EP3332046B1 - High-tensile manganese steel containing aluminium, method for producing a sheet-steel product from said steel and sheet-steel product produced according to this method - Google Patents

High-tensile manganese steel containing aluminium, method for producing a sheet-steel product from said steel and sheet-steel product produced according to this method Download PDF

Info

Publication number
EP3332046B1
EP3332046B1 EP16747515.1A EP16747515A EP3332046B1 EP 3332046 B1 EP3332046 B1 EP 3332046B1 EP 16747515 A EP16747515 A EP 16747515A EP 3332046 B1 EP3332046 B1 EP 3332046B1
Authority
EP
European Patent Office
Prior art keywords
steel
strip
hot
slab
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16747515.1A
Other languages
German (de)
French (fr)
Other versions
EP3332046A1 (en
Inventor
Peter PALZER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter Flachstahl GmbH
Original Assignee
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Flachstahl GmbH filed Critical Salzgitter Flachstahl GmbH
Publication of EP3332046A1 publication Critical patent/EP3332046A1/en
Application granted granted Critical
Publication of EP3332046B1 publication Critical patent/EP3332046B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a high-strength manganese steel containing aluminum, a method for producing a flat steel product from this steel and a flat steel product produced by this method.
  • the steel consists of the elements (content in percent by weight and based on the steel melt): C: up to 0.5; Mn: 4 to 12.0; Si: up to 1.0; Al: up to 3.0; Cr: 0.1 to 4.0; Cu: up to 4.0; Ni: up to 2.0; N: up to 0.05; P: up to 0.05; S: up to 0.01; as well as remainder iron and unavoidable impurities.
  • One or more elements from the group “V, Nb, Ti” are optionally provided, the sum of the contents of these elements being at most equal to 0.5.
  • This steel is said to be characterized by the fact that it is more cost-effective to manufacture than steels with a high manganese content and at the same time has high elongation at break and thus a significantly improved formability.
  • a method for producing a flat steel product from the above-described high-strength manganese-containing steel comprises the following work steps: - Melting the above-described steel melt, - Generating a starting product for subsequent hot rolling by converting the steel melt into a strand from which at least one slab or thin slab is used as the starting product for the hot rolling is divided or cast into a cast strip that is fed to the hot rolling as a starting product, - heat treatment of the starting product in order to bring the starting product to a hot rolling start temperature of 1150 to 1000 ° C, - hot rolling of the starting product to a hot strip with a Thickness of at most 2.5 mm, the hot rolling being terminated at a final hot rolling temperature of 1050 to 800 ° C, - Coiling of the hot strip into a coil at a coiling temperature of ⁇ 700 ° C.
  • the disclosure document WO 2014/132968 A1 discloses a high strength hot rolled steel containing, in weight percent: C: 0.01-0.2; Si: 0-2.5; Mn: 0-4.0; Al: 0-2.0; N: 0-0.01; Ni: 0-2.0; Mo: 0-1.0; V: 0-0.3; Cr: 0-2.0; Mg: 0-0.01, Ca: 0 - 0.01, Cu: 0 - 2.0 and the remainder iron and unavoidable impurities. Simultaneous addition of Mo and Cr is not intended.
  • the patent application EP 2 772 556 A1 discloses a high strength steel strip with improved formability.
  • the steel composition contains in% by weight: C: 0.03-0.35; Si: 0.5-3.0; Mn: 3.5-10; P: 0.1 or less; S: 0.02 or less with the balance iron and unavoidable impurities.
  • the present invention is based on the object of creating a high-strength aluminum-containing manganese steel with good forming properties and increased resistance to delayed crack formation and hydrogen embrittlement, a method for producing a flat steel product from this steel and a flat steel product produced according to this method, based on offer the steel a good combination of strength and forming properties.
  • a high-strength aluminum-containing manganese steel having a multiphase structure consisting of ferrite and / or martensite and / or bainite as well as retained austenite and a TRIP and / or TWIP effect with a residual austenite proportion of 5% to 65%, with a tensile strength Rm> 800 up to 1700 MPa, with an elongation at break A50 of 6 to 45%, preferably> 8 to 45%, and the following chemical composition (in% by weight): C: 0.01 to ⁇ 0.3;; Mn: 4 to ⁇ 10;Al:> 1 to 4; Si: 0.01 to 1; Cr: 0.1 to 4; Mo; 0.02 to 1; P: ⁇ 0.1; S: ⁇ 0.1; N: ⁇ 0.3; with the addition of one or more of the following elements (in% by weight): W: 0.03 to 3; Co: 0.05 to 3; Zr: 0.03 to 0.5; The remainder iron including unavoidable steel-ac
  • Manganese content (medium manganese steel) based on the alloy elements C, Mn, Cr, Al, Si and Mo relatively inexpensive. Due to the increased Al content, the steel has a lower specific density compared to other low-alloy manganese steels with medium manganese contents.
  • the manganese steel according to the invention is also distinguished by an increased resistance to delayed crack formation (delayed fracture) and to hydrogen embrittlement. This is achieved by precipitating molybdenum carbide, which acts as a hydrogen trap.
  • An A50 test specimen was used for the elongation at break tests in accordance with DIN 50 125.
  • the steel according to the invention has a multiphase structure consisting of ferrite and / or martensite and / or bainite and retained austenite and a TRIP and / or TWIP effect.
  • the residual austenite is partially or completely converted into martensite by the TRIP effect. Due to the TRIP effect, the elongation at break, especially in terms of uniform elongation, and tensile strength increase significantly.
  • the steel according to the invention is particularly suitable for producing high-strength heavy plate, hot and cold strip, which can be provided with a metallic or non-metallic coating.
  • An application in vehicle construction, shipbuilding, plant construction, infrastructure construction, in aerospace and home appliance technology is conceivable.
  • Alloy elements are usually added to the steel in order to specifically influence certain properties.
  • An alloying element can influence different properties in different steels. The effect and interaction generally depends heavily on the amount, the presence of other alloying elements and the state of solution in the material. The relationships are varied and complex. In the following, the effect of the alloying elements in the alloy according to the invention will be discussed in more detail become.
  • the positive effects of the alloying elements used according to the invention are described below: Carbon C: Is required for the formation of carbides, stabilizes the austenite and increases the strength. Higher contents of C impair the welding properties and lead to a deterioration in the elongation and toughness properties, which is why a maximum content of less than 0.3% by weight is specified. In order to achieve sufficient strength of the material, a minimum addition of 0.01% by weight is required.
  • Manganese Mn Stabilizes austenite, increases strength and toughness and enables deformation-induced martensite and / or twin formation in the alloy according to the invention. Contents less than 4% by weight are not sufficient to stabilize the austenite and thus worsen the elongation properties, while contents of 10% by weight and more stabilize the austenite too much and thereby reduce the strength properties, in particular the yield point. For the manganese steel according to the invention with medium manganese contents, a range from 4 to ⁇ 10% by weight is preferred.
  • Aluminum Al An Al content greater than 1% by weight improves the strength and elongation properties, reduces the specific density and influences the transformation behavior of the alloy according to the invention. Al contents of more than 4% by weight deteriorate the elongation properties. Higher Al contents also significantly worsen the casting behavior in continuous casting. This results in a higher effort when potting. Below 4% by weight, Al retards the precipitation of carbides. Therefore a maximum content of 4% by weight and a minimum content of> 1% by weight are specified.
  • Silicon Si hinders the carbon diffusion, reduces the specific density and increases the strength and the elongation and toughness properties. Furthermore, an improvement in cold rollability could be observed through the addition of Si. Contents of more than 1% by weight lead to embrittlement of the material and have a negative effect on hot and cold rollability and coatability, for example through galvanizing. A maximum content of 1% by weight and a minimum content of 0.01% by weight are therefore specified. A maximum content of less than 1% by weight is preferably specified.
  • Chromium Cr Improves strength and reduces the rate of corrosion, delays the formation of ferrite and pearlite and forms carbides.
  • the maximum content is set at less than 4% by weight, since higher contents result in a deterioration in the elongation properties.
  • a minimum Cr content is set at 0.1% by weight.
  • Molybdenum Mo Acts as a carbide former, increases strength and increases the resistance to delayed crack formation and hydrogen embrittlement. Mo contents of more than 1% by weight deteriorate the elongation properties, which is why a maximum content of 1% by weight and a minimum content of 0.02% by weight are specified.
  • Phosphorus P is a trace element from iron ore and is dissolved in the iron lattice as a substitution atom. Phosphorus increases hardness through solid solution strengthening and improves hardenability. As a rule, however, attempts are made to lower the phosphorus content as much as possible, since, among other things, due to its low diffusion rate, it is highly susceptible to segregation and to a great extent reduces the toughness. The accumulation of phosphorus at the grain boundaries can cause cracks to appear along the grain boundaries during hot rolling. In addition, phosphorus increases the transition temperature from tough to brittle behavior by up to 300 ° C. For the reasons mentioned above, the phosphorus content is limited to less than 0.1% by weight.
  • Sulfur S Like phosphorus, it is bound as a trace element in iron ore. It is generally undesirable in steel, since it tends to segregate strongly and has a strong embrittling effect, as a result of which the elongation and toughness properties are impaired. Attempts are therefore made to achieve the lowest possible amounts of sulfur in the melt (e.g. by means of a deep vacuum treatment). For the reasons mentioned above, the sulfur content is limited to less than 0.1% by weight.
  • N is also an accompanying element in steel production. In the dissolved state, it improves the strength and toughness properties of steels with a higher manganese content with greater than or equal to 4% wt. Lower Mn-alloyed steels ⁇ 4% by weight with free nitrogen tend to have a strong aging effect. The nitrogen diffuses at dislocations even at low temperatures and blocks them. It thus causes an increase in strength combined with a rapid loss of toughness.
  • a setting of the nitrogen in the form of nitrides is possible, for example, by adding aluminum, vanadium, niobium or titanium. For the reasons mentioned above, the nitrogen content is limited to less than 0.3% by weight.
  • Micro-alloy elements are generally only added in very small amounts ( ⁇ 0.1% by weight per element). In contrast to the alloying elements, they mainly work through the formation of precipitates, but can also influence the properties in a dissolved state. Despite the small additions, micro-alloying elements have a strong influence on the manufacturing conditions as well as the processing and final properties.
  • Typical micro-alloy elements are vanadium, niobium and titanium. These elements can be dissolved in the iron lattice and form carbides, nitrides and carbonitrides with carbon and nitrogen.
  • Vanadium V and niobium Nb These have a grain-refining effect through the formation of carbides, which at the same time improves strength, toughness and elongation properties. Contents of more than 1% by weight bring no further advantages. For vanadium and niobium, a minimum content of greater than or equal to 0.02% by weight and a maximum content of less than or equal to 1% by weight are optionally provided.
  • Titanium Ti Has a grain-refining effect as a carbide former, which at the same time improves strength, toughness and elongation properties and reduces intergranular corrosion. Contents of Ti of more than 1 wt .-% worsen the elongation properties, which is why a maximum content of 1 wt .-% is optionally specified. Minimum contents of 0.02% by weight can preferably be provided.
  • Tin Sn Tin increases the strength, but, like copper, builds up under the scale and at the grain boundaries at higher temperatures. By penetrating the grain boundaries, it leads to the formation of low-melting phases and the associated cracks in the structure and to solder brittleness, which is why an optional Maximum content of less than or equal to 0.5% by weight and a minimum content of 0.005% by weight can be provided.
  • Copper Cu Reduces the rate of corrosion and increases strength. Contents above 3 wt.% Worsen the producibility by the formation of low-melting phases during casting and hot rolling, which is why a maximum content of 3 wt.% And a minimum content of 0.005 wt.% Are optionally specified. A minimum content of 0.5% by weight is preferably provided.
  • Tungsten W acts as a carbide former and increases strength and heat resistance. W contents of more than 3% by weight deteriorate the elongation properties, which is why a maximum content of 3% by weight and a minimum content of 0.03% by weight are optionally specified. A minimum content of 0.05% by weight is preferably provided.
  • Cobalt Co Increases the strength of the steel, stabilizes the austenite and improves the high temperature strength. Contents of over 3% by weight worsen the elongation properties, which is why a maximum content of less than or equal to 3% by weight and a minimum content of 0.05% by weight are optionally specified. A minimum content of 0.08% by weight is preferably provided.
  • Zirconium Zr Acts as a carbide former and improves strength. Zr contents of more than 0.5% by weight deteriorate the elongation properties, which is why a maximum content of 0.5% by weight and a minimum content of 0.03% by weight are optionally specified. A minimum content of 0.05% by weight is preferably provided.
  • Calcium is used to modify non-metallic oxidic inclusions, which could otherwise lead to undesired failure of the alloy due to inclusions in the structure, which act as stress concentration points and weaken the metal bond. Furthermore, Ca improves the homogeneity of the alloy according to the invention. In order to develop a corresponding effect, an optional minimum content of 0.0005% by weight is necessary. Contents of above 0.1% by weight Ca bring no further advantage in the inclusion modification, impair the producibility and should be avoided due to the high vapor pressure of Ca in steel melts. Hence a Maximum content of 0.1% by weight provided.
  • the process results in a steel product in the form of a heavy plate, hot or cold strip. It is intended that the hot strip will be wound at a maximum temperature of 780 ° C.
  • the room temperature is given as the lower limit, as the winding temperature has only a minor influence on subsequent processing properties.
  • strips with a thickness of more than 3 mm are referred to as heavy plate, and these can still be wound up, for example, with a thickness of 5 mm.
  • Heavy plate with a greater thickness, for example 50 mm is flattened to sheet material after hot rolling, since it can no longer be wound. If required, the hot or cold strip can also be cut.
  • the final hot rolling temperature is usually between 950 ° C and A c 1 + 50 K.
  • the usual thickness ranges for pre-strip are 1 mm to 35 mm and for slabs and thin slabs 35 mm to 450 mm. It is preferably provided that the slab or thin slab is hot rolled into a hot strip or heavy plate with a thickness of 70 mm to 1.5 mm or the pre-strip cast close to its final dimensions is hot rolled into a hot strip with a thickness of 8 mm to 1 mm.
  • the cold strip according to the invention has a thickness of, for example, greater than 0.15 mm.
  • a pre-strip produced near net dimensions using the two-roll casting method with a thickness of less than or equal to 3 mm, preferably 1 mm to 3 mm, is already understood as hot strip.
  • the pre-strip produced in this way as hot strip does not have a 100% cast structure due to the forming of the two counter-rotating rolls. Hot rolling thus already takes place inline during the two-roller casting process, so that separate hot rolling can be omitted.
  • the hot rolling reheating temperatures in the range of 720 ° C to 1200 ° C are provided. If only a few roller passes need to be made, the reheating temperature can be selected at the lower end of the range.
  • the hot strip, as well as the heavy plate, can optionally be subjected to a heat treatment in the temperature range between 610 and 780 ° C. for 1 minute to 48 hours, with higher temperatures being associated with shorter treatment times and vice versa.
  • the annealing can take place both in a hood annealing (longer annealing times) and, for example, in a continuous annealing (shorter annealing times).
  • the heat treatment can also be omitted if the hot strip or heavy plate already has the finished properties.
  • the annealed hot strip is optionally cold-rolled with the aim of setting the thicknesses required for the end application of greater than or equal to 0.15 mm.
  • a further annealing process can then be carried out, possibly coupled with a coating process and finally your skin-pass process, with which the surface structure required for the end application is set.
  • the flat steel product is preferably hot-dip galvanized or electrolytically galvanized or coated with a metallic, inorganic or organic coating.
  • a flat steel product in the form of heavy plate, hot strip or cold strip produced by the process according to the invention has a tensile strength Rm> 800 to 1700 MPa and an elongation at break A50 of 6 to 45%, preferably> 8 to 45%. High strengths tend to be associated with lower elongations at break and vice versa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Die Erfindung betrifft einen hochfesten aluminiumhaltigen Manganstahl, ein Verfahren zur Herstellung eines Stahlflachprodukts aus diesem Stahl und ein nach diesem Verfahren hergestelltes Stahlflachprodukt.The invention relates to a high-strength manganese steel containing aluminum, a method for producing a flat steel product from this steel and a flat steel product produced by this method.

Aus der europäischen Patentanmeldung EP 2 383 353 A2 ist ein höherfester manganhaltiger Stahl, ein Stahlflachprodukt aus diesem Stahl und ein Verfahren zur Herstellung dieses Stahlflachprodukts bekannt. Der Stahl besteht aus den Elementen (Gehalte in Gewichtsprozent und bezogen auf die Stahlschmelze): C: bis 0,5; Mn: 4 bis 12,0; Si: bis zu 1,0; Al: bis zu 3,0; Cr: 0,1 bis 4,0; Cu: bis zu 4,0; Ni: bis zu 2,0; N: bis zu 0,05; P: bis zu 0,05; S: bis zu 0,01; sowie Rest Eisen und unvermeidbarer Verunreinigungen. Optional sind ein oder mehrere Elemente aus der Gruppe "V, Nb, Ti" vorgesehen, wobei die Summe der Gehalte dieser Elemente höchstens gleich 0,5 ist. Dieser Stahl soll sich dadurch auszeichnen, dass dieser kostengünstiger herzustellen ist als hochmanganhaltige Stähle und gleichzeitig hohe Bruchdehnungswerte und damit einhergehend eine deutlich verbesserte Umformbarkeit besitzt. Ein Verfahren zur Herstellung eines Stahlflachprodukts aus dem vorbeschriebenen höherfesten manganhaltigen Stahl, umfasst die folgende Arbeitsschritte: - Erschmelzen der vorbeschriebenen Stahlschmelze, - Erzeugen eines Ausgangsprodukts für ein anschließendes Warmwalzen, indem die Stahlschmelze zu einem Strang, von dem mindestens eine Bramme oder Dünnbramme als Ausgangsprodukt für das Warmwalzen abgeteilt wird, oder zu einem gegossenen Band vergossen wird, das als Ausgangsprodukt dem Warmwalzen zugeführt wird, - Wärmebehandeln des Ausgangsprodukts, um das Ausgangsprodukt auf eine Warmwalzstarttemperatur von 1150 bis 1000 °C zu bringen, - Warmwalzen des Ausgangsprodukts zu einem Warmband mit einer Dicke von höchstens 2,5 mm, wobei das Warmwalzen bei einer 1050 bis 800 °C betragenden Warmwalzendtemperatur beendet wird, - Haspeln des Warmbands zu einem Coil bei einer Haspeltemperatur von ≤ 700 °C.From the European patent application EP 2 383 353 A2 a higher-strength manganese-containing steel, a steel flat product made from this steel and a method for producing this steel flat product are known. The steel consists of the elements (content in percent by weight and based on the steel melt): C: up to 0.5; Mn: 4 to 12.0; Si: up to 1.0; Al: up to 3.0; Cr: 0.1 to 4.0; Cu: up to 4.0; Ni: up to 2.0; N: up to 0.05; P: up to 0.05; S: up to 0.01; as well as remainder iron and unavoidable impurities. One or more elements from the group “V, Nb, Ti” are optionally provided, the sum of the contents of these elements being at most equal to 0.5. This steel is said to be characterized by the fact that it is more cost-effective to manufacture than steels with a high manganese content and at the same time has high elongation at break and thus a significantly improved formability. A method for producing a flat steel product from the above-described high-strength manganese-containing steel comprises the following work steps: - Melting the above-described steel melt, - Generating a starting product for subsequent hot rolling by converting the steel melt into a strand from which at least one slab or thin slab is used as the starting product for the hot rolling is divided or cast into a cast strip that is fed to the hot rolling as a starting product, - heat treatment of the starting product in order to bring the starting product to a hot rolling start temperature of 1150 to 1000 ° C, - hot rolling of the starting product to a hot strip with a Thickness of at most 2.5 mm, the hot rolling being terminated at a final hot rolling temperature of 1050 to 800 ° C, - Coiling of the hot strip into a coil at a coiling temperature of ≤ 700 ° C.

Die Offenlegungsschrift WO 2014/132968 A1 offenbart einen hochfesten, warmgewalzten Stahl, welcher in Gew.-% enthält: C: 0,01 - 0,2; Si: 0 - 2,5; Mn: 0 - 4,0; Al: 0-2,0; N: 0 - 0,01; Ni: 0-2,0; Mo: 0-1,0; V: 0-0,3; Cr: 0-2,0; Mg: 0-0,01, Ca: 0 - 0,01, Cu: 0 - 2,0 sowie Rest Eisen und unvermeidbare Verunreinigungen. Eine gleichzeitige Zulegierung von Mo und Cr ist nicht vorgesehen. Die Patentanmeldung EP 2 772 556 A1 offenbart ein hochfestes Stahlband mit verbesserter Umformbarkeit. Die Stahlzusammensetzung enthält in Gew.-%: C: 0,03 - 0,35; Si: 0,5 - 3,0; Mn: 3,5 - 10; P: 0,1 oder weniger; S: 0,02 oder weniger mit Rest Eisen und unvermeidbaren Verunreinigungen.The disclosure document WO 2014/132968 A1 discloses a high strength hot rolled steel containing, in weight percent: C: 0.01-0.2; Si: 0-2.5; Mn: 0-4.0; Al: 0-2.0; N: 0-0.01; Ni: 0-2.0; Mo: 0-1.0; V: 0-0.3; Cr: 0-2.0; Mg: 0-0.01, Ca: 0 - 0.01, Cu: 0 - 2.0 and the remainder iron and unavoidable impurities. Simultaneous addition of Mo and Cr is not intended. The patent application EP 2 772 556 A1 discloses a high strength steel strip with improved formability. The steel composition contains in% by weight: C: 0.03-0.35; Si: 0.5-3.0; Mn: 3.5-10; P: 0.1 or less; S: 0.02 or less with the balance iron and unavoidable impurities.

Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zu Grunde, einen hochfesten aluminiumhaltigen Manganstahl mit guten Umformeigenschaften und einem erhöhten Widerstand gegenüber verzögerter Rissbildung und Wasserstoffversprödung, ein Verfahren zur Herstellung eines Stahlflachprodukts aus diesem Stahl und ein nach diesem Verfahren hergestelltes Stahlflachprodukt zu schaffen, die bezogen auf den Stahl eine gute Kombination von Festigkeits- und Umformeigenschaften bieten.Proceeding from this, the present invention is based on the object of creating a high-strength aluminum-containing manganese steel with good forming properties and increased resistance to delayed crack formation and hydrogen embrittlement, a method for producing a flat steel product from this steel and a flat steel product produced according to this method, based on offer the steel a good combination of strength and forming properties.

Diese Aufgabe wird durch einen hochfesten aluminiumhaltigen Manganstahl mit den Merkmalen des Anspruchs 1, ein Verfahren zur Herstellung eines Stahlflachprodukts, unter Verwendung des vorgenannten Stahls, mit den Merkmalen des Anspruchs 11 und ein nach diesem Verfahren hergestelltes Stahlflachprodukt gemäß Anspruch 13 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.This object is achieved by a high-strength aluminum-containing manganese steel with the features of claim 1, a method for producing a flat steel product using the aforementioned steel, with the features of claim 11 and a flat steel product according to claim 13 produced by this method. Advantageous embodiments of the invention are specified in the subclaims.

Erfindungsgemäß bietet ein hochfester aluminiumhaltiger Manganstahl aufweisend ein mehrphasiges Gefüge, bestehend aus Ferrit und/oder Martensit und/oder Bainit sowie Restaustenit und einen TRIP- und/oder TWIP-Effekt mit einem Restaustenitanteil von 5% bis 65%, mit einer Zugfestigkeit Rm > 800 bis 1700 MPa, mit einer Bruchdehnung A50 von 6 bis 45%, vorzugsweise > 8 bis 45%, und folgender chemischer Zusammensetzung (in Gewichts-%): C: 0,01 bis < 0,3; ; Mn: 4 bis < 10; Al: > 1 bis 4; Si: 0,01 bis 1; Cr: 0,1 bis 4; Mo; 0,02 bis 1; P: < 0,1; S: < 0,1; N: < 0,3; mit Zulegierung von einem oder mehreren der folgenden Elemente (in Gewichts-%): W: 0,03 bis 3; Co: 0,05 bis 3; Zr: 0,03 bis 0,5; Rest Eisen einschließlich unvermeidbarer stahlbegleitender Elemente, sowie mit optionaler Zulegierung von einem oder mehreren der folgenden Elemente (in Gewichts-%): V: 0,01 bis 1; Nb: 0,01 bis 1; Ti: 0,01 bis 1; Sn: 0 bis 0,5; Cu: 0,005 bis 3 und Ca: 0,0005 bis 0,1 eine gute Kombination von Festigkeits-, Dehnungs- und Umformeigenschaften. Außerdem ist die Herstellung dieses erfindungsgemäßen Manganstahls mit mittleremAccording to the invention, a high-strength aluminum-containing manganese steel having a multiphase structure consisting of ferrite and / or martensite and / or bainite as well as retained austenite and a TRIP and / or TWIP effect with a residual austenite proportion of 5% to 65%, with a tensile strength Rm> 800 up to 1700 MPa, with an elongation at break A50 of 6 to 45%, preferably> 8 to 45%, and the following chemical composition (in% by weight): C: 0.01 to <0.3;; Mn: 4 to <10;Al:> 1 to 4; Si: 0.01 to 1; Cr: 0.1 to 4; Mo; 0.02 to 1; P: <0.1; S: <0.1; N: <0.3; with the addition of one or more of the following elements (in% by weight): W: 0.03 to 3; Co: 0.05 to 3; Zr: 0.03 to 0.5; The remainder iron including unavoidable steel-accompanying elements, and with the optional addition of one or more of the following elements (in% by weight): V: 0.01 to 1; Nb: 0.01 to 1; Ti: 0.01 to 1; Sn: 0 to 0.5; Cu: 0.005 to 3 and Ca: 0.0005 to 0.1 a good combination of strength, elongation and deformation properties. In addition, the production of this manganese steel according to the invention is medium

Mangangehalt (medium manganese steel) auf der Basis der Legierungselemente C, Mn, Cr, Al, Si und Mo relativ kostengünstig. Aufgrund des erhöhten Al-Gehalts weist der Stahl eine geringere spezifische Dichte im Vergleich zu anderen niedrig Allegierten Manganstählen mit mittleren Mangangehalten auf. Der erfindungsgemäße Manganstahl zeichnet sich außerdem durch einen erhöhten Widerstand gegenüber verzögerter Rissbildung (delayed fracture) und gegenüber Wasserstoffversprödung (hydrogen embrittlement) aus. Dies wird durch eine Ausscheidung von Molybdänkarbid erreicht, welches als Wasserstofffalle fungiert. Für die Bruchdehnungsuntersuchungen wurde gemäß DIN 50 125 ein Probekörper A50 verwendet.Manganese content (medium manganese steel) based on the alloy elements C, Mn, Cr, Al, Si and Mo relatively inexpensive. Due to the increased Al content, the steel has a lower specific density compared to other low-alloy manganese steels with medium manganese contents. The manganese steel according to the invention is also distinguished by an increased resistance to delayed crack formation (delayed fracture) and to hydrogen embrittlement. This is achieved by precipitating molybdenum carbide, which acts as a hydrogen trap. An A50 test specimen was used for the elongation at break tests in accordance with DIN 50 125.

Der erfindungsgemäße Stahl weist ein mehrphasiges Gefüge, bestehend aus Ferrit und/oder Martensit und/oder Bainit sowie Restaustenit auf und einen TRIP- und/oder TWIP-Effekt auf. Der Restaustenit wird bei Aufbringen hoher mechanischer Spannungen durch den TRIP-Effekt teilweise oder vollständig in Martensit umgewandelt. Durch den TRIP-Effekt steigt die Bruchdehnung, insbesondere an Gleichmaßdehnung, und Zugfestigkeit deutlich an.The steel according to the invention has a multiphase structure consisting of ferrite and / or martensite and / or bainite and retained austenite and a TRIP and / or TWIP effect. When high mechanical stresses are applied, the residual austenite is partially or completely converted into martensite by the TRIP effect. Due to the TRIP effect, the elongation at break, especially in terms of uniform elongation, and tensile strength increase significantly.

Die Verwendung des Begriffs "bis" in den Definition der Gehaltsbereiche, wie beispielsweise 0,01 bis 1 Gew.-%, bedeutet, dass die Eckwerte - im Beispiel 0,01 und 1 - mit eingeschlossen sind.The use of the term “to” in the definition of the content ranges, such as 0.01 to 1% by weight, means that the benchmarks - in the example 0.01 and 1 - are included.

Der erfindungsgemäße Stahl eignet sich insbesondere zur Erzeugung von höherfestem Grobblech, Warm- und Kaltband, welches mit einem metallischen oder nichtmetallischen Überzug versehen werden kann. Eine Anwendung unter anderem im Fahrzeugbau, Schiffsbau, Anlagenbau, Infrastrukturbau, in der Luft- und Raumfahrt und Hausgerätetechnik ist denkbar.The steel according to the invention is particularly suitable for producing high-strength heavy plate, hot and cold strip, which can be provided with a metallic or non-metallic coating. An application in vehicle construction, shipbuilding, plant construction, infrastructure construction, in aerospace and home appliance technology is conceivable.

Legierungselemente werden dem Stahl in der Regel zugegeben, um gezielt bestimmte Eigenschaften zu beeinflussen. Dabei kann ein Legierungselement in verschiedenen Stählen unterschiedliche Eigenschaften beeinflussen. Die Wirkung und Wechselwirkung hängt im Allgemeinen stark von der Menge, der Anwesenheit weiterer Legierungselemente und dem Lösungszustand im Werkstoff ab. Die Zusammenhänge sind vielseitig und komplex. Im Folgenden soll auf die Wirkung der Legierungselemente in der erfindungsgemäßen Legierung näher eingegangen werden. Nachfolgend werden die positiven Effekte der erfindungsgemäß verwendeten Legierungselemente beschrieben:
Kohlenstoff C: Wird benötigt zur Bildung von Karbiden, stabilisiert den Austenit und erhöht die Festigkeit. Höhere Gehalte an C verschlechtern die Schweißeigenschaften und führen zur Verschlechterung der Dehnungs- und Zähigkeitseigenschaften, weshalb ein maximaler Gehalt von weniger als 0,3 Gew.-% festgelegt wird. Um eine ausreichende Festigkeit des Werkstoffs zu erreichen, ist eine Mindestzugabe von 0,01 Gew.-% erforderlich.
Alloy elements are usually added to the steel in order to specifically influence certain properties. An alloying element can influence different properties in different steels. The effect and interaction generally depends heavily on the amount, the presence of other alloying elements and the state of solution in the material. The relationships are varied and complex. In the following, the effect of the alloying elements in the alloy according to the invention will be discussed in more detail become. The positive effects of the alloying elements used according to the invention are described below:
Carbon C: Is required for the formation of carbides, stabilizes the austenite and increases the strength. Higher contents of C impair the welding properties and lead to a deterioration in the elongation and toughness properties, which is why a maximum content of less than 0.3% by weight is specified. In order to achieve sufficient strength of the material, a minimum addition of 0.01% by weight is required.

Mangan Mn: Stabilisiert den Austenit, erhöht die Festigkeit und die Zähigkeit und ermöglicht eine verformungsinduzierte Martensit- und/oder Zwillingsbildung in der erfindungsgemäßen Legierung. Gehalte kleiner 4 Gew.-% sind nicht ausreichend zur Stabilisierung des Austenits und verschlechtern somit die Dehnungseigenschaften, während bei Gehalten von 10 Gew.-% und mehr der Austenit zu stark stabilisiert wird und dadurch die Festigkeitseigenschaften, insbesondere die Streckgrenze, verringert werden. Für den erfindungsgemäßen Manganstahl mit mittleren Mangangehalten wird ein Bereich von 4 bis < 10 Gew.-% bevorzugt.Manganese Mn: Stabilizes austenite, increases strength and toughness and enables deformation-induced martensite and / or twin formation in the alloy according to the invention. Contents less than 4% by weight are not sufficient to stabilize the austenite and thus worsen the elongation properties, while contents of 10% by weight and more stabilize the austenite too much and thereby reduce the strength properties, in particular the yield point. For the manganese steel according to the invention with medium manganese contents, a range from 4 to <10% by weight is preferred.

Aluminium Al: Ein Al-Gehalt von größer 1 Gew.-% verbessert die Festigkeits- und Dehnungseigenschaften, senkt die spezifische Dichte und beeinflusst das Umwandlungsverhalten der erfindungsgemäßen Legierung. Gehalte an Al von mehr als 4 Gew.-% verschlechtern die Dehnungseigenschaften. Auch verschlechtern höhere Al-Gehalte das Gießverhalten im Strangguss deutlich. Hierdurch entsteht ein höherer Aufwand beim Vergießen. Unter 4 Gew.-% verzögert Al die Ausscheidung von Karbiden. Daher wird ein maximaler Gehalt von 4 Gew.-% und ein minimaler Gehalt von > 1 Gew.-% festgelegt.Aluminum Al: An Al content greater than 1% by weight improves the strength and elongation properties, reduces the specific density and influences the transformation behavior of the alloy according to the invention. Al contents of more than 4% by weight deteriorate the elongation properties. Higher Al contents also significantly worsen the casting behavior in continuous casting. This results in a higher effort when potting. Below 4% by weight, Al retards the precipitation of carbides. Therefore a maximum content of 4% by weight and a minimum content of> 1% by weight are specified.

Silizium Si: Behindert die Kohlenstoffdiffusion, verringert die spezifische Dichte und erhöht die Festigkeit und die Dehnungs- sowie Zähigkeitseigenschaften. Des Weiteren konnte eine Verbesserung der Kaltwalzbarkeit durch Zulegieren von Si beobachtet werden. Gehalte von mehr als 1 Gew.-% führen zu einer Versprödung des Werkstoffs und beeinflussen die Warm- und Kaltwalzbarkeit sowie die Beschichtbarkeit beispielsweise durch Verzinken negativ. Daher wird ein maximaler Gehalt von 1 Gew.-% und ein minimaler Gehalt von 0,01 Gew.-% festgelegt. Vorzugsweise wird ein maximaler Gehalt von kleiner als 1 Gew.-% festgelegt.Silicon Si: hinders the carbon diffusion, reduces the specific density and increases the strength and the elongation and toughness properties. Furthermore, an improvement in cold rollability could be observed through the addition of Si. Contents of more than 1% by weight lead to embrittlement of the material and have a negative effect on hot and cold rollability and coatability, for example through galvanizing. A maximum content of 1% by weight and a minimum content of 0.01% by weight are therefore specified. A maximum content of less than 1% by weight is preferably specified.

Chrom Cr: Verbessert die Festigkeit und verringert die Korrosionsrate, verzögert die Ferrit- und Perlitbildung und bildet Karbide. Der maximale Gehalt wird mit kleiner 4 Gew.-% festgelegt, da höhere Gehalte eine Verschlechterung der Dehnungseigenschaften zur Folge haben. Ein minimaler Cr-Gehalt wird mit 0,1 Gew.-% festgelegt.Chromium Cr: Improves strength and reduces the rate of corrosion, delays the formation of ferrite and pearlite and forms carbides. The maximum content is set at less than 4% by weight, since higher contents result in a deterioration in the elongation properties. A minimum Cr content is set at 0.1% by weight.

Molybdän Mo: Wirkt als Karbidbildner, erhöht die Festigkeit und erhöht den Widerstand gegenüber verzögerter Rissbildung und Wasserstoffversprödung. Gehalte an Mo von über 1 Gew.-% verschlechtern die Dehnungseigenschaften, weshalb ein Maximalgehalt von 1 Gew.-% und ein Minimalgehalt von 0,02 Gew.-% festgelegt wird.Molybdenum Mo: Acts as a carbide former, increases strength and increases the resistance to delayed crack formation and hydrogen embrittlement. Mo contents of more than 1% by weight deteriorate the elongation properties, which is why a maximum content of 1% by weight and a minimum content of 0.02% by weight are specified.

Phosphor P: Ist ein Spurenelement aus dem Eisenerz und wird im Eisengitter als Substitutionsatom gelöst. Phosphor steigert durch Mischkristallverfestigung die Härte und verbessert die Härtbarkeit. Es wird allerdings in der Regel versucht, den Phosphorgehalt soweit wie möglich abzusenken, da er unter anderem durch seine geringe Diffusionsgeschwindigkeit stark seigerungsanfällig ist und im hohen Maße die Zähigkeit vermindert. Durch die Anlagerung von Phosphor an den Korngrenzen können Risse entlang der Korngrenzen beim Warmwalzen auftreten. Zudem setzt Phosphor die Übergangstemperatur von zähem zu sprödem Verhalten um bis zu 300 °C herauf. Aus vorgenannten Gründen ist der Phosphorgehalt auf kleiner 0,1 Gew.-% begrenzt.Phosphorus P: is a trace element from iron ore and is dissolved in the iron lattice as a substitution atom. Phosphorus increases hardness through solid solution strengthening and improves hardenability. As a rule, however, attempts are made to lower the phosphorus content as much as possible, since, among other things, due to its low diffusion rate, it is highly susceptible to segregation and to a great extent reduces the toughness. The accumulation of phosphorus at the grain boundaries can cause cracks to appear along the grain boundaries during hot rolling. In addition, phosphorus increases the transition temperature from tough to brittle behavior by up to 300 ° C. For the reasons mentioned above, the phosphorus content is limited to less than 0.1% by weight.

Schwefel S: Ist wie Phosphor als Spurenelement im Eisenerz gebunden. Er ist im Stahl im Allgemeinen unerwünscht, da er zu starker Seigerung neigt und stark versprödend wirkt, wodurch die Dehnungs- und Zähigkeitseigenschaften verschlechtert werden. Es wird daher versucht, möglichst geringe Mengen an Schwefel in der Schmelze zu erreichen (z. B. durch eine Tiefvakuumbehandlung). Aus vorgenannten Gründen ist der Schwefelgehalt auf kleiner 0,1 Gew.-% begrenzt.Sulfur S: Like phosphorus, it is bound as a trace element in iron ore. It is generally undesirable in steel, since it tends to segregate strongly and has a strong embrittling effect, as a result of which the elongation and toughness properties are impaired. Attempts are therefore made to achieve the lowest possible amounts of sulfur in the melt (e.g. by means of a deep vacuum treatment). For the reasons mentioned above, the sulfur content is limited to less than 0.1% by weight.

Stickstoff N: N ist ebenfalls ein Begleitelement aus der Stahlherstellung. Er verbessert im gelösten Zustand bei höher manganhaltigen Stählen mit größer gleich 4% Gew.-% Mn die Festigkeits- und Zähigkeitseigenschaften. Niedriger Mn-legierte Stähle < 4 Gew.-% mit freiem Stickstoff neigen zu einem starken Alterungseffekt. Der Stickstoff diffundiert schon bei geringen Temperaturen an Versetzungen und blockiert diese. Er bewirkt damit einen Festigkeitsanstieg verbunden mit einem rapiden Zähigkeitsverlust. Ein Abbinden des Stickstoffes in Form von Nitriden ist beispielsweise durch Zulegieren von Aluminium, Vanadium, Niob oder Titan möglich. Aus vorgenannten Gründen ist der Stickstoffgehalt auf kleiner 0,3 Gew.-% begrenzt.Nitrogen N: N is also an accompanying element in steel production. In the dissolved state, it improves the strength and toughness properties of steels with a higher manganese content with greater than or equal to 4% wt. Lower Mn-alloyed steels <4% by weight with free nitrogen tend to have a strong aging effect. The nitrogen diffuses at dislocations even at low temperatures and blocks them. It thus causes an increase in strength combined with a rapid loss of toughness. A setting of the nitrogen in the form of nitrides is possible, for example, by adding aluminum, vanadium, niobium or titanium. For the reasons mentioned above, the nitrogen content is limited to less than 0.3% by weight.

Mikrolegierungselemente werden in der Regel nur in sehr geringen Mengen zugegeben (< 0,1 Gew.-% pro Element). Sie wirken im Gegensatz zu den Legierungselementen hauptsächlich durch Ausscheidungsbildung können aber auch in gelöstem Zustand die Eigenschaften beeinflussen. Trotz der geringen Mengenzugaben beeinflussen Mikrolegierungselemente die Herstellungsbedingungen sowie die Verarbeitungs- und Endeigenschaften stark.Micro-alloy elements are generally only added in very small amounts (<0.1% by weight per element). In contrast to the alloying elements, they mainly work through the formation of precipitates, but can also influence the properties in a dissolved state. Despite the small additions, micro-alloying elements have a strong influence on the manufacturing conditions as well as the processing and final properties.

Typische Mikrolegierungselemente sind Vanadium, Niob und Titan. Diese Elemente können im Eisengitter gelöst werden und bilden mit Kohlenstoff und Stickstoff Carbide, Nitride und Carbonitride.Typical micro-alloy elements are vanadium, niobium and titanium. These elements can be dissolved in the iron lattice and form carbides, nitrides and carbonitrides with carbon and nitrogen.

Vanadium V und Niob Nb: Diese wirken insbesondere durch die Bildung von Karbiden kornfeinend, wodurch gleichzeitig die Festigkeit, Zähigkeit und Dehnungseigenschaften verbessert werden. Gehalte von über 1 Gew.-% bringen keine weiteren Vorteile. Für Vanadium und Niob wird optional bevorzugt ein Mindestgehalt von größer gleich 0,02 Gew.-% und ein Maximalgehalt von kleiner gleich 1 Gew.-% vorgesehen.Vanadium V and niobium Nb: These have a grain-refining effect through the formation of carbides, which at the same time improves strength, toughness and elongation properties. Contents of more than 1% by weight bring no further advantages. For vanadium and niobium, a minimum content of greater than or equal to 0.02% by weight and a maximum content of less than or equal to 1% by weight are optionally provided.

Titan Ti: Wirkt als Karbidbildner kornfeinend, wodurch gleichzeitig die Festigkeit, Zähigkeit und Dehnungseigenschaften verbessert werden und vermindert die interkristalline Korrosion. Gehalte an Ti von über 1 Gew.-% verschlechtern die Dehnungseigenschaften, weshalb optional ein Maximalgehalt von 1 Gew.-% festgelegt wird. Mindestgehalte von 0,02 Gew.-% können bevorzugt vorgesehen werden.Titanium Ti: Has a grain-refining effect as a carbide former, which at the same time improves strength, toughness and elongation properties and reduces intergranular corrosion. Contents of Ti of more than 1 wt .-% worsen the elongation properties, which is why a maximum content of 1 wt .-% is optionally specified. Minimum contents of 0.02% by weight can preferably be provided.

Zinn Sn: Zinn steigert die Festigkeit, reichert sich jedoch ähnlich Kupfer bei höheren Temperaturen unter der Zunderschicht und an den Korngrenzen an. Es führt durch Eindringen in die Korngrenzen zur Bildung niedrig schmelzender Phasen und damit verbunden zu Rissen im Gefüge und zu Lotbrüchigkeit, weshalb optional ein Maximalgehalt von kleiner gleich 0,5 Gew.-% und ein Minimalgehalt bei 0,005 Gew.-% vorgesehen werden.Tin Sn: Tin increases the strength, but, like copper, builds up under the scale and at the grain boundaries at higher temperatures. By penetrating the grain boundaries, it leads to the formation of low-melting phases and the associated cracks in the structure and to solder brittleness, which is why an optional Maximum content of less than or equal to 0.5% by weight and a minimum content of 0.005% by weight can be provided.

Kupfer Cu: Verringert die Korrosionsrate und steigert die Festigkeit. Gehalte oberhalb 3 Gew.-% verschlechtern die Herstellbarkeit durch Bildung niedrig schmelzender Phasen beim Vergießen und Warmwalzen weshalb optional ein Maximalgehalt von 3 Gew.-% und ein Minimalgehalt von 0,005 Gew.-% festgelegt wird. Bevorzugt ist ein Minimalgehalt von 0,5 Gew.-% vorgesehen.Copper Cu: Reduces the rate of corrosion and increases strength. Contents above 3 wt.% Worsen the producibility by the formation of low-melting phases during casting and hot rolling, which is why a maximum content of 3 wt.% And a minimum content of 0.005 wt.% Are optionally specified. A minimum content of 0.5% by weight is preferably provided.

Wolfram W: Wirkt als Karbidbildner und erhöht die Festigkeit und Warmfestigkeit. Gehalte an W von über 3 Gew.-% verschlechtern die Dehnungseigenschaften, weshalb optional ein Maximalgehalt von 3 Gew.-% und ein Minimalgehalt von 0,03 Gew.-% festgelegt wird. Bevorzugt ist ein Minimalgehalt von 0,05 Gew.-% vorgesehen.Tungsten W: acts as a carbide former and increases strength and heat resistance. W contents of more than 3% by weight deteriorate the elongation properties, which is why a maximum content of 3% by weight and a minimum content of 0.03% by weight are optionally specified. A minimum content of 0.05% by weight is preferably provided.

Kobalt Co: Erhöht die Festigkeit des Stahls, stabilisiert den Austenit und verbessert die Warmfestigkeit. Gehalte von über 3 Gew.-% verschlechtern die Dehnungseigenschaften, weshalb optional ein Maximalgehalt von kleiner gleich 3 Gew.-% und ein Minimalgehalt von 0,05 Gew.-% festgelegt wird. Bevorzugt ist ein Minimalgehalt von 0,08 Gew.-% vorgesehen.Cobalt Co: Increases the strength of the steel, stabilizes the austenite and improves the high temperature strength. Contents of over 3% by weight worsen the elongation properties, which is why a maximum content of less than or equal to 3% by weight and a minimum content of 0.05% by weight are optionally specified. A minimum content of 0.08% by weight is preferably provided.

Zirkonium Zr: Wirkt als Karbidbildner und verbessert die Festigkeit. Gehalte an Zr von über 0,5 Gew-% verschlechtern die Dehnungseigenschaften, weshalb optional ein Maximalgehalt von 0,5 Gew.-% und ein Minimalgehalt von 0,03 Gew.-% festgelegt wird. Bevorzugt ist ein Minimalgehalt von 0,05 Gew.-% vorgesehen.Zirconium Zr: Acts as a carbide former and improves strength. Zr contents of more than 0.5% by weight deteriorate the elongation properties, which is why a maximum content of 0.5% by weight and a minimum content of 0.03% by weight are optionally specified. A minimum content of 0.05% by weight is preferably provided.

Kalzium Ca: Kalzium wird zur Modifikation nichtmetallischer oxidischer Einschlüsse genutzt, welche sonst zu einem unerwünschten Versagen der Legierung durch Einschlüsse im Gefüge, welche als Spannungskonzentrationsstellen wirken und den Metallverbund schwächen, führen könnten. Des Weiteren verbessert Ca die Homogenität der erfindungsgemäßen Legierung. Um eine entsprechende Wirkung zu entfalten, ist ein optional Mindestgehalt von 0,0005 Gew.-% notwendig. Gehalte von oberhalb 0,1 Gew.-% Ca bringen keinen weiteren Vorteil bei der Einschlussmodifikation, verschlechtern die Herstellbarkeit und sollten aufgrund des hohen Dampfdrucks von Ca in Stahlschmelzen vermieden werden. Daher ist ein Maximalgehalt von 0,1 Gew.-% vorgesehen.Calcium Ca: Calcium is used to modify non-metallic oxidic inclusions, which could otherwise lead to undesired failure of the alloy due to inclusions in the structure, which act as stress concentration points and weaken the metal bond. Furthermore, Ca improves the homogeneity of the alloy according to the invention. In order to develop a corresponding effect, an optional minimum content of 0.0005% by weight is necessary. Contents of above 0.1% by weight Ca bring no further advantage in the inclusion modification, impair the producibility and should be avoided due to the high vapor pressure of Ca in steel melts. Hence a Maximum content of 0.1% by weight provided.

Erfindungsgemäß liefert ein Verfahren zur Herstellung eines Stahlflachprodukts mit einer Zugfestigkeit Rm > 800 bis 1700 MPa und mit einer Bruchdehnung A50 von 6 bis 45%, vorzugsweise > 8 bis 45%, aus dem vorbeschriebenen Stahl, umfassend die Schritte:

  • Erschmelzen einer Stahlschmelze enthaltend (in Gewichts-%): C: 0,01 bis < 0,3; Mn: 4 bis < 10; Al: > 1 bis 4; Si: 0,01 bis 1; Cr: 0,1 bis 4; Mo: 0,02 bis 1; P: < 0,1; S: < 0,1; N: < 0,3; mit Zulegierung von einem oder mehreren der folgenden Elemente (in Gewichts-%): W: 0,03 bis 3; Co: 0,05 bis 3; Zr: 0,03 bis 0,5; Rest Eisen einschließlich unvermeidbarer stahlbegleitender Elemente, sowie mit optionaler Zulegierung von einem oder mehrerer der folgenden Elemente (in Gewichts-%): V: 0,01 bis 1; Nb: 0,01 bis 1; Ti: 0,01 bis 1; Sn: 0 bis 0,5; Cu: 0,005 bis 3 und Ca: 0,0005 bis 0,1;
  • Vergießen der Stahlschmelze zu einem Vorband mittels eines endabmessungsnahen horizontalen oder vertikalen Bandgießverfahrens oder Vergießen der Stahlschmelze zu einer Bramme oder Dünnbramme mittels eines horizontalen oder vertikalen Brammen- oder Dünnbrammengießverfahrens,
  • Wiedererwärmen der Bramme oder Dünnbramme auf 1050 °C bis 1250 °C und anschließendes Warmwalzen der Bramme oder Dünnbramme zu einem Warmband oder Grobblech oder Wiedererwärmen des endabmessungsnah erzeugten Vorbandes, insbesondere mit einer Dicke von größer als 3 mm, auf 1000 °C bis 1200 °C und anschließendes Warmwalzen des Vorbandes zu einem Warmband oder Grobblech oder Warmwalzen des Vorbandes ohne Wiedererwärmen aus der Gießhitze zu einem Warmband oder Grobblech mit optionalem Zwischenerwärmen zwischen einzelnen Walzstichen des Warmwalzens,
  • Aufhaspeln des Warmbandes und optional des Grobblechs bei einer Haspeltemperatur zwischen 780 °C und Raumtemperatur,
  • Optionales Glühen des Warmbandes oder Grobblechs mit folgenden Parametern: Glühtemperatur: 610 bis 780 °C, Glühdauer: 1 Minute bis 48 Stunden,
  • Optionales Kaltwalzen des Warmbandes oder des endabmessungsnah erzeugten Vorbandes mit einer Dicke von kleiner gleich 3 mm zu Kaltband,
  • Optionales Glühen des Kaltbandes mit folgenden Parametern: Glühtemperatur: 610 bis 780 °C, Glühdauer: 1 Minute bis 48 Stunden, ein Stahlflachprodukt mit einer guten Kombination von Festigkeits-, Dehnungs- und Umformeigenschaften, sowie einem erhöhten Widerstand gegenüber verzögerter Rissbildung und Wasserstoffversprödung, welches aufgrund seines Restaustenitgehalts im Gefüge bei mechanischer Beanspruchung einen TRIP- und/oder TWIP-Effekt aufweist.
According to the invention, a method for producing a flat steel product with a tensile strength Rm> 800 to 1700 MPa and an elongation at break A50 of 6 to 45%, preferably> 8 to 45%, from the steel described above, comprising the steps:
  • Melting a steel melt containing (in% by weight): C: 0.01 to <0.3; Mn: 4 to <10;Al:> 1 to 4; Si: 0.01 to 1; Cr: 0.1 to 4; Mo: 0.02 to 1; P: <0.1; S: <0.1; N: <0.3; with the addition of one or more of the following elements (in% by weight): W: 0.03 to 3; Co: 0.05 to 3; Zr: 0.03 to 0.5; Remainder iron including unavoidable steel-accompanying elements, as well as with the optional addition of one or more of the following elements (in% by weight): V: 0.01 to 1; Nb: 0.01 to 1; Ti: 0.01 to 1; Sn: 0 to 0.5; Cu: 0.005 to 3 and Ca: 0.0005 to 0.1;
  • Casting the molten steel into a pre-strip using a near-net-shape horizontal or vertical strip casting process or casting the molten steel into a slab or thin slab using a horizontal or vertical slab or thin-slab casting process,
  • Reheating of the slab or thin slab to 1050 ° C to 1250 ° C and subsequent hot rolling of the slab or thin slab to form a hot strip or heavy plate or reheating of the pre-strip produced close to the final dimensions, in particular with a thickness of greater than 3 mm, to 1000 ° C to 1200 ° C and subsequent hot rolling of the roughing strip to form a hot strip or heavy plate or hot rolling of the roughing strip without reheating from the casting heat to a hot strip or heavy plate with optional intermediate heating between individual rolling passes of the hot rolling,
  • Coiling the hot strip and optionally the heavy plate at a coiling temperature between 780 ° C and room temperature,
  • Optional annealing of the hot strip or heavy plate with the following parameters: annealing temperature: 610 to 780 ° C, annealing time: 1 minute to 48 hours,
  • Optional cold rolling of the hot strip or the pre-strip produced near net dimensions with a thickness of less than or equal to 3 mm into cold strip,
  • Optional annealing of the cold strip with the following parameters: annealing temperature: 610 to 780 ° C, annealing time: 1 minute to 48 hours, a flat steel product with a good combination of strength, elongation and deformation properties, as well as increased resistance to delayed Crack formation and hydrogen embrittlement, which due to its residual austenite content in the structure shows a TRIP and / or TWIP effect when subjected to mechanical stress.

In Bezug auf weitere Vorteile wird auf die vorstehenden Ausführungen zu dem erfindungsgemäßen Stahl verwiesen. Das Verfahren führt zu einem Stahlprodukt in Form eines Grobblechs, Warm- oder Kaltbands. Es ist vorgesehen, dass das Warmband bei einer Temperatur von maximal 780 °C aufgewickelt wird. Als Untergrenze ist die Raumtemperatur angegeben, da die Aufwickeltemperatur nur geringen Einfluss auf spätere Verarbeitungseigenschaften hat. Im Zusammenhang mit der vorliegenden Erfindung werden als Grobblech Bänder mit Dicken über 3 mm bezeichnet, wobei diese durchaus beispielsweise bei einer Dicke von 5 mm noch aufgewickelt werden können. Grobblech mit größerer Dicke, beispielsweise 50 mm wird nach dem Warmwalzen zu Tafelmaterial abgetafelt, da es nicht mehr gewickelt werden kann. Auch kann bei Bedarf das Warm- oder Kaltband abgetafelt werden.With regard to further advantages, reference is made to the above statements on the steel according to the invention. The process results in a steel product in the form of a heavy plate, hot or cold strip. It is intended that the hot strip will be wound at a maximum temperature of 780 ° C. The room temperature is given as the lower limit, as the winding temperature has only a minor influence on subsequent processing properties. In connection with the present invention, strips with a thickness of more than 3 mm are referred to as heavy plate, and these can still be wound up, for example, with a thickness of 5 mm. Heavy plate with a greater thickness, for example 50 mm, is flattened to sheet material after hot rolling, since it can no longer be wound. If required, the hot or cold strip can also be cut.

Üblicherweise liegt die Warmwalzendtemperatur zwischen 950 °C und Ac1 + 50 K.The final hot rolling temperature is usually between 950 ° C and A c 1 + 50 K.

Übliche Dickenbereiche für Vorband sind 1 mm bis 35 mm sowie für Brammen und Dünnbrammen 35 mm bis 450 mm. Vorzugsweise ist vorgesehen, dass die Bramme oder Dünnbramme zu einem Warmband oder Grobblech mit einer Dicke von 70 mm bis 1,5 mm warmgewalzt wird oder das endabmessungsnah gegossene Vorband zu einem Warmband mit einer Dicke von 8 mm bis 1 mm warmgewalzt wird. Das erfindungsgemäße Kaltband hat eine Dicke von beispielsweise größer 0,15 mm.The usual thickness ranges for pre-strip are 1 mm to 35 mm and for slabs and thin slabs 35 mm to 450 mm. It is preferably provided that the slab or thin slab is hot rolled into a hot strip or heavy plate with a thickness of 70 mm to 1.5 mm or the pre-strip cast close to its final dimensions is hot rolled into a hot strip with a thickness of 8 mm to 1 mm. The cold strip according to the invention has a thickness of, for example, greater than 0.15 mm.

Im Zusammenhang mit dem vorstehenden erfindungsgemäßen Verfahren wird ein endabmessungsnah mit dem Zwei-Rollen Gießverfahren erzeugtes Vorband mit einer Dicke von kleiner gleich 3 mm, vorzugsweise 1 mm bis 3 mm, bereits als Warmband verstanden. Das so als Warmband produzierte Vorband weist, bedingt durch die eingebrachte Umformung der beiden gegenläufigen Walzen, keine 100%-Gussstruktur auf. Ein Warmwalzen findet somit bereits inline während des Zwei-Rollen-Gießverfahrens statt, so dass ein separates Warmwalzen entfallen kann.In connection with the above method according to the invention, a pre-strip produced near net dimensions using the two-roll casting method with a thickness of less than or equal to 3 mm, preferably 1 mm to 3 mm, is already understood as hot strip. The pre-strip produced in this way as hot strip does not have a 100% cast structure due to the forming of the two counter-rotating rolls. Hot rolling thus already takes place inline during the two-roller casting process, so that separate hot rolling can be omitted.

Für das Warmwalzen des Vorbandes aus der Gießhitze zu einem Warmband mit optionalen Zwischenerwärmen zwischen einzelnen Walzstichen des Warmwalzens sind Wiedererwärm-Temperaturen im Bereich von 720 °C bis 1200 °C vorgesehen. Müssen nur noch wenige Walzstiche erfolgen, kann die Wiedererwärm-Temperatur am unteren Ende des Bereichs gewählt werden.For the hot rolling of the pre-strip from the casting heat to a hot strip with optional intermediate heating between individual rolling passes of the hot rolling reheating temperatures in the range of 720 ° C to 1200 ° C are provided. If only a few roller passes need to be made, the reheating temperature can be selected at the lower end of the range.

Das Warmband, wie auch das Grobblech kann optional einer Wärmebehandlung im Temperaturbereich zwischen 610 und 780 °C für 1 Minute bis 48 h unterzogen werden, wobei höhere Temperaturen kürzeren Behandlungszeiten und umgekehrt zugeordnet werden. Die Glühung kann sowohl in einer Haubenglühe (längere Glühzeiten), als auch beispielsweise in einer Durchlaufglühe (kürzere Glühzeiten) erfolgen. Die Wärmebehandlung kann ebenso entfallen, sofern das Warmband bzw. Grobblech bereits die fertigen Gebrauchseigenschaften aufweist.The hot strip, as well as the heavy plate, can optionally be subjected to a heat treatment in the temperature range between 610 and 780 ° C. for 1 minute to 48 hours, with higher temperatures being associated with shorter treatment times and vice versa. The annealing can take place both in a hood annealing (longer annealing times) and, for example, in a continuous annealing (shorter annealing times). The heat treatment can also be omitted if the hot strip or heavy plate already has the finished properties.

Im Anschluss an den Glühvorgang erfolgt optional das Kaltwalzen des geglühten Warmbandes mit dem Ziel, die für die Endanwendung benötigten Dicken von größer gleich 0,15 mm einzustellen. Hieran anschließend kann ein weiterer Glühprozess durchgeführt werden gegebenenfalls gekoppelt mit einem Beschichtungsprozess und abschließend deinem Dressierprozess, mit dem die für die Endanwendung benötigte Oberflächenstruktur eingestellt wird.After the annealing process, the annealed hot strip is optionally cold-rolled with the aim of setting the thicknesses required for the end application of greater than or equal to 0.15 mm. A further annealing process can then be carried out, possibly coupled with a coating process and finally your skin-pass process, with which the surface structure required for the end application is set.

Vorzugsweise wird das Stahlflachprodukt schmelztauch- oder elektrolytisch verzinkt oder metallisch, anorganisch oder organisch überzogen.The flat steel product is preferably hot-dip galvanized or electrolytically galvanized or coated with a metallic, inorganic or organic coating.

Ein nach dem erfindungsgemäßen Verfahren hergestelltes Stahlflachprodukt in Form eines Grobblechs, Warmbandes oder Kaltbandes weist eine Zugfestigkeit Rm > 800 bis 1700 MPa und eine Bruchdehnung A50 von 6 bis 45%, vorzugsweise > 8 bis 45% auf. Hierbei sind hohen Festigkeiten tendenziell niedrigeren Bruchdehnungen zuzuordnen und umgekehrt.A flat steel product in the form of heavy plate, hot strip or cold strip produced by the process according to the invention has a tensile strength Rm> 800 to 1700 MPa and an elongation at break A50 of 6 to 45%, preferably> 8 to 45%. High strengths tend to be associated with lower elongations at break and vice versa.

Claims (13)

  1. High-strength, aluminium-containing manganese steel having a multiphase microstructure, consisting of ferrite and/or martensite and/or bainite and residual austenite and a TRIP and/or TWIP effect, having a residual austenite proportion of 5% to 65%, a tensile strength Rm > 800 to 1700 MPa, an elongation at fracture A50 of 6 to 45%, preferably > 8 to 45% and a following chemical composition (in wt%):
    C: 0.01 to < 0.3
    Mn: 4 to < 10
    Al: > 1 to 4
    Si: 0.01 to 1
    Cr: 0.1 to 4
    Mo: 0.02 to 1
    P: < 0.1
    S: < 0.1
    N: < 0.3
    with the addition by alloying of one or more of the following elements (in wt%):
    W: 0.03 to 3
    Co: 0.05 to 3
    Zr: 0.03 to 0.5
    with the remainder being iron including unavoidable steel-associated elements, and
    with the optional addition by alloying of one or more of the following elements (in wt%):
    V: 0.01 to 1
    Nb: 0.01 to 1
    Ti: 0.01 to 1
    Sn: 0 to 0.5
    Cu: 0.005 to 3
    Ca: 0.0005 to 0.1.
  2. Steel as claimed in claim 1, characterised in that the steel contains (in wt%):
    Si: 0.01 to < 1.
  3. Steel as claimed in claim 1 or 2, characterised in that the steel contains (in wt%):
    V: 0.02 to 1.
  4. Steel as claimed in any one of claims 1 to 3, characterised in that the steel contains (in wt%):
    Nb: 0.02 to 1.
  5. Steel as claimed in any one of claims 1 to 4, characterised in that the steel contains (in wt%):
    Ti: 0.02 to 1.
  6. Steel as claimed in any one of claims 1 to 5, characterised in that the steel contains (in wt%):
    Sn: 0.005 to 0.5.
  7. Steel as claimed in any one of claims 1 to 6, characterised in that the steel contains (in wt%):
    Cu: 0.5 to 3.
  8. Steel as claimed in any one of claims 1 to 7, characterised in that the steel contains (in wt%):
    W: 0.05 to 3.
  9. Steel as claimed in any one of claims 1 to 8, characterised in that the steel contains (in wt%):
    Co: 0.08 to 3.
  10. Steel as claimed in any one of claims 1 to 9, characterised in that the steel contains (in wt%):
    Zr: 0.05 to 0.5.
  11. Method for producing a flat steel product having a tensile strength Rm > 800 to 1700 MPa and an elongation at fracture A50 of 6 to 45%, preferably > 8 to 45%, from a steel as claimed in any one of the preceding claims 1 to 10, comprising the steps of:
    - melting a steel melt containing (in wt%):
    C: 0.01 to < 0.3
    Mn: 4 to < 10
    Al: > 1 to 4
    Si: 0.01 to 1
    Cr: 0.1 to 4
    Mo: 0.02 to 1
    P: < 0.1
    S: < 0.1
    N: < 0.3
    with the addition by alloying of one or more of the following elements (in wt%):
    W: 0.03 to 3
    Co: 0.05 to 3
    Zr: 0.03 to 0.5
    with the remainder being iron including unavoidable steel-associated elements, and
    with the optional addition by alloying of one or more of the following elements (in wt%):
    V: 0.01 to 1
    Nb: 0.01 to 1
    Ti: 0.01 to 1
    Sn: 0 to 0.5
    Cu: 0.005 to 3
    Ca: 0.0005 to 0.1
    - casting the steel melt to form a pre-strip by means of a horizontal or vertical strip casting process approximating a final dimension or casting the steel melt to form a slab or thin slab by means of a horizontal or vertical slab or thin slab casting process,
    - re-heating the slab or thin slab to 1050°C to 1250°C and subsequently hot rolling the slab or thin slab to form a hot strip or thick plate, or re-heating the pre-strip produced to an approximate final dimension, in particular having a thickness of greater than 3 mm, to 1000°C to 1200°C and subsequently hot rolling the pre-strip to form a hot strip or thick plate, or hot rolling the pre-strip without re-heating from the casting heat to form a hot strip or thick plate with optional intermediate heating between individual rolling passes of the hot rolling,
    - reeling the hot strip and optionally the thick plate at a reeling temperature between 780°C and room temperature,
    - optionally annealing the hot strip or thick plate with the following parameters: annealing temperature: 610 to 780°C, annealing duration: 1 minute to 48 hours,
    - optionally cold rolling the hot strip or pre-strip produced to an approximate final dimension, with a thickness of less than or equal to 3 mm to form cold strip,
    - optionally annealing the cold strip with the following parameters: annealing temperature: 610 to 780°C, annealing duration: 1 minute to 48 hours.
  12. Method as claimed in claim 11, characterised in that the slab is hot-rolled to form a hot strip having a thickness of 70 mm to 1.5 mm or the pre-strip is hot rolled to form a hot strip having a thickness of 8 mm to 1 mm.
  13. Flat steel product produced according to a method as claimed in claims 11 or 12, characterised in that the flat steel product is galvanised by hot-dipping or electrolytically or is coated metallically, inorganically or organically.
EP16747515.1A 2015-08-05 2016-08-03 High-tensile manganese steel containing aluminium, method for producing a sheet-steel product from said steel and sheet-steel product produced according to this method Active EP3332046B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015112886.1A DE102015112886A1 (en) 2015-08-05 2015-08-05 High-strength aluminum-containing manganese steel, a process for producing a steel flat product from this steel and steel flat product produced therefrom
PCT/EP2016/068564 WO2017021459A1 (en) 2015-08-05 2016-08-03 High-tensile manganese steel containing aluminium, method for producing a sheet-steel product from said steel and sheet-steel product produced according to this method

Publications (2)

Publication Number Publication Date
EP3332046A1 EP3332046A1 (en) 2018-06-13
EP3332046B1 true EP3332046B1 (en) 2021-02-24

Family

ID=56567612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16747515.1A Active EP3332046B1 (en) 2015-08-05 2016-08-03 High-tensile manganese steel containing aluminium, method for producing a sheet-steel product from said steel and sheet-steel product produced according to this method

Country Status (6)

Country Link
US (1) US20180230579A1 (en)
EP (1) EP3332046B1 (en)
KR (1) KR20180036731A (en)
DE (1) DE102015112886A1 (en)
RU (1) RU2709560C2 (en)
WO (1) WO2017021459A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016110661A1 (en) * 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Process for producing a cold-rolled steel strip from a high-strength, manganese-containing steel
DE102017223633A1 (en) 2017-12-21 2019-06-27 Voestalpine Stahl Gmbh Cold-rolled flat steel product with metallic anticorrosion layer and method for producing the same
DE102018132901A1 (en) * 2018-12-19 2020-06-25 Voestalpine Stahl Gmbh Process for the production of conventionally hot rolled hot rolled products
DE102018132860A1 (en) * 2018-12-19 2020-06-25 Voestalpine Stahl Gmbh Process for the production of conventionally hot-rolled, profiled hot-rolled products
CN111575466B (en) * 2020-06-29 2021-10-22 张家港联峰钢铁研究所有限公司 Heat treatment preparation method of heat-strength corrosion-resistant steel
WO2024041687A1 (en) 2022-08-23 2024-02-29 Schaeffler Technologies AG & Co. KG Electromechanical actuator
DE102023117976A1 (en) 2022-08-23 2024-02-29 Schaeffler Technologies AG & Co. KG Electromechanical actuator
CN116356233A (en) * 2023-04-11 2023-06-30 重庆大学 Method for improving hydrogen embrittlement resistance of zirconium alloy by utilizing deformation twin crystal

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054374B2 (en) * 1982-04-21 1985-11-29 新日本製鐵株式会社 Method for manufacturing austenitic steel plates and steel strips
FR2796083B1 (en) * 1999-07-07 2001-08-31 Usinor PROCESS FOR MANUFACTURING IRON-CARBON-MANGANESE ALLOY STRIPS, AND STRIPS THUS PRODUCED
EP1832667A1 (en) * 2006-03-07 2007-09-12 ARCELOR France Method of producing steel sheets having high strength, ductility and toughness and thus produced sheets.
EP2039791B1 (en) * 2006-06-01 2011-07-06 Honda Motor Co., Ltd. High-strength steel sheet and process for producing the same
EP1990431A1 (en) * 2007-05-11 2008-11-12 ArcelorMittal France Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby
KR100985298B1 (en) * 2008-05-27 2010-10-04 주식회사 포스코 Low Density Gravity and High Strength Hot Rolled Steel, Cold Rolled Steel and Galvanized Steel with Excellent Ridging Resistibility and Manufacturing Method Thereof
WO2010052751A1 (en) * 2008-11-05 2010-05-14 Honda Motor Co., Ltd. High-strength steel sheet and the method for production therefor
KR101563606B1 (en) * 2009-03-11 2015-10-27 잘쯔기터 플래시슈탈 게엠베하 Method for producing a hot rolled strip and hot rolled strip produced from ferritic steel
EP2383353B1 (en) 2010-04-30 2019-11-06 ThyssenKrupp Steel Europe AG High tensile steel containing Mn, steel surface product made from such steel and method for producing same
WO2012133540A1 (en) * 2011-03-28 2012-10-04 新日本製鐵株式会社 Hot-rolled steel sheet and production method therefor
TWI470092B (en) * 2011-05-25 2015-01-21 Nippon Steel & Sumitomo Metal Corp Cold rolled steel sheet and manufacturing method thereof
US9617614B2 (en) * 2011-10-24 2017-04-11 Jfe Steel Corporation Method for manufacturing high strength steel sheet having excellent formability
KR101382981B1 (en) * 2011-11-07 2014-04-09 주식회사 포스코 Steel sheet for warm press forming, warm press formed parts and method for manufacturing thereof
BR112015011302B1 (en) * 2013-02-26 2020-02-27 Nippon Steel Corporation HOT-LAMINATED STEEL SHEET AND ITS PRODUCTION PROCESS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AUTORENKOLLEKTIV: "Spurenelemente im Stahl - Moeglichkeiten zur Beeinflussung im Smelzbetrieb", SPURENELEMENTE IN STAEHLEN, VERLAG STAHLEISEN, DUESSELDORF, DE, 1 January 1985 (1985-01-01), pages 19 - 22, XP002433212 *

Also Published As

Publication number Publication date
RU2018107257A (en) 2019-09-05
US20180230579A1 (en) 2018-08-16
WO2017021459A1 (en) 2017-02-09
DE102015112886A1 (en) 2017-02-09
EP3332046A1 (en) 2018-06-13
RU2709560C2 (en) 2019-12-18
KR20180036731A (en) 2018-04-09
RU2018107257A3 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
EP3332046B1 (en) High-tensile manganese steel containing aluminium, method for producing a sheet-steel product from said steel and sheet-steel product produced according to this method
EP3332047B1 (en) Production method of a flexibly-rolled steel sheet product and its use
EP2383353B1 (en) High tensile steel containing Mn, steel surface product made from such steel and method for producing same
EP2855717B1 (en) Steel sheet and method to manufacture it
EP3535431B1 (en) Steel product with an intermediate manganese content for low temperature application and production method thereof
EP3504349B1 (en) Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type
EP2836614B1 (en) High-strength multi-phase steel, and method for producing a strip from said steel
EP2668302B1 (en) Method for manufacturing a strip from a high strength multi-phase steel having excellent forming properties
EP3655560A1 (en) Flat steel product with a high degree of aging resistance, and method for producing same
WO2015117934A1 (en) High-strength flat steel product having a bainitic-martensitic microstructure and method for producing such a flat steel product
EP3512968B1 (en) Method for producing a flat steel product made of a manganese-containing steel, and such a flat steel product
EP2690184A1 (en) Produit plat en acier laminé à froid et son procédé de fabrication
EP3724359B1 (en) High-strength, hot-rolled flat steel product with high edge crack resistance and simultaneously high bake-hardening potential and method for producing a flat steel product of this kind
WO2017012958A1 (en) Method for producing a hot-rolled strip composed of a bainitic multi-phase steel and having a zn-mg-al coating, and corresponding hot-rolled strip
WO2017013193A1 (en) Formable lightweight steel with improved mechanical properties and method for producing semi-finished products from said steel
WO2018050637A1 (en) Method for producing a hot or cold strip and/or a flexibly rolled flat steel product made of a high-strength manganese steel and flat steel product produced by said method
DE202015105104U1 (en) Hot strip of a bainitic multi-phase steel with a Zn-Mg-Al coating
EP3469108A1 (en) Method for producing a cold-rolled steel strip having trip-characteristics made of a high-strength mangan-containing steel
DE102016115618A1 (en) Process for producing a high-strength steel strip with improved properties during further processing and such a steel strip
EP3964591A1 (en) Hot-rolled steel sheet product and method for producing a hot-rolled steel sheet product

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190509

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016012450

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038000000

Ipc: C22C0038040000

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/06 20060101ALI20200910BHEP

Ipc: C22C 38/24 20060101ALI20200910BHEP

Ipc: C22C 38/04 20060101AFI20200910BHEP

Ipc: C23C 26/00 20060101ALI20200910BHEP

Ipc: C22C 38/30 20060101ALI20200910BHEP

Ipc: C21D 9/48 20060101ALI20200910BHEP

Ipc: C23C 2/04 20060101ALI20200910BHEP

Ipc: C21D 8/04 20060101ALI20200910BHEP

Ipc: C21D 8/02 20060101ALI20200910BHEP

Ipc: C22C 38/20 20060101ALI20200910BHEP

Ipc: C22C 38/22 20060101ALI20200910BHEP

Ipc: C23C 20/06 20060101ALI20200910BHEP

Ipc: C22C 38/38 20060101ALI20200910BHEP

Ipc: C23C 2/40 20060101ALI20200910BHEP

Ipc: C22C 38/26 20060101ALI20200910BHEP

Ipc: C22C 38/28 20060101ALI20200910BHEP

Ipc: C22C 38/12 20060101ALI20200910BHEP

Ipc: C22C 38/18 20060101ALI20200910BHEP

Ipc: C21D 6/00 20060101ALI20200910BHEP

Ipc: C22C 38/02 20060101ALI20200910BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201021

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1364529

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012450

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210525

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012450

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

26N No opposition filed

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1364529

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230825

Year of fee payment: 8

Ref country code: DE

Payment date: 20230821

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224