,0 bis ≤ 30,0 betragen, Rest Eisen einschließlich üblicher stahlbegleitender Elemente, und bei dem eine Schmelze in einer horizontalen Bandgießanlage endabmessungsnah sowie strömungsberuhigt und biegefrei zu einem Vorband im Bereich zwischen 6 und 15 mm vergossen und anschließend einer Weiterbehandlung zugeführt wird.1. A process for producing hot strips from a formable, in particular good cold deep-drawing lightweight steel, consisting of the main elements Si, Al and Mn, which has high tensile strength and TRIP and / or TWIP properties, characterized in that the contents in mass % for C 0.04 to ≤ 1.0 AI 0.05 to <4.0 Si 0.05 to ≤ 6.0 Mn 9.0 to ≤ 30.0, the rest iron including common steel elements, and in the a melt is cast in a horizontal strip caster close to its final dimensions and is calmed and free of bending to form a preliminary strip in the range between 6 and 15 mm and then fed to a further treatment.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass der Kohlenstoffgehalt 0,06 bis ≤ 0,7 % beträgt.2. The method according to claim 1, characterized in that the carbon content is 0.06 to ≤ 0.7%.
3. Verfahren nach Anspruch 1 und 2 dadurch gekennzeichnet, dass der Stahl Cr bis ≤ 6,5 % enthält.3. The method according to claim 1 and 2, characterized in that the steel contains Cr up to ≤ 6.5%.
4. Verfahren nach den Ansprüchen 1 - 3 dadurch gekennzeichnet, dass der Mn-Gehalt 9 - 18 % beträgt.4. The method according to claims 1-3, characterized in that the Mn content is 9-18%.
5. Verfahren nach den Ansprüchen 1 - 3 dadurch gekennzeichnet, dass der Mn-Gehalt 18 - 22 % beträgt.5. The method according to claims 1-3, characterized in that the Mn content is 18-22%.
6. Verfahren nach den Ansprüchen 3 - 5 dadurch gekennzeichnet, dass der Cr-Gehalt 0,3 - 1 ,0 % beträgt. 6. The method according to claims 3-5, characterized in that the Cr content is 0.3-1.0%.
7. Verfahren nach den Ansprüchen 1 - 3 dadurch gekennzeichnet, .dass der Mn-Gehalt 22 - 30 % beträgt.7. The method according to claims 1-3, characterized in that the Mn content is 22-30%.
8. Verfahren nach Anspruch 3 und 7 dadurch gekennzeichnet, dass der Cr-Gehalt 0,05 - 0,2 % beträgt.8. The method according to claim 3 and 7, characterized in that the Cr content is 0.05 - 0.2%.
9. Verfahren nach den Ansprüchen 1 - 8 dadurch gekennzeichnet, dass der Si-Gehalt 2,0 - 4,0 % beträgt.9. The method according to claims 1-8, characterized in that the Si content is 2.0 - 4.0%.
10. Verfahren nach den Ansprüchen 1 - 9 dadurch gekennzeichnet, dass der AI-Gehalt 2,0 - 3,0 % beträgt.10. The method according to claims 1-9, characterized in that the AI content is 2.0 - 3.0%.
11. Verfahren nach den Ansprüchen 1 - 10 dadurch gekennzeichnet, dass der Wasserstoffgehalt < 20 ppm beträgt.11. The method according to claims 1-10, characterized in that the hydrogen content is <20 ppm.
12. Verfahren nach Anspruch 11 dadurch gekennzeichnet, dass der Wasserstoffgehalt < 5 ppm beträgt.12. The method according to claim 11, characterized in that the hydrogen content is <5 ppm.
13. Verfahren nach den Ansprüchen 1 - 12 dadurch gekennzeichnet, dass optional Cu bis ≤ 4 % enthalten ist.13. The method according to claims 1-12, characterized in that Cu is optionally contained up to ≤ 4%.
14. Verfahren nach den Ansprüchen 1 - 13 dadurch gekennzeichnet, dass optional Titan und Zirkon in Summe bis ≤ 0,7 % enthalten sind.14. The method according to claims 1-13, characterized in that titanium and zircon are optionally contained in total up to ≤ 0.7%.
15. Verfahren nach den Ansprüchen 1 - 12 dadurch gekennzeichnet, dass optional Niob und Vanadin in Summe bis ≤ 0,06 % enthalten sind. 15. The method according to claims 1-12, characterized in that optionally niobium and vanadium are contained in total up to ≤ 0.06%.
16. Verfahren nach den Ansprüchen 14 und 15 dadurch gekennzeichnet, dass optional Titan, Zirkon, Niob und Vanadin in Summe bis ≤ 0,8 % enthalten sind.16. The method according to claims 14 and 15, characterized in that optionally titanium, zirconium, niobium and vanadium are contained in total up to ≤ 0.8%.
17. Verfahren nach einem der Ansprüche 1 - 16 dadurch gekennzeichnet, dass die Geschwindigkeit des Schmelzenzulaufs gleich der Geschwindigkeit des umlaufenden Förderbandes ist.17. The method according to any one of claims 1-16, characterized in that the speed of the melt feed is equal to the speed of the rotating conveyor belt.
18. Verfahren nach einem der Ansprüche 1 - 17 dadurch gekennzeichnet, dass für alle Flächenelemente der mit Beginn der Erstarrung sich bildenden Strangschale eines sich über die Breite des Förderbandes erstreckenden Streifens etwa gleiche Abkühlbedingungen gegeben sind.18. The method according to any one of claims 1-17, characterized in that approximately the same cooling conditions are given for all surface elements of the strand shell forming at the start of solidification of a strip extending across the width of the conveyor belt.
19. Verfahren nach einem der Ansprüche 1 - 18 dadurch gekennzeichnet, dass die auf das Förderband aufgegebene Schmelze am Ende des Förderbandes weitestgehend durcherstarrt ist.19. The method according to any one of claims 1-18, characterized in that the melt applied to the conveyor belt is largely solidified at the end of the conveyor belt.
20. Verfahren nach Anspruch 1 und 19 dadurch gekennzeichnet, dass nach der Durcherstarrung und vor Beginn der Weiterbehandlung das Vorband eine Homogenisierungszone durchläuft.20. The method according to claim 1 and 19, characterized in that after solidification and before the start of further treatment, the preliminary strip passes through a homogenization zone.
21. Verfahren nach Anspruch 1 und 20 dadurch gekennzeichnet, dass die Weiterbehandlung ein Aufcoilen des Vorbandes ist.21. The method according to claim 1 and 20, characterized in that the further treatment is a coiling of the preliminary strip.
22. Verfahren nach Anspruch 1 und 20 dadurch gekennzeichnet, dass das Vorband in line einem Walzprozess unterworfen und danach aufgecoilt wird.22. The method according to claim 1 and 20, characterized in that the preliminary strip is subjected to a rolling process in line and then coiled.
23. Verfahren nach Anspruch 22 dadurch gekennzeichnet; dass der Umformgrad mindestens 50 %, vorzugsweise > 70 %, beträgt. 23. The method according to claim 22 characterized; that the degree of deformation is at least 50%, preferably> 70%.
EP04802997.9A 2003-12-23 2004-12-22 Method for the generation of hot strips of light gauge steel Active EP1699582B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10361952 2003-12-23
DE102004061284A DE102004061284A1 (en) 2003-12-23 2004-12-14 Production of a deformable hot strips made from light gauge steel used in the automobile industry comprises casting the melt in a horizontal strip casting unit close to the final measurements, and further processing
PCT/DE2004/002817 WO2005061152A1 (en) 2003-12-23 2004-12-22 Method for the generation of hot strips of light gauge steel

Publications (2)

Publication Number Publication Date
EP1699582A1 true EP1699582A1 (en) 2006-09-13
EP1699582B1 EP1699582B1 (en) 2013-12-11

Family

ID=34712343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802997.9A Active EP1699582B1 (en) 2003-12-23 2004-12-22 Method for the generation of hot strips of light gauge steel

Country Status (4)

Country Link
US (1) US7806165B2 (en)
EP (1) EP1699582B1 (en)
KR (1) KR101178775B1 (en)
WO (1) WO2005061152A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015197412A1 (en) * 2014-06-25 2015-12-30 Salzgitter Flachstahl Gmbh Steel product for protecting electrical components from mechanical damage

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024029B3 (en) * 2005-05-23 2007-01-04 Technische Universität Bergakademie Freiberg Austenitic lightweight steel and its use
US8465806B2 (en) * 2007-05-02 2013-06-18 Tata Steel Ijmuiden B.V. Method for hot dip galvanizing of AHSS or UHSS strip material, and such material
KR101588724B1 (en) * 2009-03-11 2016-01-26 잘쯔기터 플래시슈탈 게엠베하 Method for producing a hot rolled strip and hot rolled strip produced from triplex lightweight steel
RU2493266C2 (en) * 2009-03-11 2013-09-20 Зальцгиттер Флахшталь Гмбх Method of hot-rolled strip production and hot-rolled strip made from ferritic steel
WO2010126268A2 (en) * 2009-04-28 2010-11-04 연세대학교 산학협력단 High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same
DE102009030324A1 (en) * 2009-06-24 2011-01-05 Voestalpine Stahl Gmbh Manganese steel and process for producing the same
EP2383353B1 (en) 2010-04-30 2019-11-06 ThyssenKrupp Steel Europe AG High tensile steel containing Mn, steel surface product made from such steel and method for producing same
DE102011117135A1 (en) 2010-11-26 2012-05-31 Salzgitter Flachstahl Gmbh Energy-saving container made of lightweight steel
WO2012171530A1 (en) * 2011-06-17 2012-12-20 National Oilwell Varco Denmark I/S An unbonded flexible pipe
CN102925790B (en) * 2012-10-31 2014-03-26 钢铁研究总院 Method for producing high-strength and elongation product automobile steel plate by continuous annealing technology
KR101749201B1 (en) * 2013-05-06 2017-06-20 잘쯔기터 플래시슈탈 게엠베하 Method for producing components from lightweight steel
EP3095889A1 (en) * 2015-05-22 2016-11-23 Outokumpu Oyj Method for manufacturing a component made of austenitic steel
GB2539010B (en) * 2015-06-03 2019-12-18 Vacuumschmelze Gmbh & Co Kg Method of fabricating an article for magnetic heat exchange
EP3117922B1 (en) 2015-07-16 2018-03-21 Outokumpu Oyj Method for manufacturing a component of austenitic twip or trip/twip steel
RU2615738C1 (en) * 2016-02-08 2017-04-10 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") HIGH-STRENGTH STEELS OF Fe-Mn-Al-C SYSTEM WITH TWIP AND TRIP EFFECTS
RU2643119C2 (en) * 2016-05-04 2018-01-30 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method of deformation-thermal processing of high-manganese steel
DE102016110661A1 (en) 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Process for producing a cold-rolled steel strip from a high-strength, manganese-containing steel
DE102016117494A1 (en) 2016-09-16 2018-03-22 Salzgitter Flachstahl Gmbh Process for producing a formed component from a medium manganese steel flat product and such a component
WO2018083035A1 (en) 2016-11-02 2018-05-11 Salzgitter Flachstahl Gmbh Medium-manganese steel product for low-temperature use and method for the production thereof
DE102018102974A1 (en) * 2018-02-09 2019-08-14 Salzgitter Flachstahl Gmbh A method of manufacturing a component by hot working a manganese steel precursor and a hot worked steel component

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795269A (en) * 1972-03-27 1974-03-05 Alcan Res & Dev Method of and apparatus for casting on moving surfaces
AT336827B (en) * 1974-03-11 1977-05-25 Metallgesellschaft Ag METALLIC CASTING BELT FOR BELT CASTING MACHINES
US4588021A (en) * 1983-11-07 1986-05-13 Hazelett Strip-Casting Corporation Matrix coatings on endless flexible metallic belts for continuous casting machines method of forming such coatings and the coated belts
JPH07109546A (en) 1993-10-08 1995-04-25 Sumitomo Metal Ind Ltd Steel for medium permeability steel used for reinforcing bar and its production
US6354364B1 (en) * 1994-03-30 2002-03-12 Nichols Aluminum-Golden, Inc. Apparatus for cooling and coating a mold in a continuous caster
DE19727759C2 (en) * 1997-07-01 2000-05-18 Max Planck Inst Eisenforschung Use of a lightweight steel
FR2796083B1 (en) * 1999-07-07 2001-08-31 Usinor PROCESS FOR MANUFACTURING IRON-CARBON-MANGANESE ALLOY STRIPS, AND STRIPS THUS PRODUCED
US6755236B1 (en) * 2000-08-07 2004-06-29 Alcan International Limited Belt-cooling and guiding means for continuous belt casting of metal strip
DE10259230B4 (en) * 2002-12-17 2005-04-14 Thyssenkrupp Stahl Ag Method for producing a steel product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005061152A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015197412A1 (en) * 2014-06-25 2015-12-30 Salzgitter Flachstahl Gmbh Steel product for protecting electrical components from mechanical damage

Also Published As

Publication number Publication date
US7806165B2 (en) 2010-10-05
KR101178775B1 (en) 2012-09-07
EP1699582B1 (en) 2013-12-11
KR20070007034A (en) 2007-01-12
WO2005061152A1 (en) 2005-07-07
US20070289717A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
DE102004061284A1 (en) Production of a deformable hot strips made from light gauge steel used in the automobile industry comprises casting the melt in a horizontal strip casting unit close to the final measurements, and further processing
EP1699582B1 (en) Method for the generation of hot strips of light gauge steel
EP4071255B1 (en) Flat steel product and method for producing flat steel products
DE60116477T2 (en) WARM, COLD-ROLLED AND MELT-GALVANIZED STEEL PLATE WITH EXCELLENT RECEPTION BEHAVIOR
EP2547800B1 (en) Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness
DE60224557T3 (en) A tensile high strength thin steel sheet having excellent shape fixing property and manufacturing method therefor
EP1309734B1 (en) Highly stable, steel and steel strips or steel sheets cold-formed, method for the production of steel strips and uses of said steel
EP2655673B1 (en) Method for producing hardened structural elements
EP3655560B1 (en) Flat steel product with a high degree of aging resistance, and method for producing same
DE69935125T3 (en) High strength cold rolled steel sheet and process for its production
EP3535431B1 (en) Steel product with an intermediate manganese content for low temperature application and production method thereof
EP2840159B1 (en) Method for producing a steel component
EP2767601B1 (en) Cold rolled steel flat product for deep drawing applications and method for its production
EP2905348B1 (en) High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product
EP2684975A1 (en) Cold rolled steel flat product and method for its production
DE60207591T2 (en) METHOD FOR PRODUCING WELDED TUBES AND PIPE MADE THEREFOR
EP3332046B1 (en) High-tensile manganese steel containing aluminium, method for producing a sheet-steel product from said steel and sheet-steel product produced according to this method
EP3504349A1 (en) Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type
DE19634524A1 (en) Lightweight steel and its use for vehicle parts and facade cladding
WO2008052921A1 (en) Method for manufacturing flat steel products from a multiphase steel alloyed with silicon
DE102014005662A1 (en) Material concept for a malleable lightweight steel
WO2022058531A1 (en) Sheet metal component and method for producing same
EP3658307B1 (en) Sheet metal component, produced by hot working a flat steel product, and method for the production thereof
WO2008052920A1 (en) Method for manufacturing flat steel products from a multiphase steel alloyed with aluminum
EP3405593B1 (en) Flat steel product and method for manufacturing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE

17Q First examination report despatched

Effective date: 20071029

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FLAXA, VOLKER

Inventor name: SPITZER, KARL-HEINZ

Inventor name: BROKMEIER, KLAUS

Inventor name: KROOS, JOACHIM

Inventor name: FROMMEYER, GEORG

Inventor name: BRUEX, UDO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014463

Country of ref document: DE

Effective date: 20140206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014463

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014463

Country of ref document: DE

Effective date: 20140912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 20